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ABSTRACT1 
 
Cell cycle staging information is very important in a wide 
range of biological problems. Here, we proposed a new 
method based on 4’,6-diamidino-2-phenylindole (DAPI)-
stained in situ fluorescence microscopy images. It is known 
that the intensity and size of nuclei are discriminative 
features for cell cycle staging.  A clustering analysis, herein 
computed from DAPI-stained nuclei, of a population of cells 
is performed using a two stage classifier. 

The first stage, a modified version of the k-means 
classical unsupervised method, incorporates the a priori 
information about the expected DNA amount in G1 and G2 
cell cycle phases. The labels obtained in the first step feed a 
Gaussian Mixture Model (GMM) classifier that tunes the 
final shape and separation hyperplanes of the clusters. 

The obtained results are consistent with the typical 
distribution of cells by the G1, S and G2 stages described in 
the literature. Further, they are molecularly validated by a 
Fucci system. This new image analysis method is suitable 
for a rapid and inexpensive estimation of cell cycle staging 
of biological samples, while preserving the nature of 
analyzed cells.  

 
Index Terms – Cell Cycle Staging, DAPI, Fluorescence 

Microscopy Images, Unsupervised Classification 
 

1. INTRODUCTION 
 
In the mitotic cell cycle, resting/quiescent cells are in 

G0 phase and are diploid, owning two sets of chromosomes 
(2N). Diploid cells that initiate the cell cycle are in G1 phase 
and then proceed to an intermediate phase of synthesis (S 
phase) during which DNA and protein content is doubled. 
Upon completion of this phase, cells are at G2 phase and are 
tetraploid (4N). At this point, mitosis (M phase) ensues and 
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cells split in two new, diploid daughters cells [1]. As cells 
cycle through each division, the surveillance of the fidelity 
of this process is fundamental [2]. Thus, the determination 
of the cell cycle momentum may point out important 
biological cues on the physiological status of individual or 
subpopulations of cells. Several methods have been 
developed and used to quantify DNA content in biological 
samples. DNA content analysis progressed from highly 
laborious and time-consuming methods to faster and highly 
quantitative techniques [1]. The accessibility to DNA 
fluorophores that bind stoichiometrically to DNA (e.g. 
DAPI) allowed the direct quantitative estimation of 
specimen’s DNA content; this principle has been largely 
explored in methods as flow cytometry, image analysis and 
laser scanning cytometry. Flow cytometry has been, 
undoubtedly, the most disseminated cell analysis method 
[3]. Nevertheless, due to its fluidic principle, one of the 
major drawbacks of flow cytometry is the need of 
disaggregation of cellular samples, a critical aspect for rare, 
invaluable biological samples. As such, computer-based 
fluorescence image analysis presents itself as a very reliable, 
accurate and cost-effective solution, allowing quantitative 
measurements of multi-color staining and DNA content in 
virtually any biological specimen [4].  

 

 
Figure 1 - DAPI-stained nuclei fluorescence image 

In this work we propose a fluorescence image-based 
algorithm targeted at identification/segmentation of DAPI-
stained nuclei and, subsequently, the determination of DNA 
content of single or sub-populations of cells, without 
disrupting the natural organization of the in vitro 
culture systems; assessment of cell cycle dynamics of sub-
populations of cells in fluorescence microscopy (FM) 

Figure 3.8: Illustration of the denoising procedure for the DAPI plane. a) DAPI plane image of WT exp. 5,
technical replica nr. 1. b) Detail of the image in a). c) Denoised version of image a), with ↵ = 60. d) Detail of the
image in c).

3.5.2 Segmentation

Image segmentation is defined as being the process of separating components from a background

and among themselves. It is regarded for most images as a complex and non-trivial task [69].

DAPI staining of DNA in cell nuclei is a standard biological approach in cell fluorescence mi-

croscopy. DAPI allows for a correct delineation of the nuclei, however, since the staining is done to

the DNA and since the DNA is not always distributed evenly across the nucleus– due to variable chro-

matin condensation– the stain distribution is also not homogenous across the nucleus, sometimes

even rather granular. One major issue one faces is the fact that frequently these nuclei are placed in

very close proximity, in such a manner that the two plasma membranes and internuclei space cannot

be resolved. Moreover, one has to deal with the Poisson Noise originated by the optical microscope

acquisition.

For segmentation purposes, this problem is therefore non-trivial, since the separate entities (nu-

clei) are often adjacent, non-uniform and noisy. In this case though, the noisiness is already largely

overcome by the Denoising step done first-hand (Subsection 3.5.1).

A set of segmentation approaches has been attempted in the prospect of obtaining suitable seg-

mentation within the context of the problem above stated, with many not performing as desired.

Edge-based methods are prone to errors like the detection of noisy edges and discontinuities, and

furthermore need somehow complex post-processing steps. On the other hand, region based ap-

proaches tend to present difficulties when objects are in close adjacency. A set of other segmentation

modalities, such as splitting-and-merging, simple region growing, multiple thresholding and direct

morphology-based segmentation approaches have not provided satisfactory outcomes either [70].

Conversely, the watershed transform has been widely used in cases where objects of interest are

in close proximity. Thus, the use of a region-based segmentation approach in conjunction with the

watershed transform can yield a satisfactory segmentation strategy.
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images was also possible. The bioimaging analysis tool 
relies on DAPI binding characteristics [5] and is based, in an 
unsupervised manner, on the quantification of the area and 
total intensity of DAPI-stained nuclei of acquired FM 
images as shown in Figure 1. 

 
2. MULTI-LABEL UNSUPERVISED 

CLASSIFICATION  
 This section describes the method of classification of 
each cell within the FM in three active phases: G1, S and G2. 
 
2.1. Data acquisition  
 

The in vitro cultures analyzed comprise normal murine 
mammary gland epithelial (NMuMG)-Fucci2. These cells 
were fixed, permeabilized and cell’s nuclei were stained 
with DAPI. Images were then captured with Zeiss Apotome 
Axiovert 200M ImagerZ1 fluorescence microscope with 
40X/1.3 oil DICII (UV) VIS-IR objective (Carl Zeiss, 
Thornwood, NY). Aiming at extracting complete 
information on DAPI-stained nuclei, multiple images in 
different planes along the z-axis (60 stacks) were acquired 
and then merged together by projecting into a 
single image. The acquisition parameters (exposition time 
and maximum pixel intensity) were maintained constant in 
all experiments. FM images were then analyzed with the 
following cell cycle staging pipeline: 1) image pre-
processing for contrast adjustment and enhancement; 2) 
nuclei segmentation based on the Otsu’s method; 3) area 
and total intensity computation of each nucleus, 4) multi-
label classification of each nucleus in G1, S and G2 classes 
with an unsupervised algorithm that incorporates a priori 
information about the expected amount of DNA in each 
stage. The core of the method is a cascade of a modified k-
means unsupervised classifier Error! Reference source not 
found., followed by a modified EM supervised classifier [6] 
fed by the labels of the first classifier. 
 
2.1. Image pre-processing pipeline 

One of the major issues faced with nuclei segmentation 
algorithms is the incorrect segmentation of nuclei, usually 
associated with considerable nuclei proximity and 
overlapping [7]. To minimize this difficulty, several times 
associated with wide blurred regions at the borders of the 
nuclei we applied to each FM image a contrast adjustment to 
enhance and sharpen the morphological borders of each 
nucleus. After this pre-processing operation a simple Otsu 
segmentation procedure is able to provide enough 
segmentation quality results to isolate each nucleus. 
Subsequently, quantitative features of each 𝑖!! cell (area, 𝐴!, 
and total intensity, 𝑇𝐼!), that reflect the underlying biological 
changes occurring in the nucleus during the whole cell cycle 
(including replication of DNA content) are computed as 
follows 

A! = π!"!     (1) 
 

TI! =  𝑥!"π!"!    (2) 
 
where π!"  and x!"   are the j!! elements of the binary mask, 
π,  and image intensity, x , of the i!! cell in the image. 
Finally, due to the correlation between these two features, 
all data was normalized by z-score value [8].  

 
2.2. Classification/Staging  

 
The multi-label classification strategy used here is 

unsupervised because in these typical problems of cell cycle 
from DAPI there is no information about the population of 
cells. 

The goal is to estimate a vector of labels 
𝒄 = 𝑐!, 𝑐!,… 𝑐! ! where 𝑐! ∈ 𝐺!, 𝑆,𝐺!  where 𝑁 is the 
number of nuclei in the image. 

A classification approach described in this paper is 
performed using a two-stage classifier. The first stage, a 
modified version of the k-means classical unsupervised 
method, incorporates the a priori information about the 
expected DNA amount in G1 and G2 cell cycle phases. The 
labels obtained in the first step initialize a Gaussian Mixture 
Model (GMM) classifier that tunes the final shape and 
separation hyperplanes of the clusters.  

In this type of image modality the image intensity results 
form the binding of DAPI to A-T rich regions in DNA 
which is a stochastic process that is appropriately described 
by a normal distribution. In the 2D-space of the features, 
(𝐴,𝑇𝐼), each class is well described by an ellipsoid because 
both features are strongly correlated.  Thus, the population 
is described by a Gaussian Mixture Models (GMM), where 
each 𝑘!!component is a multivariate normal distribution  

p! x! µ!, Σ! =
!"# !!! !!!!!

!!!
!! !!!!!

(!!)!/! !!
  (3) 

where 𝑥! = 𝐴! ,  𝑇𝐼! ! is the vector of observations/features. 
µk is the mean and Σk is the covariance  matrix that defines 
the geometrical features of the cloud/cluster, such as shape, 
volume and orientation. The covariance matrix, can be 
decomposed as follows [9], 

Σ! = α!D!A!D!!   (4) 
where D! is orthogonal, A! is a diagonal matrix of the 
eigenvalues of Σ! and α! is a scalar. The D! matrix defines 
the orientation of the cloud, A! defines its shape and α! 
defines the volume.  

The implementation of the cluster analysis via Gaussian 
Mixture Model (GMM) was performed through the 
Expectation-Maximization (EM) algorithm [11] using the 
probabilistic model described in (3). In this algorithm, 
indicator (binary) variables, z!", that are equal to 1 if the ith 
point is classified in kth cluster and 0 otherwise, are 
estimated in a two step iterative algorithm. z!", the indicator 
variables, and ci, the classification results, are related by 
𝑐! = k z!"!

!!! . 
In the first step latent membership weights are estimated 

and used in the second step of maximization of the 
likelihood function. Both steps alternate until convergence is 



achieved. In each iteration the covariance matrix Σ!! is 
computed as follows:   

Σ!!!! = Σ!! + A!!w!
!  (5) 

where Σ!! is the current estimation computed in the previous 
iteration, A!!  is the diagonal matrix defined in (4) and w!

! is 
the current relative amount of data in kth cluster. This 
incremental estimation of the covariance matrix aims at 
dealing with the ill-conditioned nature of the covariance 
matrix specially when the current number of points in the 
corresponding cluster is small. That is the reason why the 
updating term in (5) depends on the relative importance of 
the kth cluster in the current iteration. Figure 2 displays an 
example of the evolution in the estimation of the clusters 
with this incremental strategy to estimate the parameters of 
the clusters. 

The initialization of the EM algorithm, 𝒄𝟎, is obtained 
using a modified version of the classical k-means strategy 
with the Euclidean distance. Here a constraint based on the 
biology of the problem is imposed. It is known that the 
amount of DNA in G2 is twice of the amount of DNA in G1. 
Considering this, we assumed that the centroid of G2 is 
twice of G1, 

µ!! = 2µ!!   (7) 
where µ!! , µ!! are the means of the corresponding clusters. 
 

 

Figure 2 – Graphic representation of the clustering analysis 
depicting the changes of shape, volume and orientation of 
the covariance matrix from the cell cycle classifier. Red 
cluster corresponds to cells in G1 phase, blue cluster to cells 
in S phase and green cluster to cells in G2 phase. 

The EM algorithm is highly sensitive to the amount 
and distribution of the input data. This sensitivity is strongly 
related with the determinant of matrix Σ! involved in 
Equation (3) that can be ill-conditioned, especially if the 
number of elements in the cluster is too small, e.g. N! = 1. 
To avoid this problem spectral decomposition [12] of Σ! is 
used in its inversion during the M-step of the EM algorithm. 

 
3. RESULTS 

Forty seven images with a total of 998 DAPI-stained 
nuclei are used for experimental data. For molecular 
validation proposes we compared each cell in terms of 
FUCCI system and DAPI classification.  This system allows 
a colored readout of the cell cycle progression based on the 

expression of cell cycle-specific fluorescent markers, thus 
allowing the discrimination between non-proliferative 
(G0/G1) and proliferative (S and G2/M) phases of cells [13] .  

In Figure 3 an example of classification of the image in 

 

 
Figure 5 is displayed where each point in the feature space, 
𝐴! ,  𝑇𝐼! !, corresponds to a single cell. In this case 62% of 

nuclei were classified in G1, 29% in S and 9.5% in G2 as 
shown in the histogram displayed in Figure 4. This 
histogram is similar to the typical ones described in the 
literature [14].  

 

 
Figure 3 – Distribution of cells after classification. Red dots 
correspond to cells in G1 phase, blue dots to cells in S phase 
and green dots to cells in G2 phase. 



 
Figure 4 – Histogram of the distribution of cells after 
classification. Red histogram and blue curve correspond to 
cells in G1 phase. Blue histogram and red curve to cells in S 
phase. Green histogram and black curve to cells in G2 
phase. 

The red cluster corresponds to the G1, in which the areas 
and total intensity of the nuclei are smaller than in the other 
phases because in this phase the amount of chromosomes is 
N, corresponding to the smaller amount of DNA among the 
all phases. The blue cluster corresponds to the S phase, 
where values of area are almost constant, whereas an 
increase of total intensity is observed, which is typical of 
replicative nuclei where the DNA is replicating toward G2. 
The green cluster corresponds to G2 where the DNA already 
has already replicated and the number of chromosomes is 
2N and the amount of DNA is double of G1. Furthermore, 
the segmentation algorithm revealed a high efficiency and 
throughput; the average time of analysis for one FM image 
is approximately ten seconds, with 97% of recognized cells. 

The designed method allows the operator to retrieve, 
from the clustering diagram, each nuclei analyzed, 
individually, present in the FM images as shown in 

 

 
Figure 5.  
Finally, the comparison between the algorithm herein 

described and Fucci system shows that 89% of G1 Fucci 
cells and 86% of Fucci cells at S/G2/M phase were correctly 
classified by the new procedure based only in DAPI-stained 
nuclei. Moreover, this algorithm correctly assigned 93% of 
Fucci cells transitioning from G1 to S phase, as either in G1 
or S phase. Despite the limitations of Fucci system, our 
analysis biomaging pipeline using DAPI showed an overall 
accuracy of 94.5% for cell cycle stage classification. 
 

4. CONCLUSIONS 
In this work, a new unsupervised algorithm for cell 

cycle phase determination based on DAPI-stained FM 
images is presented. The first step of the proposed 
methodology consists on the processing of FM images, 
aiming to extract the area and total intensity of each DAPI-
stained nucleus. The second step consists on the 
classification algorithm. This algorithm is based on a 
modified EM algorithm, where each cluster is modeled by a 
covariance matrix with a set of geometrical parameters. 
Also, an updating rule for the covariance matrix was 
pursued in order to define the cluster according to the 
number of points. To avoid random initialization, a modified 
k-means strategy was applied. This stage allowed the 
incorporation of prior biological background regarding the 
cell cycle. Moreover, we have connected the sensitivity of 
the EM algorithm to the input data by applying a SVD 
approach in the calculation of the inverse covariance matrix, 
which allowed us to increase the algorithm’s classification 
and improve its stability on cell cycle phasing.  Remarkably, 
the obtained results are consistent with the typical 
distribution of cells by the G1, S and G2 stages extensively 
described in the literature. Interestingly, our new bioimaging 
tool allows, also, the possibility to perform cell cycle 
dynamics analysis of cell populations, as well as of single 
cells. The application of low cytotoxic, cell membrane-
permeant fluorescent dyes (e.g., vybrant® dye cycle™ stains) 
turs this new cell cycle classifier suitable for in vivo 
applications. 
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Figure 5 – The upper image shows nuclei classified 
according to the output of the proposed algorithm. Red dots 
correspond to cells in G1, blue dots correspond to cells in S 
phase and green dots are cells in G2. The lower image 
shows the same nuclei stained with the Fucci system. Cells 
in G0/G1 are red and cells in S and G2/M (proliferative 
phases) are green or yellow. 

 


