
Procedural Content Generation for Cooperative

Games

Rafael Passos Ramos

Instituto Superior Técnico

Universidade de Lisboa, IST-Taguspark

Lisboa, Portugal

rafael.ramos@tecnico.ulisboa.pt

Abstract— A popular topic more now than never, procedural

content generation is an interesting concept with applications in

numerous content creation areas, such as in game development. On the

other hand cooperation in games is also an increasingly researched

theme and cooperative games have become more common and more

massive. A noticeable amount of research has been done on both these

subjects, however, little work has been done on a joint effort on both

of these areas. This work attempts to start filling the gap, linking

together concepts worked on both cooperative games and procedural

level generation and what makes them interesting. Existing research is

compared on both areas and what ways a cooperative level generator

can be conceptualized are evaluated. In this work a procedural

cooperative level generator is also implemented, for the game

Geometry Friends. Finally limitations and set backs are looked upon

and possibilities of improvement and future work is discussed, aimed

at the subject of Procedural Level Generation for Cooperative Games.

Keywords— Procedural content generation; Cooperative play;

Procedural level generation; Procedural generation of cooperative

challenges

I. INTRODUCTION

One of the first videogames, Pong [1] was a multiplayer game.

The idea that two, or more people can play the same game has

been around since the beginning of gaming. Multiplayer in

these first videogames had a competitive nature and players

were pitted against each other. Then games like Joust [2] came

along and introduced cooperative play. Cooperative play and

cooperative challenges occur when two or more players work

together in order to complete their objectives. Cooperation in

videogames has since shown itself in many faces. Teams

competing over victory, multi-player puzzle solving and

playing against the computer. Games today have also grown in

size, demanding ever more resources, people and time.

First appearing in the videogame world as a mean to compress

content into a smaller disk size, procedural content generation

had impact in the videogame world. Games like Elite [3] and

Rogue [4] use procedural generation make their game world

bigger that what they could realistically build. Elite uses

procedural level generation to store 256 star systems in each of

the eight galaxies present in Elite (a number reduced from the

original 248 galaxies the algorithm allowed). Using a single seed

they also ensure you will always find the same planet whenever

you go to the same place. Rogue generated a whole new

dungeon and object placement every time a game was started.

More recently, procedural content generators have been used to

create all sorts of contents, like location focused side-quests in

Skyrim [5] or even procedural weapon generation in

Borderlands [6].

A few games today advertise having procedural generated

levels and cooperative levels at the same time. However upon

further look these games featured little cooperative mechanics,

and generated levels did not have cooperative challenges. An

example of this is the game CloudBerry Kingdom [7].

Figure 1. An example of level generation in Cloudberry Kingdom.

While there is no doubt levels are indeed randomly generated,

even if the game is advertised as cooperative players cannot

help each other in completing the level. In fact players cannot

interact with each other in any way. The extent of cooperation

in this level is limited to the fact that players win together, at

the same time. The first player to reach the end of the level wins

the game for everyone. It can be seen as a race to see which

player can win first which is in its essence competition between

players and not cooperation. As of the day this was written, no

cooperative games in the market featured procedural level

creation that generated cooperative challenges. Procedural

generators can and are being used in cooperative games, they

just aren’t producing cooperative content. Only rocks, trees and

textures. As such there is motivation to create a procedural level

generator that produces levels with cooperative challenge.

This work’s purpose is to explore how a procedural content

generator could be applied to a cooperative game and to create

an instance of a procedural cooperative level generator.

II. PREVIOUS WORK

A. Procedural Cooperative Level Generators

Research on what had been made before on generating

cooperative levels led to mostly dead ends. A couple of forum

threads were found but the projects were abandoned before any

results were posted. The theme also sounds related to Cook et

al.’s ANGELINA [8] [9]. ANGELINA is about cooperative

coevolution of games. Its results are impressive, however their

work is about cooperating algorithms creating single player

platform games, which are not what is being looked at in this

work. As such it was decided to look at research from both

separate fields, cooperation in games and procedural level

generation.

B. Procedural Level Generators

One of the several generation methods that can be used is an

evolutionary generator. These generators intend to reach

increasingly good solutions over several generations, in a

method akin to natural selection. An initial population is

generated and evaluated. Using our level example, levels that

more closely match the desired fitness function are selected as

the basis of the next generation. How this is done varies, but an

example would be selecting the top fitness half of the

generation and interbreeding these remaining levels.

Interbreeding would mean that the resulting levels would have

parts of both the parent levels. Most evolutionary algorithms

also allow mutations to occur during interbreeding so new

features can emerge.

In [10] Shaker et al. explore an evolutionary approach to

generating puzzle levels. They use a technique combining an

evolutionary algorithm with a grammatical representation of the

level, which they call Grammatical Evolution (GE) In their

implementation a level is a one-dimensional list of objects that

can have proprieties such as its position in the map, orientation

and effects. The evolutionary part of the algorithm uses the

parent levels to create new levels by mixing parts of the parent

levels into a new level. Mutations can also occur. These include

the more drastic inclusion or removal of an object or the less

drastic change in an object’s proprieties. As a fitness function

Shaker et al. desired to use playability something another of

their work was trying to automate through a simulation-based

fitness function that plays the level to show it can be solved.

However this wasn’t available so Shaker et al. used a linear

combination of a set of conditions as a fitness function. The

conditions included four different objects’ positioning

parameters defined by arbitrarily chosen placement rules that fit

the game’s level design, such as judging where rockets where

aimed at and the predefined distance to exist between objects.

Each condition would apply a penalty to the function,

effectively pulling the level away from being desirable to the

evolutionary part of the algorithm.

Compton et al. introduced a way to segment level design into

small patterns in [11]. They define a pattern as an agglomerate

of simple game components, such as a jump challenge or a

single enemy. Compton et al. identify a few categories of

patterns. Basic paters are composed of a single component, by

itself or in repetition, with no variation occurring. Complex

patterns are repetitions of the same component with tweaks and

variations occurring. A compound pattern alternates between

two basic patterns composed of different components. Finally

composite patterns are components placed so close to each

other that require a different approach than normal. Compton et

al. refer that the sequential use of these patterns usually lead to

lineasrt experiences and propose using a cell based solution to

create something akin to a level tree with different branches. A

cell would be nothing more than a grouping of patterns into a

graph, permitting layers to follow different paths.

Figure 2. Micro (top), Meso (middle) and Macro-patterns (bottom) identified

by Dahlskog et al. in their work.

In [12] and [13] Dahlskog et al. have extended the previous

work on patterns by defining meso-patterns and macro-patterns.

Meso-patterns are local combinations of micro-patterns (all

previous patterns defined by Compton et al.), which consist of

small challenges to the player. They notice these usually take

up a screen in Super Mario. We believe meso-patterns end up

being what Cells were meant be in Compton et al.’s work)

Macro-patterns are combinations of several meso patterns,

usually with the length of an entire level, with an objective.

These new patterns could be used to control a steady increase

in difficulty or to teach players game mechanics, where a

pattern would first appear in a simpler form and then more

complicated. Dahlskog et al. further explore this concept,

basing themselves on the game Super Mario Bros. They start by

manually identifying meso-patterns and macro patterns that

usually combined 3 meso-patterns. From that they create an

automatic analysis that reads any Super Mario Bros level

encoded in a specific simple file and returns a list of micro-

patterns together with their frequencies and order they appear

in all meso-patterns. They also adapted this process of

extracting patterns to the game Infinity Mario Bros a

SuperMario Bros clone than featured possibly infinitely

extending levels, procedurally generated. Being able to extract

patterns from both these games’ levels Dahlskog et al.

proceeded to use them as a basis for an evolutionary algorithm.

Their approach uses a fitness function that rewards the presence

of meso-patterns and uses an evolutionary strategy to create

new levels. These levels would evolve to have patterns

matching to one of the existing Super Mario Bros levels or

would from new hybrid patterns, producing ever-changing,

interesting levels.

C. Cooperation in Games

A good amount of research has been made on cooperation in

games over the last decade. Here we highlight a few, concerning

defining and section cooperation in games. Rocha et al. [14] set

out to define characteristics of cooperation in games. This

happened when massively cooperative games online were

starting to become widespread specially with the launch of a

new genre Massive Multiplayer Online Role Playing Games

(MMORPGs) such as World of Warcraft, by Blizzard

Entertainment. Other games were also mentioned like Valve’s

Counter-Strike and Team Fortress 2, and Lego Star Wars, a

game that rekindles the focus on cooperative, not competitive,

gaming. It is wise to notice that, at the time, titles like Portal 2

and Left4Dead and Magicka, all cooperative gaming

powerhouses, did not exist. Rocha et al.’s identified a few

design patterns for cooperative games. These were intended to

be used when designing a cooperative game. These included

Complementarity, Synergy between abilities, Shared goals,

Synergy between goals and Special rules for players in the same

team. These are to be used as guidelines for creating new

cooperative games, and the manner of how they are

implemented will decide if the cooperative part of the game is

interesting and fun. As a mean to prove this Rocha et al.

developed Geometry Friends, a 2D platformer, focusing on

Complementarity and Shared goals. Tests with players

supported that the cooperative part of the game was interesting

and fun.

In [15] El-Nasr et al. set out to phantom how to evaluate

cooperative games. In their work they expand on Rocha et al.’s

design patterns by adding the following: Camera Setting,

Interacting with the same object, Shared Puzzles, Shared

Characters, Special characters targeting lone wolf,

Vocalization and Limited Resources. After providing new

design patterns and updating some of the previous El-Nasr et al.

define a set of metrics with which to evaluate whether a game

is promoting cooperation and whether this cooperation is

positive. They call them Cooperative Performance Metrics

(CPMs) and are associated with certain events. A description of

each follows:

Laughter or excitement together: These events occur when all

players laughed or demonstrated excitement at a situation

occurring in the game.

Worked out Strategies: These events occur when players gather

to discuss solving shared challenges or dividing a problem into

smaller parts that individual players can resolve. It is a metric

that marks complexity and/or good cooperative challenges.

Helping each other: This event occurs when a player is helping

another with understanding controls or game mechanics, but not

when players are helping each other in the game. This last one

falls into the Worked out strategies category.

Global Strategies: This refers to events where players take up

different roles to complement each other’s abilities.

Waited for each other: This metric refers to the amount of

events that occur where one player has to wait for another, be it

from differences in player skill or level design.

Got in each other’s way: These events happen when players

decide to do an action that makes it difficult or impossible for

other players to do an action they wanted or needed to do.

These CPMs are useful when evaluating cooperative games and

are evaluated by observing participants in game. In their work

El-Nasr et al. had a groups of children play several games and

recorded the game sessions. Two independent researchers were

then asked to go through recorded footage and verify when

CPM events occurred.

III. COOPERATIVE LEVEL GENERATOR

This work’s objective is to have a functioning level generator

that generates levels with cooperative challenges. As research

into making a procedural level generator take into account

cooperative play has not been found a solution must be looked

upon existing procedural generator and cooperative play

research in order to see what it takes for a procedural level

generator to include cooperative play.

The generation methods seen in current cooperative games that

employ procedural level generators do not take into account

cooperation and as such are forced to make game mechanics

such as having players not being able to interact with each other

in any way which ensure cooperation or the lack of it won’t

interfere with level completion. To fix this ways to address

solving cooperative challenges have been looked upon. A

cooperative challenge is basically a puzzle that requires player

A to be at said place or do said action while player B does

another action. Puzzles with more than one piece already exist

and are often used in levels. However this does not take two

players actions into account. The best way out would be having

a set of cooperative agents traverse a level’s space and wherever

they interacted we would have them generate a cooperative

challenge. However agents that can solve cooperative

challenges are not yet available and another solution must be

looked for. Players’ actions can be abstracted into general

moves: Character X jumping results in character X being in

another place. This way of thinking can be used to also abstract

both players into a single entity controlling both players’

actions. This combined player would only exist for the

generator but allows us to generate a level in a similar way to

what would be used for a single-player level. The real trick is

to know how to design interesting cooperative puzzles. This is

something this work does not work upon (and we suggest the

reader to further explore cooperative puzzle generation, as it is

an interesting subject). Instead, designer levels can be analysed

and cooperative puzzles can be extracted. Using the

aforementioned pattern system, patterns can be extracted from

already made designer levels that have cooperation and be use

as guidelines to generate new cooperative patterns. Whether if

generated levels are cooperative has still to be analysed as

joining cooperative patterns does not guarantee the level

remains cooperative but it is a good place to start from because,

since levels we are drawing patterns from are cooperative, the

bigger patterns we extract are going to be of cooperative

challenges. To produce a cooperative level the patterns have to

be linked together. Again, linking cooperative patterns cannot

be guaranteed to keep the patterns cooperated and this is

something that hasn’t been looked into and would require

experimentation so this obstacle must be avoided. A way this

can be done is to separate the cooperative big patterns, meso or

macro patterns. Considering a 2D grid of blocks a pattern

guaranteed to be cooperative would be inserted into a block.

This block would have input and output for each connection it

had with other blocks. This input and output would define what

players can enter or exist the block through the connected point.

As such we could have two cooperative blocks that caused

different players to exit through different sides be connected

with non-cooperative blocks. This way players can solve a

cooperative challenge, have the non-cooperative challenges in

the way to the next cooperative challenge. It is important that

these blocks fit together as puzzle pieces, since non-valid

connections would deem the level invalid and impossible to

complete.

The approach above allows us to extract patterns and use them

as puzzle pieces, connecting them to each other. For variation

level zones that have cooperative challenges need to be

generated. The above approach would work if we simply

mimicked the patterns without doing changes. A more

interesting approach would require generating the level zones

with cooperative challenges. This can be done by using the

aforementioned patterns as fitness. This process has to be

adapted to each game, since game mechanics are different and

a gimmicky thing, but as a general rule what has to be done is

to generate levels or level portions, sizing them to macro or

meso-patterns respectively. Then the generate levels can be

compared to the patterns and their likeness can be used as the

fitness function the algorithm uses to know what levels are

better. The use of an evolutionary approach is suggested. A

valid level generator, that ensured levels generated where

solvable, would be used to generate an initial population. The

population would be evaluated and the parents for the next

generation would be selected. After being generated, the new

population would be tested for validity, dropping impossible

ones out. This new population would then be evaluated and new

parents would be selected. This would go on as desired.

IV. TESTBED GAME

The game chosen to serve as a test platform is Geometry

Friends, a game initially developed by Rocha et al. in their work

[14]. In its’ current host [16] Geometry Friends is described as

a 2D platform game where two players cooperate to gather all

diamonds in each level in the least amount of time. The game

features two characters, a circle and a rectangle with

complementary abilities. The circle rolls, being able to move if

it is on a surface, and is able to jump a fixed amount and expand,

changing its weight. The rectangle is able to slide in both

directions, even mid-air, and can change its shape by stretching

vertically or horizontally, allowing it to go through thinner gaps

than the circle can. In this game players are to work together

and the characters are fixed, as in there is always the circle

player and the rectangle player. The game is being further

developed and new features were added since Rocha et al. first

created it. It is also currently being used as a platform for a

cooperative AI competition. In this work we will develop an

external procedural level generator that creates levels with

cooperative challenge for this game.

V. LEVEL GENERATOR IMPLEMENTATION

Summarizing the general solution would consist of a few steps.

First a representation of the level is required that allows us to

compare it with a patterns. Then the patterns need to be

extracted from existing or designer-made example levels. These

patterns are to be used in the evaluation part of the algorithm.

This is followed by generation an initial population of valid

levels. If a more complex approach cannot be used the

generated levels are try to closely match existing patterns. A

more complex approach would be for instance evolutionary

generation. In that case an initial valid population is to be

generated and compared to the patterns. The closer to the

patterns the more fitness a level has. The fitter levels are to be

used in producing a new generation.

Attempts to implement this to Geometry Friends were met with

a few setbacks, as the previous proposal was meant for games

with bigger levels. The small level space meant we would not

find macro patterns and only one, or maybe two, meso-patterns

fit per level. There were recommendations to simplify what was

to be done and as such pattern identification was postponed.

The first attempt developed had a system of nodes and links. A

node would represent an area where players could be and each

node would link to another. A link would store information on

what players could go from one node to the other. Due to the

level size nodes were first assumed to have a base platform and

nothing else. This was to later change. Analyzing the position

of each node in the level we could make a graph of where the

players could travel to from each node. Links that required

cooperative challenge, in Geometry Friends case this was a

cooperative jump, were marked. A pair of nodes were chosen

from these links to be the origin node and the objective node. In

this situation both players were required to reach the origin

node so that the circle could reach the objective node. Then

links that allowed both players to reach the origin node were

marked and starting locations (starting nodes) for both players

would be chosen using the marked links. Then links that players

could reach from the starting nodes were marked as possible

diamond locations. A diamond would be placed near the

objective node and then a random number of diamonds would

be placed on nodes marked for diamonds, with preference to

nodes that required cooperation to be reached. This version of

the algorithm produced vertically interesting levels when

generating its node positions. It could also read an existing level

and assign nodes to platforms. This had a couple of problems,

while the levels were generally good for the circle player they

were uninteresting to the rectangle player. Also the algorithm

had problems dealing with obstacles that separated players and

space exclusively reachable by the rectangle, something that

would make the level more interesting for the rectangle player.

To solve these issues we modified the algorithm with an added

discrete approach.

This approach separates available level space into cells. It then

marks cells as occupied when platforms are present in the node.

Each cell’s Moore neighborhood (the surrounding 8 cells) is

analyzed for occupied cells and the cell is labeled as fitsCircle

and/or fitsRectangle. Separate areas of labeled cells are then

identified, using a two-pass connected component labeling

algorithm. These new labels and areas are used to improve the

previous algorithm’s ability to place diamonds, and sectoring

out nodes. Nodes in different labeled cells cannot be linked and

diamonds can only be placed where a player that can reach the

node can fit. This improved the resulting levels and allowed

more diverse levels to be loaded in and generated upon.

However, many problems remained and diamond placement

was far from perfect, sometimes generating in impossible

places. Also while the platforms the algorithm could generated

made interesting vertical levels for the circle with at least one

cooperative challenge, they failed to produce a proper level

diversity and are still not able to properly mimic what patterns

could do. At this point another recommendation for

simplification was received along with a suggestion to segment

the problem. To simplify things down again the focus shifted

from generating the entire level to generating a valid and

interesting level for any valid input level base provided, with

cooperative challenges present whenever possible. A level base

is the platforms position and size and the starting position of

both players. This change in focus was taken as an opportunity

to clear things up.

The final version of the algorithm dropped the node system in

its entirety and focused on the cell grid. Instead of using the cell

grid as an assisting tool for the node system this would be build

up for only the discrete cell grid. The algorithm start by doing

what its precedent did: cells are marked occupied when

platforms are present and cells where players can fit are labeled

as fitsCircle and fitsRectangle. This is followed by three

reachability phases where we verify what can be reached.

The first one is rectangle reachability. Cells are labeled

reachesRectangle when selected for analysis, if the cell is

labeled fitsRectangle. The first one selected was the rectangle’s

starting cell. After labeling the cell the algorithm decides what

cells to analyze next. It first verifies if an occupied cell is

present under the current analyzed cell. If there isn’t the

rectangle is in free fall and the algorithm analyzes the 3 cells

adjacent below the current cell. If it isn’t in mid-air the cells to

the side checked for fitsRectangle. If found they are analyzed.

If not the rectangle faces an obstacle. The rectangle can

overtake some obstacles so we verify the cell diagonally up for

the label fitsRectangle. If it is present we analyze that cell. This

accounts for the rectangle’s stair climbing ability.

This is followed by the circle reachability phase. This phase is

similar to the rectangle’s only instead of checking the sides for

available cells when the circle is on the ground it also attempts

to jump and the label is replaced by reachesCircle. A

maxJumpStrength is given to the 3 adjacent cells above the

current cell to. In this case the value was arbitrarily chosen as

24, since it fit in-game behavior. The 3 cells are then analyzed

and when an analyzed cell has a maxJumpStrength bigger than

0 it means the circle is still jumping in that cell. So the 3

adjacent cells above the current cell are analyzed after being

given the maxJumpStrength of the current cell subtracted by 1.

This mimics the jump arc of the circle.

Figure 3. Side by side comparison of the jumpStrength (red) and

coopJumpStrength (blue) values. Notice the lower value (less intense blue)
near the bottom platform indicating a non-cooperative jump.

The final reachability phase is the cooperative reachability

phase. Here we label reachesCoop to cells following a similar

way to the previous reachability phase. The difference is that

whenever a cell is analyzed where the reachesRectangle label is

present the 3 adjacent cells above the current cell are given a

maxCoopJumpStrength value of 30. This accounts for the

rectangle in its stretched position.

Figure 4. Visualisation of the exclusivity zones coopExclusiveCells (Blue),

circleExclusiveCells (red) and rectangleExclusiveCells (green).

With these reachability maps done we proceed do the diamond

placement. All cells are ran through one last time. This time we

are filling cell exclusivity lists. The cell will be added to the

rectangleExclusiveCells list if the cell has the reachesRectangle

flag but not the reachesCircle. The cell will be added to the

circleExclusiveCells list if the cell has reachesCircle but not

reachesRectangle. Finally, the cell will be added to the

coopExclusiveCells list if it has the label reachesCoop and not

the reachesCircle label. This provides use with the 3 exclusivity

zones that make up the points of interest for each level.

When generating a level, besides providing a base level we also

provide a seed, number of cells to generate and two desired

heuristic values that can go from -10 to 10. These are balance

and collaboration. Balance is the heuristic that measures how

biased to a player a level is. A level with a balance of -10 will

have the rectangle collect all the gems leaving the circle with

nothing to do. A balance of 10 has the opposite effect. A balance

of 0 means that there is an equal amount of diamonds to capture

for both the circle and rectangle. A collaboration of -10 means

there are no diamonds to be collected that require cooperation.

A collaboration of 10 means all diamonds require collaboration

to be collected.

These given information is used to decide where to place the

number of diamonds to generate. The seed number is used as

the seed for a pseudo random number generator, so that the

algorithm is deterministic and results can be recreated. Then

two random numbers are generated, the bias and coop. The coop

value is first compared to the collaboration value. If coop is

smaller the diamond will be placed in a cooperative exclusive

area, in a random cell from the coopExclusiveCells list. If the

coop is greater the bias value is compared with the collaboration

value. If the bias value is smaller than the collaboration value a

diamond is placed in the circle exclusive zone, in a random cell

from the circleExclusiveCells list. If the bias is greater tha

collaboration a random cell is picked from the

rectangleExclusiveCells list. Whenever a list is empty or the

diamond isn’t able to be placed a new attempt to place the

diamond is done, with new random bias and coop values. This

process is repeated until no more gems are left to generate.

At this point the level is generated. At this point, before the

algorithm stops it evaluates the generated level. Diamonds in

each exclusivity zone are counted. Balance starts at 0 and each

diamond in the circle exclusivity zone will push the balance

value closer to 10. Each diamond in the rectangle exclusivity

zone push the balance value closer to -10. Diamonds in the

cooperative exclusivity zone aren’t counted for balance but are

counted for collaboration. The number of diamonds in the

cooperative exclusivity zone is compared to the total number of

diamonds to give us the collaboration value. This gives us

heuristic values for the generated level.

This described the generation of a single level. To further

improve results another option is available in the program

developed. Regenerate until matching heuristics uses the

algorithm to generate levels until one matches the desired

heuristics, with a margin defined as (1).

𝑚𝑎𝑟𝑔𝑖𝑛 = 0.1 + 0.1 ∗ 𝑚𝑎𝑥 (0,
timeout

1000
− 5)

(1)

This these values where designed with a maximum timeout

value of 10000, starting from 0. It is design as to start increasing

the margin after 5000 iterations have occurred, every 1000

iterations. This allowed a levels acceptable levels that didn’t

quite match the heuristics to be accepted. This margin seems

lax, but generated levels with a margin of 30% still matched the

expected results for the wanted heuristics. This brute force

generation method was in place to be later replaced by an

evolutionary method but remains there as a shell in which

features would later be added.

VI. EVALUATION

This work’s objective is to create a procedural cooperative
level generator that created levels with interesting cooperative
challenges. A generator was created, and the levels it created had
cooperative challenges whenever possible. When a level
separated both players physically, the generator would produce
a non-cooperative level with its balance defined by the balance
heuristic provided. To understand if the levels produced where
interesting, and a match to human designed ones an experiment
was had. For this we had two hypothesis.

H1: Cooperative levels generated by the algorithm required
coordinated effort to be successfully completed.

H2: Levels generated by the algorithm are indistinguishable
from levels created by a person.

A. Experiment

The experiment consisted on having pairs of participants

play a series of 9 levels. After completion participants would

fill out a questionnaire. This questionnaire had a set of

affirmations pertaining levels 2 to 7 that players where asked

classify from 1 to 6 whether they agreed with the affirmations.

1 meant Completely Disagree, 2 meant Mostly Disagree, 3 was

Partially Disagree, 4 was Partially Agree, 5 meant Mostly

Agree and 6 meant Completely Agree. The 6 point Likert scale

was chosen as it does not include an indifference choice,

making participants express either disagreement or agreement.

This helped as the affirmations could correspond to yes or no

questions. As participants played through levels an independent

researcher would record CPM events occurred during each

level and how long participants took to complete the level. Time

to completion was important because it had an influence in the

number of events that occurred. The recorded CPM events were

Laughter or excitement together, Worked out Strategies,

Helping each other, Global Strategies, Waited for each other

and Got in each other’s way.

There existed 3 series, each created by a different algorithm

or a person. The A series was generated using the cooperative

algorithm. The B series was generated using a non-cooperative

algorithm. The C series was designed by an independent

researcher. Levels designed by the independent researcher were

used as the level base for both A and B series. A pair of

participants only played a single series, and where not told

which. The series featured levels in the same order and the same

design but differently placed diamonds.

B. Participants

 Our sample consisted of 30 participants, the majority of
which belonged to the male gender (N=27) and the average age
is approximately 22 (M=22.4 and SD=7.050). This experiment
was conducted at IST – Taguspark’s campus – so all participants
were related to this facilities (teachers and students).

 Overall, the majority of participants reported playing less
than an hour per week (8 participants). The next biggest group
was participants who reported playing 3 to 7 hours weekly (7
participants) followed by 1 to 3 weekly hours (6 participants).
The remaining participants reported the largest amount of hours
per week reported spending more than 3 hours daily on gaming

(5 participants) and lastly the less common group was
participants who reported 1 to 3 hours daily (4 participants).

 The majority for participants, concretely 56.7%, reported to
sometimes play platform games. Participants who said they
often play platform games represent 10% of the sample and
33.3% reported not playing platform games at all.

C. Results

In order to test our first hypothesis, we verified A series’
mean report for the affirmation “Cooperation was required to
complete the level.” for levels 2 to 7. Levels 2 (M = 5.4, SD =
0.699), 4 (M = 5.5, SD = 0.707) and 5 (M = 4.2, SD = 1.687)
reported that cooperation was indeed required for completion.
Level 3’s results were the lowest of the group (M = 1.7, SD =
1.567). This was expected as the level featured both players
separate by a wall, with no possible interaction. The level 6 (M
= 3.9, SD = 2.132) had particularity that is mistakes were not
made the players could individually collect all the diamonds.
However if a mistake happened, cooperation was required to get
back in track. Lastly, level 7 (M = 3.1, SD = 2.025) did not
require cooperation per se, but considering some player styles
cooperation would be preferred for completion.

"Foi necessária cooperação para completar o
nível"

A Series N Mean Std. Deviation

Level 2 10 5.40 .699
Level 3 10 1.70 1.567
Level 4 10 5.50 .707
Level 5 10 4.20 1.687
Level 6 10 3.90 2.132
Level 7 10 3.10 2.025

Table 1. Reported results from the 6 point Likert scale from the affirmation
“Cooperation was required to complete the level” for levels 2 to 7 from
questionnaires for the A series.

The aforementioned tendency to use cooperation when
possible is more notable in the B series which levels were made
by the non-cooperative generator. This series can be argued to
be easier, there were no diamonds in hard to reach places that
only with cooperation could be collected. That didn’t mean
however that players did not cooperate. Levels were completed
in far shorter time, being the only series where players often
solved a level in under than 10 seconds and at worst players took
300 seconds to complete a level whereas in the other two series
players took around 600 seconds at times, for the A series and
800 seconds for the C series. These higher finish times were
recorded in level 2 and 5 for both series. This is mainly because
players still chose to cooperate, given the choice. We observed
participants outright choosing to cooperate to collect gems or
make jumps even in cases where cooperation was not required,
and at times prejudicial. Because of this players reported
requiring cooperation in a more uniform way in the non-
cooperative series, with reported values for the non-cooperative
levels on other series, 3 (M = 3.0, SD = 2.582), 6 (M = 4.9, SD
= 1.663), and 7 (M = 4.3, SD = 2.163), being higher. Level 3,
where players are separated, remains the only level where
participants on average didn’t feel cooperation was required.
While these results show us that players felt that cooperation was
required in all level series, with less accentuated differences
between levels in the non-cooperative levels, observation of

gameplay seemed to suggest a lot less cooperation was actually
done in the B series. Results from CPM events recorded (which
we will explore further below) seem to agree with these last
observations.

"Foi necessária cooperação para completar o
nível"

B Series N Mean Std. Deviation

Level 2 10 5.50 .850
Level 3 10 3.00 2.582
Level 4 10 5.40 1.265
Level 5 10 5.20 1.619
Level 6 10 4.90 1.663
Level 7 10 4.30 2.163

Table 2. Reported results from the 6 point Likert scale from the affirmation

“Cooperation was required to complete the level” for levels 2 to 7 from

questionnaires for the B series.

"Foi necessária cooperação para completar o
nível"

C Series N Mean Std. Deviation

Level 2 10 5.80 .632
Level 3 10 1.00 .000
Level 4 10 5.40 .699
Level 5 10 4.60 1.075
Level 6 10 3.40 1.897
Level 7 10 2.70 1.494

Table 3. Reported results from the 6 point Likert scale from the affirmation
“Cooperation was required to complete the level” for levels 2 to 7 from

questionnaires for the C series.

For CPMs events we focused on the results of Worked out
strategies events for levels 2 to 7 in each series. This event was
selected, as along with Global Strategies, is the event that only
occurs with cooperative play. Global Strategies was not used as
the game Geometry Friends forces it to exist a single event per
level, as players always used the same complementary
characters. Let’s start with results for the A series. As before,
Levels 2 (M = 2.0, SD = 1.764), 4 (M = 2.8, SD = 1.814), 5 (M
= 2.8, SD = 1.814) are levels that require cooperative action and
reported a higher amount of events. Level 3 (M = 1.0, SD =
0.667) reported the lowest amount of events. Level 6 (M = 1.6,
SD = 0.516) and 7 (M = 1.2, SD = 0.789) also presented lower
amounts of events.

Worked out strategies - A series

 N Min Max Mean Std. Dev.

Level 2 10 0 5 2.00 1.764
Level 3 10 0 2 1.00 .667
Level 4 10 1 6 2.80 1.814
Level 5 10 1 6 2.80 1.814
Level 6 10 1 2 1.60 .516
Level 7 10 0 2 1.20 .789

Table 4. Results from CPM event recording during play sessions for levels 2

to 7 of the A series.

The B series’ result is highlighted by the maximum number
of CPM events recorded in each level, which compared to the
other two series’ results are generally low, with the exception of
level 6 and 7. We believe the exception is due to player’s being
more used to the non-cooperative levels in the B series, whereas
in the other two series, these levels would pose less of a

challenge compared to the previous ones. The positioning of the
diamonds in the B series might also have influenced this, as it
made the expected path for the circle to be less obvious. Overall
these results show us that the B series had less cooperative
events occur, even if participants felt that the levels were
cooperative.

Worked out strategies - B series

 N Min Max Mean Std. Dev.

Level 2 10 1 3 2.00 .943
Level 3 10 0 2 .60 .843
Level 4 10 1 2 1.40 .516
Level 5 10 1 3 2.00 .667
Level 6 10 1 3 1.80 .789
Level 7 10 1 3 2.00 .667

Table 5. Results from CPM event recording during play sessions for levels 2

to 7 of the B series.

The C series has the highest mean values among all series
recorded. It also has the highest minimum values for recorded
CPM events. We believe this is due to the fact the series was
design, with intent, by a person and as such the challenges were
more refined and required greater interaction.

Worked out strategies - C series

 N Min Max Mean Std. Dev.

Level 2 10 2 6 3.80 1.549
Level 3 10 2 3 2.20 .422
Level 4 10 2 3 2.20 .422
Level 5 10 2 6 3.80 1.549
Level 6 10 1 3 2.00 .667
Level 7 10 0 2 1.60 .843

Table 6. Results from CPM event recording during play sessions for levels 2

to 7 of the C series.

In order to test H2, we decided to use an ANOVA to

compare all 3 series to understand if people could distinguish

between algorithm developed levels and levels designed by a

person. Results suggest that participants weren’t able to

distinguish apart from each other. Our perspective is, as the

levels’ bases were exactly the same participants mainly looked

to the platform placement and overlooked overlapping

diamonds and the unorganized location of diamonds (compared

to when levels were designed by the external researcher). The

null hypothesis being rejected supports there not being a

meaningful difference between both distributions however this

does not support any qualitative analysis. In any case, these

results confirm hypothesis 2. (See table 7). Ideally, the levels

generated by the non-cooperative generator wouldn’t be

identified as designed by a person, as the generator is quite

simple and random in nature, for example overlapping

diamonds in numerous occasions. This would contrast to levels

designed by a person which would be identified as such, if no

effort to disguise this was made. As such it was desirable that

levels generated by the cooperative generator would be

identified as being designed by a person, with results close to

the ones from the levels designed by a person and different from

the results of the non-cooperative level generator.

ANOVA - H2

Sum of

Squares df
Mean

Square F Sig.

Level 2
was

designed
by a

person.

Between
Groups

1.067 2 .533 .224 .801

Within
Groups

64.400 27 2.385

Total 65.467 29

Level 3
was

designed
by a

person.

Between
Groups

3.800 2 1.900 .809 .456

Within
Groups

63.400 27 2.348

Total 67.200 29

Level 4
was

designed
by a

person.

Between
Groups

1.067 2 .533 .193 .826

Within
Groups

74.800 27 2.770

Total 75.867 29

Level 5
was

designed
by a

person.

Between
Groups

4.067 2 2.033 .714 .499

Within
Groups

76.900 27 2.848

Total 80.967 29

Level 6
was

designed
by a

person.

Between
Groups

4.200 2 2.100 .708 .502

Within
Groups

80.100 27 2.967

Total 84.300 29

Level 7
was

designed
by a

person.

Between
Groups

4.067 2 2.033 .640 .535

Within
Groups

85.800 27 3.178

Total 89.867 29

Table 7. Reported results from the 6 point Likert scale’s results from
the affirmation “The level was designed by a person.” for levels 2 to

7 from questionnaires.

VII. CONCLUSIONS

For our hypothesis 1 we wanted to see if players felt
cooperation was required to complete levels generated by the
algorithm. As seen in table 1 for the A series, players felt
cooperation was required to complete levels 2, 4 and 5 all of
which contained cooperative challenges, in the form of
diamonds placed where the circle could only reach when
assisted by the rectangle. The presence of Worked out strategies
events in the A series (table 4) confirms that participants had to
work together in order to overcome obstacles. However,
participants also found levels in the non-cooperative B series to
require cooperation in order to be completed (table 2). We can

see in table 5 that the amount of cooperative events was far
inferior to the other two series (table 4 and 6). This tells us
players did not have to cooperate as often. The levels in the B
series did not require cooperation to be completed however
participants chose to cooperate in order to complete the level, as
we did not restrict players to however they decided to play the
game. When players were separate (level 3, all series)
participants felt cooperation was not required. Otherwise, more
often than not players felt the levels were cooperative. This
allows us to conclude that, given a non-competitive game, where
players have the same goal, when possible players will cooperate
if cooperation is not restricted. The fact that the game requires
two players and they have a common objective seems to be
enough to cause them to cooperate.

As we can see in table 7 results the responses to “the level
was designed by a person” affirmation in each level in the
questionnaire confirm our hypothesis H2 that the players are not
able to distinguish levels generated by the algorithm from levels
generated by a human. We think this is due to the fact to the
level’s base similarities. Levels had the same platform layout but
different diamond positioning. This result tells us that diamond
positioning alone do not cause people to identify games as made
by a person, in Geometry Friends.

A. Contribuitions

We proposed a general solution to procedurally generating

levels with cooperative challenges. Patterns with cooperative

challenges are to be analyzed from pre-existing designer made

levels. A level generator is to create the first generation of levels

to be evolved into levels that closer match the cooperative

patterns. Levels closer matching to patterns have higher fitness.

Fitness can also be influenced by other metrics, such as balance

and proportion of cooperative challenges to non-cooperative

challenges.

We created a procedural level generator that generates

levels with cooperative challenges for the game Geometry

Friends. The algorithm analyses a level’s base composed of the

level’s platforms and player position. An editor is provided to

ease visualization and edition of this level’s base. From the

exclusivity zones found, the algorithm then proceeds to place

diamonds in the level to promote cooperative play and ensure

the presence of cooperative challenges, when possible. We

prepared a heuristic system to further improve results by the

current generator and to later be adapted into a better,

evolutionary method.

B. Limitations and Opportunities

The testbed game used, Geometry Friends has an important
limiting factor to our idealized pattern approach. Since the levels
are screen sized, we cannot have macro patterns in this game.
Furthermore, actual level space is vertically limited to less than
two circle jumps. If we had used a cooperative game that
allowed bigger levels we could have explored pattern
identification and use in evolving building blocks for the level.
Our first approach featured nodes as a means of abstracting a
zone into a single block, however the size restriction of the level
meant there was no actual space to do anything other than place
a single platform in the area the node was assigned. And so we

decided, in this work to move away from implement it in
Geometry Friends.

C. Extendibility

As described in chapter V, the algorithm would benefit from

being expanded to have an evolutionary part. The current

algorithm generates a level and verifies whether it matches the

desired heuristic values. If it doesn’t it is discarded and a new

one is generated, with no regards to previous generations. The

margin system implemented allows for an increasingly

diversity of values to be accepted, so long as they are close

enough and a mechanism of varying the amount of diamonds to

be generated is in place, which facilitates finding a solution

however we believe this is not the best solution. What was

intended was for the algorithm to generate a population of

levels, and evolving the levels that closer matched the heuristics

with few generations. We believe this would greatly improve

results but not as much as the next suggestion.

The above suggestion was planned and should be easy to

implement. As a means to further improve the generator we

believe two things would have great impact. First

would be base level generation. The current generator takes in

an already made level. It is currently a mixed-authorship

algorithm, with a human designing the base level. Used as such

it can definitely produce good results, however taking the step

to turn it into an algorithmic generation that used human help

would allow a more massed use of the algorithm, such as

automatic level generation in runtime. Using Geometry Friends

as an example, for this we would need a generator that could

create cooperative challenges such as jumps and gaps that the

rectangle had to fill for the circle to pass over. We developed a

simple one in the first generator, but it only generated platforms

and so would generally have at most 2 cooperative challenges,

and they would always be a jump. This would quickly become

uninteresting for the rectangle. More diverse levels would be

required.

The second is the automatic generation of cooperative

puzzles. What sets cooperative games like portal is the puzzles

present in the level. While our theorized solution would be able

to match already made and analysed cooperative puzzle by

identifying them as patterns and work towards them and it

would be able to create hybrids of existing patterns it cannot

create new patterns by itself. As such an algorithm that can

create cooperative puzzles will certainly produce more

interesting results, in the long run. Generated cooperative

puzzles could then be used as a base to produce more interesting

cooperative levels. This seems to be, however, a much more

difficult task than what we have done here.

REFERENCES

[1] Kent, S., And then there was Pong, in Ultimate History of Video Games,
pp. 38-39

[2] Joust, William Electronics, Inc. (1982) [Arcade game]

[3] Elite, Acornsoft, Firebird, Imagineer (1984) [Videogame]

[4] Rogue, Toy, M., Wichman, G., Arnold, K., Lane, J. (1980) [Videogame]

[5] The Elder Scrolls: Skyrim, Bethesda Game Studios, Bethesda Softworks
(2011) [Videogame]

[6] Borderlands, Gearbox Software, 2K Games (2009) [Videogame]

[7] Cloudberry Kingdom, Pwnee Studios (2013) [Videogame]

[8] Cook, M., ANGELINA, Available at (last accessed 19/12/2014).

[9] Cook, M., Colton, S., Gow, J., Initial results from co-operative co-
evolution for automated platformer design in Applications of
Evolutionary Computation Lecture Notes in Computer Science, Vol. 7248
(2012), pp. 194-203

[10] Shaker, N., Sarhan, M. H., Al Naameh, O., Shaker, N., Togelius, J., (2013)
Automatic Generation and Analysis of Physics-Based Puzzle Games in
(2013) 2013 IEEE Conference on Computational Intelligence in Games
(CIG) pp. 1-8, Niagara Falls, ON, IEEE

[11] Compton, K., Mateas, M., (2006) Procedural Level Design for Platform
Games in (2006) Proceedings of the 2nd Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE), Marina del Rey,
California, AAAI (Association for the Advancement of Artificial
Inteligence)

[12] Dahlskog, S., Togelius, J., Procedural Content Generation Using Patterns
as Objectives (2014) in Applications of Evolutionary Computation
Lecture Notes in Computer Science (2014), pp. 325-336

[13] Dahlskog, S., Togelius, J., A multi-level level generator (2014) in IEEE
Conference on Computational Intelligence and Games 2014 (2014)
Dortmund, Germany, IEEE

[14] Rocha, J.B., Mascarenhas, S., Prada, R., Game mechanics for cooperative
games (2008) in Zon Digital Games 2008 (2008) pp. 72-80, Porto,
Portugal, Centro de Estudos de Comunicação e Sociedade, Universidade
do Minho

[15] El Nasr, M.S., Aghabeigi, B., Milam, D., Erfani, M., Lameman, B.,
Maygoli, H., Mah, S., Understanding and evaluating cooperative games
(2010) in CHI ’10 Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2010), pp. 253-262, New York, NY,
USA, ACM (Association for Computing Machinery)

[16] http://gaips.inesc-id.pt/geometryfriends/?page_id=6 (last accessed 7-10-
2015)

