
CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 1

Camera Parameters Extraction Using Real-Time
Video Analysis In Football Broadcasting

Miguel Ramirez Pereira Duarte
miguel.r.duarte@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

Abstract—This work aimed at developing a software prototype
capable of extracting the camera’s parameters using real-time
video analysis in football broadcasting. The developed algorithm
is divided in two parts, the initialization and the tracking. The
initialization is used to find a homography that best projects the
field model onto the image when there is no prior information
about the camera’s parameters. The tracking part starts when
the camera’s parameters for the previous frame are known.
Since the camera’s position is fixed, an initial process was
created that receives several images captured by a specific
camera and computes its position, which reduces the number
of variable parameters making the tracking process faster
and more reliable. The different parts of the algorithm were
then tested, concluding that in most cases the parameters were
correctly extracted in real-time.
Keywords: Camera’s parameters, Augmented reality, Sports
analysis, Real-time, Video analysis

Index Terms—Camera’s parameters, Augmented reality,
Sports analysis, Real-time, Video analysis

I. INTRODUCTION

OVER the last few years, the use of augmented real-
ity (AR) graphics in sports broadcasts has been increas-

ing. In football matches, the most common types of these AR
graphics are the visualization of the offside line, the ball’s
velocity in a shot to goal, the circle with radius of 9,15 meters
around the ball in a free-kick and the respective distance to
goal. One example of AR in a football broadcast can be seen
in Fig. 1.

Fig. 1. Broadcast augmented reality example. Image provided by wTVision.

To achieve the illusion that these graphics are on the real
world scene that is being filmed, the camera’s parameters must
be extracted in real time, which are then sent to a graphics
engine that is responsible for rendering the necessary graphics.

Here, a method will be presented that is able to perform the
first task, i.e, to extract the camera’s parameters in real-time,
analysing the video feed of a football match broadcast.

Camera calibration is a computer vision field that is already
extensively studied. The camera pose determination problem,
for cameras with constant focal length, was firstly formulated
by Fischler and Bolles [4] in 1981. Many different methods
were developed to solve this problem, normally by recognizing
features of some known object.

In [5], [8] some other algorithms were developed specifi-
cally for football matches, that used a more complete PTZ1

camera models. The methods presented in those articles were
later improved by D. Farin in [3], [2]. These last articles
present a more generic calibration algorithm that can be used
in any sport, as long as the court has a sufficient number
of straight lines. Its structure is divided in two parts: the
initialization and the tracking. The first is used when no
information about the camera’s parameters is known, and the
second is used in the opposite situation. The layout of the court
lines must be known in order to create a model that must be
integrated in the algorithm.

G.A. Thomas described in [7] a more complete method
than the one presented by D. Farin, since it already uses
the information from the centre circle and fixes the camera’s
position for all images. The camera’s position is computed
before any other process by analysing several images and
solving an optimization problem. This allows for a reduction
of the number of variables in the tracking phase and it also
increases the robustness of the algorithm. The results obtained
in [7] show that by having a fixed position, a smother camera’s
rotation is achieved.

II. BACKGROUND

The pinhole camera model was the model chosen for the
development of this work, because it is very simple and it has
all the features needed. An illustration of the camera frame in
this mathematical model can be seen in the Fig. 2.

In Fig. 2 the camera’s coordinate system C is represented
by the vectors {xC , yC , zC}, from which the origin O =
(0, 0, 0)T represents the camera’s centre, the pinhole. By f is
represented the focal length (also known as focal distance),
which is the distance between the camera centre and the focal
plane. The point x is the projection of point X in the image
plane.

1PTZ (Pan-Tilt-Zoom) cameras are rotating and zooming cameras.

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 2

12-10-31021erutceLnoisiVretupmoC

Lecture 1: The Pinhole Camera Model

1 Mathematical Model

The most commonly used model, which we will also use in the course, is the so called pinhole camera. The model
is inspired by the simplest cameras. The camera has the shape of a box, light from an object enters though a small
hole (the pinhole) in the front and produces and produces an image on the back camera wall (see Figure 1).

xC
yC

zCf

X

x

O

Figure 1: The Pinhole camera (left), and a mathematical model (right).

To create a mathematical model we first select a coordinate system{ ex , ey , ez } .We will refer to this system as the
camera coordinate system. The origin C = (0 , 0, 0) will represent the so calledcamera center(pinhole). To
generate a projectionx = (x 1 , x 2 , 1) of a scene pointX = (X 1 , X 2 , X 3) we form the line betweenX andC and
intersect it with the planez = 1 . We will refer to this plane as theimage planeand the line as theviewing ray
associated withx or X . The planez = 1 has the normalez and lies at the distance 1 from the camera center. We
will refer toez as theviewing direction. Note that in contrast to a real pinhole camera we have placed the image
plane in front of the camera center. This has the e�ect that the image will not appear upside down as in the real
model.

SinceX − C is a direction vector of the viewing ray (see Figure 2) we can parametrize it by the expression

C + s(X − C) = sX, s � R . (1)

To find the intersection between this line and the image planez = 1 we need to find ands such that the third
coordinatesX 3 of sX fulfills sX 3 = 1 . Therefore, assumingX 3 �= 0 , we gets = 1 /X 3 and the projection

x =

�

�
X 1/X 3

X 2/X 3

1

�

� (2)

Exercise1. Compute the image of the cube with corners in(± 1, ± 1, 2) and (± 1, ± 1, 4) (see Figure 3).

1

Focal
Plane

Fig. 2. Pinhole Camera Frame C.

Images coordinates are measured in pixels, normally with
the origin in the left upper corner. The focal plane in the
pinhole camera model is embedded in R3, so a mapping
that translates the points in the image plane into pixels must
be found. This transformation is represented by an upper
triangular 3 × 3 matrix K, which contains the camera’s
intrinsic parameters.

For the development of this work, since in football broad-
casts only high-end cameras are used, the skew intrinsic
parameter can be considered zero. The intrinsic matrix that
will be used in this work is

K =

 f 0 cx
0 f cy
0 0 1

 , (1)

where f is the focal length and (cx, cy) represents the camera’s
optical centre, in pixels. Assuming that the optical centre is the
image centre, the camera’s intrinsic matrix will have only one
unknown, the focal length, which is responsible for re-scaling
the image coordinates into pixels.

III. IMPLEMENTATION

The main structure of the method that was developed during
this work is very similar to the ones presented in [3], [2], [7].
The algorithm is divided in two parts: the initialization and
the tracking.

A. Initialization

The initialization is used when there is no prior information
about the camera’s parameters. The goal of this stage is to
find the homography that best projects the field model onto
the image. A simplified flowchart of the method that was
implemented is represented in Fig. 3.

Input Frame
Line Pixels
Detection

Lines Detection

Model Fitting
Homography
Refinement

Best Homography
Estimation

Fig. 3. Simplified initialization flowchart.

1) Line Pixels Detection
The line pixels detection presented here was based on the
method in [3]. The images must be converted to the Y CBCR
colour space to perform this part of the algorithm. The
luminance value of a pixel located in (x, y) will be represented
by l(x, y). The line pixels detector outputs a binary image L,
which has L(x, y) = 1 if the (x, y) pixel is considered to
belong to a line and L(x, y) = 0 otherwise.

Since the field lines are always white, a very simple way
to detect the line pixels is by detecting the white pixels
in the image. A robust line pixels detection can not be
performed using a simple white pixel detector, it must have
other additional constraints in order to minimize the number
of false detections. These false detections occur given the fact
that not all white pixels belong to field lines. There are other
white elements present in the images that can belong, for
instance, to the players outfit, the stadium advertisements or
to the audience in the stands.

The field lines have intrinsic characteristics that are shown
in Fig. 4. Assuming that a line is not wider than δ (in pixels),
new constraints are imposed that improve the performance of
the line pixels detection. This new line pixels detector can be
represented by

L(x, y) =

=

1, if f1(x, y) ∧ f2(x, y) ∧ f3(x, y)

1, if f1(x, y) ∧ f4(x, y) ∧ f5(x, y)

0, otherwise,

(2)

where

f1(x, y) = l(x, y) ≥ σl
f2(x, y) = l(x, y)− l(x− δ, y) ≥ σd
f3(x, y) = l(x, y)− l(x+ δ, y) ≥ σd
f4(x, y) = l(x, y)− l(x, y − δ) ≥ σd
f5(x, y) = l(x, y)− l(x, y + δ) ≥ σd.

(3)

The threshold σl is the minimum luminance for a pixel to be
considered white and σd is the minimum luminance difference
between a bright pixel (possibly a line pixel) and a darker
pixel (a grass pixel), for a pixel to be considered to be part of
a line. The first line of Eq.(2) is true if a given pixel in (x, y)
is considered to be white and has darker pixels at a horizontal
distance of δ pixels, i.e. detects pixels that possibly belong to a
vertical line. The second line of Eq.(2) performs the analogous
test but for detecting horizontal line pixels.

δ

Fig. 4. Example of a horizontal line configuration (adapted from [3]).

Despite the extra restrictions, a lot of false detection oc-
curred in the stadium stands, because of the high level of
texture presented in them. To solve this, an extra filter was

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 3

developed that removed all the detected pixels outside the field.
This mask will be denoted as field area mask.

The field area mask is computed by first creating a his-
togram of the hue values. The global maximum HMAX within
the green interval, between 0 and 120, is then computed. If
there are local maxima within the green interval that have a
substantial bin value, at least 20% of the bin value of HMAX ,
and which the hue value does not vary more than 30 from
HMAX , they also must be considered to compute the threshold
limits of the hue filter. The i-th local maxima that fulfil these
conditions will be denoted as Hi

max. This ensures that even if
a field has more than one shade of green (very common in day
light games) the field area mask is still correctly computed.
The threshold values of the hue filter are computed as follows:

Hlow = min
i

(Hi
max)− σH , (4)

Hhigh = max
i

(Hi
max) + σH . (5)

The value σH represents the margin of the hue filter. The value
of σH was set to σH = 10. The filter output is a binary image,
in which the value in (x, y) is computed according to{

1, if Hlow ≤ h(x, y) ≤ Hhigh

0, otherwise.
(6)

A closing morphological operation with an elliptic structur-
ing element and a median filter are then applied to the obtained
mask. Afterwords the largest blob is found, which corresponds
to the final field area mask. These last operations make sure
that all the stands pixels have value 0, whereas all the field
area pixels have value 1. With the field area mask computed,
the final candidate line pixels can be obtained by applying the
mask to the previously detected pixels.

2) Line Detection
After the computation of candidate line pixels is concluded,
the field lines must be detected. To accomplish this, a standard
Hough transform [1] is used. After that, the lines must be
classified as vertical or horizontal and sorted by left to right
or top to bottom, depending on their orientation.

In this work, only the images from the three main cameras in
a football broadcast will be taken into consideration. These are
the main camera and the left and right 16,5-meters cameras.
These cameras are all located above the field plane, generally
in the first level stand. The main camera is roughly aligned
with the halfway field line and the 16,5-meters cameras, the
ones typically used in an offside replay, are roughly aligned
with the penalty area’s lines from both sides (also called the
16,5-meters lines). The three main cameras layout can be
visualized in Fig. 5, as well as the chosen model frame.

The Hough transform is a great method to detect lines given
a set of line points. It is relatively unaffected by line gaps and
by outliers, which makes it robust. The parameter space for
the lines is (ρ, θ), where ρ is the shortest distance from the
origin to line and θ is the angle between the horizontal axis
and the line normal. This parametrization allows the use of
lines with infinite and zero slope, i.e. vertical and horizontal
lines, which is very important in this case.

xW

yW

zW

Main CameraLeft 16,5-meters
Camera

Right 16,5-meters
Camera

Fig. 5. General cameras’ locations in a football broadcast.

To avoid making ambiguous matches in the model fitting
step, it is necessary to classify the lines as vertical or horizontal
and sort them from left to right or top to bottom, depending
on their position and orientation. The classification of the lines
is achieved following the data provided in Table I, which was
gathered through the analysis of several images from different
cameras, pointed at various areas of the field.

TABLE I
VERTICAL OR HORIZONTAL LINE CLASSIFICATION FOR DIFFERENT

CAMERAS, BASED ON THEIR θ VALUES.

Vertical θ[◦] Horizontal θ[◦]
Left cam.]−85, 70[[−90,−85] ∪ [70, 89]

Main cam.]−73, 73[[−90,−73] ∪ [73, 89]

Right cam.]−70, 85[[−90,−70] ∪ [85, 89]

After classifying the lines, they must be sorted. Just like
presented in [3], to sort the vertical lines from left to right,
the distance between each line and the point in the middle of
the left border is measured and the lines are sorted accordingly.
For the horizontal lines a similar procedure takes place, but
measuring the distance to the middle of the top border instead.

Very often, the Hough transform detects multiple lines that
in fact represent just one. These lines must be eliminated to
avoid making the same matches more than once, which would
increase a lot the computational time of the model fitting step.

To detect duplicate lines, a search must be performed to
look for two lines between which the ρ difference is less
than ∆ρmin and the θ difference is less than ∆θmin. The
values chosen for ∆ρmin and ∆θmin were ∆ρmin = 10 pixels
and ∆θmin = 8◦ , based on empirical tests. When duplicate
lines are found one must be eliminated. To choose which line
must be eliminated, a line scoring function was created. This
function returns the number of candidate line pixels that each
line covers. Based on this criterion, the line with the smallest
score is eliminated.

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 4

As will be explained in Section III-A3, it is necessary to
find at least two vertical and two horizontal field lines in order
to perform the model fitting phase. In most cases the number
of horizontal and vertical lines detected is higher than the
minimum. Having too many detected lines will significantly
increase the computational time of the model fitting phase. To
avoid having too many lines, an extra function was developed
that receives the detected vertical and horizontal lines and
outputs the nd vertical and horizontal lines that are more likely
to be a part of the field. The criterion to choose which lines
must be kept is the same as in the duplicates removal step,
i.e., the nd lines that cover more candidates line pixels are
selected.

The smallest the nd, the faster the model fitting will be,
but the more probable it is that a correct line is ignored
and a false detection is used instead, resulting in a bad
homography estimation. The higher its value is, the more likely
the model fitting phase is to return a good homography but
the computational time will also increase.

3) Model Fitting
The goal of this phase is to find the homography that best
transforms the field model space into the image plane. This is
achieved by scoring several homographies obtained from the
match of four points of the image with four points of the field
model. The chosen points are produced by the intersection
of two vertical lines with two horizontal lines. All possible
combinations, without repetitions, of line pairs are tested and
the homography with the best score is stored.

There are some matches that can be excluded just by
analysing the ratio between the horizontal and vertical lines
of the matched points or the geometry of the projected field.
These tests are much less time-consuming than the homogra-
phy computation function or the homography scoring function.
As some of the matches will result in bad field projections,
this will avoid scoring a lot of homographies.

The test performed before the homography computation is
the following: Field aspect ratio (#1) - the ratio between the
length of the vertical lines and the horizontal lines in the field
model must be approximately the same as the ratio between
the length of the matched vertical and horizontal lines from
the image. If the matched points passed the first test, then the
homography is computed and the following tests are applied:
Field too small (#2) - the projected field length or width can
not be under 50% of the image length or width, respectively;
Top line bigger than the bottom line (#3) - the top line of the
projected field can not be bigger in length than the bottom line
of the projected field.

If the homography for a given match passed all the rejection
tests, it must be evaluated. The evaluation function scores how
well does the homography projects the field model into the
image. Similarly to what D. Farin described in [3], each pixel
of the detected lines that is covered by the projected field
contributes with +1 to the score and each pixel of the projected
line that does not cover a candidate line pixel contributes with
-0.2. This ensures that a bad field projection, despite covering
more candidate line pixels than a good projection, will score
less than a good projection since it will probably have some

projected lines that will not cover any line pixels.

4) Homography Refinement
The homography achieved at the end of the model fitting step
can sometimes have a slight projection error. To reduce this
error it is necessary to find the best possible homography for
a given image. To accomplish this task, a last step was added
that refines the homography, so that the distance between the
line pixels and the projected lines is minimized.

The process used for the homography refinement was based
on the method used in [3], [7], which will be explained in
more detail in Section III-B4. The only difference between
the method applied here and the method described in Sec-
tion III-B4 is that instead of finding the parameters from which
the best homography is achieved, here we look directly for the
homography that minimizes a cost function.

Let us denote by pi = (x, y, 1)Ti the detected line pixels and
their corresponding closest model line by li = (nx, ny − d)Ti .
The operator that normalizes vectors in homogeneous coordi-
nates such that L : (x y w)→ (x/w y/w 1) will be denoted
by L{·}. The cost function for the homography refinement
process is similar to the one presented in [3], [7], and can be
expressed as

ET =

#points∑
i

[
li
TL{H−1

pi}
]2
. (7)

ET denotes the total squared error of the projected field using
the homography H . Besides computing the ET , at the end of
the refinement, the average distance of each line pixel to its
closest projected field line, in meters, is found. This metric
was denoted by Eµ, which will be a useful indicator of the
quality of the results. In Fig. 6 an example of a projected field
before and after the homography refinement is shown.

(a) Field projection (in red) before homography refinement.

(b) Field projection (in red) after homography refinement.

Fig. 6. Example of the homography refinement improvement.

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 5

B. Tracking

The tracking phase starts after a good set of camera pa-
rameters for a previous frame have been found. A simplified
flowchart of the method that was implemented is represented
in Fig. 7.

Input Frame
Line Pixels
Detection

Get Closest
Model Lines

Refine Parameters
Camera

Parameters
Predicted

Parameters

Fig. 7. Simplified tracking flowchart.

1) Camera Parameters Extraction
Obtaining the parameters from the homography is a much
more complicated procedure than the inverse process. In the
cases where the camera’s intrinsic parameters are known (the
camera is calibrated), there are linear methods to extract
the camera’s pose. In the case being studied, the camera’s
intrinsics parameters are not known and the focal length is
not fixed, which increases the difficulty of the task a great
deal. Since no detailed procedure to solve this problem was
found, a new one was developed.

Let us denote all the camera’s variable parameters by Ψ =
(f, γ, β, α,Xcam, Ycam, Zcam) and the operation that outputs
the homography for a given set of parameters Ψ by H(Ψ).
In Fig. 8 a representation of the world frame W , the camera
frame C and the camera parameters can be visualized.

zC

xCyC
zW

yW

xW

Xcam

Ycam
Zcam

Fig. 8. Representation of the world frame and the camera frame.

The method can be divided in two steps: the first step
outputs a rough estimate of the parameters and the second one
refines them. Both steps are minimizations of non-linear func-
tions, computed using the Levenberg-Marquardt minimization
algorithm [6].

The goal of the first step is to find the set of parameters Ψ∗

that minimizes the entries error between the homography H
and the homography obtained by the parameters H(Ψ). This
cost function can be represented as

Eh =

3∑
i=1

3∑
j=1

[hij − hij(Ψ)]
2
, (8)

where hij and hij(Ψ) represent the entry in the i-th row
and j-th column of H and H(Ψ), respectively. By Eh is
represented the total squared error between the homographies
entries. The parameters estimate obtained by this method still
have some error, as seen in Fig. 9(a). They can be further
refined on the second step, using again a non-linear function
minimization, with the method described in Section III-B4,
using the parameters obtained in the first step as the initial
guess. In Fig. 9 the projections of the field using H(Ψ) after
the first and second steps are shown.

(a) Frame with the projected field using H (in blue) and using H(Ψ) after
the first step (in red).

(b) Frame with the projected field using H (in blue) and using H(Ψ) after
the second step (in red).

Fig. 9. Projections of the field using H(Ψ) after the first and second steps
of the parameters extraction method.

2) Expected Parameters
The solver described in Section III-B4 requires an initial guess
for the parameters that must as close as possible to Ψ∗ to
achieve the best results. By analysing the parameters differ-
ences between the last two frames, the parameters for the
current frame t can be predicted by doing

Ψ̂t = Ψt−1 + α∆Ψt−1, (9)

where

∆Ψt−1 = Ψt−1 −Ψt−2, (10)

and

α ∈ [0, 1]. (11)

When the frame being analysed is the one immediately after
the initialization, it is not possible to apply this method since
there is no frame t− 2. In this case the initial guess that will
be used in the solver will simply be Ψt−1.

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 6

3) Line Pixels Detection
As in the initialization stage, in the tracking phase there is
also the need to find the candidate line pixels. The process
used to get the line pixels is the same as the one described in
Section III-A1. To filter any unwanted pixels, instead of using
the field area mask, a similar method to what was used in for
evaluate a homography in Section III-A3 was used.

By projecting the field model onto an image using the
predicted parameters, a mask can be created that only allows
to pass pixels that are covered by the field lines. This type
of mask was already denoted as a field lines mask. Using
different line widths ωH , the mask can be more or less strict.

4) Non-linear Function Minimization
To refine the predicted camera parameters it is necessary to
have a cost function. This cost function must depend on the
camera parameters Ψ, and its minimization should lead to a
set of camera parameters that are very close to the real ones.
Let us denote by H−1(Ψ) the homography inverse obtained
with the parameters Ψ. The adopted cost function is

ET =

#points∑
i

[
li
TL{H−1

(Ψ)pi}
]2
. (12)

The cost function returns the value ET which is the total
squared error of the projected field using the parameters Ψ.
Changing the parameters Ψ will result in a different homog-
raphy, thus the projection error will also change. Here, as in
Section III-A4, after refining the parameters, the error Eµ is
computed, which is the average distance from each line pixel
to its closest line in meters.

Since the function to minimize is non-linear, the algorithm
chosen to solve this problem was once again the Levenberg-
Marquardt minimization algorithm, which will allow to find
the optimal parameters Ψ∗. The solver will receive as inputs
the initial guess of the parameters, the detected line pixels and
the respective closest model lines.

To find the closest model line for each detected line
pixel pi = (x, y, 1)Ti , the first step is to transform them into
the model space pi′ = (x, y, z)Ti . Then, the distances between
each point pi′ and all the model field lines are computed. The
line that has the smallest distance to each point is stored along
with the point information.

If the distance to the closest of a given point is smaller than
dmin, the point will be discarded, since is too far from any
model line to be part of a line.

In football broadcasts it is very common to have the
cameras pointed at the centre field area, which does not have
many visible lines, making the tracking less reliable. Using
the information provided by the centre circle, the tracking
becomes more robust, and less prone to errors. The circle
line pixels are detected in the same way as the rest of the
line pixels. By checking if the distance to the centre circle
is smaller than the distance to any other line, a centre circle
pixel can be detected. As the origin of the model space is the
origin of the centre circle, which has 9,15 meters of radius,
the distance of a pixel projected into the model space p′ to
the circle is simply found by doing (see Fig. 10):

| 9, 15− || p′ || | . (13)

p1

p2

(0,0)

xW

yW

Fig. 10. Representation of the centre circle and two projected points p1′ and
p2′.

To use this circle pixels in the parameters refinement step,
in Eq.(12), when a point is closer to the circle, instead of
computing the distance between the point and its closest line,
Eq.(13) is used.

5) Fixed Camera Position
The majority of the functions used in this step were already
developed for other parts of the work, as can be observed in
the process’s flowchart presented in Fig. 11. The input of the
process are several images, preferable six or more, taken with
the camera pointed at different field locations with different
focal lengths. It is important to have images from both sides
of the field to minimize the error.

Ψ1

Multiple Calibration
Images

Get Homography
Of Each Image

Get Candidate Line
Pixels For Each

Image

Refine Camera s
Parameters Of Each

Frame Using A
Common Position

Final Camera s
Position

Get Initial Camera s
Parameters

Estimation Of Each
Image

Eμ < EMAX

No

Yes

Remove Image
From The Set

Apply Field Lines
Mask

Get Closest Lines

Ψt = Ψt-1

ΨtNo

Yes

Camera s Position Refinement Loop

Fig. 11. Camera’s position quest flowchart.

The first step of the process is to find the homography that
best projects the model to each image, using the initialization
method. After the homographies for each image are computed,

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 7

it is necessary to find the parameters that correspond to
every homography. The final step is to refine the parameters
iteratively, with a common position for all images. This is
achieved by minimizing the function

ET =

#images∑
j

#points∑
i

[
lji
TL{H−1

(Ψj)pj
i}
]2
, (14)

where pji is the i-th point of the j-th image. The Ψj are the
j-th image parameters but with a common camera position
with all the other images. The initial guess of Ψj are the
parameters obtained in the previous step, were all the images’
parameters were computed individually, with the exception
of the camera’s position. The initial guess for the common
camera’s position is the average of all the camera’s positions
from each image. This process will be iteratively performed
until the parameters of all images are the same before and
after the refinement.

IV. FINAL ARCHITECTURE

Having explained all the different parts required for the field
tracking, a more detailed flowchart of the whole algorithm can
be seen in Fig. 12.

To visualize if the field is being correctly tracked, in each
frame the field is projected using the obtained parameters.
In order for the system to be able to automatically detect if
the field was lost, i.e., if the tracking is no longer extracting
the correct parameters from the analysis of the frames, the
error Eµ is compared to a maximum error allowed EMAX . If
Eµ > EMAX , the parameters are considered incorrect, thus
the initialization process must be used. As the initialization
can also return incorrect homographies, the same methodology
was applied here to make sure that only correct homographies
could go to the tracking phase.

V. RESULTS

To minimize the computational time of every task that has
to process an image, the input frames will be scaled down to
a predefined size. The minimum frame size from which the
lines could still be easily detected it was found to be 384x216.

The developed algorithm was implemented in C++ using
the open source computer vision library OpenCV 2.4.10 for
most of the image processing tasks. For the non-linear solver,
the free version of the ALGLIB library 3.9.0 was used.

The tests were computed on a ASUS G750JX laptop with
an Intel(R) Core(TM) i7-4700HQ @2.40GHz CPU and 16GB
of DDR3 RAM.

A. Initialization

The quality of the initialization depends on the values
of the different parameters for each task. The values that
demonstrated to achieve the best results were: σl = 70,
σd = 14 and δ = 2 for the detection of line pixels; σH = 10,
a 3 pixels window size for the median filter and the elliptical
structuring element size of 4x4 pixels for the field area mask;
a threshold of 35, a minimum line length of 30 pixels and

the maximum line gap of 20 pixels for the Hough transform
(using a OpenCV function).

The time spent in each task of the initialization phase
was computed using a group of 80 images, from different
broadcasts and camera’s locations. The gathered data can be
observed in Table II.

TABLE II
AVERAGE TIME SPENT IN EACH TASK OF THE INITIALIZATION PHASE OF

80 DIFFERENT IMAGES.

Average time
line pixels detection 1,97 ms

Field area mask 2,85 ms

Lines detection 1,56 ms

Lines classification 1,77 ms

Extra lines removal 0,47 ms

Field side 2,03 µs

Image’s lines intersection 8,77 µs

Rejection test #1 0,94 µs

Homography computation 21,40 µs

Rejection tests #2 and #3 3,55 µ

Homography score 0,53 ms

Homography refinement 12,80 ms

Although the homography computation and score tasks
are not very time consuming in comparison with the first
four tasks presented on Table II, because they are computed
multiple times, they are the ones that influence the most the
final computation time. Therefore, in order to achieve better
computational times, the number of times that these functions
are used must be minimized. The reduction of the parameter
nd and the use of rejection tests are the methods that helped
reaching that goal.

By changing the parameter nd, the minimum time is
achieved when setting nd = 2. This would reduce the
processing time but also decrease the robustness of the algo-
rithm. Table III presents the average processing times of the
initialization using four different values for the nd parameter.
To evaluate the impact on the robustness of the algorithm when
using different values of nd, 80 different images of different
fields and camera’s locations were initialized, for each nd
value. All the images that were used have the minimum of
two vertical and two horizontal lines visible.

TABLE III
AVERAGE PROCESSING TIME AND ROBUSTNESS OF THE INITIALIZATION,

USING DIFFERENT VALUES OF nd .

Average time Correct homog.
nd = 2 36,44 ms 59

nd = 3 109,37 ms 64

nd = 4 315,23 ms 72

nd = 5 409,14 ms 73

The data in Table III shows that in fact, the higher the

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 8

First Frame Initialize Eμ < EMAX

Get Parameters
Estimate From
Homography

Get New Frame

Get Candidate
Line Pixels

Apply Field Lines
Mask

Get Closest Model
Lines

Refine Parameters Eμ < EMAX
Project Field Using

The Parameters
Get New Frame

Predict
Parameters

Camera Position

Camera Position

No

Yes

Yes

No

Tracking loop

Initialization

Fig. 12. Final algorithm architecture.

nd, the longer it will take to process each frame, but the
probability of finding a correct homography will also increase.
This demonstrates that if the processing time is very limited,
nd should have the minimum value, while if the processing
time is not a limitation, a higher value of nd is recommended.

There are several reasons for the algorithm to not compute
the correct homography even with nd = 5. Three of these
reasons are: some lines were not detected because they are
too small when compared to other lines; the lines were
misclassified (camera pointed at an extreme side of the field);
line not detected because its far from the camera and fades
when reducing the frame resolution.

Regarding the rejections tests, it was found that on average
test #1 rejects 26% of the matches, and jointly applying the
three tests 72% of the matches are rejected. These data were
also collected from the homography computation for 80 dif-
ferent images, considering the four values of nd presented
before.

These results are quite satisfactory since the use of these
simple tests, that are very quick to do (see the times in
Table II), allow for a considerable reduction of the total initial-
ization time. The first test is applied before the homography
computation and the others are applied before the homog-
raphy score, resulting in having less 26% of homographies
computations and 72% less homographies scores. Since every
homography score takes an average of 0,53 ms to compute,
the use of these tests is a great method to reduce the total time
of initialization.

Overall, the initialization worked quite well when there
are two vertical and two horizontal lines visible. The main
functionality that is still missing is to be able to initialize using
the information provided by the centre circle, which must be

developed in future work.

B. Camera’s Position Calculation

All the results presented in this section and in Section V-C
were obtained using ωH = 6 pixels, dmin = 0.8 meters and
EMAX = 0,4 meters. The value chosen for the parameter ωH
is justified by the fact that most of the times the maximum
observed difference between the field lines projection, using
the predicted parameters, is not higher than six pixels. This
way, the number of false detections that are removed is
maximized without compromising the real line pixels. The
value of dmin is small enough so that most of the false
detections can be ignored, and high enough to make sure
that the correct line pixels are still used in the parameters
refinement.

Since this computation will be performed before the track-
ing starts, there are no limitations regarding the processing
time. Therefore, in the extra lines removal phase, it was
decided to use nd = 5.

The best results are achieved when using 6 or 8 frames to
find the camera’s position and the number of images from
each side of the field is the same. Fig. 13 shows an example
of the camera’s position evolution in the refinement loop. In
order to evaluate the fluctuations present when searching for
the camera’s position, five different sets of images were used to
calibrate the same camera, which are represented by different
colours in the graphs.

The maximum number of iterations of the position refine-
ment was set to 50, to avoid situations where the camera
position just keeps oscillating between two similar values
perpetually. If the number of images used is under 10, the

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 9

‐0,4

‐0,3

‐0,2

‐0,1

0

0,1

0,2

0,3

0,4
C
am

er
a'
s
X
 p
o
si
ti
o
n
 [
m
]

24

24,1

24,2

24,3

24,4

24,5

24,6

24,7

1 3 5 7 9 11 13 15C
am

er
a'
s
Z
p
o
si
ti
o
n
 [
m
]

Number of iterations

‐85,2

‐85,1

‐85

‐84,9

‐84,8

‐84,7

‐84,6

‐84,5

‐84,4

C
am

er
a'
s
Y
p
o
si
ti
o
n
 [
m
]

Fig. 13. Camera’s position evolution during the position refinement of a main
camera.

processing time should not be higher than 90 s. Normally it
will be around 20 s.

Even though there are some differences in the achieved po-
sition for the different sets of images, the tracking results were
very similar, tracking the field correctly. The Z component is
the one with less fluctuations, with all the different computed
values being in an interval of less than 15 cm. The X and Y
components of the camera’s position both have a fluctuation
of around 30 cm.

These are positive results because the fluctuation is small
in comparison to the magnitude of the camera’s position and
especially when taking into account the small image resolution
that was used. Also, considering that the camera’s position is
fixed was just an approximation that was done to improve the
robustness and efficiency of the algorithm. Due to the fact that
the camera’s optical centre does not coincide with the camera’s
rotation axis, the camera’s position will slightly change when
panning or tilting. For this reason, it is impossible to develop a
system that would output exactly the same position, regardless
of the calibration images.

C. Tracking

From the analysis of video frames, the focal length and
the pan, tilt and roll angles of the camera were extracted. By
analysing the projected field in each frame it was possible to
conclude that the parameters were being extracted correctly in
most cases. The smoothness of the parameters that is observed
in the example presented in Fig. 14, with exception of the roll
angle, is another great indicator that the tracking algorithm is
performing correctly.

In theory, the roll angle should always be zero. The fact that
the camera mount might not be perfectly aligned with the field

‐15

‐10

‐5

0

5

Pa
n
 a
n
gl
e
[˚
]

‐12

‐11,5

‐11

‐10,5

‐10

‐9,5

Ti
lt
 a
n
gl
e
[˚
]

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

0 1 2 3 4 5 6 7

R
o
ll
an
gl
e
[˚
]

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7
Fo
ca
l l
en

gt
h

Time [s]

Fig. 14. Camera parameters for a small video sequence of the left camera.

plane can produce a small rotation around the direction of view
(the roll axis), that will also slightly change when panning and
tilting the camera. Note that the oscillation observed in the
graphs is in the order of decimal of degrees, which in practice
has very little to no effect in the end result.

When it is necessary to initialize during the tracking, the
initialization is done using nd = 2, for the reasons previously
mentioned. As seen in Table III, with nd = 2 the initialization
takes on average 36,44 ms to be processed, which is equivalent
to less than one frame in a 25 fps video feed, or less that two
frames for a video with 50 fps.

In Table IV the average processing times of the field
tracking tasks are shown. These data were gathered from the
analysis of more than 5000 frames. For each frame, an average
of 1022 pixels, with a standard deviation of 187 pixels, where
used in the refining parameters step.

By comparing the processing times between the initializa-
tion and the tracking phase, regarding the operations necessary
to achieve the final candidate line pixels, it can be seen that
using the field lines mask instead of the field area mask allows
for a reduction of 46% in the processing time.

The task that takes the longest time to perform in each
frame analysis is the field projection. Even though this task is
considered to be part of the tracking algorithm here, in a real
system it will be done by a graphics rendering, which receives
the camera’s parameters provided by the tracking system and
has a 3D model of the object that will be projected. Here, the
field projection was used to visualise in real-time the results
obtained by the frame analysis.

The frame extraction step is also taken into consideration
here as a part of the tracking algorithm, which in this case

CAMERA PARAMETERS EXTRACTION USING REAL-TIME VIDEO ANALYSIS IN FOOTBALL BROADCASTING, NOVEMBER 2015 10

TABLE IV
AVERAGE PROCESSING TIMES FOR THE DIFFERENT TASKS IN THE FIELD
TRACKING STAGE. GATHERED FROM THE ANALYSIS OF 5000 FRAMES.

Average time
Extract frame 4,33 ms

Resize frame 838,31 µs

line pixels detection 2,32 ms

Get closest model’s line 195,32 µs

Refine parameters 3,71 ms

Project field 8,97 ms

Total time 20,36 ms

Total time without extras 7,06 ms

is the time that was necessary to get a new frame from a
compressed video file. In a real situation, each frame will be
provided directly in a memory location, so this task will not
exist.

On average, each frame will be able to be processed in real-
time for a 25 fps video feed (40 ms per frame) but it will fall
just short of the 50 fps mark (20 ms per frame). If the time
spent to project the field and in the frame extraction steps
is removed, for the reasons mentioned before, the processing
time for each frame drops approximately 65%, to 7,06 ms.
This result is very positive, meaning that when applying this
method to a real system it will be able to process each frame
in real-time, for frame rates up to 120 fps.

VI. CONCLUSIONS

The initialization part was able to successfully find a cor-
rect homography, when no information about the camera’s
parameters are known and when at least two vertical and two
horizontal field lines are correctly detected and classified. By
changing the parameter nd, the initialization can become faster
but less robust or slower but with higher probability of success,
which proved to be very useful.

The tracking method is more robust and faster than the
initialization, because there is no need to detect and classify
the lines and evaluate different possible homographies. The
7 ms that are necessary, on average, to process each frame
during the field tracking allows for this algorithm to be used
in real-time for video feeds with frame rates up to 120 fps,
which is very positive.

A good indicator of the quality of the extracted parameters
is the average distance between a line pixel and the respective
closest line, Eµ, which is measured in meters. This error can
be used to automatically know when the field has been lost
and the parameters are no longer correct, in order to start the
initialization process again.

A. Future Work

The main functionality that is missing is being able to
initialize when the camera is pointed at the middle field
area. To accomplish this, the centre circle must be used.
Another problem that must be solved in the initialization

phase is that when the cameras are pointed to an extreme
side of the field, the lines can be misclassified, leading to bad
homographies being computed. The line pixels detection must
also be improved, to minimize the number of false detections
given by the player’s clothing.

A solution that avoids detecting and sorting the lines, and
also uses the centre circle information, involves using directly
the raw data provided by the Hough transform accumulator
matrix. The Hough transform accumulator matrix obtained
for a given image would be compared with several sets
of preprocessed synthetic accumulator matrices, obtained by
simulating the field projection with different possible camera’s
parameters. The parameters used to generate the preprocessed
accumulator matrix that has more similarities with the accu-
mulator obtained for the line pixels, would be the parameters
returned from the initialization. A similar method to the one
described here was implemented in [7].

In the field tracking phase when the camera is pointed to a
area when no field lines are visible, the tracking algorithm is
not able to work. These situations must be detected and, when
necessary, a backup method is used instead. A feature tracking
is one possibility for this backup method. Detecting the same
features in consecutive frames would allow to extrapolate the
rotation and the difference in the focal length between them.

Most of the developed functions involve the processing
of multiple pixels, which is highly parallelized. Computing
these tasks in the GPU should lead to better processing times,
allowing to process the frames at a higher resolution. This
would be specially helpful in situations where the lines are
distant from the camera, increasing the probability of their
detection.

ACKNOWLEDGEMENTS

The author would like to thank to professor Margarida
Silveira from IST and to wTVision’s CTO Alex Fraser for
all the help and support during the development of this work.

REFERENCES

[1] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15,
1972.

[2] D. Farin, J. Han, and P. H. de With. Fast camera calibration for the
analysis of sport sequences. In Multimedia and Expo, 2005. ICME 2005.
IEEE International Conference on, pages 4–pp. IEEE, 2005.

[3] D. Farin, S. Krabbe, W. Effelsberg, et al. Robust camera calibration
for sport videos using court models. In Electronic Imaging 2004, pages
80–91. International Society for Optics and Photonics, 2003.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[5] H. Kim and K. S. Hong. Robust image mosaicing of soccer videos
using self-calibration and line tracking. Pattern Analysis & Applications,
4(1):9–19, 2001.

[6] J. J. Moré. The Levenberg-Marquardt algorithm: implementation and
theory. In Numerical analysis, pages 105–116. Springer, 1978.

[7] G. Thomas. Real-time camera pose estimation for augmenting sports
scenes. In IET European Conference on Visual Media Production, pages
10–19. IET, 2006.

[8] A. Yamada, Y. Shirai, and J. Miura. Tracking players and a ball in video
image sequence and estimating camera parameters for 3D interpretation
of soccer games. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, volume 1, pages 303–306. IEEE, 2002.

