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1 Abstract

An existing numerical model STAV2D is

adapted to a new language with the purpose

of producing a toolbox for MATLAB called

STAVBreach, specialized in the simulation of

breaching of embankment dams. Both the lan-

guage and software used will provide a more

practical user interface for future work and

learning.

The model is validated for several well know

problems with analytical solutions that repre-

sent particular cases of the shallow water equa-

tions in both 1D and 2D environments with and

without sediment transport.

Experimental work performed at LNEC was

conducted to model the dam breaching pro-

cess in small scale dams with good geotechni-

cal design requirements. The results obtained

provided both direct and indirect estimations

of the breach hydrographs as well as a docu-

mented breaching process.

Finally numerical simulations are made for sim-

ilar conditions as the experiments and the re-

sults are compared in order to validate the nu-

merical model.

This work has demonstrated the need to con-

sider mass displacement in the breaching pro-

cess of dams in dam breach simulations, as the

instantaneous enlargement of the breach and

sediment concentration increase, disrupting the

�ow. And that the geotechnical instabilization

engine developed is able to simulate the mass

displacement phenomena.

2 Introduction

Water reservoirs are fundamental to socio-

economic development since the beginning of

human history. They mainly provide water

and energy but many other secondary uses

can be described from providing food (aqua-

culture) to touristic activities. Although reser-

voirs can be natural, increased demographic

pressure has forced making to build dams to

store water, therefore inducing �ood hazards

on downstream valleys. Dam failures lead to

extreme economical losses, environmental dam-

ages and are likely to cause human casualties.

They may fail due to various causes, being

overtopping the most common in earth dams

(ICOLD (2013)).

The most recent advances in modeling the

breaching process of embankment dams still

encounter di�culties to correctly characterize

the geotechnical processes associated to the

episodes of sudden enlargement of the breach.

The most common way of modeling these phe-
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nomena is by introducing a critical angle that,

when the local breach slope becomes larger,

causes a sudden enlargement of the breach sides

leaving a residual or bearing angle.

There is a pressing need to better describe the

mass instabilization episodes during dam over-

topping and to e�ectively implement these phe-

nomena in a numerical tool. The description of

sediment transport in the dam body is, cur-

rently, also not entirely validated. These short-

comings in existing modeling approaches moti-

vated the present work.

3 Conceptual Model

3.1 Governing Equations

The system of equations is composed of total

mass conservation, equation (1), total momen-

tum conservation in the x and y directions,

equations (2) and 3 respectively, and total con-

servation of the sediment mass presented in the

domain, equation (4)

∂th + ∂x (hu) + ∂y (hv) = −∂tZb (1)

∂t (uh) + ∂x
(
u2h+ 1

2gh
2
)

+ ∂y (uvh) =

−gh∂xZb −
1

ρm
∂xhTxx −

1

ρm
∂yhTxy −

τb,x
ρm

(2)

∂t (vh) + ∂x (vuh) + ∂y
(
v2h+ 1

2gh
2
)

=

−gh∂yZb −
1

ρm
∂xhTyx −

1

ρm
∂yhTyy −

τb,y
ρm

(3)

∂t (Cmh) + ∂x (Cmhu) + ∂y (Cmhv) =

−(1− p)∂tZb +
1

A
∂t∂V

(4)

where x, y are the space coordinates, t is time,

h is the depth, u and v are the depth-averaged

velocities in the x and y directions, respectively,

Zb is the bed elevation, ρm and Cm represent

the depth-averaged density and concentration

of the mixture, respectively, Tij are the depth-

averaged turbulent stresses and τ b represents

the friction exerted by the bed on the �uid. The

bed variation ∂tZb in given by (1 − p)∂tZb =

(qs− q∗s)/Λ where qs is the sediment discharge,

q∗s is its capacity value and Λ is an adaptation

length.It is noted that system (1) to (4) does

not include dispersive terms.

4 Evolution of bed morphology

The structure of the �ow is idealized as lay-

ered domain, and sediment transport happens

in the contact layer. Ferreira (2005) proposed

that the thickness of the contact load layer is re-

lated to the �ux of kinetic energy associated to

the �uctuating motion of moving grains due to

local imbalance and global equilibrium of rates

of production and dissipation of �uctuating ki-

netic energy, i.e. the more energy is generated

at the bottom of the contact load layer, the

larger the thickness to allow for complete dissi-

pation.

The interaction between the contact load layer

and the bottom generate frictional stresses and

collisional stresses due to sediment particle col-

lision. If the frictional stresses and collisional

stresses across the frictional sublayer are not

in equilibrium, then the bed will be vertically

displaced (Canelas, 2010).

The sediment discharge qs is given by:
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Figure 1: Layered �ow structure composed by
the bed or bottom, the transport
or contact layer and the clear water
layer. (Source: (Guan et al., 2014))

qs = Cmuh (5)

where Cm is the depth averaged sediment con-

centration, u is the �ow velocity and h is the

depth of �uid.

The equilibrium sediment discharge is:

qs = C∗
cuchc (6)

where C∗
c is the layer-averaged capacity concen-

tration in the contact load layer, uc is the con-

tact layer depth-averaged velocity and �nally

hc is the thickness of the contact layer. The

closure equation for hc is given by:

hc
ds

= m1 +m2θ (7)

5 Discretization Scheme

The system of conservation equations presented

in equations (1), (2), (3) coupled with the

Exner equation for sediment transport, can be

writen in form:

∂tU(V ) +∇ ·E(U) = H(U)⇔

∂tU(V ) + ∂xF (U) + ∂yG(U) = H(U) (8)

Where V is the vector of primitive variables, H

is the vector of conservative variables, F is the

�ux in the vector in the x direction, G is the

�ux in the vector in the y direction and H is

the vector of source terms, the later of which

can be subdived as H = R + T + S, where R

expresses the friction and vertical �uxes, T rep-

resents the bottom source terms and S relates

to the strati�cation and variation of density.

The dependent non-conservative variables vari-

ables in V , conservative variables in H and

�uxes in F and G are:

V =


h

u

v

Cm

 ; U =


h

uh

vh

Cmh

 ;

F =


uh

u2h+ 1
2gh

2

uvh

Cmhu

 ; G =


vh

vuh

v2h+ 1
2gh

2

Cmhv


(9)

and the source terms in R and T are:

R =


−∂tZb
− τb,x
ρ(w)

− τb,y
ρ(w)

−(1− p)∂tZb

 ; T =


0

−gh∂xZb
−gh∂yZb

0

 .
(10)

Assuming the representation is piecewise, and

that the cell area is Ai , and performing the

boundary integral on the ni edges of the cell i,

one obtains:
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∂tAi 〈U i〉+
N∑
k=1

Lk〈E · n〉ik = Ai 〈H i〉 (11)

where 〈〉 represents the spatial average in the

cell and Lk is the length of the k edge.

The �ux variations can be expressed as a func-

tion of the conservative variables using an ap-

proximate Jacobian matrix, orthogonal to the

edge in question and are susceptible to be rep-

resented in a eigenvector based homogeneous

system.

The approximate variables are u, v,c (velocity

of small perturbations) and Cm are:

ũik =
ui
√
hi + uj

√
hj√

hi +
√
hj

; ṽik =
vi
√
hi + vj

√
hj√

hi +
√
hj

;

c̃ik =

√
g
hi + hj

2
; C̃mik

=
Cmi

√
hi + Cmj

√
hj√

hi +
√
hj

(12)

With the average variables, the corresponding

eigenvalues and eigenvectors are the calculated

and given by:

λ̃
(1)
ik = (ũ · n− c̃)ik; λ̃

(2)
ik = (ũ · n)ik; (13)

λ̃
(3)
ik = (ũ · n + c̃)ik; λ̃

(4)
ik = (ũ · n)ik (14)

ẽ
(1)
ik =


1

ũ− c̃nx
ṽ − c̃ny
C̃m


ik

; ẽ
(2)
ik =


0

−c̃ny
c̃nx

0


ik

; (15)

ẽ
(3)
ik =


1

ũ+ c̃nx

ṽ + c̃ny

C̃m


ik

; ẽ
(4)
ik =


0

0

0

1


ik

(16)

The Finite Volume Method discretization is

then completed, with N = 4 as the eigenspace

and considering a an orthogonal quadricular

matrix with equally spaced squares, k = 4,

Un+1
i = Un

i −
∆t

Ai

3∑
k=1

Lk

4∑
n=1

(
λ̃(n)α(n) − β(n)

)−
ik
ẽ
(n)
ik + ∆t

(
Tn+1
i

)
(17)

6 Results

6.1 Comparison between analytical

solutions and numerical simula-

tions

Dam-break test cases

Dam break test cases can be identi�ed as an in-

stantaneous removal of a barrier that initially

separates 2 di�erent constant states. If this de-

scription is valid, then the problem is a Rie-

mann problem and admits self-similar solutions

if the system of governing hyperbolic equations

is homogeneous Ferreira (2005).

The numerical and analytical solutions of dam

break test cases are discussed and presented,

the �rst 2 are dam breaks in �at frictionless

bottom, without sediment transport and with 2

di�erent water heights on the right side. Con-

sidering alpha = hL/hR for these test cases,

that for the �rst two α = 0.1 and α = 0.0

respectively, the results for the analytical and

numerical solution are presented in �gures

For the Dambreak problem with sediment

transport,alpha = 0 and no friction was re-

garded in the update of the velocity variables.

Sediment discharge laws where of the same type
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Figure 2: Comparison between analytical and
numerical solution of the Stoker

problem.( ) Bottom elevation;( )
water elevation;( ) h - exact

solution;( ) �ow velocity;( ) u -
exact solution
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Figure 3: Comparison between analytical and
numerical solution of the Ritter

problem. ( ) Bottom elevation;( )
water elevation;( ) h - exact

solution;( ) �ow velocity;( ) u -
exact solution

for both in that both feature a sediment dis-

charge depending on the cube of the mean,

depth-averaged, �ow velocity Ferreira (2005).a

quasi-equilibrium state of bottom rheology was

considered.

Solution hL [m] hR [m] YbL [m] YbR [m] ac ds[m] s

0.40 0.00 0.00 0.00 0.0010142 0.003 1.5

0.40 0.00 0.00 0.10 0.0010142 0.003 1.5

0.40 0.10 0.08 0.00 0.0010142 0.003 1.5

0.40 0.10 0.00 0.08 0.0010142 0.003 1.5

Type A

Type B

Table 1: Initial conditions for the 2 types of so-
lution for the geomorphic dam break
problem
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Figure 4: Numerical simulation of Type A so-
lution for 2 di�erent initial condi-
tions. ( ) Bottom elevation - ana-
lytical solution;(o o o) Bottom ele-
vation;( ) water elevation - analyti-
cal solution;(o o o) water elevation;(o
o o) �ow velocity;( ) �ow velocity -
analytical solution

2D test cases

2D test cases where performed in order to eval-

uate the simulate the analytical solutions to the

water movement in parabolic basins, derived

by (Thacker, 1981). The Initial conditions are

shown in �gures 6 for t0 = T/8 and 7 for t = 0s

The results show good agreement between nu-

merical and analytical solutions.

Simulation of dam breach and com-

parison with experimental work

Experimental work performed at LNEC was

conducted to model the dam breaching pro-

cess in small scale dams with good geotechni-
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Figure 5: Numerical simulation of Type A so-
lution for 2 di�erent initial condi-
tions. ( ) Bottom elevation - ana-
lytical solution;(o o o) Bottom ele-
vation;( ) water elevation - analyti-
cal solution;(o o o) water elevation;(o
o o) �ow velocity;( ) �ow velocity -
analytical solution

cal design requirements. The results obtained

provided both direct and indirect estimations

of the breach hydrographs as a documented

breaching process. The model is used to sim-

ulate the breaching of an embankment similar

do the ones experimented. The geometries of

the two embankments compared are presented

in �gures:

The domain is composed of 10 × 10 cm cells.

The water that �ow trough the breach is col-

lected at a reservoir downstream, and the wa-

ter is put back in the domain, upstream of the

breaching zone, distributed over an are, as to

not disturb the area near the breach.

The �nal breaching hydrograph is then ob-

tained and compared with the one from trial

2, and the comparison is presented in �gure 11:

Figure 6: Initial pro�le for planar oscillation
problem

Figure 7: Initial pro�le for curved oscillation
problem

The peak discharge is able to be reached for the

numerical model, and the evolution of the dis-

charge is similar do the experimental results,

showing a good agreement between numerical

and experimental work, for very similar em-

bankment characteristics. Note that the hy-

drograph evolution is smoother, because the in-

stabilization engine does not consider sudden

breach enlargements, and thus it takes longer

to reach the peak. This con�rms the need for

further work and development of a geotechni-

cal instabilization algorithm that can reproduce

the sliding of mass due to undercutting.
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Figure 8: Water surface elevation in di�erent
instants, comparisson with analytical
solution

The bottom elevations for 2 time frames of the

breaching process are presented in �gures 12.

The bottom pro�les are almost identical, and

the shape is similar, although it is noticeable

that more de�nition is needed in the proximity
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Figure 9: Water surface elevation in di�erent
instants, comparison with analytical
solution

of the breach for a better characterization of

the water elevation.

The water surface contours are presented for

the same instant in �gures 13 and 14

Similarities are evident on both water surface
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Figure 10: Initial geometry for embankment,
model and experimental
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Figure 11: Comparison between numerical and
experimental out�ow hydrographs

for trial 2

maps and the same de�nition problem is posed,

but despite this the water elevation is in good

agreement with the experimental data as the

water pro�le contours follow a similar path.
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Figure 12: Upstream slope bottom geome-
try.Comparison with experimental
data
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Figure 13: Water Surface contours for the
simulation of experiment 2.

7 Conclusions

In this work, an e�ort to simulate the breaching

process of dams was undertaken. A numerical
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Figure 14: Water Surface contours for
experiment 2.

model was developed using a simple high-level

language, MATLAB, meant to become the core

of a toolbox. It is envisaged that a dam-breach

MATLAB toolbox would be subjected to a wide

interest in the water resources community thus

contributing to advance the con�dence of users

in deterministic tools to estimate breach hydro-

graphs.

The conservation equations are essentially the

shallow water equations complemented with

mass conservation equations and a bed mor-

phology equation. The model features non-

equilibrium sediment transport. The closure

equations were taken from existing literature on

�uvial transport and sheet-�ow (intense bed-

load transport) studies. The discretization

method, drawn from previous studies Canelas

et al. (2013), is fully conservative, robust and

obeys C-property.

The model, named STAVBreach, as a upgraded

installment of the model used by Canelas et al.

(2011), was validated with one-dimensional and

two-dimensional solutions of the shallow water

equations with and without sediment transport.

The agreement between the simulations and the

theoretical results was satisfactory. In partic-

ular, the conservation equations proved to be

able to describe the water movement and the

bed con�guration for several well-known cases

with analytical solutions.

However, some problems were detected, mostly

in the numerical discretization approach. The

problems proposed by Thacker for water move-

ment in parabolic basins with �at and curved

surfaces posed some di�culties on the simu-

lations, due to the multiple wetting and dry-

ing fronts, as well as evident mesh rigidity ob-

served. The Riemann problems consisting of

geomorphic dam breaks with variations on the

water level and bottom elevations revealed that

the numerical scheme has trouble simulating

the shock waves celerity and propagation as

well as de�ning the constant state due to the

non-equilibrium nature of the sediment trans-

port equations used. The scheme was con�rmed

to be somewhat dissipative. Additionally some

problems were in what concerns the rigidity im-

posed by the quadrangular mesh.

Experiments conducted at a medium-scale lab-

oratory facility at LNEC provided data for a

more complex validation phase. Out�ow hydro-

graphs, determined from two di�erent methods,

were obtained as well as data for characteriza-

tion of the breaching process.

The instabilization conceptual model employed

to describe the mass detachment phenomena

observed at the banks of the pilot channel

proved to be satisfactory but not ideal. The

enlargement os the breach sides was correctly

modeled but with arti�cial values of geotech-

nical parameters. It is clear that the instabi-

lization phenomena needs to be described with

more detail, namely with the inclusion of three-

dimensional phenomena such as undercutting,

in order to be able to simulate the sudden

breach enlargements observed in the experi-

ments.
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