

Development of technology and procedures for health

monitoring of UAV subsystems

Pedro Bernardo Andrade da Silva

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Examination Committee

Chairperson: Prof. João Miranda Lemos

Supervisor: Prof. Agostinho Rui Alves da Fonseca

Member of the Committee: Prof. Bertinho Manuel D' Andrade da Costa

November 2015

ii

iii

Dedicado à minha família
e à Lili.

iv

v

Acknowledgments
I would like to thank UAVision for giving me this opportunity, for giving me a subject, providing me with

the material necessary for this thesis and allowing me to work with them.

I would also like to thank Prof. Agostinho Rui Alves da Fonseca for guiding me through this thesis and

his permanent availability towards me.

Last but not least I would like to thank my family and friends, the unsung heroes that have helped me

throughout the years. This wouldn’t have been possible without you.

vi

vii

Resumo
A indústria dos Veículos Aéreos Não Tripulados (VANT ou UAV do inglês Unmanned Aerial Vehicle)

está a crescer. À medida que a indústria cresce, os VANT crescem em complexidade. As aeronaves

têm um crescente número de sistemas a bordo e, na ausência de standards, é frequente que cada um

necessite de protocolos e ligações diferentes. A consequência é um aumento do peso e da

complexidade. O protocolo Unmanned Aerial Vehicle Controller Area Network (UAVCAN) é uma

proposta para um standard que utiliza o Controller Area Network (CAN), popular na indústria automóvel

e da automação. A utilização do CAN permitiria que a cablagem fosse trocada por apenas dois cabos.

A pedido da UAVision, esta tese integra o protocolo UAVCAN com um popular piloto automático

chamado ArduPilot, e a subsequente validação. Fazê-lo requer a utilização de uma placa de piloto

automático chamada Pixhawk, e de duas outras que servem de nós na rede. O software foi construido

e a rede criada. O trabalho foi bem sucedido, com o piloto automático a controlar remotamente um

servomotor e a receber a leitura de um sensor de temperatura.

Palavras chave: Veículos Aéreos Não Tripulados (VANT ou UAV), Controller Area Network,

piloto automático, ArduPilot, Pixhawk

viii

ix

Abstract

The Unmanned Aerial Vehicle (UAV) industry is growing in size. As the industry grows, so does the

complexity of the UAVs. The aircraft have an increasing number of systems onboard and, in the absence

of industry standards, it is often that each requires a different protocol and wiring. The consequence is

an increase in weight and complexity. The Unmanned Aerial Vehicle Controller Area Network (UAVCAN)

protocol is a proposal for a standard that works with the Controller Area Network (CAN) bus, popular in

automation and automotive industries. Using the CAN bus would allow the wiring harnesses to be traded

with a simple two-wire bus. As requested by UAVision, this thesis integrates the UAVCAN protocol with

a popular autopilot software called ArduPilot, and subsequent validation. Doing so required the use of

an autopilot board, called Pixhawk, and two other boards that serve as nodes in the network. The

software was built and the network created. The work was successful, with the autopilot used to remotely

control a servo motor and reading a temperature sensor.

Keywords: Unmanned Aerial Vehicle, Controller Area Network, autopilot, ArduPilot, Pixhawk.

x

xi

Contents

Acknowledgments .. v

Resumo .. vii

Abstract ... ix

Contents .. xi

List of figures ... xvi

List of Tables .. xvii

List of acronyms ... xviii

1 Introduction... 1

1.1. Motivation .. 1

1.2. Objectives ... 2

1.3. Outline... 3

2 Background .. 4

2.1. The CAN standard .. 4

2.1.1. Standard CAN and Extended CAN ... 5

2.1.2. The Bit Fields of Standard CAN and Extended CAN .. 6

2.1.3. A CAN message ... 7

2.1.4. Message types ... 8

2.1.5. Error checking ...10

2.1.6. The CAN bus ..10

2.2. UAVCAN ..11

2.2.1. Basic concepts ..12

xii

2.2.2. Data structure description language ..14

2.2.3. CAN bus transport layer ..18

2.2.4. CAN frame format ...19

2.2.5. Payload bit and byte order ..21

2.2.6. Node requirements ..21

2.3. ArduPilot ..21

2.4. Pixhawk/PX4 ..22

2.5. Arduino...24

2.6. Olimexino ...25

3 Development tools ...26

3.1. PX4 toolchain ...26

3.2. IAR Embedded Workbench ..27

3.3. Arduino IDE ..27

3.4. MissionPlanner ...27

3.5. GitHub GUI for Windows ..28

4 Implementation ..29

4.1. PX4 / ArduPilot ...29

4.1.1. App ...29

4.1.2. Daemon ..30

4.1.3. Communication using the uORB ...31

4.1.4. New CAN message ...33

4.1.5. New CAN actuators ...33

4.1.6. Sending CAN messages ...34

xiii

4.1.7. Receiving CAN messages ...35

4.2. Olimexino ...37

4.2.1. Overview ...37

4.2.2. CAN filters ...37

4.2.3. Status message ..38

4.2.4. Button action ...39

4.2.5. Version differences ...39

4.3. Arduino...40

4.3.1. Overview ...40

4.3.2. CAN Filters ..40

4.3.3. Status message ..41

4.3.5. Version differences ...41

5 Results and demonstration ..42

5.1. uORB communication ..42

5.2. Sending CAN messages ..43

5.3. Receiving CAN messages ..44

5.4. ArduPilot integration ...45

6 Conclusions and Recommendations ...47

6.1. Summary of the results ..47

6.2. Future work ..48

Bibliography ...49

Appendix A ...53

Appendix B ...58

xiv

Appendix C ...63

Appendix D ...64

Appendix E ...72

xv

xvi

List of figures

Figure 1 - The layered ISO 11898 standard architecture .. 5

Figure 2 - Standard CAN frame ... 6

Figure 3 - Extended CAN frame .. 7

Figure 4 - The inverted logic of a CAN bus ... 8

Figure 5 - CAN bus network configuration .. 11

Figure 6 – New version identifier field ... 19

Figure 7 – New version payload field .. 20

Figure 8 - Old version identifier field .. 20

Figure 9 - Old version payload field ... 21

Figure 10 - Payload bit and byte order examples ... 21

Figure 11 - The Pixhawk autopilot board ... 23

Figure 12 - Arduino diecimila (left). CAN-bus shield (right) ... 25

Figure 13 - Olimexino board (left). ST-Link v2 (right) .. 25

Figure 14 - Message travel. ... 29

xvii

List of Tables

Table 1 - Primitive data types .. 17

xviii

List of acronyms

ACK Acknowledge

ANSI American National Standards Institute

CAN Controller Area Network

CD+AMP Collision Detection and Arbitration on Message Priority

CRC Cyclic Redundancy Check

CSMA Carrier-Sense, Multiple-Access

DLC Data Length Code

DSDL Data Structure Description Language

EOF End Of Frame

GCC Gnu Compiler Collection

GUI Graphical User Interface

I2C Inter-Integrated Circuit

ISO International Organization for Standardization

IAR Ingenjörsfirman Anders Rundgren

IDE Integrated Development Environment

IDE IDentifier Extension

IFS Inter-Frame space

LED Light Emitting Diode

MAV Micro-Air Vehicles

NSH NuttShell

POSIX Portable Operating System Interface

PWM Pulse Width Modulation

RC Radio Controlled

RTOS Real Time Operating System

RTR Remote Transmission Request

SCM Source Code Management

xix

SD Secure Digital

SOF Start Of Frame

SPI Serial Peripheral Interface

SRR Substitute Remote Request

SWD Serial Wire Debug

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicle

UAVCAN Unmanned Aerial Vehicle Controller Area Network

uORB Micro Object Request Broker

USB Universal Serial Bus

1

Chapter 1

Introduction

With the advent of smartphones came a push towards miniaturization of electronic systems. Powerful

processors and sensors became available in small, cheap and power efficient packages. Taking

advantage of that, the Unmanned Aerial Vehicle (UAV), commonly called drones, industry appeared.

UAVs were no longer just the domain of militaries. From small and designed for entertainment to bigger

ones designed for professional use, UAVs are increasingly common in everyday live. With the increase

of the industry, new purposes are being found for these cheap and easy to use flying machines.

1.1. Motivation

With the improvement of any system comes complexity. That complexity prompts researchers to try to

find ways of simplifying those systems. That was happening in 1983 when researcher at Robert Bosch

GmbH began development of the Controller Area Network (CAN) [1]. Cars were having increasingly

more sensors, each sensor had its own communications protocol and required separate wirings [2]. To

reduce weigh and complexity the CAN bus was introduced. Requiring only two wires and a simple

communications protocol, it was significantly simpler than what was available. It was quickly adopted

and in 1993 the International Organization for Standardization (ISO) released the CAN standard ISO

11898 [3].

Something similar is happening today with Unmanned Aerial Vehicles (UAVs). Development is

increasing and so is complexity. Currently sensors and actuators communicate using a mix of protocols

designed for chip to chip communication and protocols used in the Radio Controlled (RC) hobby

industry. Chip to chip protocols, like Serial Peripheral Interface (SPI) [4], were designed for

communication with few elements and in close proximity, meaning they don’t scale well. While protocols

in the RC hobby industry, like Pulse Position Modulation (PPM) [5], were designed for point to point

communication between two elements. The addition of more elements requires separate wiring

harnesses, which do not scale well.

The logical place to look for suitable communications protocols would be the aerospace industry where

weight and simplicity are main concerns. NASA was part of the development of a protocol, designed for

general aviation, that uses the CAN bus, called CANaerospace [6].

2

However, being developed for full scale aircraft, CANaerospace is not adequate for small UAVs [7]

because:

 CANaerospace has more than 50% of payload overhead which makes it unfit for high speed

data streams like those in light machines where the controlled system requires high update

rates and low latency.

 CANaerospace does not provide an easy way to pass multiple values at once.

 CANaerospace does not provide adequate means for common higher-level tasks, such as

node configuration handling, firmware update and time synchronization.

Because of this, a new protocol is being developed, which is similar to CANaerospace, called Unmanned

Aerial Vehicle Controller Area Network (UAVCAN) [8].

1.2. Objectives

This thesis proposes to create a working example of a CAN bus communication, usin the UAVCAN

protocol, with an autopilot. Per requested by UAVision the autopilot will be the ArduPilot and will be run

in a Pixhawk board.

Such a work will require research about the three open source projects involved, the Pixhawk, the

ArduPilot and the UAVCAN projects.

In addition, two nodes of the bus will be created. To demonstrate the flexibility of this communication

scheme, two different architectures will be used for each node. One will be an Olimexino board, based

on the ARM stm32f103 [9], running at 72 MHz. The other will be based on the Arduino diecimila board.

A board based on the AVR atmega168 [10], running at 16 MHz, to provide an example in a resource

constrained processor. The use of three different architectures will require different tools and

development environments but better demonstrates the flexibility of the communication protocol.

A working example of a CAN bus will be produced that will allow each node to send and receive using

the UAVCAN protocol. The Pixhawk will send messages to the Arduino, to control a servo motor, and

receive temperature readings.

In the future this network can be used for structural monitoring.

3

1.3. Outline

After this, the introductory chapter, this thesis is made up of five other chapters, organized as follows:

 Chapter 2 – Chapter 2 provides background knowledge on relevant topics and concepts

necessary to understand the rest of this thesis.

 Chapter 3 – Chapter 3 introduces the tools used in the development of this thesis.

 Chapter 4 – Chapter 4 describes the construction of the working CAN bus network.

 Chapter 5 – Chapter 5 provides details about the tests that were made to validate the correct

functioning of the network.

 Chapter 6 – Chapter 6 concludes this thesis with a summary of the results and gives

suggestions for further improvements.

4

Chapter 2

Background

This chapter provides background knowledge on relevant topics and concepts necessary to understand

the rest of this thesis

Firstly, the Controller Area Network (CAN) standard is introduced, with a description of what it is and

how it works.

Next is an explanation of the protocol that will be used for communication.

And finally there is an introduction to the software and hardware used in this work.

2.1. The CAN standard

The CAN bus was originally developed for the automotive industry, to replace complex wiring harnesses

with a two wire bus [1]. Because of the high immunity to electrical noise and the ability to self-diagnose

and repair data errors the technology gained popularity in a variety of industries, from medical to

automation and manufacturing.

The CAN bus is a multi-master, message broadcast system that specifies a maximum signaling rate of

1 megabit per second (Mbps) [11]. In a CAN network many short messages are broadcast to the entire

network, which provides data consistency in every node of the system.

The CAN communications protocol describes how information is passed between devices on a network

and can be defined in terms of layers.

5

Figure 1 - The layered ISO 11898 standard architecture

As can be seen in Figure 1, the UAVCAN protocol is implemented at the microcontroller layer.

2.1.1. Standard CAN and Extended CAN

The CAN communication protocol is a Carrier-Sense, Multiple Access (CSMA) protocol with Collision

Detection and Arbitration on Message Priority (CD+AMP). CSMA means that each node on a bus must

wait for a prescribed period of inactivity before attempting to send a message. CD+AMP means that

collisions are resolved through a bit-wise arbitration, based on a preprogrammed priority of each

message in the identifier field of a message. The standard, initially worked with an 11-bit identifier,

provides for signaling rates from 125kbps to 1 Mbps. The standard was later amended with the

“extended” 29-bit identifier. The standard 11-bit identifier field in Figure 2 provides for 211, or 2048

different message identifiers, whereas the extended 29-bit identifier in Figure 3 provides for 229, or 537

million identifiers.

They are compatible with each other and can function in the same bus.

6

2.1.2. The Bit Fields of Standard CAN and Extended CAN

Standard CAN

Figure 2 is a representation of a standard CAN frame:

Figure 2 - Standard CAN frame

The meaning of the bit fields of Figure 2 are:

 SOF – The single dominant Start Of Frame (SOF) bit marks the start of a message, and is used

to synchronize the nodes on a bus after being idle.

 11 bit Identifier – The Standard CAN 11-bit identifier establishes the priority of the message.

The lower the binary value, the higher its priority.

 RTR – The single Remote Transmission Request (RTR) bit is dominant when information is

required from another node. All nodes receive the request, but the identifier determines the

specified node. The responding data is also received by all nodes and used by any node

interested. In this way, all data being used in a system is uniform.

 IDE – A dominant single IDentifier Extension (IDE) bit means that a standard CAN identifier with

no extension is being transmitted.

 r0 – Reserved bit (for possible use by future standard amendment).

 DLC – The 4-bit Data Length Code (DLC) contains the number of bytes of data being

transmitted.

 Data – Up to 64 bits of application data may be transmitted.

 CRC – The 16-bit (15 bits plus delimiter) Cyclic Redundancy Check (CRC) contains the

checksum (number of bits transmitted) of the preceding application data for error detection.

 ACK – Every node receiving an accurate message overwrites this recessive bit in the original

message with a dominate bit, indicating an error-free message has been sent. Should a

receiving node detect an error and leave this bit recessive, it discards the message and the

sending node repeats the message after rearbitration. In this way, each node ACKnowledges

(ACK) the integrity of its data. ACK is 2 bits, one is the acknowledgment bit and the second is a

delimiter.

 EOF – This End-Of-Frame (EOF), 7-bit field marks the end of a CAN frame (message) and

disables bit-stuffing, indicating a stuffing error when dominant. When 5 bits of the same logic

7

level occur in succession during normal operation, a bit of the opposite logic level is stuffed into

the data.

 IFS – This 7-bit Inter-Frame Space (IFS) contains the time required by the controller to move a

correctly received frame to its proper position in a message buffer area.

Extended CAN

Figure 3 is a representation of an extended CAN frame:

Figure 3 - Extended CAN frame

 11 bit Identifier – The first 11 bits of the extended identifier.

 SRR – The Substitute Remote Request (SRR) bit replaces the RTR bit in the standard message

location as a placeholder in the extended format.

 IDE – A recessive bit in the IDentifier Extension (IDE) indicates that more identifier bits follow.

The 18-bit extension follows IDE.

 18 bit Identifier – The last 18 bits of the extended identifier.

 r1 – Following the RTR and r0 bits, an additional reserve bit has been included ahead of the

DLC bit.

2.1.3. A CAN message

A fundamental CAN characteristic, shown in Figure 4, is the opposite logic state between the bus, and

the driver input and receiver output. Normally, a logic-high is associated with a one, and a logic-low is

associated with a zero. However, in a CAN bus, a one is a logic low. This means the one is a recessive

bit, allowing the lowest ID to have the highest priority.

8

Figure 4 - The inverted logic of a CAN bus

Bus access is event-driven and takes place randomly. If two nodes try to occupy the bus simultaneously,

access is implemented with a nondestructive, bit-wise arbitration. Nondestructive means that the node

winning arbitration just continues on with the message, without the message being destroyed or

corrupted by another node.

The allocation of priority to messages in the identifier is a feature of CAN that makes it particularly

attractive for use within a real-time control environment. The lower the binary message identifier number,

the higher its priority. An identifier consisting entirely of zeros is the highest priority message on a

network because it holds the bus dominant the longest. Therefore, if two nodes begin to transmit

simultaneously, the node that sends a last identifier bit as a zero (dominant) while the other nodes send

a one (recessive) retains control of the CAN bus and goes on to complete its message. A dominant bit

always overwrites a recessive bit on a CAN bus.

Note that a transmitting node constantly monitors each bit of its own transmission.

The allocation of message priority is up to a system designer.

2.1.4. Message types

The four different message types, or frames, that can be transmitted on a CAN bus are the data frame,

the remote frame, the error frame, and the overload frame. Both the data and remote frame come from

the application layer.

9

The data frame

The data frame is the most common message type, and comprises the Arbitration Field, the Data Field,

the CRC Field, and the Acknowledgment Field. The Arbitration Field contains an 11-bit identifier in

Figure 2 and the RTR bit, which is dominant for data frames. In Figure 3, it contains the 29-bit identifier

and the RTR bit. Next is the Data Field which contains zero to eight bytes of data, and the CRC Field

which contains the 16-bit checksum used for error detection. Last is the Acknowledgment Field.

The remote frame

The intended purpose of the remote frame is to solicit the transmission of data from another node. The

remote frame is similar to the data frame, with two important differences. First, this type of message is

explicitly marked as a remote frame by a recessive RTR bit in the arbitration field, and secondly, there

is no data.

The error frame

The error frame is a special message that violates the formatting rules of a CAN message. It is

transmitted when a node detects an error in a message, and causes all other nodes in the network to

send an error frame as well. The original transmitter then automatically retransmits the message. An

elaborate system of error counters in the CAN controller ensures that a node cannot tie up a bus by

repeatedly transmitting error frames.

The overload frame

The overload frame is mentioned for completeness. It is similar to the error frame with regard to the

format, and it is transmitted by a node that becomes too busy. It is primarily used to provide for an extra

delay between messages.

A valid frame

A message is considered to be error free when the last bit of the ending EOF field of a message is

received in the error-free recessive state. A dominant bit in the EOF field causes the transmitter to repeat

a transmission.

10

2.1.5. Error checking

The CAN protocol incorporates five methods of error checking, three at the message level and two at

the bit level. If a message fails any one of these error detection methods, it is not accepted and an error

frame is generated from the receiving node. This forces the transmitting node to resend the message

until it is received correctly. However, if a faulty node hangs up a bus by continuously repeating an error,

its transmit capability is removed by its controller after an error limit is reached.

Error checking at the message level is enforced by the CRC and the ACK slots displayed in Figure 2

and Figure 3. The 16-bit CRC contains the checksum of the preceding application data for error

detection with a 15-bit checksum and 1-bit delimiter. The ACK field is two bits long and consists of the

acknowledge bit and an acknowledge delimiter bit.

Also at the message level is a form check. This check looks for fields in the message which must always

be recessive bits. If a dominant bit is detected, an error is generated. The bits checked are the SOF,

EOF, ACK delimiter, and the CRC delimiter bits

At the bit level, each bit transmitted is monitored by the transmitter of the message. If a data bit (not

arbitration bit) is written onto the bus and its opposite is read, an error is generated. The only exceptions

to this are with the message identifier field which is used for arbitration, and the acknowledge slot which

requires a recessive bit to be overwritten by a dominant bit.

The final method of error detection is with the bit-stuffing rule where after five consecutive bits of the

same logic level, if the next bit is not a complement, an error is generated. Stuffing ensures that rising

edges are available for on-going synchronization of the network. Stuffing also ensures that a stream of

bits is not mistaken for an error frame, or the seven-bit inter-frame space that signifies the end of a

message. Stuffed bits are removed by a receiving node’s controller before the data is forwarded to the

application. With this logic, an active error frame consists of six dominant bits—violating the bit stuffing

rule.

2.1.6. The CAN bus

Signaling is differential which is where CAN derives its robust noise immunity and fault tolerance.

Balanced differential signaling reduces noise coupling and allows for high signaling rates over twisted-

pair cable. Balanced means that the current flowing in each signal line is equal but opposite in direction.

The High-Speed ISO 11898 Standard [12] specifications are given for a maximum signaling rate of 1

Mbps with a bus length of 40 m with a maximum of 30 nodes. It also recommends a maximum

11

unterminated stub length of 0.3 m. The cable is specified to be a shielded or unshielded twisted-pair

with a 120Ω characteristic impedance (Zo).

Figure 5 - CAN bus network configuration

As can be seen in Figure 5, the bus must be terminated with two resistances, RL, of equal value to the

cable, 120Ω.

2.2. UAVCAN

The Unmanned Air Vehicle Controller Area Network (UAVCAN) protocol is lightweight and designed for

reliable communication in aerospace and robotic applications via the CAN bus. Here only the parts

relevant to this work will be mentioned. The full specification can be found in [31]

According to its developer the protocol was developed with the following design goals:

 Democratic network - since the network does not require a master node (bus controller), it has

no single point of failure.

 Nodes shall be able to exchange long payloads - typical use cases for a vehicle bus include

the need to transfer sets of related parameters, where each parameter cannot be used

independently. Such a set of parameters often does not fit into a single CAN frame, hence the

need to split it into several CAN frames with a subsequent reassembly process on the receiving

nodes.

 Support for redundant interfaces and redundant nodes -it is a common requirement for

safety-concerned applications.

12

 High throughput, low latency communication - many applications require high-frequency,

hard real-time control loops, which necessitates the need for a low-latency, high-throughput

communication method.

 Simple logic, low computational requirements - UAVCAN targets a wide variety of

embedded systems, from high-performance embedded on-board computers for intensive data

processing to extremely resource-constrained microcontrollers. The latter imposes severe

restrictions on the amount of logic needed to implement the protocol.

 Common high-level functions should be clearly defined - UAVCAN defines standard

services and messages for common high-level functions, such as network discovery, node

configuration, node firmware update, node status monitoring, network-wide time

synchronization, dynamic node ID allocation.

 Open specification and reference implementation - the UAVCAN specification is open and

freely available for anyone; the reference implementations are distributed under the terms of

the MIT License.

There are two versions of the UAVCAN protocol, a new [31] and an old [32] one. When the versions

differ, it will be stated.

2.2.1. Basic concepts

The UAVCAN network is a decentralized peer network, where each peer (node) has a unique numeric

identifier, node ID. The nodes of the UAVCAN network can communicate using any of the following

communication methods:

 Message broadcasting - The primary method of data exchange with publish/subscribe

semantics.

 Service invocation - The communication method for peer-to-peer request/response

interactions.

For each type of communication, a predefined set of data structures is used, where each data structure

has a unique identifier, the data type ID. Some data structures are standard and defined by the protocol

specification and some may be specific for a particular application or vendor.

Since every published message type has its own unique data type ID, and each node of the network

has its own unique node ID, a pair of data type ID and node ID can be used to support redundant nodes

with identical functionality inside the same network.

13

Message and service data structures are defined using the Data Structure Description Language

(DSDL). DSDL description is used to generate the serialization and deserialization code for a given data

structure. The DSDL approach allows to determine the data structure size statically, thus helping to

optimize the protocol implementations in terms of memory consumption and performance. This feature

is important for deeply embedded systems, where the memory footprint is critical and dynamic memory

allocation may not be acceptable.

On top of the standard data types, UAVCAN defines a set of standard high-level functions like node

health monitoring, network discovery, time synchronization, firmware update, and more. There's a part

of the specification dedicated to the standard data types and application level functions.

Serialized message and service data structures are exchanged by means of the CAN bus transport

layer, which implements automatic decomposition of long transfers into several CAN frames, allowing

to exchange data structures of arbitrary size.

Message broadcasting

Message broadcasting refers to the transmission of a serialized data structure over the CAN bus to

other nodes that are interested in receiving this data structure. This is the primary way of data exchange

for UAVCAN.

A broadcasted message includes the following:

 Payload - The data structure.

 Data type ID - Numerical identifier that indicates how the data structure should be interpreted.

 Source node ID - The node ID of the transmitting node.

 Transfer ID - A small integer that increments with every transfer of this type of message from a

given node.

Service invocation

Since it will not be used in this thesis, service invocation will be defined here but not further explained.

Service invocation is a two-step data exchange between exactly two nodes, the client and the server.

Service invocation is performed in three steps:

 The client sends a service request to the server.

14

 The server application takes appropriate actions and returns the response data.

 The server sends a service response to the client.

Typical use cases for this type of communication include node configuration parameter update and

firmware update among other service tasks.

Both service request and service response include the following data:

 Payload – The data structure.

 Data type ID - Numerical identifier that indicates how the data structure should be interpreted.

 Client node ID - Source node ID during request transfer, destination node ID during response

transfer.

 Server node ID - Destination node ID during request transfer, source node ID during response

transfer.

 Transfer ID - A small overflowing integer that increments with every call to this service from a

given node.

Both request and response contain exactly the same values for all fields except payload, whose content

is application defined. Clients can match the response with a corresponding request using any of the ID

fields.

2.2.2. Data structure description language

The Data Structure Description Language (DSDL) is used to define data structures for exchange via the

CAN bus. Every data structure is defined in a separate DSDL definition file. The DSDL definition is then

used to automatically generate the serialization and deserialization.

The tool that generates source codes from DSDL definition files is called the DSDL compiler.

DSDL definition file

A DSDL definition file defines exactly one data structure. The defined data structure can be used for

either message broadcasting or service invocation.

Data type name is defined by the DSDL source file name as follows:

<data type name>.uavcan

15

Command.uavcan

The default data type ID, when used, is defined by the DSDL source file name as follows:

<default data type ID>.<data type name>.uavcan

341.Status.uavcan

It is not necessary to explicitly define a default data type ID for non-standard data types. All standard

data types have default data type ID values defined.

Data type names are case sensitive and may contain nested data structures.

Syntax

A data structure definition consists of attributes and directives. Any line of the definition file may contain

at most one attribute definition or at most one directive. The same line cannot contain an attribute

definition and a directive at the same time.

An attribute can be either of the following:

 Field - a variable that can be modified by the application and exchanged via the network.

 Constant - an immutable value that does not participate in network exchange.

A directive is a statement that provides instructions to the DSDL compiler.

Aside from attributes and directives, a DSDL definition may contain the following entities:

 Comments

 Service response marker

A DSDL definition for a message data type may contain only the following:

 Attribute definitions (zero or more)

 Directives (zero or more)

 Comments (optional)

16

Attribute definition

Field definition patterns:

field_type field_name

field_type[X] field_name

field_type[<X] field_name

field_type[<=X] field_name

Constant definition pattern:

constant_type constant_name = constant_initializer

Each component is discussed below.

Field type

Can be either a primitive data type (primitive data types are defined below) or a nested data structure.

A primitive data type can be referred simply by name, while a nested data structure can be referred by

either of these two:

 Short name, e.g., NodeStatus, if both the referred and the referring data types are located in

the same namespace.

 Full name, e.g., uavcan.protocol.NodeStatus. A full name allows to reach the data type from

any namespace.

A field type name can be appended with a statement in square brackets to define an array:

 Syntax [X] is used to define a static array of size exactly X items.

 Syntax [<X] is used to define a dynamic array of size from 0 to X-1 items, inclusively.

 Syntax [<=X] is used to define a dynamic array of size from 0 to X items, inclusively.

In the array definition statements above, X must be a valid integer literal according to the rules defined

in the section dedicated to constant definitions. Arrays of maximum size with less than one item or

multidimensional arrays are not allowed.

17

Field name and constant name

For a message data type, all attributes must have a unique name within the data type.

Constant definition

A constant is a primitive scalar type. A constant must be assigned with a constant initializer, which must

be one of the following:

 Integer literal in base 10, starting with a non-zero character.

 Integer literal in base 16 prefixed with 0x.

 Integer literal in base 2 prefixed with 0b.

 Integer literal in base 8 prefixed with 0o.

 Floating point literal. Fractional part with an optional exponent part,

 Boolean true or false.

 Single ASCII character, ASCII escape sequence, or ASCII hex literal in single quotes.

Primitive data types

The UAVCAN standard assumes that these data types are built-in. The library used in this work provides

the following data types:

Name Bit length Possible representation in C/C++ Value range Binary
representation

bool 1 bool {0, 1} One bit

intX 2 ≤ X ≤ 64 int8_t, int16_t, int32_t, int64_t [-(2X)/2, 2X/2 -1] Two's complement

uintX 2 ≤ X ≤ 64 uint8_t, uint16_t, uint32_t, uint64_t [0, 2X - 1]

float16 16 float ±65504 IEEE754 binary16

float32 32 float Approx. ±1039 IEEE754 binary32

float64 64 double Approx. ±10308 IEEE754 binary64
Table 1 - Primitive data types

Data type compatibility

All nodes exchanging some particular data structure must use compatible DSDL definitions. Different

DSDL definitions are considered compatible if they share the same type and length.

18

Binary layout

Compatible data structures must feature the same field types in the same order.

Data type ID

The set of possible data type ID values is limited, so the devices from different vendors may occasionally

reuse the same data type ID for different purposes. A part of the data type ID space is dedicated for

standard data types. Another part of the data type ID space is dedicated for vendor-specific ID space.

2.2.3. CAN bus transport layer

A transfer that is addressed to all nodes except the source node is a broadcast transfer. A transfer that

is addressed to one particular node is a unicast transfer. UAVCAN defines the following types of

transfers:

 Message transfer – A broadcast transfer that contains a serialized message.

 Service transfer – A unicast transfer that contains either a service request or a service

response.

Both message and service transfers can be further distinguished between:

 Single-frame transfer – A transfer that is entirely contained in a single CAN frame.

 Multi-frame transfer – A transfer whose payload is distributed over multiple CAN frames.

In the new version of the protocol, the transfer priority is an integer number that defines the urgency of

the data contained in the transfer. In the older version, this priority is defined by the data type ID.

Numerically lower priority values indicate higher urgency, and numerically higher values indicate lower

urgency. Transfers of higher priority can delay transmission of transfers whose priority are lower.

Single frame transfer

If size of the entire transfer payload does not exceed the space available for payload in a single CAN

frame, the whole transfer will be contained in one CAN frame. Such transfer is called a single-frame

transfer. Single frame transfers are more efficient than multi-frame transfers in terms of throughput and

latency.

19

2.2.4. CAN frame format

The UAVCAN protocol only uses 29 bit identifiers. The old and new versions differ in how the different

field are organized at the bit level. Because of this they are presented separately.

New version

Identifier field

The identifier field for a message frame is composed of the following components:

 Priority – 5 bits representing the priority of the message.

 Message type ID – 16 bits corresponding to the message type ID.

 Service not message – 1 bit that indicates whether the frame is a service or a message.

 Source node ID – 7 bits representing the source node ID.

With the fields arranged in the following manner:

Figure 6 – New version identifier field

Payload

The payload of a single frame transfer is composed of up to seven bytes of data followed by the tail

byte. The tail byte consists of the following fields:

 Start of transfer – 1 bit that indicate the start of a transfer. For single frame transfers this value

is always 1.

 End of transfer – 1 bit that indicates the end of a transfer. For single frame transfers this value

is always 1.

 Toggle bit – 1 bit used to avoid CAN frame duplication in multi-frame transfers. For single frame

transfers this value is always 0.

 Transfer ID - 5 bits representing an integer value that allows receiving nodes to distinguish this

transfer from others.

20

With the fields arranged in the following manner:

Figure 7 – New version payload field

Old version

Identifier field

The identifier field for a message frame is composed of the following components:

 Data type ID – 10 bits corresponding to the message type ID.

 Transfer type – 2 bits that determine the type of transfer. 10 for message broadcast.

 Source node ID – 7 bits representing the source node ID.

 Frame index – 6 bits used to know the order of multi-frame transfers. For single frame transfers

this value is always 00000.

 Last frame – 1 bit that indicates the end of a transfer. For single frame transfers this value is

always 1.

 Transfer ID - 3 bits representing an integer value that allows receiving nodes to distinguish this

transfer from others.

The fields are arranged in the following manner:

Figure 8 - Old version identifier field

21

Payload

The payload of a single frame transfer is composed solely of the message to be transmitted, like so:

Figure 9 - Old version payload field

2.2.5. Payload bit and byte order

Bits a filled from the most significant bit. Bytes are sent in a little-endian, this means that the least

significant bytes goes first. Any pad bits are set to zero.

Figure 10 provides examples to clarify the bit and byte order.

Figure 10 - Payload bit and byte order examples

2.2.6. Node requirements

Every UAVCAN node must report its status and presence by means of broadcasting messages of type

uavcan.protocol.NodeStatus. This is the only data structure that UAVCAN nodes are required to support.

For the most recent version the default data type ID is 341 and for the older one the data type ID is 550.

2.3. ArduPilot

The ArduPilot (or ArduPilot Mega) firmware is an open-source Unmanned Aerial Vehicle (UAV) autopilot

[13]. It allows for the control of vehicles, autonomous or remote, of different configurations. It has been

used to control boats, rovers, planes and various multirotors.

22

Developed, originally, for the Arduino open-source electronics prototyping platform, it has been ported

to a different hardware platform called Pixhawk/PX4, presented later in this work. This hardware uses a

small Real Time Operating System (RTOS) and the ArduPilot runs as an app.

The ArduPilot project also provides a program, called MissionPlanner, to interface the autopilot with the

computer [14]. The MissionPlanner serves as a ground station to the vehicle, allowing its control or

mission monitorization and configuration.

The source code is downloaded through from GitHub and has the following structure:

 AntennaTracker – Allows the control of the ground station antenna.

 APMRover – Source code for the rover.

 ArduCopter – source code for multicopter. It allows for a configurable number of motors.

 ArduPlane – Source code for the plane.

 Libraries – Contains the libraries necessary for the ArduPilot code.

 mk – Contains the makefiles.

 Modules – Contains the UAVCAN library, the operating system and the Pixhawk

firmware.

The operating system that comes with the ArduPilot code is an older version. Because the UAVCAN

library comes with the operating system, it is an outdated version as well.

The ArduPilot project is being developed using the toolchain from the Pixhawk project presented next.

However, the toolchain downloads the most recent version of the operating system, one that comes with

the newer version on UAVCAN. The different versions of the protocol are incompatible. This can lead

to some confusion. Because of this, the nodes of the CAN network were made to work with both

versions.

When the different versions require different action it will be stated.

2.4. Pixhawk/PX4

The Pixhawk project was initially developed at the Swiss Federal Institute of Technology in Zurich (ETH

Zürich) for Micro Air Vehicle (MAV) research [15]. The project produced a MAV with powerful control

hardware. The project was eventually open-sourced and development was opened to the community

with the PX4 autopilot project [16].

23

2.4.1. PX4 Hardware

The latest version of the board, presented in Figure 11 and the one used in this work, uses a 32bit ARM

processor, based on the Cortex M4F architecture running at 168 MHz [17]. It has 14 Pulse Width

Modulation (PWM) outputs, several connectivity standards like Universal Asynchronous

Receiver/Transmitter (UART), Inter-Integrated Circuit (I2C) and CAN as well as other Radio Controlled

(RC) hobby communication standards. It has a failsafe processor based on the Cortex M3.

For sensing, it possesses two 3 axis accelerometers, two 3-axis gyroscopes, one 3-axis magnetometer

and one barometer.

There are also a multicolor Light Emitting Diode (LED), a multi-tone piezo audio indicator, a safety switch

and a Secure Digital (SD) card for logging over extended periods of time.

It is programmed over the Universal Serial Bus (USB) port using the MissionPlanner software introduced

earlier.

Figure 11 - The Pixhawk autopilot board

2.4.2. PX4 Firmware

The PX4 hardware runs a small, lightweight and efficient operating system NuttX [18], which provides a

Portable Operating System Interface (POSIX) style environment.

NuttX

The NuttX is a real time operating system (RTOS) designed for resource constrained systems [19]. It is

scalable from 8-bit to 32-bit systems with an emphasis on a small footprint and standards compliance,

like the POSIX and American National Standards Institute (ANSI) standards. It also provides a command

line called NuttShell (nsh). This command line is usually available through the usb port. However, the

ArduPilot code disables this, so a serial-to-USB [20]converter had to be used.

24

2.4.3. PX4 Middleware

The PX4 middleware runs on top of the operating system and provides device drivers and a micro Object

Request Broker (uORB) for asynchronous communication between individual tasks.

uORB

The micro Object Request Broker (uORB) application is used to share data structures between threads

and applications, using a simple implementation of the publish-subscribe pattern [21].

The publish–subscribe is a messaging pattern where the senders, called publishers, make the message

available as classes, without knowledge of the receivers or if they exist. Likewise, the receivers, called

subscribers, express interest in one or more classes and only receive messages that are of interest,

without knowledge of which publishers, if any, there are.

2.5. Arduino

Arduino is an open-source hardware and software company, project and user community that designs

and manufactures microcontroller-based prototyping boards [22]. The project is based on a family of

microcontroller board designs using various 8-bit Atmel AVR microcontrollers or 32-bit Atmel ARM

processors.

All Arduino boards are programmed through the Arduino Integrated Development Environment (IDE),

using a simplified version of the C++ programming language.

The board used in this work, the diecimila [23], has a serial to usb converter that allows for easy

communication and programming using a computer. It uses an AVR ATmega168 running at 16 MHz.

The board is designed to give easy access to the microcontroller pins and to allow the use of shields,

where a compatible board is plugged directly on top and becomes ready to use.

In this thesis the Arduino will simulate a sensor in the CAN bus.

To communicate in the CAN bus it needs a CAN controller and driver. To do so, a shield is used. The

chosen shield is the CAN-BUS Shield V1.2 [24] produced by Seeed Studio. It uses a MCP2515 CAN

Bus controller [25] with SPI interface and MCP2551 CAN transceiver [26].

Both the Arduino board and the shield can be seen in Figure 12.

25

Figure 12 - Arduino diecimila (left). CAN-bus shield (right)

2.6. Olimexino

The Olimexino-stm32 is an open source prototyping board with a stm32 microcontroller, based on the

ARM cortex-M3 architecture [27].

The microcontroller has an integrated CAN driver, with the board containing the transceiver, so that no

additional hardware is required to communicate in the CAN-bus. It is designed with the same header

configuration as the Arduino, and can be programmed with an Arduino-like IDE. However, due to a lack

of support for the CAN driver a ST-Link V2 [28] is used for programming, via the serial wire debug (SWD)

[29] port. Given the availability of a functional CAN-bus example written for the IAR Workbench IDE [30],

that was the chosen programming environment.

Both the Olimexino board and the ST-Link V2 programmer can be seen in Figure 13.

Figure 13 - Olimexino board (left). ST-Link v2 (right)

26

Chapter 3
Development tools

In this chapter the development tools used in this work are presented. There is a brief explanation of

what they are, followed by a description of how they were used.

3.1. PX4 toolchain

The PX4 project has created a software toolchain [33] to facilitate de entry of new developers.

This toolchain installs and configures the software and source code necessary to begin development

and to ensure equal configuration among developers.

The toolchain installs the following software:

 Cygwin - Cygwin [34] is a free and open source Unix-like environment and command-line

interface for Microsoft Windows. It translates POSIX system calls to ordinary Windows system

calls, allowing software designed for UNIX systems to run on Windows.

 MinGW - MinGW [35] (Minimalist GNU for Windows), is a free and open source software

development environment for creating Microsoft Windows applications. It includes a command

line and tools like GDB and make.

 TeraTerm – TeraTerm [36] is an open-source terminal emulator program. It emulates different

types of computer terminals and supports port connections.

 HTerm - HTerm [37] is an open-source terminal emulator program. It supports communication

serial port connections.

 Eclipse - Eclipse [38] is a free and open-source Integrated Development Environment (IDE). It

contains a base workspace and an extensible plug-in system for customizing the environment.

It allows for the development of C/C++ programs, among other languages.

 GCC ARM embedded toolchain – The GNU Compiler Collection (GCC) toolchain for ARM

[39] is a free and open-source toolchain that allows for the development of software for Arm

Cortex-M and Cortex-R processors (embedded families).

For this work the GCC ARM embedded toolchain needed to be manually updated to the 4.7 version [40]

for the correct compilation of the program.

27

3.1.1. Compiling the code

Development was made in both the ArduPilot source code and the PX4 firmware alone. This requires

different command to be run in different places.

 ArduPilot – In the folder of the vehicle configuration desired (ex. ArduCopter) run make PX4-v2.

 PX4 Firmware – In the firmware folder run make PX4fmu-v2_default.

All commands are to be run in the PX4 console, i.e. the installed MinGW command line.

3.2. IAR Embedded Workbench

The IAR Embedded Workbench is a paid development environment produced by Ingenjörsfirman

Anders Rundgren (IAR) Systems. The workbench includes a C/C++ compiler and debugger and can be

used to program and debug the STM32 family of processors. The trial version of the 6.5 edition was

used because examples for the Olimexino board were produced using this environment.

3.3. Arduino IDE

The Arduino IDE is an application built for the Arduino prototyping platform. It includes a C/C++ code

editor and is also capable of compiling and uploading programs to the board with a single click

It comes with software libraries and examples to facilitate the development of new applications. Shields

for the Arduino boards usually contain a library and examples for the same reason. In this thesis the

example application for the CAN-BUS Shield V1.2 will be modified to serve our purpose

3.4. MissionPlanner

The MissionPlanner is a free and open-source application produced by the ArduPilot project. It serves

both as a ground station, receiving telemetry or controlling the vehicle, and allows for the configuration

of the mission and the autopilot.

It is used to upload new code to the PX4 autopilot board.

28

3.5. GitHub GUI for Windows

The GitHub Graphical User Interface (GUI) for Windows is an application for Microsoft Windows that

allows for an easier way to use the Git software with GitHub. It offers all of the distributed revision control

and Source Code Management (SCM) functionality of Git as well as extra features

It is used to update the ArduPilot and PX4 source code without overriding local changes.

29

Chapter 4
Implementation

This chapter describes the implementation of the working CAN bus network.

It starts with the creation of applications to test the communication between processes in the NuttX

operating system. Then there is the creation of the CAN network, how a new message is created

received and handled in the operating system.

The last part introduces the creation of the two nodes that will be used to test the network.

As can be seen in the following diagram, a message travels from the autopilot to the UAVCAN driver

through the micro Object Request Broker (uORB), then to the UAVCAN network where it arrives at the

nodes.

Figure 14 - Message travel.

4.1. PX4 / ArduPilot

4.1.1. App

The simplest process in the NuttX operating system is the app. It differs from the daemon in that, once

started, it controls the command line. To create an app one must first create a folder in one of the folders

inside the one named src. It can be any name but is advisable to be the name of the app. In this case,

a folder called teste_1 was created in the examples folder.

ARDUPILOT uORB
UAVCAN

Driver
UAVCAN Network

UAVCAN
nodes

PIXHAWK ARDUINO OR

OLIMEXINO

30

Inside teste_1 needs to exist a makefile file called module.mk. This file must contain the name of the

app and the source files like so:

MODULE_COMMAND = teste_1

SRCS = teste_1.c

For this simple app only one source file is needed.

To create the app only a main function is needed and must have the name on the app followed by _main

like so:

__EXPORT int teste_1_main (int argc, char *argv[]);

The __EXPORT keyword is needed because it causes the function name to be exported to the linker.

Note that the app can be programmed in C++ (or C in a .cpp file) but needs the EXTERN “C” keyword

to prevent the compiler from mangling the function name.

Lastly, one needs to add the new app to the makefile. To do so it is necessary to add the following to

the pertinent makefile:

MODULES += examples/teste_1

For our target board the makefile is the one with config_PX4fmu-v2 in the name.

After a successful compilation and upload to the board, the app can now be called from the command

line or from the starting script.

Simply writing the name of the app in the command line starts the app.

nsh>teste_1

4.1.2. Daemon

The daemon differs from the app in that it runs in the background and frees the command line after

being called.

To create a daemon one can start from the app source code from before and make the necessary

changes.

In NuttX daemons are created using a new thread that is started from the main function. It is customary

to include the commands start, stop and status for interaction with the daemon. The main function

31

from before needs to create a new thread the first time the start argument is given, give the thread the

signal to stop in case the argument is stop and print the status if the status argument is given.

A new thread is started with the following command:

PX4_task_spawn_cmd (const char *name, int scheduler, int priority, int
stack_size, main_t entry, char * const argv[])

The name argument is the name that appears in the running processes list. The main_t entry argument

is the name of the function that will be run in the thread. Calling this daemon teste_1 and the new

function teste_1_daemon_app_main, with the rest of the arguments with default values, the call is:

PX4_task_spawn_cmd ("teste_1", SCHED_DEFAULT, SCHED_PRIORITY_DEFAULT, 2000,
teste_1_daemon_app_main, (argv) ? (char * const *)&argv[2] : (char * const
*)NULL);

The new function can be considered the new main function and has the following declaration:

int teste_1_daemon_app_main(int argc, char *argv[]);

To start the daemon it just needs to be called with the start argument:

nsh>teste_1 start

4.1.3. Communication using the uORB

Despite existing other communication methods in NuttX, the uORB was chosen because of its simplicity

and because information about the sender or receiver is not necessary.

Because the uORB uses a publisher-subscriber pattern any number of publishers and subscribers can

exist for each topic. Every app or daemon can be a publisher, a subscriber or both.

Before communication can exist a topic must be created. To do this one needs to create a file in the msg

folder, the name of the file will be the name of the topic. Here the file was called teste_topic.msg and

contains:

uint16 inc

This message of this topic is a 16 bit unsigned integer called inc. At compilation time a new file is

created, called teste_topic.h with a teste_topic_s struct that contains the variable inc. Any

publisher or subscriber must include this file.

32

After a topic has been created, it needs to be defined with the uORB. To do so one needs to add to the

file objects_common.cpp the following:

#include "topics/teste_topic.h"

ORB_DEFINE (teste_topic, struct teste_topic_s);

ORB_DEFINE is a macro that defines the name of the topic and the structure it passes.

Now that the topic has been created it can be published and subscribed to, in any order.

Publishing

Before a topic can be published to, it needs to be advertised. The function that advertises a topic

publishes the first information and returns a file descriptor that is the topic handle. To advertise the topic

the function must be called like so:

struct teste_topic_s test = {.inc = 0};

orb_advert_t topic_handle = orb_advertise(ORB_ID(teste_topic), &test);

Multiple publisher to the same topic can exist but one publisher must close the topic handle before

another can advertise and publish.

To publish one just needs to call the orb_publish function like so:

orb_publish(ORB_ID(teste_topic), topic_handle,&test)

Subscribing

Before a topic can receive messages it must first subscribe to a topic. Multiple subscriber can exist at

the same time without conflict. To subscribe the following function must be called like so:

static int topic_handle=orb_subscribe(ORB_ID(teste_topic));

Unlike with the advertisement, where the topic handle is an orb_advert_t struct, with the subscription

the topic handle is an integer.

A topic can be subscribed to, even if there are no publishers.

The subscriber can check for updates to the topic using:

33

bool updated;

orb_check(topic_handle,&updated)

If updates are available the can be copied by calling the function orb_copy:

struct teste_topic_s test

orb_copy(ORB_ID(teste_receive),topic_handle,&test)

The subscriber can also set the interval at which it sees updates using the following function:

orb_set_interval(topic_handle,1000)

Where 1000 is the interval in milliseconds. In this case the subscriber will see updates once every

second, given they are available.

4.1.4. New CAN message

To create new CAN messages a folder was created in the path uavcan/dsdl/uavcan/equipment.

Inside this folder two files were created, called 760.TesteCommand.uavcan and

761.TesteReceive.uavcan. The number part of the name is the data type ID. The TesteCommand file

is used for the send variable and contains:

uint8 valor

The TesteReceive file is used for the receive variable and contains:

uint8 recebe

At compile time a file is created for each message. These new files contain new types with the file names

and the declared variables.

4.1.5. New CAN actuators

To send and receive CAN messages it is advisable to create separate logic to handle the send and

receive functions. To do that two new files were created, one code file and one header file, called

teste_actuator. Unless stated otherwise, the code that follows was added to these files.

A new class is created called UavcanTeste:

34

class UavcanTeste

{

public:

 UavcanTeste(uavcan::INode &node);

 ~UavcanTeste();

private:

}

This class contains the logic necessary to handle both the incoming and outgoing messages. In this

thesis the messages is read from a uORB topic called teste_topic and sent to the CAN bus using the

message TesteCommand. The incoming messages TesteReceive are read from the CAN bus and

written to a uORB topic called teste_receive.

4.1.6. Sending CAN messages

To be able to publish messages a new function was created that is then run from the main UAVCAN

thread, in the function UavcanNode::run(). The main UAVCAN thread is present in the files called

uavcan_main.

The new function is called update_outputs. A new publisher for the required message must also be

instantiated, here called _uavcan_pub_teste_cmd.

The following code is added:

void update_outputs(int output);

uavcan::Publisher<uavcan::equipment::teste::TesteCommand>
_uavcan_pub_teste_cmd;

The function update_outputs must receive the input, place it in the message to be sent and broadcast

the message, like so:

void UavcanTeste::update_outputs(int output)

{

 uavcan::equipment::teste::TesteCommand msg;

 msg.valor = output;

 (void)_uavcan_pub_teste_cmd.broadcast(msg);

}

35

4.1.7. Receiving CAN messages

In order to receive messages the code first needs to bind the message type to the function that will

handle it. Then the order to start receiving this type of message needs to be given. The code to do this

is as follows:

int init();

void teste_receive_sub_cb(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive> &msg);

typedef uavcan::MethodBinder<UavcanTeste *,void (UavcanTeste::*)(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive>&)>Stat
usCbBinder;

uavcan::Subscriber<uavcan::equipment::teste::TesteReceive, StatusCbBinder>
_uavcan_sub_status;

The function init() gives the order to start receiving messages from the bus.

int UavcanTeste::init()

{

 int res = _uavcan_sub_status.start(StatusCbBinder(this,

&UavcanTeste::teste_receive_sub_cb));

 if (res < 0) {

 return res;}

 return 0;

}

The function init() is run once in UavcanNode::init(), in the UAVCAN main thread, with the

following code:

ret = _teste_controller.init();

 if (ret < 0) {

 return ret;

 }

The variables to publish to the uORB topic need to be initialized:

teste_receive_s _teste_receive = {.inc = 0};

orb_advert_t _teste_receive_pub = nullptr;

When the messages arrive they are published to a uORB topic. That is done in the

teste_receive_sub_cb function, like so:

36

void UavcanTeste::teste_receive_sub_cb(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive> &msg)

{

 _teste_receive.inc=msg.recebe;

 uint8_t node= msg.getSrcNodeID().get();

 printf("node=%d\n",node);

 if (_teste_receive_pub != nullptr) {

 (void)orb_publish(ORB_ID(teste_receive), _teste_receive_pub,
&_teste_receive);

 } else {

 _teste_receive_pub = orb_advertise(ORB_ID(teste_receive),
&_teste_receive);

 }

}

The above function also prints, to the console, the ID of the source node of the message, with the

following code:

 uint8_t node= msg.getSrcNodeID().get();

 printf("node=%d\n",node);

4.1.8. Integrating with ArduPilot

To communicate with the CAN network the ArduPilot code has to publish and subscribe to the uORB

topics used before. To test this, the code used before to publish and subscribe to uORB topics was

reused. To avoid flooding the system with messages, a one second loop was used.

// one_hz_loop - runs at 1Hz

void Copter::one_hz_loop()

Due to a bug in the ArduCopter code, any added code leads to a crash in the NuttX operating system.

Because of this the ArduPlane code is used. In the ArduPlane the one second loop is:

// one_hz_loop - runs at 1Hz

void Plane::one_hz_loop()

37

4.2. Olimexino

4.2.1. Overview

The configuration of the stm32 processor is outside the scope of this work. Since the manufacturer of

this board provided the source code for a CAN bus node [41], that code was adapted.

The code provided consisted of the configuration parameters of the microprocessor, like memory

mapping and clock speed, and the parameters for the board, like LEDs and buttons.

To serve as a node in a UAVCAN network the board must send a status message once every second.

A timer was used that triggered, every second, a function that sent a status message. This timer was

also used to track the uptime needed in the status message.

A function was made to handle the incoming messages. In this example the messages were recorded

to be later read in the debugger.

The sending of a message was controlled through a push button present on the board. When the button

was pressed, a message with an integer was sent. The number is incremented after every press.

4.2.2. CAN filters

To free the processor, the filtering is made in hardware. The filtering is made by setting IDs and masks.

The ID is the ID of the message to be received. The mask is a binary number that determines which bits

must match between the filter ID and the message ID. If a bit in the mask is 1, the corresponding bit in

the IDs must match, if it is a 0 they may differ.

Since this is a 32 bit processor and the extended CAN IDs used are 29 bits, there are extra bits in the

register. In this processor the registers for the filter ID and mask are left justified. This means that the

three least significant bits of the 32 bit register are not part of the CAN ID.

The configuration code of the filters is as follows:

uint32_t IDi=398722056<<3;// Idi = 10111110001000000010000001000

CAN_FilterInitStructure.CAN_FilterIdHigh = IDi>>16;

CAN_FilterInitStructure.CAN_FilterIdLow = (IDi & 0x0000FFFF);

CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0xFFFF;

CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0xE000;

38

The filter ID used stops all messages except the ones with a data type ID of 760 that corresponds to the

TesteCommand message. The mask allows any source node ID if the message has the correct type.

If a message passes the filters an interrupt is triggered. This interrupt toggles the state of a LED, for

visual confirmation of reception, and stores the CAN IDs in an array that is read later in the debugging

session.

void USB_LP_CAN1_RX0_IRQHandler(void){

 LED_Toggle(LED2);

 CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);

 if(i<200){

 entradas[i]=RxMessage.ExtId;

 i++;}

}

4.2.3. Status message

A timer was configured that triggers an interrupt once every second. This interrupt publish a status

message with the uptime, in seconds, of the node. This timer also increments the variable that counts

the uptime. The publication is made using the following function:

void publish_status(uint8_t health, uint8_t mode){

 uint8_t payload[7];

 // Uptime in seconds

 const uint32_t uptime_sec2=uptime_sec;

 payload[0] = (uptime_sec2 >> 0) & 0xFF;

 payload[1] = (uptime_sec2 >> 8) & 0xFF;

 payload[2] = (uptime_sec2 >> 16) & 0xFF;

 payload[3] = (uptime_sec2 >> 24) & 0xFF;

 // Health and mode

 payload[4] = (health << 6) | (mode << 3);

 payload[5] = 0x00;

 payload[6] = 0x00;

 static uint8_t transfer_id;

 transfer_id +=1;

39

 static const uint16_t data_type_id = 550;

 uavcan_broadcast_old(data_type_id, transfer_id, payload,
sizeof(payload));

}

4.2.4. Button action

For convenience the available button was programmed to send a message when pressed. The message

simply has an incrementing number as a payload and 761 as Data type ID, which corresponds to the

TesteReceive type. For visual confirmation, the button press also toggles the state of the second LED.

The button pressing triggers this function:

int publish_frame_old(void){

 static uint8_t carga=0;

 uint8_t payload[1];

 payload[0] = carga;

 carga +=1;

 static const uint16_t data_type_id = 761;

 static uint8_t transfer_id;

 LED_Toggle(LED1);

 int ret = uavcan_broadcast_old(data_type_id, transfer_id, payload, 1);

 transfer_id += 1;

 return ret;

}

4.2.5. Version differences

As stated earlier there are two incompatible versions of the UAVCAN standard. The one currently used

by the ArduPilot project is the older one. The overall logic of the node is the same with only a few

changes. When those changes were necessary to work with both versions, different functions were

created and chosen via preprocessor macros.

40

4.3. Arduino

4.3.1. Overview

Programming in the Arduino environment is extremely simple because the configuration variables are

automatically defined. Given that the shield manufacturer provides a library to interface with the CAN

driver and an example [42], the example was adapted. The basic functionality is the same as in the

Olimexino. It sends and receives messages of data type ID 761 and 760, respectively. In this case the

node sends an incrementing value every three seconds and prints any message received to the serial

port, which is then read in the computer.

Later a servo was attached to the Arduino and controlled through CAN. A temperature sensor was also

read and its value sent to the Pixhawk.

4.3.2. CAN Filters

To receive only the required messages the hardware filters were set. The filters are again based on a

filter ID and a filter mask, where the mask determines which bit must match. To do this the following

code is used:

CAN.init_Mask(1, 1, 0xFFFFFFFF);

CAN.init_Mask(0, 1, 0x1FFFFC08);

CAN.init_Filt(0, 1, PX4);

CAN.init_Filt(1, 1, status_);

Here two filters and two mask are set. One receives the messages with data type 760 while the other

receives the status messages from the Pixhawk. The status messages are received to allow for a

workaround explained next.

41

4.3.3. Status message

Because the libraries in use were already using the available timer, none was available to trigger a

status message. So a workaround is used. Every time a status message is received from the Pixhawk,

a status message is sent. Since the status message arrives in intervals of roughly one second, it was

also used to trigger the message with data type ID of 761. For every three status messages received

one message is sent.

4.3.4. Servo and temperature sensor

Both a servo and a temperature sensor were attached to the Arduino. The servo is controlled through

the receive messages. The message is received, the value is mapped from a range of 0 to 255 to a

range of 0 to 180 and sent to the servo. The value was mapped and sent to the servo using the following

code:

val = map(val, 0, 255, 0, 180);

myservo.write(val);

The temperature sensor created an analog value corresponding to the temperature, that value was read

and sent to the CAN bus.

uint8_t temperature =0;

temperature = analogRead(0);

publish_frame_new(temperature);

The temperature was rounded to the nearest unit.

4.3.5. Version differences

Like the Olimexino, the Arduino node also has different functions for the different versions of the

protocol. Here, too, they are chosen via preprocessor macros.

42

Chapter 5
Results and demonstration

This chapter explains how the various parts of the network were tested.

It begins with the test of the communication between processes using the micro object request broker.

Then there are the tests for the communication in the CAN network. First the ability to, correctly, send

CAN messages and then the ability to correctly receive them.

Finally there is an explanation of how the ArduPilot integration was tested.

5.1. uORB communication

To test the communication using uORB topics one app and one daemon were used. The daemon used

was the one explained earlier, called teste_1. In this test the daemon publishes one integer to the topic

every ten seconds, incrementing with every publication. As a receiver is an app called teste_2 that will

receive from that same topic and print to the command line. Both the app and the daemon exit when the

message reaches ten.

nsh> teste_1 start

teste_1: [daemon] starting

teste_1.c---Inicio

nsh> teste_2

teste_2.c---Inicio

recebido=0

recebido=1

recebido=2

recebido=3

recebido=4

recebido=5

recebido=6

recebido=7

43

recebido=8

recebido=9

recebido=10

teste_2.c---Fim

nsh> teste_1.c---Fim

teste_1: [daemon] exiting.

5.2. Sending CAN messages

To test sending CAN messages, the Pixhawk was connected to the Arduino and to the Olimexino. As

stated before the Olimexino toggles a LED when a message is received and the Arduino prints the data

to the serial port. On the Pixhawk side, the UAVCAN daemon receives messages from the uORB topic

teste_topic and sends them to the CAN bus. To publish to teste_topic the daemon teste_1 was

used.

nsh> uorb start

nsh> uavcan start

PX4: param_find(UAVCAN_NODE_ID)

PX4: param_find(UAVCAN_BITRATE)

uavcan: Node ID 1, bitrate 1000000

uavcan: SW version vcs_commit: 0x3d7ec370

[Fim do init]

teste_controller ret=0

uavcan: sensor bridge 'gnss' init ok

uavcan: sensor bridge 'mag' init ok

uavcan: sensor bridge 'baro' init ok

nsh>teste_1 start

teste_1: [daemon] starting

teste_1.c---Inicio

Both devices received the messages, with the Arduino printing to the serial port:

get data from ID:

398722057

Variable ID= 760

Source node ID= 1

44

Transfer ID= 1

1

The data was correctly received.

A servo motor was then attached to the Arduino. The Arduino received the values from the Pixhawk and

sent a command to the servo motor with a value of zero meaning 0 degrees and 255 meaning 180

degrees of deflection.

5.3. Receiving CAN messages

To test receiving CAN messages, the Pixhawk was again connected to the Arduino and to the Olimexino.

The Arduino was programmed to send an incrementing integer every three seconds. The Olimexino

also sends an incrementing integer but at the push of a button. The UAVCAN daemon receives the

messages, prints node ID and publishes them to a uORB topic. A new topic, called teste_receive,

was created and the teste_2 app was adapted to receive from that topic and print the message.

nsh> uorb start

nsh> uavcan start

PX4: param_find(UAVCAN_NODE_ID)

PX4: param_find(UAVCAN_BITRATE)

uavcan: Node ID 1, bitrate 1000000

uavcan: SW version vcs_commit: 0x3d7ec370

[Fim do init]

teste_controller ret=0

uavcan: sensor bridge 'gnss' init ok

uavcan: sensor bridge 'mag' init ok

uavcan: sensor bridge 'baro' init ok

nsh>teste_2

teste_2.c---Inicio

node=120

recebido=0

A temperature sensor was attached to the Arduino that read the temperature and sent the value to the

bus. The temperature was sent in degrees Celsius, rounded to the nearest unit.

45

5.4. ArduPilot integration

To test the ArduPilot integration, one of the loops was used to publish to a uORB topic. That topic was

them read from the UAVCAN daemon and sent to the bus. Initially the ArduCopter code was chosen but

due to a bug any code added resulted in an error.

Assertion failed at file:armv7-m/up_hardfault.c line: 184 task: ArduCopter

sp: 20013f40

IRQ stack:

 base: 20013f8c

 size: 000005d8

20013f40: 080c4528 000000b8 08091029 00000010 200115d8 00000003 00000000
08097711

20013f60: 080976fd 080a48df e000ed24 080a1815 00000000 20006820 20006824
20000e38

20013f80: 2000bb98 08097681 2001cac4 00000000 00000000 00000000 00000000
00000000

sp: 2001cb98

User stack:

 base: 2001cc18

 size: 00001ffc

2001cb80: 3eaaabae 00000000 00000000 00000000 60000010 0805d2b3 00000000
00000000

2001cba0: 20006810 20000a90 0068f37c 08004491 20000a90 08004515 2000bae8
00000000

2001cbc0: 1000c730 08018c49 08018c9d 00000000 00000000 00000000 006a788b
00000000

2001cbe0: 00000000 00000000 08018c9d 00000000 00000000 00000000 00000000
00000000

2001cc00: 00000000 00000000 00000000 08092301 00000000 00000000 ffffffff
0d0e0fd4

R0: 00000000 2000683c 00000001 200112e4 20006820 20006824 20000e38 2000bb98

R8: 1000c160 2000bbf8 00000000 00000000 00000000 2001cb98 0805d2c9 200112e4

xPSR: 40000000 BASEPRI: 00000000 CONTROL: 00000000

EXC_RETURN: ffffffe9

The ArduPlane code was tried next. The one second loop was used to publish an integer that

incremented with each publication.

NuttShell (NSH)

nsh> [PX4io] mixer sent

<fmuservo> MODE_4PWM

46

<fmuservo> set_pwm_rate 0 50 50

disabling flow control on /dev/ttyS1 _total_written=129

node=120

msg = 0

This time everything worked as expected and the integration with the ArduPilot code was complete.

47

Chapter 6
Conclusions and Recommendations

In this last chapter there is a summary of what was done and what was accomplished. It ends with a

suggestion for further improvements and future work.

6.1. Summary of the results

This thesis work was intended to integrate a popular autopilot called ArduPilot to a new controller area

network (CAN) protocol designed specifically for unmanned aerial vehicles (UAVs) called UAVCAN. To

do so three open source projects are used. The Pixhawk project is responsible for the creation of the

autopilot board, its operating system, called NuttX, and the UAVCAN protocol. The ArduPilot project is

responsible for the creation of the autopilot software and its integration on the NuttX operating system.

The UAVCAN project is responsible for creating the protocol and a library as an example

implementation. The ArduPilot project uses the toolchain from the Pixhawk project. This creates some

confusion because the toolchain downloads and installs the last version of the operation system, a

version that is different from the one used by the ArduPilot. The ArduPilot code comes as a special app

of the NuttX operating system. It uses an older version of NuttX that includes an outdated version of the

UAVCAN protocol, a version that is incompatible with its final one. The final version of UAVCAN was

released during the making of this work. Despite coming in a bundle, the ArduPilot code does not use

CAN bus.

Being open source projects the documentation was lacking and sometimes inexistent, making

development difficult and slow.

Development, and later testing, was begun in the operating system alone, without the ArduPilot code,

due to its faster compilation time. However, the code came with the final version, before it was released,

so the testing nodes needed to be adapted and work duplicated. Due to some overlap in the projects,

part of the UAVCAN team also worked in the NuttX operating system, the UAVCAN protocol is deeply

integrated in the operating system. Such integration made a possible update of the protocol version in

the ArduPilot code a difficult and protracted endeavor. Despite being incompatible at the bit level, in the

bus, both versions of the protocol use the same the same functions. This made possible the unchanged

use of the code with both versions, keeping the duplicated work to the nodes only.

48

The integration of the UAVCAN protocol with the ArduPilot code was achieved. Messages were

successfully sent from the ArduPilot to the nodes in the bus where they were used to command

actuators. And sensor readings were received.

6.2. Future work

This section addresses some unresolved problems and recommendations for future work, in no specific

order.

One major problem was the poor or lack of documentation. It was especially problematic with the

ArduPilot project. The main problem was with the integration of in the NuttX operating system. Very little

was available about how it was done and how it worked. It makes the entry of new developers

unnecessarily difficult and long. The Pixhawk had some error in its documentation that caused some

problems and can be improved. The UAVCAN had problems inherent to being a new project and still

under development

The lack of documentation contributed to another problem that is the different versions used by the

different projects. The ArduPilot project installed a firmware version that was sometimes incompatible

with the one it used.

The Pixhawk toolchain installed software that was outdated and not the one necessary for development.

The Pixhawk toolchain was created to allow for the easy start of developers and to guarantee that they

all used the same configurations. However development was being done in a newer version of the ARM

compiler. This meant the compiler needed to be updated to the newer version manually. And since there

was no warning, developers only new to do so when they were faced with an error they could not fix

and had to ask for help.

Other problem was buggy code. The ArduPilot has a bug in the ArduCopter section that makes it

impossible to add code.

For the widespread adoption of the UAVCAN protocol more compatible sensors and actuators are

needed. The ArduPilot creators are in a privileged position to do so because they have the platform to

advertise and sell, the means of production and the audience. Because the protocol is robust and useful

others would follow.

I will be continuing this work with UAVision in order to create a product that will simplify the control of

commercial UAVs.

49

Bibliography

[1] "CAN in automation: CAN history," [Online]. Available: http://www.can-cia.de/index.php?id=161.

[Accessed July 2015].

[2] G. Leen and D. Heffernan, "Expanding Automotive Electronic Systems," Computer, vol. 35, no. 1,

pp. 88-93, January 2002.

[3] CAN in Automation, “CAN in Automation (Cia) : History of CAN technology,” [Online]. Available:

http://www.can-cia.org/can-knowledge/can/can-history/. [Acedido em October 2015].

[4] STMicroelectronics, "TN0897 Technical note: ST SPI protocol," 2013.

[5] K. T. Wong, "Narrowband PPM semi-‘blind’ spatial-rake receiver," Wiley InterScience, vol. 18, no.

2, pp. 193-197, 2006.

[6] "Interface specification for airborne CAN applications V 1.7," 12 January 2006. [Online]. Available:

http://www.stockflightsystems.com/tl_files/downloads/canaerospace/canas_17.pdf. [Accessed

July 2015].

[7] P. Kirienko, "DIYDrones," 23 January 2014. [Online]. Available:

http://diydrones.com/profiles/blogs/uavcan-can-bus-for-uav. [Accessed July 2015].

[8] P. Kirienko, "UAVCAN," [Online]. Available: http://www.uavcan.org. [Accessed July 2015].

[9] STMicroelectronics, "Medium-density performance line ARM®-based 32-bit MCU," August 2015.

[Online]. Available:

http://www.st.com/web/en/resource/technical/document/datasheet/CD00161566.pdf. [Accessed

September 2015].

[10] Atmel Corporation, "8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable

Flash," May 2011. [Online]. Available: http://www.atmel.com/Images/doc2545.pdf. [Accessed July

2015].

50

[11] W. Lawrenz, CAN System Engineering - From Theory to Practical Applications, Springer Verlag,

2013.

[12] “Road vehicles -- Controller area network (CAN) -- Part 1: Data link layer and physical signalling,”

ISO 11898-1, 2003.

[13] "ArduPilot," [Online]. Available: http://www.ardupilot.com. [Accessed October 2015].

[14] "Mission Planner," [Online]. Available: http://planner.ardupilot.com/. [Accessed October 2015].

[15] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer and M. Pollefeys, "Pixhawk: A micro

aerial vehicle design for autonomous flight using onboard computer vision," Autonomous Robots

(AURO), 2012.

[16] "PIXHAWK," [Online]. Available: https://pixhawk.ethz.ch/. [Accessed September 2015].

[17] "Pixhawk autopilot," [Online]. Available: https://pixhawk.org/modules/pixhawk. [Accessed

September 2015].

[18] "Nuttx RTOS," [Online]. Available: https://pixhawk.org/dev/nuttx/start. [Accessed September

2015].

[19] "NuttX," [Online]. Available: http://nuttx.org/. [Accessed September 2015].

[20] "NSH Serial Console Wiring," [Online]. Available: https://pixhawk.org/dev/wiring. [Accessed

September 2015].

[21] "uORB - PX4 Autopilot Project," [Online]. Available: https://pixhawk.org/firmware/apps/uorb.

[Accessed September 2015].

[22] Arduino, Llc, "Arduino - Introduction," [Online]. Available:

https://www.arduino.cc/en/guide/introduction. [Accessed October 2015].

[23] Arduino, Llc, "Arduino - ArduinoBoardDiecimila," [Online]. Available:

https://www.arduino.cc/en/Main/ArduinoBoardDiecimila. [Accessed October 2015].

51

[24] Seeed Development Limited, "CAN-BUS Shield V1.2 - Wiki," [Online]. Available:

http://www.seeedstudio.com/wiki/CAN-BUS_Shield_V1.2. [Accessed October 2015].

[25] Microchip Technology Inc, "MCP2515," 2005. [Online]. Available:

http://www.seeedstudio.com/wiki/images/8/83/MCP2515.pdf. [Accessed October 2015].

[26] Microchip Technology Inc, "Mcp2551," 2010. [Online]. Available:

http://www.seeedstudio.com/wiki/images/8/8c/Mcp2551en.pdf. [Accessed October 2015].

[27] Olimex, Ltd, "OLIMEXINO-STM32 development board User Manual," November 2014. [Online].

Available: https://www.olimex.com/Products/Duino/STM32/OLIMEXINO-

STM32/resources/OLIMEXINO-STM32.pdf. [Accessed September 2015].

[28] STMicroelectronics, "ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32,"

September 2012. [Online]. Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/DM00027105.pdf. [Accessed

September 2015].

[29] E. Ashfield, I. Field, P. Harrod, S. Houlihane, W. Orme and S. Woodhouse, "Serial Wire Debug

and the CoreSight Debug and Trace Architecture," ARM Ltd, Cambridge.

[30] IAR Systems AB, "IAR Embedded Workbench® IDE - User Guide," 2009. [Online]. Available:

http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/EWARM_UserGuide.ENU.pdf.

[Accessed September 2015].

[31] P. Kirienko, "UAVCAN," [Online]. Available: http://uavcan.org. [Accessed October 2015].

[32] P. Kirienko, "UAVCAN Documentation," [Online]. Available: http://old.uavcan.org/UAVCAN.

[Accessed September 2015].

[33] "Toolchain Instalation," [Online]. Available: https://pixhawk.org/dev/toolchain_installation_win.

[Accessed July 2015].

[34] "Cygwin," [Online]. Available: https://www.cygwin.com. [Accessed July 2015].

52

[35] "MinGW," [Online]. Available: www.mingw.org. [Accessed July 2015].

[36] "TeraTerm," [Online]. Available: https://ttssh2.osdn.jp/index.html.en. [Accessed July 2015].

[37] "Hterm - A terminal program for Windows and Linux," [Online]. Available: www.der-

hammer.info/terminal. [Accessed July 2015].

[38] J. des Rivieres and W. Beaton, "Eclipse Platform Technical Overview," 17 July 2001. [Online].

Available: http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-

whitepaper.html. [Accessed July 2015].

[39] "GCC ARM Embedded in Launchpad," [Online]. Available: https://launchpad.net/gcc-arm-

embedded. [Accessed July 2015].

[40] "GCC ARM Embedded 4.7-2012-q4-major," [Online]. Available: https://launchpad.net/gcc-arm-

embedded/4.7/4.7-2012-q4-major. [Accessed September 2015].

[41] Olimex Ltd, "Olimexino-stm32," [Online]. Available:

https://www.olimex.com/Products/Duino/STM32/OLIMEXINO-STM32/open-source-hardware.

[Accessed September 2015].

[42] Seeed Development Limited, "CAN bus shield," [Online]. Available: https://github.com/Seeed-

Studio/CAN_BUS_Shield. [Accessed September 2015].

53

Appendix A

App and Daemon Files

Teste_1.c

/*
 * teste_1.c
 *
 * Created on: 13 de Ago de 2015
 * Author: Pedro Silva
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <errno.h>
#include <uORB/topics/teste_topic.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <px4_config.h>
#include <nuttx/sched.h>
#include <systemlib/systemlib.h>
#include <systemlib/err.h>

static bool thread_should_exit = false; /**< daemon exit flag */
static bool thread_running = false; /**< daemon status flag */
static int daemon_task; /**< Handle of daemon task / thread */

/**
 * daemon management function.
 */
__EXPORT int teste_1_main(int argc, char *argv[]);

/**
 * Mainloop of daemon.
 */
int teste_1_daemon_app_main(int argc, char *argv[]);

/**
 * Print the correct usage.
 */
static void usage(const char *reason);

static void
usage(const char *reason)
{
 if (reason) {
 warnx("%s\n", reason);
 }

 warnx("usage: daemon {start|stop|status} [-p <additional params>]\n\n");

54

}

/**
 * The daemon app only briefly exists to start
 * the background job. The stack size assigned in the
 * Makefile does only apply to this management task.
 *
 * The actual stack size should be set in the call
 * to task_create().
 */
int teste_1_main(int argc, char *argv[])
{
 if (argc < 2) {
 usage("missing command");
 return 1;
 }

 if (!strcmp(argv[1], "start")) {

 if (thread_running) {
 warnx("daemon already running\n");
 /* this is not an error */
 return 0;
 }

 thread_should_exit = false;
 daemon_task = px4_task_spawn_cmd("teste_1",
 SCHED_DEFAULT,
 SCHED_PRIORITY_DEFAULT,
 2000,
 teste_1_daemon_app_main,
 (argv) ? (char * const *)&argv[2] : (char * const
*)NULL);
 return 0;
 }

 if (!strcmp(argv[1], "stop")) {
 thread_should_exit = true;
 return 0;
 }

 if (!strcmp(argv[1], "status")) {
 if (thread_running) {
 warnx("\trunning\n");

 } else {
 warnx("\tnot started\n");
 }

 return 0;
 }

 usage("unrecognized command");
 return 1;
}

55

int teste_1_daemon_app_main(int argc, char *argv[])
{

 warnx("[daemon] starting\n");

 thread_running = true;
 printf("teste_1.c---Inicio\n");

 struct teste_topic_s test = {.inc = 0};

 orb_advert_t topic_handle = orb_advertise(ORB_ID(teste_topic), &test); // na
parte do publisher tem que ser orb_advert_t em vez de static int
 sleep(10);

 while (!thread_should_exit) {

 for (int i=0;i<10;i++)
 {
 test.inc++;
 if(orb_publish(ORB_ID(teste_topic),topic_handle,&test)!=OK){
 printf("Erro orb_publish=%d\n",errno);
 thread_running = false;
 return ERROR;
 }
 sleep(10);
 if(thread_should_exit)
 {
 printf("i=%d",i);
 break;
 }
 }
 break;
 }

 printf("teste_1.c---Fim\n");

 warnx("[daemon] exiting.\n");

 thread_running = false;

 return OK;

}

Module.mk

MODULE_COMMAND = teste_1

SRCS = teste_1.c

MODULE_STACKSIZE = 1200

56

Teste_2.c

/*
 * teste_2.c
 *
 * Created on: 13 de Ago de 2015
 * Author: Pedro Silva
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <errno.h>
#include <uORB/topics/teste_receive.h>

__EXPORT int teste_2_main(int argc, char *argv[]);

int teste_2_main(int argc, char *argv[])
{
 printf("teste_2.c---Inicio\n");

 bool updated;
 struct teste_receive_s test ;

 static int topic_handle;
 topic_handle = orb_subscribe(ORB_ID(teste_receive));
 if(topic_handle==ERROR){
 printf("Error orb_subscribe (ERROR)=%d\n",errno);
 sleep(10);
 topic_handle = orb_subscribe(ORB_ID(teste_receive));
 }
 else if(topic_handle==-1){
 printf("Error orb_subscribe (-1)=%d\n",errno);
 sleep(10);
 topic_handle = orb_subscribe(ORB_ID(teste_receive));
 }

 if(orb_set_interval(topic_handle,1000)==ERROR){
 printf("Error orb_set_interval =%d\n",errno);
 return ERROR;
 }
 if(orb_copy(ORB_ID(teste_receive),topic_handle,&test)==ERROR){
 printf("Error orb_copy =%d\n",errno);
 if(orb_copy(ORB_ID(teste_receive),topic_handle,&test)==ERROR){
 printf("Error orb_copy =%d\n",errno);
 return ERROR;
 }
 }
 printf("recebido=%d\n",test.inc);

 int i=0;
 while(i<10){
 sleep(1);
 //printf("While-i=%d\n",i);

57

 if(orb_check(topic_handle,&updated)==ERROR){
 printf("Error orb_check =%d\n",errno);
 if(orb_check(topic_handle,&updated)==ERROR){
 printf("Error orb_check =%d\n",errno);
 return ERROR;
 }
 }

 if(updated){
 if(orb_copy(ORB_ID(teste_receive),topic_handle,&test)==ERROR){
 printf("Error orb_copy =%d\n",errno);
 if(orb_copy(ORB_ID(teste_receive),topic_handle,&test)==ERROR){
 printf("Error orb_copy =%d\n",errno);
 return ERROR;
 }
 }
 printf("recebido=%d\n",test.inc);
 i=test.inc;
 }
 }

 printf("teste_2.c---Fim\n");
 return OK;

}

Module.mk

MODULE_COMMAND = teste_2

SRCS = teste_2.c

58

Appendix B

UAVCAN Files

Teste_actuator.hpp

/**
 * @file teste_actuator.hpp
 *
 * @author Pedro Silva
 */

#pragma once

#include <uavcan/uavcan.hpp>
#include <uavcan/equipment/teste/TesteCommand.hpp>
#include <uavcan/equipment/teste/TesteReceive.hpp>
#include <systemlib/perf_counter.h>
#include <uORB/topics/teste_topic.h>
#include <uORB/topics/teste_receive.h>

class UavcanTeste
{
public:
 UavcanTeste(uavcan::INode &node);
 ~UavcanTeste();

 int init();

 void update_outputs(int output);

private:
 /**
 * TesteReceive message reception will be reported via this callback.
 */
 void teste_receive_sub_cb(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive> &msg);

 typedef uavcan::MethodBinder<UavcanTeste *,
 void (UavcanTeste::*)(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive>&)>
 StatusCbBinder;

 /*
 * libuavcan related things
 */
 uavcan::MonotonicTime _prev_cmd_pub; ///< rate limiting

59

 uavcan::INode &_node;
 uavcan::Publisher<uavcan::equipment::teste::TesteCommand>
_uavcan_pub_teste_cmd;
 uavcan::Subscriber<uavcan::equipment::teste::TesteReceive, StatusCbBinder>
_uavcan_sub_status;

 teste_receive_s _teste_receive = {.inc = 0};
 orb_advert_t _teste_receive_pub = nullptr;
};

Teste_actuator.cpp

/*
 * teste_actuator.cpp
 *
 * Created on: 25 de Set de 2015
 * Author: Pedro Silva
 */

#include "teste_actuator.hpp"
#include <systemlib/err.h>

UavcanTeste::UavcanTeste(uavcan::INode &node) :
 _node(node),
 _uavcan_pub_teste_cmd(node),
 _uavcan_sub_status(node),
{
}

UavcanTeste::~UavcanTeste()
{
}

int UavcanTeste::init()
{
 int res = _uavcan_sub_status.start(StatusCbBinder(this,
&UavcanTeste::teste_receive_sub_cb));

 if (res < 0) {
 warnx("uavcan sub failed %i", res);
 return res;
 }
 return res;
}

void UavcanTeste::update_outputs(int output)
{
 const auto timestamp = _node.getMonotonicTime();

 if ((timestamp - _prev_cmd_pub).toUSec() < (1000000 / MAX_RATE_HZ)) {
 return;
 }

 _prev_cmd_pub = timestamp;

60

 uavcan::equipment::teste::TesteCommand msg;

 msg.valor = output;
 printf("msg = %x\n",msg.valor);

 (void)_uavcan_pub_teste_cmd.broadcast(msg);
}

void UavcanTeste::teste_receive_sub_cb(const
uavcan::ReceivedDataStructure<uavcan::equipment::teste::TesteReceive> &msg)
{
 _teste_receive.inc=msg.recebe;

 uint8_t node= msg.getSrcNodeID().get();
 printf("node=%d\n",node);
 if (_teste_receive_pub != nullptr) {
 (void)orb_publish(ORB_ID(teste_receive), _teste_receive_pub,
&_teste_receive);

 } else {
 _teste_receive_pub = orb_advertise(ORB_ID(teste_receive),
&_teste_receive);
 }
}

teste/760.TesteCommand.uavcan

uint8 valor

teste/761.TesteReceive.uavcan

uint8 recebe

uavcan_main.hpp

Line 49 : #include "actuators/teste_actuator.hpp"

Line 141

 UavcanTeste _teste_controller;
 int _teste_topic_sub = -1;
 teste_topic_s _teste_topic ;

Line 145

uavcan_main.cpp

Line 49

61

#include <uORB/topics/esc_status.h>
#include <uORB/topics/teste_topic.h>

Line 52

Line 76: _teste_controller(_node)

Line 268

 ret = _teste_controller.init();
 printf("teste_controller ret=%d \n",ret);
 if (ret < 0) {
 return ret;
 }

Line 274

Line 330

 _actuator_direct_sub = orb_subscribe(ORB_ID(actuator_direct));
 _teste_topic_sub = orb_subscribe(ORB_ID(teste_topic));
 if(_teste_topic_sub==-1){
 printf("Error orb_subscribe (ERROR)=%d\n",errno);
 sleep(10);
 _teste_topic_sub = orb_subscribe(ORB_ID(teste_topic));
 }
 if(_teste_topic_sub==-1){
 printf("Error orb_subscribe (-1)=%d\n",errno);
 sleep(10);
 _teste_topic_sub = orb_subscribe(ORB_ID(teste_topic));
 }

Line 345

Line 508

 updated = false;
 if(orb_check(_teste_topic_sub, &updated)==-1){
 printf("Error orb_check =%d\n",errno);
 }
 if (updated) {
 if(orb_copy(ORB_ID(teste_topic),_teste_topic_sub,&_teste_topic)==-1){
 printf("Error orb_copy =%d\n",errno);

if(orb_copy(ORB_ID(teste_topic),_teste_topic_sub,&_teste_topic)==-1){
 printf("Error orb_copy =%d\n",errno);
 return ERROR;
 }
 else{
 _teste_controller.update_outputs(_teste_topic.inc);
 }
 }
 else {
 _teste_controller.update_outputs(_teste_topic.inc);

62

 }

Line 533

63

Appendix C

Message Files

Teste_receive.msg

uint16 inc

Teste_topic.msg

uint16 inc

Objects_common.cpp

Line 259

#include "topics/teste_topic.h"
ORB_DEFINE(teste_topic, struct teste_topic_s);

#include "topics/teste_receive.h"
ORB_DEFINE(teste_receive, struct teste_receive_s);

Line 261

64

Appendix D

Arduino File

uavcan_px4.pde

#include <SPI.h>

#include <Servo.h>

#include "mcp_can.h"

#define __UAVCAN_ANTIGO__

#ifndef __UAVCAN_ANTIGO__

#define __UAVCAN_NOVO__

#endif

const int SPI_CS_PIN = 9;

unsigned long status_ = 288621576;

unsigned long olimex_Id = 0x17CDE008;

unsigned long px4 = 398722056;

unsigned long send_Id = 398722056;

unsigned char ext = 1;

unsigned char len = 0;

unsigned char buf[8];

const int LED = 13;

boolean ledON = 1;

int uavcan_node_id = 120;//111;

MCP_CAN CAN(SPI_CS_PIN);

Servo myservo;

int val

#ifdef __UAVCAN_NOVO__

static const uint8_t PRIORITY_HIGHEST = 0;

static const uint8_t PRIORITY_HIGH = 8;

static const uint8_t PRIORITY_MEDIUM = 16;

65

static const uint8_t PRIORITY_LOW = 24;

static const uint8_t PRIORITY_LOWEST = 31;

#endif

void setup()

{

 Serial.begin(115200);

 pinMode(LED, OUTPUT);

 myservo.attach(9);

START_INIT:

 if (CAN_OK == CAN.begin(CAN_1000KBPS))

 {

 Serial.println("CAN BUS Shield init ok!");

 Serial.println(CAN.init_Mask(1, 1, 0xFFFFFFFF));

 Serial.println(CAN.init_Mask(0, 1, 0x1FFFFC08));

 Serial.println(CAN.init_Filt(0, 1, px4));

 Serial.println(CAN.init_Filt(1, 1, status_));

 }

 else

 {

 Serial.println("CAN BUS Shield init fail");

 Serial.println("Init CAN BUS Shield again");

 delay(100);

 goto START_INIT;

 }

}

void loop()

{ static boolean publish = true;

 static boolean publish1 = true;

 if (publish & publish1){

 uint8_t temperature =0;

 temperature = analogRead(0);

#ifdef __UAVCAN_NOVO__

 publish_frame_new();

 publish_frame_new(temperature);

66

#endif

#ifdef __UAVCAN_ANTIGO__

 publish_frame_old();

 publish_frame_old(temperature);

#endif

 publish = !publish;

 }

 //delay(500);

 if (CAN_MSGAVAIL == CAN.checkReceive()

 {

 CAN.readMsgBuf(&len, buf);

 unsigned long canId = CAN.getCanId();

 if (canId >> 19 == 760) {

 Serial.println("-----------------------------");

 Serial.println("get data from ID: ");

 Serial.println(canId);

 Serial.print("Variable ID= ");

 Serial.println(canId >> 19);

 Serial.print("Source node ID= ");

 Serial.println((canId >> 10) & 0x7F);

 Serial.print("Transfer ID= ");

 Serial.println(canId & 0x7);

 //Serial.println(millis()>>9);

 for (int i = 0; i < len; i++)

 {

 Serial.print(buf[i]);

 Serial.print("\t");

 val = map(val, 0, 255, 0, 180);

 myservo.write(val);

 if (ledON && i == 0)

 {

 digitalWrite(LED, buf[i]);

67

 ledON = 0;

 delay(500);

 }

 else if ((!(ledON)) && i == 4) {

 digitalWrite(LED, buf[i]);

 ledON = 1;

 }

 }

 Serial.println();

 }

 else if (canId >> 19 == 550){

 Serial.println("Status received");

 publish_status();

 publish= true;

 publish1 = !publish1;

 }

 }

}

void LED_Toggle(){

 static boolean led=false;

 digitalWrite(LED, led);

 led = !led;

}

void publish_status() {

 uint8_t payload[7];

 uint8_t health = 0;

 // Uptime in seconds

 static uint32_t uptime_sec2 = millis()>>9;

 payload[0] = (uptime_sec2 >> 0) & 0xFF;

 payload[1] = (uptime_sec2 >> 8) & 0xFF;

 payload[2] = (uptime_sec2 >> 16) & 0xFF;

 payload[3] = (uptime_sec2 >> 24) & 0xFF;

68

 // Health and mode

 payload[4] = (health << 6) | ((uint8_t)0 << 3);

 payload[5] = 0x00;

 payload[6] = 0x00;

 static uint8_t transfer_id;

 transfer_id += 1;

#ifdef __UAVCAN_NOVO__

 static const uint16_t data_type_id = 341;

 uavcan_broadcast_new(PRIORITY_LOW, data_type_id, transfer_id, payload,
sizeof(payload));

#endif

#ifdef __UAVCAN_ANTIGO__

 static const uint16_t data_type_id = 550;

 uavcan_broadcast_old(data_type_id, transfer_id, payload, sizeof(payload));

#endif

}

#ifdef __UAVCAN_ANTIGO__

int publish_frame_old(void){

 //Serial.println("Publish frame");

 static uint8_t carga=0;

 uint8_t payload[1];

 payload[0] = carga;

 carga +=1;

 static const uint16_t data_type_id = 761;

 static uint8_t transfer_id;

 int ret = uavcan_broadcast_old(data_type_id, transfer_id, payload, 1);

 transfer_id += 1;

 return ret;

}

69

int publish_frame_old(uint8_t carga){

 uint8_t payload[1];

 payload[0] = carga;

 static const uint16_t data_type_id = 761;

 static uint8_t transfer_id;

 int ret = uavcan_broadcast_old(data_type_id, transfer_id, payload, 1);

 transfer_id += 1;

 return ret;

}

int uavcan_broadcast_old(uint16_t data_type_id,uint8_t transfer_id,uint8_t*
payload,uint16_t payload_len){

 if (payload == NULL || payload_len > 8)

 {

 return -1; // In this super-simple implementation we don't support multi-
frame transfers.

 }

 uint32_t can_id = 0x00000000;

 can_id = ((uint32_t)data_type_id << 19)|0x00040000|(0x0001FC00
&((uint32_t)uavcan_node_id << 10)) |((0x00F)& (8 | ((uint32_t)transfer_id &
0x00000007)));

 uint8_t payload_with_tail_byte[8]={0x00};

 memcpy(payload_with_tail_byte, payload, payload_len);

 return CAN.sendMsgBuf(can_id, 1, payload_len, payload_with_tail_byte);

}

#endif

#ifdef __UAVCAN_NOVO__

70

int publish_frame_new(void)

{

 static uint8_t carga=0;

 uint8_t payload[1];

 payload[0] = carga;

 carga +=1;

 static const uint16_t data_type_id = 1112;

 static uint8_t transfer_id;

 transfer_id += 1;

 int ret =uavcan_broadcast_new(PRIORITY_MEDIUM, data_type_id, transfer_id,
payload, 1);

 transfer_id += 1;

 return ret;

}

int publish_frame_new(uint8_t carga)

{

 uint8_t payload[1];

 payload[0] = carga;

 static const uint16_t data_type_id = 1112;

 static uint8_t transfer_id;

 transfer_id += 1;

 int ret =uavcan_broadcast_new(PRIORITY_MEDIUM, data_type_id, transfer_id,
payload, 1);

 transfer_id += 1;

 return ret;

}

int uavcan_broadcast_new(uint8_t priority, uint16_t data_type_id, uint8_t
transfer_id, uint8_t* payload, uint16_t payload_len)

{

 if (payload == NULL || payload_len > 7)

 {

71

 return -1; // In this super-simple implementation we don't support multi-
frame transfers.

 }

 if (priority > 31)

 {

 return -1;

 }

 uint32_t can_id = 0x00000000;

 can_id = ((uint32_t)priority << 24) | ((uint32_t)data_type_id << 8) |
(uint32_t)uavcan_node_id;

 uint8_t payload_with_tail_byte[8]={0x00};

 memcpy(payload_with_tail_byte, payload, payload_len);

 payload_with_tail_byte[payload_len] = 0xC0 | (transfer_id & 31);

 return CAN.sendMsgBuf(can_id, 1, payload_len+1, payload_with_tail_byte);

}

#endif

72

Appendix E

Olimexino Files

Main.c

#include "includes.h"

Int32U CriticalSecCntr;

#define __UAVCAN_ANTIGO__

#ifndef __UAVCAN_ANTIGO__
#define __UAVCAN_NOVO__
#endif

#define EXTENDED_ID 1028

#define __CAN1_USED__
// #define __CAN2_USED__

#ifdef __CAN1_USED__
 #define CANx CAN1
 #define GPIO_CAN GPIO_CAN1
 #define GPIO_Remapping_CAN GPIO_Remapping_CAN1
 #define GPIO_CAN GPIO_CAN1
 #define GPIO_Pin_CAN_RX GPIO_Pin_CAN1_RX
 #define GPIO_Pin_CAN_TX GPIO_Pin_CAN1_TX
#else /*__CAN2_USED__*/
 #error "No CAN2 on the OLIMEXINO STM32!"
#endif /* __CAN1_USED__ */

void NVIC_Config(void);
void CAN_Config(void);
void LED_Display(uint8_t Ledstatus);
void Init_RxMes(CanRxMsg *RxMessage);
void Delay(void);
void Timer_Init(void);
void publish_status(uint8_t health, uint8_t mode);
#ifdef __UAVCAN_NOVO__
int uavcan_broadcast_new(uint8_t priority,uint16_t data_type_id,uint8_t
transfer_id,uint8_t* payload,uint16_t payload_len);
int publish_frame_new(void);
#endif
#ifdef __UAVCAN_ANTIGO__
int uavcan_broadcast_old(uint16_t data_type_id,uint8_t transfer_id,uint8_t*
payload,uint16_t payload_len);
int publish_frame_old(void);
#endif

CAN_InitTypeDef CAN_InitStructure;

73

CAN_FilterInitTypeDef CAN_FilterInitStructure;
CanTxMsg TxMessage;
uint8_t KeyNumber = 0x0;
uint32_t uptime_sec = 0x00000000;
uint8_t TransferId =0x0;

#ifdef __UAVCAN_NOVO__
static const uint8_t PRIORITY_HIGHEST = 0;
static const uint8_t PRIORITY_HIGH = 8;
static const uint8_t PRIORITY_MEDIUM = 16;
static const uint8_t PRIORITY_LOW = 24;
static const uint8_t PRIORITY_LOWEST = 31;
#endif
static uint8_t uavcan_node_id;
uint8_t health = 0;
uint32_t entradas[200];
int i=0;

void Clk_Init(void);

int main(void)
{
 ENTR_CRT_SECTION();
 NVIC_Config();
 EXT_CRT_SECTION();
 LED_Initialize();
 BUTTON_Initialize();
 Timer_Init();

 for(i=0;i<20;i++){
 entradas [i]=0;
 }
 i=0;

 CAN_Config();

 CAN_ITConfig(CANx, CAN_IT_FMP0, ENABLE);

 LED_Off(LED1);
 LED_Off(LED2);

 uavcan_node_id = 120;

 while(1)
 {
 Delay();
 if(GetButton()){
 while(GetButton()){}
#ifdef __UAVCAN_NOVO__
 publish_frame_new();
#endif
#ifdef __UAVCAN_ANTIGO__
 publish_frame_old();
#endif

 }

74

 }
}

void Clk_Init (void)
{
 RCC_HSICmd(ENABLE);
 while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET);
 RCC_SYSCLKConfig(RCC_SYSCLKSource_HSI);
 RCC_HSEConfig(RCC_HSE_ON);
 while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET);
 RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9); // 72MHz
 RCC_PLLCmd(ENABLE);
 while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);
 RCC_USBCLKConfig(RCC_USBCLKSource_PLLCLK_1Div5);
 RCC_ADCCLKConfig(RCC_PCLK2_Div8);
 RCC_PCLK2Config(RCC_HCLK_Div1);
 RCC_PCLK1Config(RCC_HCLK_Div2);
 RCC_HCLKConfig(RCC_SYSCLK_Div1);
#ifdef EMB_FLASH
 FLASH_SetLatency(FLASH_Latency_2);
 FLASH_HalfCycleAccessCmd(FLASH_HalfCycleAccess_Disable);
 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
#endif // EMB_FLASH
 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
}

void Timer_Init(void){

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
 TIM_TimeBaseInitTypeDef timerInitStructure;
 timerInitStructure.TIM_Prescaler = (1099-1);
 timerInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
 timerInitStructure.TIM_Period = (65514-1);
 timerInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
 timerInitStructure.TIM_RepetitionCounter = 0;
 TIM_TimeBaseInit(TIM2, &timerInitStructure);
 TIM_Cmd(TIM2, ENABLE);
 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);

 NVIC_InitTypeDef nvicStructure;
 nvicStructure.NVIC_IRQChannel = TIM2_IRQn;
 nvicStructure.NVIC_IRQChannelPreemptionPriority = 0;
 nvicStructure.NVIC_IRQChannelSubPriority = 1;
 nvicStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&nvicStructure);
}

void CAN_Config(void)
{
 GPIO_InitTypeDef GPIO_InitStructure;

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
#ifdef __CAN1_USED__
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIO_CAN1, ENABLE);
#else /*__CAN2_USED__*/
 #error "No CAN2 on the OLIMEXINO STM32!"
#endif /* __CAN1_USED__ */

75

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_CAN_RX;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
 GPIO_Init(GPIO_CAN, &GPIO_InitStructure);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_CAN_TX;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIO_CAN, &GPIO_InitStructure);
 GPIO_PinRemapConfig(GPIO_Remapping_CAN , ENABLE);

#ifdef __CAN1_USED__
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
#else /*__CAN2_USED__*/
 #error "No CAN2 on the OLIMEXINO STM32!"
#endif /* __CAN1_USED__ */

 CAN_DeInit(CANx);
 CAN_StructInit(&CAN_InitStructure);
 CAN_InitStructure.CAN_TTCM = DISABLE;
 CAN_InitStructure.CAN_ABOM = DISABLE;
 CAN_InitStructure.CAN_AWUM = DISABLE;
 CAN_InitStructure.CAN_NART = DISABLE;
 CAN_InitStructure.CAN_RFLM = DISABLE;
 CAN_InitStructure.CAN_TXFP = DISABLE;
 CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;

 CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;
 CAN_InitStructure.CAN_BS1 = CAN_BS1_3tq;
 CAN_InitStructure.CAN_BS2 = CAN_BS2_5tq;
 CAN_InitStructure.CAN_Prescaler = 4;
 CAN_Init(CANx, &CAN_InitStructure);

#ifdef __CAN1_USED__
 CAN_FilterInitStructure.CAN_FilterNumber = 0;
#else /*__CAN2_USED__*/
 #error "No CAN2 on the OLIMEXINO STM32!"
#endif /* __CAN1_USED__ */

#ifdef __UAVCAN_ANTIGO__
 uint32_t IDi=398722056<<3; // a ID comeca no primeiro bit, os utlimos 3 estao
reservados
#endif
#ifdef __UAVCAN_NOVO__
 uint32_t IDi=268719873<<3; // a ID comeca no primeiro bit, os utlimos 3 estao
reservados
#endif

 CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask;
 CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
 CAN_FilterInitStructure.CAN_FilterIdHigh = IDi>>16;
 CAN_FilterInitStructure.CAN_FilterIdLow = (IDi & 0x0000FFFF);
#ifdef __UAVCAN_ANTIGO__
 CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0xFFFF;
 CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0xE000;//os ultimos 3 bits estao
reservados (convem meter a 0)
#endif
#ifdef __UAVCAN_NOVO__

76

 CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x07FF;
 CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0xFFF8;//os ultimos 3 bits estao
reservados (convem meter a 0)
#endif

 CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
 CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
 CAN_FilterInit(&CAN_FilterInitStructure);
 TxMessage.StdId = 0x000;
 TxMessage.RTR = CAN_RTR_DATA;
 TxMessage.IDE = CAN_Id_Extended;
}

int can_send(uint32_t extended_can_id, const uint8_t* frame_data, uint8_t
frame_data_len)
{
 if (frame_data_len > 8 || frame_data == NULL)
 {
 return -1;
 }

 TxMessage.ExtId = extended_can_id;
 TxMessage.DLC = frame_data_len;
 TxMessage.Data[0]=frame_data[0];
 TxMessage.Data[1]=frame_data[1];
 TxMessage.Data[2]=frame_data[2];
 TxMessage.Data[3]=frame_data[3];
 TxMessage.Data[4]=frame_data[4];
 TxMessage.Data[5]=frame_data[5];
 TxMessage.Data[6]=frame_data[6];
 TxMessage.Data[7]=frame_data[7];

 return CAN_Transmit(CANx, &TxMessage);
}

void NVIC_Config(void)
{
#ifndef EMB_FLASH
 NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else // VECT_TAB_FLASH
 NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
 NVIC_InitTypeDef NVIC_InitStructure;
 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
#ifdef __CAN1_USED__
 NVIC_InitStructure.NVIC_IRQChannel = USB_LP_CAN1_RX0_IRQn;
 #else /*__CAN2_USED__*/
 #error "No CAN2 on the OLIMEXINO STM32!"
 #endif /*__CAN1_USED__*/
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
}

77

void Init_RxMes(CanRxMsg *RxMessage)
{
 uint8_t i = 0;
 RxMessage->StdId = 0x00;
 RxMessage->ExtId = 0x00;
 RxMessage->IDE = CAN_ID_STD;
 RxMessage->DLC = 0;
 RxMessage->FMI = 0;
 for (i = 0;i < 8;i++)
 {
 RxMessage->Data[i] = 0x00;
 }
}

void Delay(void)
{
 uint16_t nTime = 0x0000;

 for(nTime = 0; nTime <0xFFF; nTime++)
 {
 }
}

/// Standard data type: uavcan.protocol.NodeStatus
void publish_status(uint8_t health, uint8_t mode)
{
 uint8_t payload[7];

 const uint32_t uptime_sec2=uptime_sec;
 payload[0] = (uptime_sec2 >> 0) & 0xFF;
 payload[1] = (uptime_sec2 >> 8) & 0xFF;
 payload[2] = (uptime_sec2 >> 16) & 0xFF;
 payload[3] = (uptime_sec2 >> 24) & 0xFF;
 payload[4] = (health << 6) | (mode << 3);
 payload[5] = 0x00;
 payload[6] = 0x00;

 static uint8_t transfer_id;
 transfer_id +=1;
#ifdef __UAVCAN_NOVO__
 static const uint16_t data_type_id = 341;
 uavcan_broadcast_new(PRIORITY_LOW, data_type_id, transfer_id, payload,
sizeof(payload));
#endif
#ifdef __UAVCAN_ANTIGO__
 static const uint16_t data_type_id = 550;
 uavcan_broadcast_old(data_type_id, transfer_id, payload, sizeof(payload));
#endif

}

#ifdef __UAVCAN_ANTIGO__
int publish_frame_old(void){

 static uint8_t carga=0;

78

 uint8_t payload[1];
 payload[0] = carga;
 /*payload[1] = last;
 payload[2] = 0x00;
 payload[3] = 0x00;
 payload[4] = 0x00;
 payload[5] = 0x00;
 payload[6] = 0x00;*/

 carga +=1;
 static const uint16_t data_type_id = 761;
 static uint8_t transfer_id;

 LED_Toggle(LED1);
 int ret = uavcan_broadcast_old(data_type_id, transfer_id, payload, 1);
 transfer_id += 1;
 return ret;

}
#endif

#ifdef __UAVCAN_NOVO__
int publish_frame_new(void)
{
 static uint8_t carga=0;

 uint8_t payload[1];
 payload[0] = carga;

 carga +=1;
 static const uint16_t data_type_id = 1112;//1029;
 static uint8_t transfer_id;
 transfer_id += 1;
 LED_Toggle(LED1);

 int ret =uavcan_broadcast_new(PRIORITY_MEDIUM, data_type_id, transfer_id,
payload, 1);
 transfer_id += 1;
 return ret;
}
#endif

#ifdef __UAVCAN_NOVO__
int uavcan_broadcast_new(uint8_t priority,
 uint16_t data_type_id,
 uint8_t transfer_id,
 uint8_t* payload,
 uint16_t payload_len)
{
 if (payload == NULL || payload_len > 7)
 {
 return -1; // In this super-simple implementation we don't support multi-
frame transfers.
 }

 if (priority > 31)

79

 {
 return -1;
 }
 uint32_t can_id = 0x00000000;
 can_id = ((uint32_t)priority << 24) | ((uint32_t)data_type_id << 8) |
(uint32_t)uavcan_node_id;

 uint8_t payload_with_tail_byte[8]={0x00};

 memcpy(payload_with_tail_byte, payload, payload_len);

 payload_with_tail_byte[payload_len] = 0xC0 | (transfer_id & 31);

 return can_send(can_id, payload_with_tail_byte, payload_len + 1);
}
#endif

#ifdef __UAVCAN_ANTIGO__
int uavcan_broadcast_old(uint16_t data_type_id,uint8_t transfer_id,uint8_t*
payload,uint16_t payload_len){

 if (payload == NULL || payload_len > 8)
 {
 return -1; // In this super-simple implementation we don't support multi-
frame transfers.
 }

 uint32_t can_id = 0x00000000;
 can_id = ((uint32_t)data_type_id << 19)|0x00040000|(0x0001FC00
&((uint32_t)uavcan_node_id << 10)) |((0x00F)& (8 | ((uint32_t)transfer_id &
0x00000007)));

 uint8_t payload_with_tail_byte[8]={0x00};

 memcpy(payload_with_tail_byte, payload, payload_len);

 return can_send(can_id, payload_with_tail_byte, payload_len);

}
#endif

stm32f10x_it.c

Line 35

CanRxMsg RxMessage;
extern uint8_t KeyNumber;
extern void LED_Display(uint8_t Ledstatus);
extern uint32_t uptime_sec;
extern uint32_t entradas[200];
extern int i;
extern void publish_status(uint8_t health, uint8_t mode);

80

Line 42

Line 171

void USB_LP_CAN1_RX0_IRQHandler(void)
{
 LED_Toggle(LED2);
 CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
 if(i<200){
 entradas[i]=RxMessage.ExtId;
 i++;}
}

Line 187

Line 200

extern uint8_t health;
void TIM2_IRQHandler(void)
{
 if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
 {
 TIM_ClearITPendingBit(TIM2, TIM_IT_Update);

 publish_status(health, (uint8_t)0);
 uptime_sec +=1;
 }
}

Line 213

