
Efficient Aerodynamic Optimization of Aircraft Wings

Pedro Rodrigues
pedro.miguel.verissimo.rodrigues@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

April 2018

Abstract

One of the most important keys to the successful design of complex systems is disciplinary inte-
gration. Multidisciplinary Design and Optimization is now a promising methodology for the efficient
design of such systems, since it combines multidisciplinary analysis with gradient-based optimization
techniques. Therefore, this methodology requires the derivatives evaluation of the functions of
interest with respect to the design variables, which is the most demanding computational task in the
optimization process. Traditionally, those derivatives are calculated inefficiently and inaccurately using
approximate methods. Therefore, the objective of this work is to develop an efficient optimization
framework to solve aerodynamic design problems using exact gradient information. Firstly, a survey
on sensitivity analysis methods is conducted to identify which tools are available and understand their
respective merits. Secondly, an aerodynamic model based on the panel method is reformulated into five
smaller modules, in which the respective sensitivity analysis blocks are constructed using exact gradient
estimation methods: automatic differentiation, symbolic differentiation and the adjoint method. Both
the aerodynamic tool and respective sensitivity analysis are validated using a wing design tool and
the finite-differences method, respectively. Finally, aerodynamic optimization problems are solved
using the new tool with remarkable success since, when compared to the finite-differences method, the
optimization time can be reduced by 90%.
Keywords: Gradient-based optimization, Aerodynamic design, Sensitivity analysis, Automatic
differentiation, Adjoint method.

1. Introduction

Nowadays, aircraft industry is experiencing an eco-
nomical expansion leading to an increase in the
competition for providing new and better aircraft
configurations capable of fulfilling new require-
ments. As those impositions are tighter, the sys-
tem’s complexity increases, requiring efficient tech-
niques to project those systems.

Multidisciplinary Design and Optimization
(MDO) is a promising tool to design such systems,
combining optimization procedures with coupled
multidisciplinary analysis so that the best design is
obtained according to some objective function while
satisfying the problem’s constraints [1]. Since hun-
dred or even thousand design variables are usually
required to faithfully parametrize the system, the
use of gradient-based optimization techniques are
imperative to efficient optimization due to faster
convergence rates when comparing with heuristic
and gradient free methods. However, the perfor-
mance of these type of algorithms depends heavily
on how efficiently the sensitivities/derivatives of
the interest functions with respect to the design
variables are calculated. The adjoint method is

probably one of the most attractive to efficient
sensitivity analysis since the derivatives may
be calculated exactly and independently of the
number of the system’s inputs.

The objective of this work is to develop an ef-
ficient aerodynamic optimization tool to be lately
incorporated in an aeroelastic framework for wing
analysis with static aero-structural capabilities, de-
veloped by Almeida [2]. The wing’s structure was
modeled using a 3D finite-element model, applied
to the neutral axis and the aerodynamic loads were
calculated using a panel method code developed by
Cardeira [3]. Almeida took advantage of the frame-
work’s static aero-structural capabilities to mini-
mize the wing mass, subject to lift and stress con-
straints, and it was concluded that a new improved
design was achieved. However, the optimization
process was conducted slowly since the sensitiv-
ity analysis was performed inefficiently and inac-
curately, using finite-differences (FD).

This work finds its motivation in solving the is-
sue of inefficient aerodynamic optimization by pro-
viding an efficient sensitivity analysis framework to
the panel method code implemented by Cardeira

1

[3]. The new optimization tool relies on a gradient-
based algorithm and it uses the adjoint method to
efficient sensitivity analysis.

2. Optimization Methods

When categorizing optimization methods, a com-
mon division found in literature is into heuristics or
deterministic methods. The former is used when
the traditional deterministic approach fails. An
advantage of using this approach is that very few
mathematical properties about the problem must
be verified and thus, may be used in a broader set
of problems. The latter is usually preferable if a
set of assumptions about the problem at hand can
be made, e.g. continuous and smooth interest func-
tions where derivatives exist. If those assumptions
are possible, deterministic methods provide theo-
retical guarantee that, at least, a local minimum is
found. This type of methods are usually very robust
and they are widely used in design problems.

Following a deterministic approach, Belegundu
and Chandrupatla [4] define optimization as the
process of minimizing a given objective function
while satisfying a given set of constraints. A typical
engineering optimization problem may be generally
expressed as nonlinear programming (NLP) stated
as

minimize f(x)

w.r.t x ∈ Rn

subject to gi(x) ≤ 0 for i = 1, ...,m

hj(x) = 0 for j = 1, ..., `

xL ≤ x ≤ xU

(1)
where x is the design vector, or the independent
variables, xL and xU are the lower and upper
bounds, f is the objective function, hj and gi
are the equality and inequality constraints, respec-
tively. All of these functions may be nonlinear. De-
pending whether the gradient of both objective and
constraint functions are required or not, this prob-
lem may be further categorized in gradient-based or
gradient-free methods.

Gradient-Based Methods are usually prefer-
able due to faster convergence rates and clear stop-
ping criterion. Furthermore, those are divided into
constrained or unconstrained problems whether or
not the constraint functions and bounds are present
in the optimization problem. Many engineering
design problems falls into the first category since
project limitations exist and must be accounted.
An example is a wing drag minimization problem,
subject to lift and stress constraints. Nevertheless,
the methodology to solve these problems consists in
two common steps:

• Find a descent/feasible direction based on

gradient information.

• Minimize the objective function in that direc-
tion (line search)

A stopping criterion is also required to decide
when the algorithm should stop, which for a con-
strained NLP corresponds to the Karusch-Kuhn-
Tucker (KKT) necessary conditions to optimality

∂L
∂xk

=
∂f

∂xk
+

m∑
i=1

µi
∂gi
∂xk

+
∑̀
j=1

λj
∂hj
∂xk

= 0

µi ≥ 0, i = 1, ...,m

µigi = 0, i = 1, ...,m

gi ≤ 0, i = 1, ...,m

hj = 0, j = 1, ..., `

(2)

where, L = f +
∑m
i=1 µigi +

∑`
j=1 λjhj is the La-

grangian function, µi and λj are Lagrange multi-
pliers. Although the KKT conditions must be nec-
essarily verified, the solution point is a minimum
only if the Hessian matrix is positive definite at that
point.

Several algorithms are supported by this formula-
tion, including the Reduced Gradient Method, the
Method of Feasible Directions and the Sequential
Quadratic Programming [5] method. The latter will
be used since it presents some advantages including:
the initial point may be unfeasible, only gradients
of active constraints are needed, higher rate of con-
vergence when comparing with similar methods and
it is already implemented in MATLAB R©.

3. Sensitivity Analysis

A common feature among gradient-based optimiza-
tion methods is the requirement of providing the
gradient of both objective and constraint functions
to the optimization algorithm. Since the perfor-
mance of such methods depends on how those gra-
dients are calculated, it is necessary to survey the
methods available to perform accurate and efficient
sensitivity analysis.

3.1. Symbolic Differentiation

Symbolic differentiation (SD) means to apply the
well known rules of differentiation, such as the ones
applied to the sum, difference, product or quotient
of functions using computational software. The
methodology is restricted to explicit functions and
therefore, may become impracticable to be imple-
mented in very large problems. Some tools are
available to the effect, including the diff() func-
tion from the Symbolic Math Toolbox, written to
MATLAB R©.

2

3.2. Finite-Differences Method
The finite-differences method (FD) is one of the
oldest and simpler methods to estimate the sen-
sitivities. Consider a vector valued function F =
[F1, ..., Fm]T dependent on the vector of indepen-
dent variables x = [x1, ..., xn]T . Finite-difference
formulas approximate the derivative of a function
using a quotient of a difference and they may be
obtained through Taylor-series expansions. An ex-
ample is the forward finite-difference (FFD) formula

∂Fj(x0)

∂xi
=
Fj(x0 + eih)− Fj(x0)

h
+O(h) (3)

where the truncation error is proportional to the
step size h. If higher precision is desired, Taylor-
series expansions may be combined to obtained the
central finite-difference formula

∂Fj(x0)

∂xi
=
Fj(x0 + eih)− Fj(x0 − eih)

2h
+O(h2)

(4)
where the truncation error is now about O(h2).
These formulas present the advantage of easy im-
plementation and they can be used without detailed
knowledge of the system. However, they are ap-
proximate formulas which incur in numerical errors
of truncation and subtractive cancellation. More-
over, computing the gradient of Fj using FD may
be impractical since the cost of the calculation de-
pends linearly on the size of x.

3.3. Complex-Step Derivative
The complex-step derivative (CSD) is a formula
to estimate the first derivative of a function using
notions of complex-variable calculus. Considering
Taylor-series expansion of F in the imaginary axis
direction and taking the imaginary part, it is ob-
tained

∂Fj(x0)

∂xk
=

Im[Fj(x0 + ihek)]

h
+O(h2) (5)

where ih is a pure imaginary step. The trunca-
tion error is about O(h2), but for a sufficiently
small step, the derivative may be calculated with
as much precision as the machine allows, affected
only by round-off errors. This formula presents
the disadvantage of operating with complex alge-
bra, which is not supported by all programming lan-
guages. Furthermore, estimating the gradient using
the complex-step derivative may be too expensive
since the calculation depends on the number of in-
dependent variables. Nevertheless, this formula al-
lows to faithfully verify derivatives calculated with
other methods.

3.4. Semi-Analytical Methods
According to Peter and Dwight [6], semi-analytical
methods such as the direct and the adjoint methods

are the most efficient to sensitivity analysis. Con-
sider again the vector valued function F, which de-
pends explicitly on x and implicitly on the state
vector y = [y1, ..., yk]T , whose relation between the
independent variables and the state vector is given
by a system of residual equations

R(x,y(x)) = 0 (6)

According to the chain-rule, the total derivative of
the function with respect to the independent vari-
ables is

dF

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
(7)

Since Equation (6) must always be verified, it is
true that

∂R

∂x
+
∂R

∂y

dy

dx
= 0 (8)

3.4.1 Direct Method

A possible approach to calculate dF
dx corresponds to

solve directly the linear system which arise from
Equation (8)

∂R

∂y

dy

dx
= −∂R

∂x
(9)

and replace dy
dx in Equation (7). This approach is

called the direct method and it is best suited if the
number of inputs is smaller than the number of out-
puts (n < m), since solving Equation (9) is equiva-
lent to solve n systems of equations.

3.4.2 Adjoint Method

Another approach corresponds to solve alge-
braically Equation (9) to dy

dx and replace the re-
sulting expression in Equation (7). The result is

dF

dx
=
∂F

∂x
−∂F

∂y

[
∂R

∂y

]−1
︸ ︷︷ ︸

[ψ]T

[
∂R

∂x

]
(10)

Since the matrix product is associative, it is pos-
sible to assign the transpose of an adjoint matrix
to the first two matrices of the second term, in the
right hand side, as suggested by the under bracket.
Consequently, dF

dx may be calculated if the adjoint
matrix is known, which may be determined by solv-
ing the system[

∂R

∂y

]T [
ψ
]

=

[
−∂F

∂y

]T
(11)

This approach is the adjoint method and it is best
suited if the number of outputs is smaller than the
number of inputs (m < n), since solving Equation
(11) is equivalent to solve m systems of equations.

3

3.5. Automatic Differentiation
Automatic Differentiation (AD) is an analytical
method to calculate derivatives in computer pro-
grams based on the idea of an elementary decom-
posable program. Automatic differentiation con-
sists in differentiate every line of code at the elemen-
tary level and accumulate those derivatives accord-
ing to the chain-rule of differential calculus. Ac-
cording to Martins [7], a computer program with n
inputs, l intermediate variables and m outputs can
be decomposed into elementary functions such that
each computer variable ti depends only on the pre-
vious assigned variables: ti = Ti(t1, ..., ti−1), where
Ti is an elementary function. In automatic differ-
entiation, there are two ways of propagating the
derivatives:

FM :
dti
dtj

= δij +

i−1∑
k=j

∂Ti
∂tk

dtk
dtj

(12)

RM :
dti
dtj

= δij +

i∑
k=j+1

dti
dtk

∂Tk
∂tj

(13)

The first is called the forward mode (FM). A
sweep in FM correspond to fix j and increment i
from i = 1 until i = n+ l+m. The second is called
the reverse mode (RM), and a sweep corresponds
to choose i while j changes from j = n + l + m
until j = 1. The first situation corresponds to ob-
tain a column from the matrix whose elements are
dti
dtj

, while the second corresponds to obtain a row.

Therefore, calculating the program’s jacobian us-
ing the RM is more efficient than using the FM if
m < n, and the opposite is true if m > n. Although
the cost of both modes depends on the number of
sweeps, the memory cost is higher in the RM since
the code must be executed once forward to store
the variables ti and once backwards to perform the
differentiation.

4. Aerodynamic Model and Framework
4.1. Panel Method
The aerodynamic tool developed by Cardeira [3] is
an implementation of the panel method, which is
a numerical technique to solve inviscid potential
flows around bodies of arbitrary shape by solving
the Laplace equation,

∇2φ = 0 (14)

subject to the boundary conditions,

∇φ.n = 0 (15a)

lim
r→∞

(∇φ−V∞) = 0 (15b)

where φ is the velocity potential, n is the exterior
unit normal and V∞ is the free-stream velocity vec-
tor. The technique consists in distributing and find-
ing the intensities of singularities along the body’s

surface to consequently determine the velocity field.
Based on the third Green’s identity, it is possible
to prove that the velocity potential in an arbitrary
point P in the body’s surface is a function of the
singularities intensities and respective distance to
point P. In addition, it may also be proved that
satisfying Equation (15a) may lead this potential
to be constant inside the body [8], which leads to

1
4π

∫
Body+Wake

µn.∇
(
1
r

)
dS − 1

4π

∫
Body

σ
(
1
r

)
dS = 0

(16)
where σ and µ are the source and doublet intensi-
ties, respectively, and r is a distance from an ar-
bitrary point in the body’s surface. This approach
is called the Dirichlet Problem and it was imple-
mented by Cardeira [3]. Since Equation (16) holds
for every point in the surface, the body’s geometry
must be discretized into smaller regions called pan-
els and Equation (16) must be specified in a finite
number of control points called collocation points
to obtain a solution. Attending also the fact σ is
known since σ = n.∇φ∞, it is possible to obtain a
linear system of equations in which the unknowns
are the doublet intensities,

Aµµ = b (17)

4.2. Aerodynamic Framework
After surveying the methods available for sensitiv-
ity analysis, it became clear that the aerodynamic
tool needed to be reformulated. Moreover, it was
found that it could not handle changes in the air-
foil shape along the wing span and some errors were
found in the calculation of the aerodynamic coeffi-
cients. The process started by dividing the frame-
work in five modules, each of them with specific
tasks. A schematic overview of the reformulated
tool is depicted in Figure 1.

xDV
Wing

Parametriza-
tion

Panels
Definition

Change
of Basis

Aero
Solver

Post-
Process f

µ

Figure 1: Flowchart illustrating the aerodynamic
framework

Wing Parametrization

The first module is called Wing Parametrization
and it translates the design variables xDV, into a
discrete set of points representing the wing’s geome-
try. According to Figure 2, the exterior wing shape
is defined by the leading edge (LE), which is con-
structed with the aid of the semi span length b2 = b

2 ,
the sweep and dihedral angles, Λ and Γ, respec-
tively. Both the root and tip of the wing are defined
by their respective lengths, cr and ct, although the
taper ratio is used instead since λ = ct

cr
. They are

4

Figure 2: Geometrical description of the aircraft
half wing

also defined by the respective twist angles, δr and
δt, respectively. The wing is then discretized in the
spanwise direction according to user specifications
and an airfoil shape is assigned. Moreover, the local
twist and chord values are fully defined since these
are assumed to vary linearly along the semi wing
span between the respective root and tip values.
The airfoil shapes are simulated using points from
four bezier curves whose control points are used to
parametrize their shape. The followed methodology
is described in the work of Venkataraman [9]. The
resulting set of points are organized as

WP =
[
WP1

T WP2
T WP3

T WP4
T
]T
(18)

which will be clear why later. In addition, the mod-
ule also outputs the wing area S and the mean aero-
dynamic chord MAC,

S =

(
1 + λ

2

)
b cr (19a)

MAC =
2

3

(
λ2 + λ+ 1

λ+ 1

)
cr (19b)

Panels Definition

The next module is called Panels Definition and
it is responsible for creating the panels and calcu-
late associated quantities. Since the points gener-
ated in Wing Parametrization cannot be used to
form the panels directly, it is necessary to process
these points. Consequently, this module outputs
the panel’s corner points PP, the collocation points
CP, the panel’s areas DS and the panel’s basis vec-
tors LV. Consider the panel (i, j) constructed based
on the input points WP1ij to WP4ij , as defined
in Figure 3. Note that indexes were used in vectors
meaning that they are referred to the location (i, j)
in the mesh, opposed e.g. to the meaning of those
variables in Equation (18) where the computational

Figure 3: Panel construction through a set of four
non-coplanar adjacent points.

indexes are unrolled. It is possible to construct four
auxiliary vectors as a function of the input points
as

Pf ij = WP2ij −WP1ij (20a)

Psij = WP3ij −WP4ij (20b)

Xf ij =
1

2

(
WP1ij + WP2ij

)
(21a)

Xsij =
1

2

(
WP3ij + WP4ij

)
(21b)

Using Equations (20a) and (20b), one may define
the first basis vector that lies on the panel,

lij =

(
Pf ij + Psij

)
‖Pf ij + Psij‖

(22)

Using the previous definitions, the panel’s corner
points are automatically defined as

X1,2ij = Xf ij ∓
1

2

(
‖Pf ij‖.lij

)
(23a)

X3,4ij = Xsij ±
1

2

(
‖Psij‖.lij

)
(23b)

where the minus assignment corresponds to X1ij

and X4ij , and the plus corresponds to X2ij and
X3ij . All corner points may be organized as

PP =
[
X1

T X2
T X3

T X4
T
]T

(24)

Subsequently, the unitary normal may is defined as

nij =
Nij

‖Nij‖
(25)

where Nij is a normal vector which is a function of
the corner points

Nij =
(
X3ij −X1ij

)
×
(
X4ij −X2ij

)
(26)

Both the collocation point CPij and panel’s area
DSij may also be defined as a function of the corner
points as

CPij =
1

4

(
X1ij + X2ij + X3ij + X4ij

)
(27)

5

and

DSij =
1

2

[
‖XBij×XAij‖+‖XCij×XBij‖

]
(28)

where XAij = X2ij −X1ij , XBij = X3ij −X1ij ,
XCij = X4ij −X1ij . Finally, the last basis vector
is defined as a function of lij and nij as

mij = nij × lij (29)

Consequently, the panel’s basis vectors are orga-
nized as

LV =
[
lT mT nT

]T
(30)

Change of Basis

As it will be clear next, it is helpful to write the
corner points PP in its own panel’s frame of refer-
ence since the influence coefficients may then be eas-
ily calculated. Consequently, this module is called
Change of Basis and it receives as inputs CP, PP
and LV. A generic point P = [P1, P2, P3]T written
in the global frame of reference may be translated
to the panel’s frame of reference asP ′

1

P
′

2

P
′

3

 =

 lij1 lij2 lij3
mij1 mij2 mij3

nij1 nij2 nij3

P1 − CPij1
P2 − CPij2
P3 − CPij3

 (31)

where CPij is the origin of the panel’s frame of ref-

erence and P
′

= [P
′

1, P
′

2, P
′

3]T is point P written in
the panel’s frame of reference. The panel’s corner
points in its own frame of reference are easily ob-
tain replacing P appropriately. Consequently, the
module’s outputs may be organized in a vector as

LPP =
[
X

′

1

T
X

′

2

T
X

′

3

T
X

′

4

T
]T

(32)

Aero Solver

The next module is called Aero Solver and it is
responsible for assembling and solving the linear
system presented in Equation (17). The module
receives as inputs the vectors LPP, CP, LV and
additionally, the free-stream airspeed V∞ and the
angle of attack α. Consequently, it outputs the
aerodynamic solution µ and the residuals R. Since
the wing could be assumed symmetric with respect
to plane Oxz of Figure 2, the method of images
was used to diminish the computational cost of the
implementation. The residuals may be written ap-
propriately for the computational mesh as

Rij =

N∑
n=1

[
M−1∑
m=1

(Cijmnµmn + Bijmnσmn) +

CijMn

(
µ(M−1)n − µ1n

)]
= 0

(33)

where Cijmn and Bijmn are the doublet and source
influences of panel (m,n) on panel (i, j). Since the
method of images was used, it can be proven that
these quantities depend only on the corner points
of panel (m,n), the (i, j) panel’s collocation point
and respective image, all written in (m,n) panel’s
frame of reference. The source intensities are easily
known since

σmn = nmn.V∞ (34)

Post-Processing

The last module is responsible for calculating the
aerodynamic coefficients and it is called Post-
Process. The module accepts the angle of attack
α, the vectors PP, CP, LV, DS, the aerodynamic
solution µ, and MAC and S as inputs. The velocity
on the panel (i, j) is given by

Vij = (V∞l, V∞m, V∞n)ij + (vl, vm, vn)ij (35)

where the first term is the free-stream and the sec-
ond is the perturbation velocity, which is a function
of the aerodynamic solution µij , both written in
(i, j) panel’s frame of reference. Next, the pressure
coefficient is obtained as

Cpij = 1− |Vij |2

|V∞|2
(36)

Knowing the pressure coefficients in the panels, the
aerodynamic coefficients are calculated by numeri-
cal integration as

CL = − 2

S

M−1∑
i

N∑
j

CpijDSij (nij .eL) (37a)

CD = − 2

S

M−1∑
i

N∑
j

CpijDSij (nij .eD) (37b)

CM = − 2

S. l0

M−1∑
i

N∑
j

CpijDSij (CPij × nij)

(37c)
where eL and eD are the unit vectors in the direc-
tions of the lift and drag, respectively, and they are
a function of the angle of attack α. The variable
l0 is an appropriated reference length, which corre-
sponds to MAC and b for the pitching and rolling
moment coefficients, respectively.

5. Sensitivity Analysis Framework
The sensitivity analysis framework is depicted in
Figure 4. Each module presented before has its
own sensitivity analysis, where the jacobians of the
outputs with respect to the inputs are calculated.
After, the sensitivities of the functions of interest
f , with respect to the design variables xDV, are
calculated propagating the intermediate jacobians
according to the chain-rule of differential calculus.

6

xDV Wing
Param

Panels
Def

Change
of Basis

Aero
Solver

Post-
Process

f
Auto
Diff

Sym
Diff

Sym
Diff

Adj
Method

CHAIN-RULE

Figure 4: Flowchart illustrating the sensitivity anal-
ysis framework

Mathematical Formulation

First, the vector of design variables must be de-
fined. It is characterized by a segment which con-
tains planform related parameters, a segment con-
taining the control points which parametrize the
airfoil shape in each cross section and the angle of
attack. Thus, it may be written as

xDV =
[
α xgeo

T xairfoil
T
]T

(38)

where each of the right hand side vectors are

xgeo =
[
Λ Γ δr δt b cr λ

]T
(39a)

xairfoil
T =∪j

[
Ax ... Lx Ay ... Ly

]
j

∀j ∈ {1, ..., N + 1} (39b)

Adjoint Method

Considering both the inputs of the Aero Solver and
Post Process modules, it can be defined an inter-
mediate information as

x2 =
[
x1

T DST LPPT S MAC α V∞
]T

(40)
where x1 is defined as

x1 =
[
PPT CPT LVT

]T
(41)

such that R = R(x2,µ) and f = f(x2,µ). Since
the size of x2 is much larger than the size of f , the
adjoint method is the best suited to calculate the
sensitivity of f with respect to x2 as

df

dx2
=

∂f

∂x2
+
[
ψ
]T ∂R

∂x2
(42a)

[
∂R

∂µ

]T [
ψ
]

= −
[
∂f

∂µ

]T
(42b)

Chain-Rule

The chain-rule is used to ultimately calculate the
sensitivities of the interest functions with respect
to the design variables as

df

dxDV
=

df

dx2

dx2

dxDV
(43)

where dx2

dxDV
corresponds to

dx2

dxDV
=

[[
dx1

dxDV

]T [
dDS

dxDV

]T [
dLPP

dxDV

]T [
∂S

∂xDV

]T [
∂MAC

∂xDV

]T [
∂α

∂xDV

]T
[0]

]T
(44)

Note that some entries were already replaced by the
respective partial derivatives where explicit depen-
dence is observed. The remaining derivatives are
assembled according to the variable dependencies
presented for each module:

dx1

dxDV
=

∂x1

∂WP

∂WP

∂xDV
(45)

dDS

dxDV
=

∂DS

∂WP

∂WP

∂xDV
(46)

dLPP

dxDV
=
∂LPP

∂x1

∂x1

∂WP

∂WP

∂xDV
(47)

Sensitivities of Wing Parametrization

This module calculates three jacobians: ∂S
∂xDV

,
∂MAC
∂xDV

and ∂WP
∂xDV

. The non zero derivatives of
the first two are calculated by hand since the ex-
pressions are simple and correspond to differentiate
Equations (19a) and (19b) with respect to their de-
pendencies. The last jacobian is calculated with the
aid of automatic differentiation. A choice had to me
made which AD mode should be implemented. It
was concluded that the forward mode is more ef-
ficient since the number of outputs is larger than
the number of inputs for the mesh sizes expected to
be used in the optimization problems. The imple-
mentation was benchmarked with the complex-step
derivative to compare both the results and perfor-
mance. As it may be observed in Table 1, the AD
implementation is faster, with savings up to 40.5%.

No. panels 50 200 450 800 1250 1800

CSD time [s] 0.639 3.011 9.332 19.815 38.970 64.553
AD time [s] 0.380 1.151 4.191 10.400 27.219 55.999
Savings [%] 40.5 61.8 55.1 47.5 30.2 13.3

Table 1: Computational cost of the Wing
Parametrization sensitivity analysis module.

Sensitivities of Panels Definition

The sensitivity analysis of Panels Definition corre-
sponds to the calculation of four jacobians: ∂PP

∂WP ,
∂CP
∂WP , ∂LV

∂WP and ∂DS
∂WP . These matrices were all ob-

tained with the aid of symbolic differentiation. Al-
though the procedure was quite lengthy, this ap-
proach allowed to obtain huge computational sav-
ings since only different from zero partial derivatives
were calculated, algebraic simplifications were made
and MATLAB R© vectorization techniques were ap-
plied. According to Table 2, the implementation

7

can be about 1000 times faster, comparing with the
CSD and AD. Since this approach is very suscepti-

No. panels 200 450 800 1250 1800

CSD time [s] 20.05006 109.4079 289.9539 761.1905 2821.0137
AD time [s] 22.93737 148.1591 599.1266 2296.589 8623.2376
SD time [s] 0.117399 0.294621 0.554629 1.005761 1.822698

Savings CSD [%] 99.4 99.7 99.8 99.9 99.9
Savings AD [%] 99.5 99.8 99.9 100 100

Table 2: Computational cost of the Panels Defini-
tion sensitivity analysis module.

ble to errors, the implementation was benchmarked
with AD and the complex-step derivative. Figure
5 shows the absolute error for each entry of ∂CP

∂WP
when benchmarked with the CSD and AD. As ob-
served, the error is bounded and really small. Sim-
ilar results were obtained for the remaining jaco-
bians thus validating the module.

Jacobian Entry ×105

0 0.5 1 1.5 2

A
bs

ol
ut

e
E

rr
or

×10-17

0

1

2

3

4

5

6

7

8

9

Benchmark w/ CS
Benchmark w/ AD

Figure 5: Absolute error for all the entries of ∂CP
∂WP

Sensitivities of Change of Basis

This module is responsible for calculating the jaco-
bians ∂LPP

∂PP , ∂LPP
∂CP and ∂LPP

∂LV or simply ∂LPP
∂x1

. The
building blocks to calculate these matrices are ob-
tained differentiating Equation (31) with respect to
P, CPij , lij , mij and nij . The differentiation was
performed by hand since the expression was easy
enough. No benchmark is provided here, although
the module’s verification was indeed performed.

Sensitivities of Aero Solver

Paying attention to the inputs of Aero Solver mod-
ule, it may be concluded that the respective sensi-
tivity analysis corresponds to the calculation of six
jacobians that will be used to construct ∂R

∂x2
and ∂R

∂µ ,
where these will be used in the adjoint method, in
Equations (42a) and (42b). The sensitivity analy-
sis corresponds to differentiate Equation (33) with
respect to the inputs of Aero Solver, which was per-
formed by hand with the aid of symbolic differen-

tiation. The reason to follow this methodology was
the same as for the sensitivity analysis of Panels
Definition. The benefits in computational terms
is described in Table 3, where it may be observed
that savings of about 99.5% were obtained, when
comparing the followed approach with the forward
mode of AD. Since obtaining the derivatives us-

No. panels 50 200 450

AD time [s] 749.964 8653.022 40582.198
SD time [s] 3.796 40.797 222.411
Savings [%] 99.5 99.5 99.5

Table 3: Computational cost of the Aero Solver sen-
sitivity analysis module.

Jacobian Entry ×104

0 1 2 3 4 5

A
bs

ol
ut

e
E

rr
or

×10-13

0

1

2

3

4

5

6

7
Benchmark w/ AD

Figure 6: Absolute error for all the entries of ∂R
∂LPP

ing this approach is very susceptible to program-
ming errors, a benchmark with AD differentiation
was performed. Figure 6 presents the absolute error
for all entries of ∂R

∂LPP , taking the respective values
calculated using AD as reference. As it can be ob-
served, the error is bounded and small. A similar
analysis was performed for all the produced jaco-
bians and the results were similar, proving that the
implementation was correct.

Sensitivities of Post Process

The sensitivity analysis of Post Process corresponds
to calculate the jacobians ∂f

∂x2
and also ∂f

∂µ . These
matrices are required to the adjoint method in
Equations (42a) and (42b). These are calculated
using the reverse mode of automatic differentiation
since the module’s number inputs is much higher
than the number of outputs. Furthermore, the
number of outputs is, at most, equal to five, cor-
responding to all the aerodynamic coefficients the
program may compute.

8

Benchmark with Finite Differences

After the sensitivity analysis framework had been
constructed, it was benchmarked with the finite-
differences method to guarantee that the program
was free of programming errors and also to measure
its performance. Figure 7 shows the absolute error
of each entry of the aerodynamic coefficients sensi-
tivities with respect to the design variables, when
compared to the finite-differences method with a
step size of h = 10−7. As observed, the error is
at most of O(10−6), thus verifying the framework’s
results. On the other hand, Table 4 shows the time
spent by the sensitivity analysis framework and the
time spent by the implementation using FD, taking
the time spent by the aerodynamic model as refer-
ence, for an increasing number of design variables.
As it can be observed, using the sensitivity analy-
sis framework translates into increased time savings
for increasing number of design variables. This re-
sult allows to conclude that the new tool is much
more efficient than the implementation of FD for
accurate wing description.

Design Variable number
0 50 100 150 200 250

A
bs

ol
ut

e
er

ro
r

×10-6

0

1

2

3

4

5

6

7

8
error in C

L

error in C
D

error in C
Mx

error in C
My

Figure 7: Absolute error of the aerodynamic coef-
ficients sensitivities w.r.t. xDV, benchmarked with
FD

No. panels 32 64 128 192 240
No. DV 80 128 224 320 392

tmodel [s] 0.083 0.239 0.876 1.946 3.037
tsens/tmodel [-] 41.65 34.56 27.77 25.07 24.01
tFD/tmodel [-] 61.47 120.07 224.78 316.24 390.19

savings [%] 32.2 71.1 87.6 92.1 93.8

Table 4: Runtime comparison for increasing number
of design variables

6. Aerodynamic Optimization
Two optimization problems were solved to illustrate
the benefits of gradient-based optimization using ef-
ficient sensitivity analysis. In each example, the op-
timization problem was solved using both the new

sensitivity analysis framework (FW) and the finite-
difference (FD) method, to compare the required
computational time, the number of iterations and
the number of function evaluations.

Wing Planform Optimization

The first optimization problem is expressed as

minimize CD

w.r.t. xDV

subject to CL = 0.3, S = S0

xL ≤ xDV ≤ xU

(48)

where xDV corresponds to planform related vari-
ables and the angle of attack. Table 5 shows both
the baseline and optimized values of the design vari-
ables and output functions. As observed, the wing
drag was reduced by 33% mainly due to an increase
of the aspect ratio and lift redistribution changing
the taper ratio to near 0.4. Moreover, the results
obtained using the framework are quite similar to
the results obtained using FD. The computational

Design variables Baseline Optimized FW Optimized FD

α [◦] 4 3.177316 3.177317
b [m] 6 8.000000 8.000000
cr [m] 1 1.079303 1.079325
λ 1 0.389785 0.389757

Outputs Baseline Optimized FW Optimized FD

CD 0.012777 0.008595 0.008595
CL 0.314576 0.300000 0.300000
CMx

0.071026 0.064134 0.064133
CMy

0.221416 0.287423 0.287421
S 6.000000 6.000000 6.000000
AR 6.000000 10.66667 10.666667

Table 5: Baseline, optimized design vector and out-
put values in the first optimization problem

cost, number of function evaluations and iterations
were also tracked and they are presented in Table 6.
As observed, the computational cost of FD is less
than the cost of using the framework. The reason is
related with the fact that the cost of evaluating the
aerodynamic model to estimate the gradient is less
than evaluating the sensitivity analysis framework
when very few design variables are being considered.

Gradient Calculation Method Time [s] Iterations Function Evaluations

Sensitivity Framework 4681.8 11 31
Forward Finite Differences 1314.7 11 79

Table 6: First case optimization performance
benchmark between different sensitivity analysis
methods

9

Full Wing Optimization

The second problem is similar to the first, ex-
cept that the pitching moment coefficient was con-
strained to the baseline value and xDV includes now
all design parameters, as defined in Equation (38).
Both the baseline and optimized wing configura-
tions are depicted in Figure 8.

Baseline

Optimized

Figure 8: Baseline and optimized wing configura-
tions

The output functions and part of the design vec-
tor baseline and optimized values are presented in
Table 7, for both approaches of sensitivity analysis.
As observed, the drag was reduced in 72% again due
to increased aspect ratio, lift reduction and lift re-
distribution. The performance of both approaches

Design variables Baseline Optimized FW Optimized FD

α [◦] 4 1.000000 1.000000
Λ [◦] 0 6.011407 6.007157
Γ [◦] 0 5.000000 5.000000
δr [◦] 0 2.230745 2.227752
δt [◦] 0 -0.124150 -0.124778
b [m] 6 8.000000 8.000000
cr [m] 1 1.000000 1.000000
λ 1 0.500000 0.500000

Outputs Baseline Optimized FW Optimized FD

CD 0.013429 0.003724 0.003725
CL 0.313735 0.300000 0.300000
CMx 0.071235 0.065081 0.065076
CMy

0.220788 0.220788 0.220788
S 6.000000 6.000000 6.000000
AR 6.000000 10.666667 10.666667

Table 7: Baseline, optimized design vector and out-
put values in the second optimization problem

was also measured and presented in Table 8. As
it can be observed, the number of function evalu-
ations using the new framework is much less when
compared to the use of FD. As a consequence, the
optimization time is also much less, about 9 times
faster than the implementation using FD, proving
its efficiency for accurate wing optimization using
many design variables.

7. Conclusions
An efficient aerodynamic optimization tool was de-
veloped. To accomplish that, a sensitivity anal-
ysis framework was constructed based on exact

Gradient Calculation Method Time [s] Iterations Function Evaluations

Sensitivity Framework 7607.1 44 75
Forward Finite Differences 68726.9 44 10155

Table 8: Second optimization case performance
benchmark between different sensitivity analysis
methods

gradient calculation using analytical methods such
as automatic differentiation, symbolic differentia-
tion and the adjoint method. Special concern was
employed to obtain high computational efficiency,
which was translated in combining good program-
ming practices in MATLAB R© with code simplifica-
tions, whenever it was possible. Aerodynamic opti-
mization problems were solved to illustrate the per-
formance of the new sensitivity analysis framework
and it was concluded that savings up to 90% in the
computational cost may be achieved.

References
[1] Jaroslaw Sobieski and Raphael T. Haftka. Mul-

tidisciplinary aerospace design optimization:
survey of recent developments. Structural op-
timization, 14(1):1–23, 1997.

[2] João Almeida. Structural dynamics for aeroelas-
tic analysis. Master’s thesis, Instituto Superior
Tcnico, November 2015.

[3] André Cardeira. Aeroelastic analysis of aircraft
wings. Master’s thesis, Instituto Superior Tc-
nico, December 2014.

[4] Ashok D. Belegundu and Tirupathi R. Chan-
drupatla. Optimization concepts and applica-
tions in engineering. Cambridge University
Press, 2011.

[5] Klaus Schittkowski and Ya-xiang Yuan. Sequen-
tial quadratic programming methods. Wiley En-
cyclopedia of Operations Research and Manage-
ment Science, 2011.

[6] Jacques Peter and Richard Dwight. Numerical
sensitivity analysis for aerodynamic optimiza-
tion: A survey of approaches. Computers &
Fluids, 39(3):373–391, 2010.

[7] J. R. R. A. Martins and John Hwang. Re-
view and unification of methods for comput-
ing derivatives of multidisciplinary computa-
tional models. AIAA Journal, 51(11):2582–
2599, November 2013. DOI: 10.2514/1.J052184.

[8] Joseph Katz and Allen Plotkin. Low-speed aero-
dynamics, volume 13. Cambridge university
press, 2001.

[9] P. Venkataraman. A new procedure for airfoil
definition. AIAA Paper, pages 95–1875, 1995.

10

