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Resumo

Neste documento é proposto um sistema de recomendação, onde os interesses es-

pećıficos dos utilizadores são tidos em conta, para determinar as recomendações. Os

interesses são determinados usando um self-organazing map, por cada utilizador, em

vez de utilizar apenas um para agrupar os utilizadores. O sistema combina avaliações e

descrições dos filmes, originando um Sistema de recomendação com filtragem h́ıbrida,

que utiliza filtragem colaborativa e filtragem baseada em conteúdo. Duas métricas de

similaridade são propostas para conseguir produzir a filtragem h́ıbrida. Para avaliar

o sistema, será apresentada uma comparação de todas as experiências realizadas uti-

lizando o MovieLens-100k dataset (ML), na qual se inclui a avaliação do processo de

identificação das entidades e avaliação da precisão de todas as soluções propostas para

Sistema de recomendação.

Palavras Chave: Sistema de recomendação, Self-organizing maps, Filtragem

colaborativa, Filtragem baseada em Conteúdo, Filtragem h́ıbrida.
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Abstract

In this document is proposed a movie recommendation system, where users spe-

cific interests are taken into account, to determine recommendations. The interests

are identified by a Self-organizing map, for each user, instead of one clustering groups

of users. The system combines movies ratings and descriptions, leading to an hybrid

filtering recommendation system, which uses both collaborative and content-based fil-

tering. Two similarity metrics were proposed to achieve the hybrid filtering algorithm.

In order to evaluate the proposed system, we provide the comparative results of a set of

experiments based on the MovieLens-100k dataset (ML), which include the evaluation

of the Entity identifier process and accuracy evaluation of all Recommendation systems

variations we have tested.

Keywords: Recommendation systems, Self-organizing maps, Collaborative

filtering, Content-Based Filtering, Hybrid filtering.
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. . . à Ana Limpo,

por me terem apoiado ao longo deste projeto.

iv



Contents

Resumo i

Abstract ii

Agradecimentos iii

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic concepts 3

2.1 Self-organizing maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Recommendation systems . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Content based filtering . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Hybrid filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related work 12

3.1 RS: Historical Contextualization . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Current research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Hybrid Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Development of new similarity metrics . . . . . . . . . . . . . . 14

3.3 RS using Self-organizing Maps . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Movie Recommendation systems . . . . . . . . . . . . . . . . . . . . . . 15

4 System architecture 17

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Entity identifier architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

v



4.3 Recommendation system architecture . . . . . . . . . . . . . . . . . . . 19

5 Identifying the user and his entities 23

5.1 Movie description getter . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Description crawler . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.2 Text processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 SOM entity identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 User SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.2 Node clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.3 Entity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Movie recommendation system 31

6.1 SVD as a Recommendation system . . . . . . . . . . . . . . . . . . . . 31

6.2 KNN as a Recommendation system . . . . . . . . . . . . . . . . . . . . 32

6.2.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.2 Modified Pearson correlation as similarity metric . . . . . . . . 34

6.2.3 Weighted similarity between users and entities . . . . . . . . . . 34

7 Evaluation and results 35

7.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Evaluated parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Entity identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.2 Recommendation system . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Entity Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.2 Recommendation system using SVD . . . . . . . . . . . . . . . 39

7.3.3 Recommendation system using KNN . . . . . . . . . . . . . . . 40

7.3.4 Overall RS results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusions 45

Bibliography 46

vi



List of Tables

7.1 Evaluation of methods to find the movies IMDB id. . . . . . . . . . . . 37

7.2 Number of movies with description. . . . . . . . . . . . . . . . . . . . . 38

7.3 Number of words in a bag of words. . . . . . . . . . . . . . . . . . . . . 39

7.4 Impact of using di↵erent similarity metrics for users and entities. . . . . 42

7.5 Evaluation results for the RS using SVD, with di↵erent Entity models,

using the nodes or entities. . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.6 Evaluation results for the RS using KNN, using k = 500, with di↵erent

Entity models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



List of Figures

2.1 SOM input nodes and output nodes. . . . . . . . . . . . . . . . . . . . 3

2.2 Example of a U-Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Example of ratings prediction, using CF user-based approach [1]. . . . . 6

2.4 Example of the users ratings and their correlation. . . . . . . . . . . . . 7

2.5 SVD matrix decomposition into U , S and V T . . . . . . . . . . . . . . . 9

2.6 Several models of hybrid filtering, using both CF and CBF [1]. . . . . . 11

4.1 Main components of the RS. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Example of entity rating matrix formation. . . . . . . . . . . . . . . . . 19

4.3 Entity Identifier Architecture. . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 An example of an entity visual map for a user. . . . . . . . . . . . . . . 21

4.5 Recommendation system architecture. . . . . . . . . . . . . . . . . . . . 22

5.1 Architecture of our Entity Identifier. . . . . . . . . . . . . . . . . . . . 24

5.2 Pre-processing the synopsis to build a term vector. . . . . . . . . . . . 26

5.3 How to form a User SOM . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Identifying nodes that must be clustered. . . . . . . . . . . . . . . . . . 28

5.5 How entities are formed, using connected-component analysis. . . . . . 28

5.6 Example of the detailed information regarding one entity. . . . . . . . . 29

5.7 Example of an entity visual map. . . . . . . . . . . . . . . . . . . . . . 30

6.1 Architecture of a Recommendation System using SVD. . . . . . . . . . 32

6.2 Architecture of a Recommendation System using KNN. . . . . . . . . . 33

7.1 Histogram of number of words, per document. . . . . . . . . . . . . . . 38

7.2 Entity visual map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 SVD performance, when using the nodes. . . . . . . . . . . . . . . . . . 40

7.4 SVD performance, when using the entities. . . . . . . . . . . . . . . . . 41

7.5 KNN performance, when tuning the number of neighbours. . . . . . . . 41

7.6 KNN performance, when tuning the coe�cient ↵. . . . . . . . . . . . . 42

viii



List of Acronyms

BMU Best Matching Unit

CF Collaborative Filtering

CBF Content-Based Filtering

IDF Inverse Document Frequency

IMDB Internet Movie Database

KNN K-Nearest Neighbours

ML MovieLens-100k dataset

MAE Mean Average Error

MSD Mean Square Di↵erence

PHIT Perfect Hit

RS Recommendation System

SOM Self-Organizing Map

SVD Singular Value Decomposition

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

U-Matrix Unified-Distance Matrix

WS Weighted similarity between users and entities

ix



Chapter 1

Introduction

1.1 Contextualization

Technology evolution led to a big and diverse amount of information on the internet.

This evolution caused the user to be overloaded with information [2]. Recommendation

systems allow us to cope with this overload, by cataloguing a vast list of items, that

later can be recommended. This recommendation is determined by a vast number of

techniques, highlighted by the scientific community [2, 3]. Nowadays, recommenda-

tion systems can be found in a vast number of services, such as movies, music, news,

products and services recommendation, among others [4].

Recommendation systems allow to discover new items that might please the user,

among the diversity of items available. Some websites, such as Amazon, Grouplens,

Ebay and Netflix, are real examples of services that benefit from providing recommen-

dations for their clients [5].

Despite the research on this topic, few references make use of Self-organizing Maps [2,

6, 7, 8]. In addition, it was never applied to identify and present the specific interests

of a single user, nor exploited the items descriptions, using Self-organizing maps, to

enhance the recommendation system performance [6]

This work has two objectives: (1) identify users specific interests and use them

to enhance the RS and (2) evaluate if the Self-organizing maps, using content based

information, are a viable solution to represent the users interests. This two defined

goals contribute to provide a new solution, creating models to represent users interests

and also to develop new similarity metrics for hybrid systems.

The defined goals were achieved, we were able to identify users specific interests

and use that information in the context of Recommendation system.

1.2 Dissertation layout

This dissertation is composed of eight chapters which are structured as follows:

1



• Chapter 2 presents the basic concepts regarding Self-organizing maps, and rec-

ommendation systems;

• Chapter 3 contains related work about recommendation systems and self orga-

nizing maps;

• Chapter 4 describes the architecture of the proposed system, including the

entity identifier and the actual recommendation system;

• Chapter 5 shows how the entity identifier functions;

• Chapter 6 clarifies how we developed the recommendation system;

• Chapter 7 presents the evaluation of the developed system;

• Finally, Chapter 8 contains the conclusions.

2



Chapter 2

Basic concepts

In this chapter, the concepts of Self-Organizing Map (SOM) and Recommendation

System (RS) will be introduced.

2.1 Self-organizing maps

First presented by Tuevo Kohonen in 1982 [9], the SOM allows to represent signals

with large dimensionality in a lower-dimensional space, so that the formed topology,

is observable by the human eye as a map [9]. With SOMs, patterns in the data are

identified using a unsupervised neuronal network, which is responsible for representing

the high dimensionality signals using a map, generally with one or two dimensions [2].

In Fig. 2.1, the SOM algorithm is illustrated. The input nodes are vectors with high

dimensionality, while the output nodes form a map, in this case with a 5 by 5 layout.

Figure 2.1: SOM input nodes and output nodes.

This clustering technique is based on a competition training, split in two separate

3



stages, forming a iterative algorithm that executes each of them alternately. On the

first stage, for each learning sample, the distance is calculated against all the output

nodes. Then, the nearest node is selected as the Best Matching Unit (BMU) [2, 10].

The second stage of the algorithm is responsible for the update of all the input

nodes position. When the best matching unit for each sample is identified, the SOM

reprograms the nodes positions taking into consideration the BMU, using Eq. 2.1.

m
p

(t+ 1) = m
p

(t) + ↵(t)h
cp

(t)[x
n

�m
p

(t)] (2.1)

In Eq. 2.1, m
p

represents each node, h
cp

is a neighbourhood function that represents

distances between a node and the BMU. h
cp

can be for example a Gaussian function.

↵(t) is the learning rate of the output node, which decreases as function of t so that

the algorithm can learn faster in the beginning but slower over time. The distance

between the sample x
n

and each m
p

is also taken into consideration and the variable t

refers to the number of iterations occurred.

After completing T iterations, the competition training stops. The SOM training is

then complete, the output nodes can be mapped on a matrix and the distances between

them can be drawn, forming the Unified-Distance Matrix (U-Matrix) [11].

The U-Matrix presents the distances between contiguous nodes. This map is based

on the distance between the contiguous output nodes, using their m
p

vector [11]. An

example of the U-Matrix visualization is shown in Fig. 2.2, where the values nearest

to one correspond to similar nodes and zero to more distant nodes.

Figure 2.2: Example of a U-Matrix.
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2.2 Recommendation systems

The first RS was developed by Goldberg et al. in 1992 [12], in order to solve the

overload of emails that users had in their inbox. It is a filtering algorithm where users

collaborate by registering their reaction to the documents after reading them [12].

RS are a networking tool that o↵er dynamics and collaborative communication,

interaction and knowledge [13]. On the last twenty years, the demand of RS has

only increased, as it allows users to deal with big amounts of data, providing them a

selection of personalized recommendations, services and contents. As a result, various

techniques have been developed and studied, both from the scientific community and

from companies, since it allows them to increase their profit [4].

A RS is composed by two modules: a database and a filtering technique [1]. The

database is responsible for storing the information about users, items and the associated

ratings. The filtering technique is composed by an algorithm, generally split in two

stages. On the first, the similarities between users or items are identified providing a

neighbourhood of each item or user. At the second stage, the system predicts ratings

corresponding to the items unseen by the user, and only the best ones are used as

recommendation [14].

As result of research, several types of filtering algorithms have been developed [1,

4, 15, 16]:

• Collaborative filtering: recommends items based on similar users and their rat-

ings;

• Content-based filtering: the user receives recommendations based on the similar-

ity of the profile and the items features;

• Demographic filtering: based on information regarding the user, for example, the

gender, the age, the profession and the location of the user;

• Social filtering: by resorting to the user social network;

• Hybrid filtering: result of a combination of di↵erent filtering techniques.

On the following sections, we will discuss more extensively the three most common

types: collaborative , content-based and hybrid filtering, which we use in our work.

2.2.1 Collaborative filtering

Collaborative Filtering (CF) algorithms perform the comparison of users ratings,

resulting in the identification of the most similar ones [17]. Most of the research has

been done using this type of filtering as it is simple and provides good results. The

two main focuses of research are how to define the similarity metric and also how to

predict a rating to an item not rated by a user.

The two most used CF approaches are [1, 4, 18, 19]:

5



• user-based: identifying the user neighbours (i.e. the most similar users) and then

predicting a rating, based on the ratings of the neighbours;

• item-based: identifying the items neighbours (i.e. the most similar items) and

then predicting a rating, based on the ratings of the neighbours;

In Fig. 2.3, we show an example of a RS using CF with a user-based approach. The

similarity between two users (u and j), is obtained by computing the complement of

the euclidean distance (Eq. 2.2). The variable r
u,i

corresponds to a rating from user u

to the item i. The equation uses only the set I, as it contains only the ratings shared

by both u and j (rows in the matrix).

sim(u, j) = 1�
sX

i2I

(r
u,i

� r
j,i

)2 (2.2)

As an example, we present one way to compute the top 3 recommendations for user

4. First, the similarity sim(4, j) between 4 and all the other users would be computed.

Using the K-Nearest Neighbours (KNN) algorithm the most similar are selected, in this

example they are only three users (2, 5 and 7). Then, using only those neighbours, the

RS predicts the rating on all the items i that the user has not rated. In this example,

the prediction equation is the average of the rating of the item, considering only the

neighbour users. Finally, the top 3 items are selected (1, 7 and 9) and recommended [1].

Figure 2.3: Example of ratings prediction, using CF user-based approach [1].

In practice, many other similarity metrics and prediction equations can be, and are

used. We now explain the most commonly adopted.
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Similarity metric

When using CF algorithms, a similarity metric is responsible for comparing users

or items and attribute them a degree of similarity. A reference for the most common

ones can be found in [17]. We will explain in more detail the Pearson correlation, as it

is vastly used in CF and will be used in our work.

Pearson Correlation was proposed by Shardanand and Maes [20], in 1995 and it

has been widely used in RS, as it provides good results [17]. It is obtained by applying

Eq. 2.3, where I represents all items rated by both users u and j. The average of all

ratings from user u is represented by r̄
u

and the average of all ratings from user j is

represented by r̄
j

.

sim(u, j) =

P
i2I(ru,i � r̄

u

)⇥ (r
j,i

� r̄
j

)
pP

i2I(ru,i � r̄
u

)2 ⇥
pP

i2I(rj,i � r̄
j

)2
(2.3)

The result of Eq. 2.3 will be in the interval [�1, 1], where a similarity equal to

�1 corresponds to a inverse correlation and a similarity equal to +1 to a positive

correlation [6]. Values near zero show that no linear correlation exists between the two

users. In Figure 2.4 we illustrate an example of three users who have four items in

common. The users 1 and 2 have a positive correlation according to their ratings, even

though they did not rate the items exactly the same, there is a correlation between the

two.

Figure 2.4: Example of the users ratings and their correlation.

Prediction metric

The prediction metric is responsible for taking advantage of the similarities between

users (or items) and provide a prediction for the item. There are numerous ways to

make predictions, and the most common ones are described in [17]. In our solution we

used a variation of the most common Equation to make predictions.
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We adopted the adjusted weighted aggregation (deviation-from-mean), represented

by Eq. 2.4, since it is an improved equation. This equation allows us to consider the

deviation from the mean of each user rating (r
j,i

� r̄
j

), instead of only considering the

rating alone r
j,i

, as the most common Equation does [17].

In Eq. 2.4, p
u,i

denotes the prediction value determined, µ
u,i

is defined in Eq. 2.5

and corresponds to a normalizing factor [6].

p
u,i

= r̄
u

+ µ
u,i

X

n2Gu,i

sim(u, j)⇥ (r
j,i

� r̄
j

) (2.4)

µ
u,i

=
1P

n2Gu,i
sim(u, j)

() G
u,i

6= ? (2.5)

Collaborative filtering using SVD

Singular Value Decomposition (SVD) is used as a recommendation method, and

it was firstly used on a case study [21]. It performs a decomposition of the rating

matrix. As a result, it enables a reduction of dimensionality that improves the overall

RS accuracy and e�ciency.

The method works as follows. The ratings matrix (X) is decomposed in three

matrices: U , S and V T (Fig. 2.5) using SVD [22]. There is a lot of research in how

to perform this decomposition since this is the most computational demanding task in

the recommendation process [23, 24]. SVD allows to reduce the dimensionality of the

problem by cropping U , S and V T , on the k dimension. In Fig. 2.5, n is the number

of items, m the number of users and k the number of kept features, being a lower or

equal than n and m.

Regarding the decomposed matrices, U contains features describing each user, S

provides information about the weight of each element in a row or column, on the

matrix U and V T respectively, and V T which contains vectors with features describing

the items.

Note that the original matrix X can not be rebuilt after cropping the decomposed

matrices, therefore resulting in eX, which is an approximate rating matrix.

With Eq. 2.6 it is possible to predict a rating (p
u,i

) for any pair user (u) and movie

(i). The value r̄
u

represents the average rating of u and k the number of features

selected from the decomposed rating matrix.

p
u,i

= r̄
u

+ U
k

(u)⇥
p
S
k

⇥ V T

k

(i) (2.6)

2.2.2 Content based filtering

Sometimes, by using the items meta-data, recommendations can be enhanced since

it provides detailed information about either the item or the user. For that reason,

Content-Based Filtering (CBF) was introduced as a filtering technique. It traditionally

8



Figure 2.5: SVD matrix decomposition into U , S and V T .

works by determining items related to those that users previously manifested their

interest in [14].

On the cinematographic domain, for example, movie descriptions such as synopsis,

genre, actors, directors, keywords and many others can be used to obtain the similarities

between movies [14].

Most of the times, this descriptions have to be pre-processed and converted into

something comparable between them. When dealing with text, several operations

such as the removal of stopwords, stemming and the formation of the bag of words

representation, are generally done as a text pre-processing algorithm [25].

The removal of stopwords is a process that deletes from the text, the most common

and usually not relevant terms, such as: “the”, “in”, “on”, “at”, “from”, “I”, “he” and

many others.

To further simplify the terms, stemming can be performed, e.g. aggregating terms

with a similar root [26]. Considering, for example, the terms: “win”, “winner” and

“wining”. When stemmed, they would be transformed to the form “win”. Therefore,

the complexity of the system can be reduced since the diversity and the number of

di↵erent terms will become smaller.

After removing stopwords and performing stemming on all textual descriptions on

a collection of items, a bag of words representation can be created. This consists in

representing each item as a vector, where each dimension corresponds to a word.

To describe each item, a vector with the weight of each term on the text can be

computed. The most common weighting scheme used is the so-called Term Frequency-

Inverse Document Frequency (TF-IDF) [27].

Term Frequency (TF), shown in Eq. 2.7, determines the relevance of the term in

the item description, where f
i,j

is the number of times that a term j is present on each

item description i.

9



TF
i,j

=
f
i,j

max{f
z,j

} (2.7)

The Inverse Document Frequency (IDF) is computed by Eq. 2.8. The values

represent how rare terms are in the collection of items. The variable N is the number

of item descriptions available and n
j

the total of documents containing the term j.

Thus, rarer terms have higher IDF weight.

IDF
j

= log
N

n
j

(2.8)

Finally, the TF-IDF value takes into consideration the frequency of the term on

the document (TF) and weights it with the frequency of the term on the collection of

items (IDF). To compute each element of the it Eq. 2.9 is used.

w
i,j

= TF
i,j

⇥ IDF
i

(2.9)

Then each text corresponding to the item description is finally represented by the

vector:

�!
d
i

= (w
i,1

;w
i,2

; . . . ;w
i,k

) (2.10)

A user can then be represented by average of items descriptions
�!
d
i

. For example,

by computing the average of all item description vectors rated by the user. Then it can

be used to represent each of the users, making users and items comparable. In order

to identify the relevance of each item to a user, a similarity metric must be defined

between the user and the items. An example is Eq. 2.2 [4].

If a RS only uses CBF, it will most likely su↵er from the over-specialization problem.

Thus, generally CBF is combined with other types of filtering techniques, such as

Collaborative Filtering (CF) [1, 28].

2.2.3 Hybrid filtering

The previously discussed filtering techniques can be combined to produce a RS that

uses hybrid filtering [29]. Combining them is expected to improve the overall quality of

the RS and the provided recommendations [15, 28]. Although any filtering techniques

are possible to be combined, we will only focus on combining CF an CBF, since we will

use them on our system. There are several ways to combine two filtering techniques [4],

as shown in Figure 2.6:

• Case A: implementing a CF and a CBF separately and combining their recom-

mendations afterwards. For example, if we use the average between the predic-

tions from both CF and CBF;

10



Figure 2.6: Several models of hybrid filtering, using both CF and CBF [1].

• Case B: incorporating some of the characteristics of the CBF into the CF, e.g.

the incorporation of personal information in CF, to alleviate the problem of

introducing a new user to the RS;

• Case C: building a general model that takes into account characteristics from both

CF and CBF, therefore combining their results with a machine-learing algorithm

(e.g. using Bayes-Networks);

• Case D: incorporating some of the characteristics of the CF into the CBF. For

example, using the determined recommendations from the CF used as an input

to the CBF algorithm;
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Chapter 3

Related work

Research on RS has been wide and a vast number of discoveries have been done to

define new techniques and enhance such systems [1, 30]. In this Chapter, a summary

analysis will be done over the main research topics of the last decade, between 2002 and

2014. This analysis will be based on surveys [1, 4, 30, 31, 32]. Then, we will present

some works that we consider relevant to the development of our work and present

solutions for the current problems in RS. To conclude, some of the works that use

SOM to enhance RS will be discussed followed by RS that were developed specifically

for producing movie recommendation.

3.1 RS: Historical Contextualization

Although we can find reference to early RS since 1992 [12], until 2002 the main

research topic on RS was how to combine various filtering techniques to enhance the

recommendations. In other words, how to develop a RS using hybrid filtering. At the

same time, the topic of knowledge-based filtering was emerging [31].

Around 2004 and 2005, due to the emerging of larger-scale internet services, the

current research topics were no longer the same. Most of the research was about the

computational cost of the RS, either regarding the used memory to run the RS or

about the time that the recommendations would take to be computed [4]. The general

use of RS also led to the conclusion that they need to be tuned to work properly in

di↵erent domains. For example a RS designed for recommending in the movie domain

will probably have a di↵erent performance in the music domain. The robustness and

the transparency of the RS were, thus, at that time a recent research field [4, 32].

3.2 Current research

Today, there are many studies regarding RS. Yet, there is still room for the devel-

opment of new techniques [30]. Current research is mostly about: (1) hybrid filtering,
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(2) development of new similarity metrics and the evaluation of their results, (3) the

inclusion of security and privacy methods into the RS and (4) the extraction of user

consumption pattens, allowing the RS to better identify each individuals interests [1].

The topics (1) and (2) will be discussed on the following subsections, since they are

the most relevant for the purpose of our work.

3.2.1 Hybrid Filtering

A large number of research focus on hybrid filtering [15, 28, 29, 33]. Most of them

combine CF with another filtering technique, thus exploiting the advantages of each to

enhance the RS results [1, 33].

In [29], an hybrid approach is used to build a RS for the book domain, using

the following matrices: user ⇥ book with the ratings of the user per book and the

user⇥author with the average rating of all books from the same author. Then, we use

two item-based CF approaches: (1) a matrix of book similarity book⇥ book and (2) an

author similarity matrix author⇥author. With the two similarity matrices computed,

they were combined using the weighted arithmetic mean Equation [29], responsible

for weighting both and produce a hybrid filtering. The authors suggested that even

though the proposed solution improved the overall predictions, further investigation

was needed regarding the weights use in the weighted arithmetic mean equation.

Another example of RS that used hybrid filtering is [34]. This technique combined

CBF and CF by forming a pseudo rating matrix, which would include the predictions on

non rated movies by each user, computed using CBF. This pseudo rating matrix would

afterwards be used as a regular rating matrix when performing CF, but the information

of predictions resulting from CBF would help the CF algorithm to compute similarities.

One way to combine two di↵erent filtering algorithms is to take advantage of the

combination of the similarities determined, by each metric. With the solution proposed

in [35], it is possible to accomplish that goal, by weighting the relevance of each simi-

larity with a coe�cient ↵. Their goal was to combine two similarity metrics, one using

the traditional obtained between users sim
user

(u, j) and the other with the similarities

based on formed groups of users sim
group

(u, j). Those groups were created according

to the descriptions of the items they rated. Based on these, a clustering algorithm was

applied and the groups formed. Afterwards, a group rating matrix was created, form-

ing a smaller rating matrix with the users within that group [35]. Equation 3.1 weighs

the determined similarity with the user rating matrix sim
user

(u, j) and the similarity

obtained by using the group rating matrix sim
group

(u, j), resorting to the term ↵.

sim(u, j) = (1� ↵)⇥ sim
user

(u, j) + ↵⇥ sim
group

(u, j) (3.1)

In our work we adapted the Eq. 3.1, to aggregate both user and entity similarities.

More details are shown in Chapter 6.
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3.2.2 Development of new similarity metrics

A RS searches for items to recommend. It must compare items and users to achieve

this. The Starcoll method, in [36], helps the developed RS to alleviate the problem of

cold-start. The problem of cold-start occurs when a RS either does not have enough

information about the user or item. The developed method is able to compare all users,

even those that do not share rated items. To make this possible, a user model was

created, which contained a representation of the users features, by using all the items

features as user interests and comparing them to obtain the similarities [36].

Another technique developed a similarity metric that outperforms the Pearson cor-

relation [17]. This new metric was able to enhance the CF techniques, using the

complement of the Mean Square Di↵erence (MSD), shown in Eq. 3.2, and combining it

with the Jaccard similarity, shown in Eq. 3.3, resulting in the similarity Eq. 3.4. Note

that r
u

and r
j

represent the users rating set, containing only the items shared by both.

The cardinality of ratings shared by both users is represented by #r
u,j

.

MSD(u, j) =
|r

u

� r
j

|
#r

u,j

(3.2)

jaccard(u, j) =
|r

u

\ r
j

|
|r

u

[ r
j

| (3.3)

new similarity(u, j) = (1�MSD(r
u

, r
j

))⇥ jaccard(r
u

, r
j

) (3.4)

One of the main advantages of this metric is that, with a lower number of neigh-

bours, it still obtains better results than the Pearson correlation, which is one of the

most used similarity metrics [17].

The authors, in [37], developed an improved similarity metric, that instead of using

software, the similarity is computed using cheap electronic components. Their solution

brought improvements that proved to be around two times faster to compute than

Pearson correlation, without compromising the recommendations [37]. Their solution

contributes to a more scalable RS since the time computational cost is reduced [37].

3.3 RS using Self-organizing Maps

SOM have been used in several ways to help RS. The first example is of an hybrid

system, able to combine demographic information about the user [8]. Demographic in-

formation allows to better compute similarities between the users. The SOM clusters

users by taking into account only their demographic information. Then, the identified

clusters can be used to determine the neighbourhood of the user for CF. Is worth notic-

ing that their work improved the system both in computational cost and scalability [8].

The algorithm of Probabilistic SOM [7] was a result of the combination of Principal

component analysis, which is commonly used when dealing with high dimensionality
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problems, followed by a SOM. The probabilistic stands for the fact that this solution

predicts the uncertainty of the principal components that will be used on the SOM.

Although the results presented were not good when Probabilistic SOM was used in

isolation, this solution was seen in works developed for Netflix Prize [38], because it

can ensemble with other models, and combined have an improved global performance.

Finally, S. Gabrielsson compared the performance neighbourhoods using either

KNN or SOM [6]. However, they did not gave must emphasis to the use of CBF

to try to enhance the system. Their CBF approach used keywords as item descrip-

tions. One di↵erence that must be highlighted is that this RS did not produce a SOM

specific for each user but a generic SOM shared by all users, using all the movies infor-

mation. Ours will only use the movies rated by the respective user, therefore we will

have a SOM model per user in our solution.

3.4 Movie Recommendation systems

A large number of RS were tested with movie-based datasets [1, 19, 39, 40]. Yet,

not all of them are specifically for movie recommendation, being easily applicable in

other domains. In [41] an improved movie RS is presented, which exploits the movies

genres. Their solution represented users and movies based on their genres. Afterwards,

they tried to correlate users and movies in two di↵erent ways: (1) according to their

number of equal genres; (2) according to the decade when the movies were released.

Their findings shown that more precise recommendations were obtained using (2) a

decade-based genre correlation.

Also, the More system [42] is a RS developed with the movie domain in mind, by

exploiting the movies descriptions and the rating matrix. Their goal was to develop an

hybrid system that combines the CF and CBF. Yet, they did not include the movies

synopsis as descriptions.

They used a traditional CF with the KNN algorithm and the cosine similarity

metric [42]. To develop the CBF, the Naive-bayes algorithm [1] was used, in which

the class labels were the possible ratings. They presented a hybrid filtering with two

possible modes: (1) in which the CF was only used if there were at least five neighbours,

otherwise it would be applied CBF; (2) which was based on the number of ratings that

the user had made: if they were fewer than 40, only CBF would be used otherwise only

CF was applied. Their findings showed a slight improvement over traditional RS [42].

In [43] the authors proposed an interactive RS, which was able to produce per-

sonalized recommendations, resorting to online social networks, using a group-aware

social network model, a promising technique for identifying the dynamics of social in-

formation. Therefore, they were able to deal with constant and rapid changes in users

preferences and their social influence. Their solution was split in two main modules:

(1) group-aware social trust management and (2) the recommendation module [43]. A

similar approach was used in our work, since we developed two modules: (1) An entity
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identifier and (2) a recommendation system. Yet, their approach is more focused on

social filtering and ours on CBF.
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Chapter 4

System architecture

In most RS, it is not clear why are the users getting their recommendations [19].

Our primary goal is to identify the users most specific interests, and take advantage of

this knowledge when making rating predictions. To accomplish this goal, we propose to

split each user into several entities, each representing di↵erent tastes. This di↵erence

in tastes is based on movie descriptions and not the ratings that users gave to an

movie. Once identified, the entities will play the role of users with a specific interest

on a given topic (e.g. action movies with superheroes or movies about detectives or

unsolved investigations).

Figure 4.1 shows that our system has two separate components:

• Entity identifier - which is able to split a user into entities, based on the descrip-

tion of rated movies;

• Recommendation system - which performs predictions for movies not yet rated

by the users and recommends only those with better predictions.

Both are independent but can be combined to produce an hybrid filtering solution.

The Entity model will store information regarding the formed entities. This infor-

mation is produced by our Entity identifier, based on the information about movies,

such as: title and release date and will be latter used by the Recommendation system

to improve predictions.

4.1 Overview

Each user will have their specific entities discovered using a SOM. The SOM is

used to discover the entities since it allows clustering the movies, according to their

description and also a map visualization of the formed entities.

The proposed system, first identifies the user entities. As a result, two rating

matrices are available. The first, is the original rating matrix, containing each user

17



Figure 4.1: Main components of the RS.

and its ratings on movies. The second is an entity rating matrix, containing each

entity and its ratings on movies.

To exemplify how the entity matrix creation is done, Fig. 4.2 illustrates both user

rating matrix and the resulting entity rating matrix. User 1 is split into two entities

and User 2 into three entities according to their respective Entity model.

To determine the entities we use a SOM, which clusters the movies rated by the

user, according only to their descriptions. This problem is described detailedly in

Chapter 5.

4.2 Entity identifier architecture

Our main component, the Entity Identifier has the goal of identifying users specific

tastes, using movie descriptions. Our solution employs a SOM to automatically identify

each user’s entities. Each user will thus, be represented by a SOM, using the rated

movies and their respective descriptions. In Figure 4.3 we can observe the various

elements that allow the Entity Identifier to accomplish this goal.

In the Entity identifier, there are two components that deal with external infor-

mation: (1) Movie description getter, which downloads the movie information and

performs the text pre-processing so that movie descriptions can be used for clustering;

and (2) Rating matrix processor responsible for loading the rating matrix.

In our solution, we use the movie synopsis as a description, but, we use other

available features, such as keywords or the producers and actors.

The component named user SOM uses the SOM to identify clusters of movies for
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Figure 4.2: Example of entity rating matrix formation.

a given user. As mentioned before, each node, represents one of the user’s tastes. The

Node clustering component is responsible for grouping the most similar nodes to form

the entities.

As output, the Entity identifier produces an Entity model, which stores the user

SOM and a table with the entities formed and their respective nodes and movies.

Using this approach is possible to create a visual map representation for each user,

showing the set of entities discovered and their associated nodes. This is illustrated

in Figure 4.4. The three keywords on each node are the most relevant words taken

from the movie descriptions that represent the node. The colours di↵erentiate the

entities, based on the similarity between the node. The detailed functioning of these

components will be explained in Chapter 5.

4.3 Recommendation system architecture

A Recommendation System (RS) is able to suggest new items to users that may be

interesting to them. The RS proposed can use the information extracted by the Entity

Identifier, by exploiting the Entity model to improve its recommendation performance.

Our system can use the classic algorithms used on RS literature, such as SVD [44,
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Figure 4.3: Entity Identifier Architecture.

45] or KNN [17, 18]. Nevertheless, the main focus is how to exploit entities (representing

users tastes) to improve the recommendation yielded by those classic techniques. This

is accomplished by the architecture shown in Fig. 4.5.

Our proposed Recommendation System uses the user entities generated by the

Entity Identifier component. The Rating matrix processor component provides the

rating matrix, listing the movies watched by the user. The RS can then use the rating

matrix and the entity model to form an entity rating matrix, where each user is split

in the corresponding identified entities.

Once this is done, we can apply CF techniques, as presented in Fig. 4.5 these can

be either SVD or KNN. For KNN, we can select a similarity metric and a prediction

equation for the RS, as described in Chapter 2.

As referred in Section 3.2, the similarity metric allows the RS to compare two users

(or items) by quantifying the similarity of each pair with a value. In Chapter 6 we

present a more detailed view of how we enhance the similarity method to include both

user and his respective entity information to improve the RS.
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Figure 4.4: An example of an entity visual map for a user.
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Figure 4.5: Recommendation system architecture.
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Chapter 5

Identifying the user and his entities

As the name implies, the Entity Identifier component, mentioned in Chapter 4,

determines the entities of each user. Basically, the system takes the movies and their

descriptions into consideration and, resorting to a SOM, discovers the groups of movies

that form the entities. Formally, it can be seen as a CBF component of a hybrid

Recommendation System (RS).

There are three information sources that can be exploited to describe movies: the

synopsis, the keywords or the rating matrix. Since, for now, we only are interested in

CBF, only the first two will be considered. To better understand our approach, Fig. 5.1

illustrates how the entities are obtained. The three components developed were:

• Movie description Getter: downloads the synopsis and keywords of each movie;

• Entity identifier: splits the user into a set of entities, using only the watched

movies and their descriptions.

• Rating matrix processor: parses the rating matrix in a database to be able to

inform both the Movie Description Getter and the SOM Entity Identifier, which

movies exist on the database and which users watched each movie.

The Movie Description Getter component interacts with the SOM Entity Identifier

by providing a matrix with movies descriptions. As a result, the Entity Identifier pro-

duces an Entity Model as output. This model contains information about entities and

their respective movies, and also information regarding the User SOM. The information

contained in the entity model can be used to produce an entity visual map, as shown in

Chapter 4, with the identified user entities, a table presenting the most relevant terms

in the movie descriptions and the associated movies to each entity. Finally, it can be

used in the Recommendation System (RS) context to enhance its performance.

On the following sections the Movie description getter and the Entity identifier will

be explained in detail.
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Figure 5.1: Architecture of our Entity Identifier.

5.1 Movie description getter

Since we want to identify the entities of a user, the description of the movies will

be used as indicative of the user tastes. For example, for two movies of a sequel or two

action movies about a hostage situation, we expect them to share similar synopsis and

keywords. This is the type of information that we want to extract and take advantage

of, to identify user entities.

For all the movies, the synopsis and keywords were obtained. To do that, we used

one of the most widely known movie database IMDB1. A crawl of the movie database

was done and, afterwards, the movies descriptions obtained. The Movie description

getter can then process the text, from each synopsis, and create TF-IDF (explained in

Chapter 2) vector of the movie, allowing movies to be comparable between them.

5.1.1 Description crawler

Since the Internet Movie Database (IMDB) is one of the most widely used movie

database it was selected as our movie description source. The Description crawler was

developed to store on our system the movies synopsis and keywords.

Our developed Description crawler component has two tasks:

• Find the IMDB movie id;

• Obtain the movie description.

The text is then stored on a file, so it can be pre-processed to achieve a represen-

tation that allow us to compare movies between them.

1IMDB website: http://www.imdb.com
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Find the IMDB movie id

In order to reach the movie descriptions on IMDB, an IMDB id must be found.

In our case, we used the list of movies from the MovieLens-100k dataset (ML)2. This

dataset also provides for all movies their respective IMDB URL. Unfortunately, some

of the provided URL’s no longer work, therefore a more complex procedure must be

adopted to obtain the IMDB id.

First, the movie title and the release date were used to perform a direct query to

the IMDB website. The provided titles in the dataset had generally two formats, such

as:“Toy Story (1995)” and “Flower of My Secret, The (Flor de mi secreto, La) (1995)”.

The first movie, has the original title in English, while the second movie has two titles,

one in English and the other is the original title. If the movie contains both the english

title and the original title, both are used to perform the query. As exemplified below,

for the movie “Flower of My Secret, The (Flor de mi secreto, La)”, released in 1995:

Query URL = http://www.imdb.com/search/title?

title_type=feature&

release_date=1995,1995&

title=Flower+of+My+Secret%2C+The+

%28Flor+de+mi+secreto%2C+La%29

The parameter “title type=feature” allows to filter for only movies, thus neglecting

TV-Series among others.

If the first method fails to find the movie IMDB id, a second method is used. In this

case, a similar query is made to the domain akas.imdb.com, using only the original

movie title and the year of release. Also it requests that only movies are presented,

using the parameters “s=tt&ttype=ft”, and that the title is exactly equal to the one

provided, using the parameter “title?exact=true”. The query is exemplified below:

Query URL = http://akas.imdb.com/search/

title?exact=true&s=tt\&ttype=ft&

title=La%20Flor%20de%20mi%20secreto&

release_date=1995,1995

Finally, if all previous attempts fail, the last method consists of performing a query

to the google search engine, using a string composed of the URL for IMDB and term

“/title” to enforce that where searching for a movie title. An example query is:

Query String = "imdb.com\" "title\"

"Flower of My Secret, The (Flor de mi secreto, La) 1995"

After submitting the query, the first result was obtained, hopefully containing the

URL to the movie in the IMDB.
2Movielens datasets website: http://grouplens.org/datasets/movielens/
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Obtaining the movie description from a movie

After obtaining the movies ids for the IMDB database, we used the library IMDBpy3

to perform the requests of synopsis and keywords.

For movies without synopsis available, all the plots summaries written by users were

obtained instead. Since this cannot be done using the IMDBpy library, we crawled the

IMDB movie URL. In addition to the keywords, we also collected the producer names,

actor names and genres from each movie, using the IMDBpy library. After the task was

completed, all available movies descriptions and IMDB ids were stored on the system.

5.1.2 Text processor

Once all the movies descriptions are obtained, they have to be converted into some-

thing comparable. For this purpose, we used the well-known Vector Space Model [46]

with a TF-IDF term weighting scheme [25]. We now explain how this was performed.

Turning the synopsis text into a term vector

Once known the synopsis, text can be turned into a vector. The steps of this process

that we refer as text pre-processing are presented in Figure 5.2.

Figure 5.2: Pre-processing the synopsis to build a term vector.

First, as a standard procedure in text pre-processing, stopwords are removed [25].

Also standard is the conversion of terms to their stems. In our system, we used the

stemming algorithm provided in the NLTK library4. With the remaining set of stems,

we can now compute the TF-IDF weights, as explained in Chapter 2, and build the

term vectors that represent the movies.

Since the number of terms is still considerably large, some of them will be dropped

out, as shown in the following Section.

Selecting the most relevant terms

Since many of the terms describing the movies are still uninformative, some of the

less relevant must be excluded.

First, terms that exist only in one movie were dropped out, as they cannot be

compared to those of other movies. Following terms were filtered by setting an upper

and lower limit on their TF-IDF and IDF values.
3IMDBpy website: http://imdbpy.sourceforge.net
4NLTK website: http://www.nltk.org
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We note that SVD could have been used instead, to reduce the number of features.

However, we opted not to use it, since features would no longer be readable by humans,

making not clear to users which terms caused the formation of the entities, when

presenting the entity visual map.

5.2 SOM entity identifier

To find user entities, the movie description vectors are provided to the SOM, which

finds groupings of similar movies. The User SOM component will be explained in

Section 5.2.1, followed by the presentation of the Node clustering component in Sec-

tion 5.2.2, responsible for grouping similar nodes into a entity.

5.2.1 User SOM

Each user has a SOM that represents his tastes. Figure 5.3 exemplifies the process

of forming the user entities using the SOM.

The process starts by training the SOM, with all of the users movies TF-IDF

vectors. The SOM will compute the nodes for each movie, by grouping similar movie

descriptions. Finally, the U-matrix is computed, which contains the similarity between

contiguous entities.

Figure 5.3: How to form a User SOM .

The formed entities and User SOM will then, be stored in the Entity model and be

used to identify the entities, as described in the following section.

5.2.2 Node clustering

Since the nodes that the SOM produces are often too specific and some have very

few movies, we further cluster them into groups, which we called entities.

To create the entities, we applied a threshold (t) on the U-Matrix, using Eq. 5.1,

which resulted on a binary matrix U 0 = {u0
x,y

}. This is illustrated in Fig. 5.4.

u0
x,y

=

8
<

:
1, if u

x,y

> t

0, otherwise
(5.1)
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Afterwards, a labelling algorithm, connected-component analysis [47], is applied,

using the neighbourhood and resulting in the entity map,shown in Fig. 5.5. Each

di↵erent label corresponds to a di↵erent identified entity.

Figure 5.4: Identifying nodes that must be clustered.

Figure 5.5: How entities are formed, using connected-component analysis.

5.2.3 Entity Model

Once the nodes have been discovered and grouped into entities, they can provide

useful information on the users preferences. This information is recorded by the Entity

Model.

The entity model is composed by: (1) all users SOM; (2) a table with all users

entities and their respective movies. With content, we are able to provide new infor-

mation to the RS and present more details to the user regarding the formed entities.

The discovered entities and their details can be presented in two di↵erent forms.

In the first, a list of entities is presented. For each entity the most relevant terms,

plus the movies associated are shown. Figure 5.6 exemplifies one of the entities deter-

mined by our system.

The second form presents a more visual approach, using the U-Matrix extracted

from the user SOM, an entity visual map, where all the user entities are represented

and is possible to get an general overview of:
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Relevant terms:

Entity TF-IDF vector: ship, alien, crew, planet, ...

Sum movies TF-IDF vector: ship, crew, planet, signal, ...

Movies List:

1 - Star Trek: First Contact (1996)

2 - Event Horizon (1997)

3 - Star Trek III: The Search for Spock (1984)

4 - Mars Attacks! (1996)

5 - Under Siege (1992)

6 - Contact (1997)

7 - Alien (1979)

8 - Star Trek IV: The Voyage Home (1986)

Figure 5.6: Example of the detailed information regarding one entity.

• how many entities exist;

• the entity tastes that each node represents;

• how many movies are associated to each node.

Figure 5.7 shows an example of an entity visual map. Each box corresponds to a

node, containing an identifier, the 3 most relevant terms from the TF-IDF vector, and

how many movies are associated to the entity. The di↵erent colours correspond to each

of the entities.
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Figure 5.7: Example of an entity visual map.
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Chapter 6

Movie recommendation system

A RS must be able to predict a rating for any user and movie pair. Our system

combines both CF and CBF into an hybrid filtering RS. On this Chapter we show how

to exploit the new information extracted by the Entity identifier to improve recom-

mendations. For this, we will evaluate two unsupervised machine learning techniques:

Singular Value Decomposition (SVD) and KNN, and compare how they perform on

RS.

SVD has been largely used in RS [21, 45, 48]. It presents several advantages,

dimensionality reduction being the most significant one, which usually improves the

computational cost, without loosing the quality of recommendations [21]. KNN [5, 37]

is a more flexibly and modifiable algorithm, where we tried out several similarity metrics

between users and entities [5].

In the context of KNN we have used two di↵erent similarity metrics between users

and entities: Pearson correlation (Eq. 2.3) and a novel metric (Eq. 3.4) which combines

the Mean Squared Di↵erence and the Jaccard similarity [17]. After identifying the

similarities between users, the Eq. 2.4 was used to predict a rating for a given pair user

and movie.

In the following sections, each of these approaches, will be explained in more detail.

6.1 SVD as a Recommendation system

This recommendation method allows the decomposition of the rating matrix, en-

abling a reduction of dimensionality, which boosts the overall RS accuracy and improves

the computational cost of traditional CF [21].

Figure 6.1 shows the architecture of our RS based on SVD. In order to use entities,

the original user rating matrix must be modified.

The Rating matrix processor loads the dataset and the users can be replaced by

their respective entities, which is done by the component Entity rating matrix creation.

This generated the entity rating matrix, as illustrated in Fig. 4.2. After creating the
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Figure 6.1: Architecture of a Recommendation System using SVD.

entity rating matrix, it is decomposed by the SVD technique by the component Rating

matrix decomposition. By selecting a number of features to use, this will allow to

perform a reduction of dimensionality.

Finally, the predictions are obtained, based on the number features, resorting to

the Eq. 2.6, which is responsible for the predictions. We can, afterwards, use this

predictions to evaluate the produced predictions of the RS or to make recommendations

to a user, based on each entity.

6.2 KNN as a Recommendation system

K-Nearest Neighbours (KNN) is a classic implementation of RS using CF. To use

KNN one must define a similarity metric, to perform the comparison between two users

and define a prediction equation to estimate a rating.

In Figure 6.2, a RS architecture using KNN is presented. First, the Rating matrix

processor loads the dataset and builds the rating matrix, then Entity rating matrix

creation knowing the user rating matrix and the entity based model, builds an entity

rating matrix.

To compute the similarity, both user and entity rating matrix must be used. There

will be a similarity metric for users and a similarity metric for entities. The two
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similarity metrics are computed using KNN (Fig. 6.2), by the Compute user similarities

and the Compute entity similarities components, respectively, allowing to identify their

nearest neighbours.

We can, afterwards, compute predictions for movies not rated by users, using the

previously computed similarities in the Eq. 2.4.

Figure 6.2: Architecture of a Recommendation System using KNN.

6.2.1 Prediction

When predicting ratings in the context of CF, one possible approach to this problem

is Eq. 2.4, previously presented. That equation takes into account only the user ratings

and, for this reason can not use the entity model that we developed to enhance the

prediction.

In order to modify it, the average user ratings must be replaced with the average

entity ratings. Equation 6.1 presents this modification, where r̄
e

represents the the

entity average rating. G
u,i

represents the set of neighbours who rated the movie i,

excluding the user u, to whom we are producing a recommendation.

p
u,i

= r̄
e

+ µ
u,i

X

n2Gu,i

sim(u, j)(r
j,i

� r̄
j

) (6.1)
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As before, the value µ is a normalizing factor:

µ
u,i

=
1P

n2Gu,i
sim(u, j)

() G
u,i

6= ? (6.2)

The elements contained in G
u,i

are constrained by the number of k neighbours

selected and by the users that rated the item i. G
u,i

will only include the users that

belong to the nearest neighbours and rated the item.

6.2.2 Modified Pearson correlation as similarity metric

Pearson correlation is one of the most common similarity metrics used in the context

of CF. We tried to improve it, by taking the entity similarity sim
entity

(u, j, i) into

account.

Our modified Pearson correlation, compares both user u and j ratings and multiplies

that correlation by the sim
entity

(u, j, i) on each movie, using Eq. 6.3.

sim(u, j) =

P
i2I(ru,i � r̄

u

)⇥ (r
j,i

� r̄
j

)⇥ sim
entities

(u, j, i)
pP

i2I(Uu,i

� r̄
u

)2 ⇥
pP

i2I(rj,i � r̄
j

)2
(6.3)

The function sim(u, j, i) computes the similarity between the entity of user u, that

contains the movie i and the entity of user j, that contains also the movie i, using the

Eq. 6.3.

6.2.3 Weighted similarity between users and entities

This similarity has the purpose of combining user and entity similarities, Eq. 6.4

denotes this weighted similarity. Notice that a zero ↵ value means that only the users

similarity is applied, while ↵ equal to one applies only the entities similarity.

sim(u, j, i) = (1� ↵)⇥ sim
users

(u, j) + ↵⇥ sim
entities

(u, j, i) (6.4)

sim
entities

(u, j, i) needs to know the users and also the movie, since this is the only

way to identify the correspondent entities.

Note that this similarity also depends on the movie i being rated. Thus, the pre-

diction equation must also include this di↵erence as presented in Eq. 6.5.

p
u,i

= r̄
u

+ µ
u,i

X

n2Gu,i

sim(u, j, i)(r
j,i

� r̄
j

) (6.5)
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Chapter 7

Evaluation and results

The developed RS is a complex system. Several variables must be tuned to produce

good predictions. Most of our e↵ort during the development of this work was experi-

menting new solutions to enhance the system performance in rating prediction, which

is the step before the recommendation.

In this Chapter, we will present our procedure, the used settings and their impact

over the RS overall performance.

7.1 Protocol

To build the entity identifier the rating matrix is obtained from the MovieLens-100k

dataset (ML) dataset and the movies descriptions extracted from the IMDB website.

The ML dataset has a rating matrix composed by 943 users and 1682 movies. From

those, all movies except one have descriptive information, such as title, release date

and a URL to IMDB.

The Entity identifier was evaluated by comparing the results obtained by the RS,

using di↵erent movie features to describe entities. To determine the quality and accu-

racy of rating predictions we use [13, 49]: Mean Average Error (MAE) (Eq. 7.1) and

Perfect Hit (PHIT) (Eq. 7.2). MAE stands for how much is, on average, the error when

making predictions. As for the PHIT, it estimates the percentage of rating predictions

that the RS correctly produced. The goal is to minimize the MAE and maximize the

PHIT.

MAE =
1

|T |
X

(u,i,r)2T

|p
u,i

� r| (7.1)

PHIT =

P
(u,i,r)2T (round(pu,i)� r) == 0

|T | (7.2)

In the Eq. 7.1 and Eq. 7.2, T represents the test set, which contains the users

(u), movies (i) and the ratings (r). The rating prediction determined by the RS is
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represented by p
u,i

.

We used the 5-fold cross validation [50], that is pre-computed on the ML dataset,

thus the train set and test set are randomly split into subsets, where 4/5 are used for

training and 1/5 is used for evaluating the RS.

The evaluation of the RS using KNN is a computational requiring task. For that

reason we decided to pre-compute both user and entity similarities for each of the train

sets and test sets. This way when tuning, for example the number of used neighbours,

the similarities were only computed once for all the tests.

7.2 Evaluated parameters

7.2.1 Entity identifier

The movie description getter module was evaluated by observing the amount of

movies ids that each of the methods developed in the Description Crawler were found

and also present the amount of movies that were able to extract the synopsis and

keywords. To evaluate the pre-processing of text to obtain a TF-IDF vector, will be

presented the number of terms present in the bag of words, before and after the pre-

processing also a histogram with the absolute frequency of terms in TF-IDF vectors.

To evaluate the entity identifier SOM, an unsupervised machine-learning algorithm,

we configured it initially using empirical testing by evaluating the formed entities. The

variables tuned included the output nodes map dimension, or the threshold defined to

limit the amount of words present in the bag of words, as example.

Regarding the entity clustering module, since it was implemented before the RS, we

decided to try tuning the entity identifier in order to try maximize the RS performance

only when configuring RS. Since after concluding the implementation of the RS, we

tuned more accurately the system. Nevertheless, it is a time consuming task and there

is still room for improvements in the produced entity models that might enhance the

RS performance.

7.2.2 Recommendation system

The RS created has two di↵erent CF algorithm, one using SVD and the other KNN.

When using the RS with the SVD, as a CF algorithm, only the entity rating matrix was

used. On the other hand, when using the KNN both user and entity rating matrices

were used to compute the user and entity similarity, respectively.

Regarding the SVD solution, we combined various entity models (see Fig. 6.1) and

compared them. The models are generated by the entity identifier module, to compare

between six di↵erent models tested. One of them includes the rating matrix as movie

description, instead of using either the synopsis or the keywords.

36



Our first goal is to optimize the number of used features in the SVD and discuss

the impact on the RS performance, for each entity model. A baseline will be com-

puted, which is the original user rating matrix with ratings, without using any of the

information provided by the entity model representation of users.

To evaluate the RS using KNN, we only tested the entity model using synopsis.

We decided to try several similarity metrics and compare their impact in terms of

RS prediction quality. Also compared the influence of the average user rating on the

prediction equation , by replacing it with the entity average rating. Afterwards, we

compared the impact of user and entity similarity, by only using di↵erent similarity

metrics and leaving all the other parameters the same.

Finally, two tables present a summary of the results obtained in the several RSs

developed. The first regarding the RS using SVD and the second regarding the RS

using KNN. Using only the Entity model based on synopsis or keywords.

7.3 Results

7.3.1 Entity Identifier

To evaluate the Description crawler, in Table 7.1, we present how many movies

have a valid URL to obtain the IMDB id, and also the amount of movies crawled using

the methods that we developed (see Section 5.1). In addition, we present the number

of movies that was not possible to obtain the IMDB id. We can see that if we did not

use the methods, only 61% of the movies would have descriptions available. Only one

movie was not identified, because the dataset did not provided any content information

regarding it.

Method number of ID obtained Increased % Accumulated %

valid URL 1025 61% 61%

1 412 24% 85%

2 131 8% 93%

3 113 7% 99.95%

not available 1 < 0.05% 100%

Table 7.1: Evaluation of methods to find the movies IMDB id.

In order to evaluate the Text Processor, we needed to extract the synopsis or the

keywords. The number of movies that we obtained both synopsis and keywords is shown

in Table 7.2. We also present how many movies ended up without words, caused by

the text pre-processing performed.
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With descriptions No of movies No of movies (after preprocessing)

Containing synopsis 1652 1618

Containing keywords 1679 1575

Table 7.2: Number of movies with description.

Regarding the TF-IDF vector that describes each movie, we also present an his-

togram with the number of words that describes each movie using synopsis (Fig. 7.1).

It is clear that most of the movies did not have a considerable amount of words, a

consequence of the stopwords removal, stemming and the selection of stemmed words

we opted to keep only words with a TF-IDF value between 3 and 7.5.
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Figure 7.1: Histogram of number of words, per document.

In Table 7.3 we present the size of the bag of words for both synopsis and keyword

models, before and after the pre-processing. The drastic reduction of the number of

words helped, not only in the computation cost, but also improved the performance of

the entity identifier. One downside, although, was that a small amount of movies ended

up being with an empty TF � IDF vector, which is crucial to identify the entities.

The result of the entity identifier was not only the entity model, which was used on

the RS, but also the visualization of the formed entities and their respective descrip-

tive words. The User SOM was configured to use a 2d matrix with 6 nodes on each

dimension. The learning rate for all the users SOM was equal to 0.05. To compute the
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Description Bag of words (size) before after

Containing synopsis 10532 3191

Containing keywords 79312 2516

Table 7.3: Number of words in a bag of words.

SOM we used the Orange python library1

Figure 7.2 illustrates an entity visual map. The first thing to notice is the di↵erent

entities, which are represented by colours. Those entities resulted from clustering

similar nodes, which were too specific. The nodes that were too specific are represented

by each box with three stemmed words. Each word resulted from the highest TF-IDF

values in the SOM node vector.

Figure 7.2: Entity visual map.

7.3.2 Recommendation system using SVD

Regarding the RS using SVD, Fig. 7.3 shows the impact of the number of features

(k) used. In this figure, we did not perfom the clustering of nodes using a threshold.

1Orange python library : https://pypi.python.org/pypi/Orange.
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One unexpected result concerns the entity model using keywords. In fact, the entity

model using keywords, outperforms the one using synopsis. We also tried to cluster

the movies using the rating matrix instead of using the synopsis and keywords, yet

it did not yield good accuracy results. The performance was, in matter of fact, a bit

worst when compared to the other two, probably due to the absence of the information

provided by the movie description, via the formed entities. Finally, the PHIT of both

synopsis and keywords slightly outperforms the baseline.
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Figure 7.3: SVD performance, when using the nodes.

In Fig. 7.4, the RS uses the entities, which have been clustered using the Node

clustering module. In this case, the performance in MAE and PHIT increases, in

contrast to Fig. 7.3, this occurs because the entities are less specific than the nodes.

As SVD baseline, the MAE and PHIT is computed using the user rating matrix,

neglecting the information provided by the entities formed using our Entity identifier.

In conclusion, baseline, synopsis entity model and keyword entity model perform

very similar to each other. Apart from that, when using around 150 features, we can

actually see that both synopsis and keyword entity models outperform our baseline, in

both MAE and PHIT metrics.

7.3.3 Recommendation system using KNN

To evaluate the RS using KNN, we began by comparing the performance of the

developed metrics: modified Pearson correlation (Eq. 6.3) and Weighted similarity

between users and entities (Eq. 6.4). By computing the modified Pearson correlation

(MPC) and the Weighted similarity between users and entities (WS) using: ↵ = 0,

↵ = 0.5 and ↵ = 1, we can determine the influence of the neighbours by comparing

MAE (Fig. 7.5a) and PHIT (Fig. 7.5b). Note that, for ↵ = 0 only the users are going
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Figure 7.4: SVD performance, when using the entities.

to be computed, as for ↵ = 1, only the entities and finally for ↵ = 0.5 both user and

entity similarities will be used and have the same weight in the determined similarity.

The similarity metric used for both users and entities was Pearson Correlation. The

modified Pearson correlation (MPC) performance was worst than the weighted simi-

larity with ↵ = 1, which did not overcome the performance of the weighted similarity,

with ↵ = 0.5 or ↵ = 0. Both ↵ = 0.5 or ↵ = 0, performed almost exactly the same, as

can be seen in Fig. 7.5.
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Figure 7.5: KNN performance, when tuning the number of neighbours.

Figure 7.6 shows the impact of ↵, with the number of neighbours fixed at 500, since

it was previously determined as the best value. We can state that the impact of the
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entities on the RS using KNN is negative and does not improve the results. When

inspecting the actual values, we observed that the best performance occurred when

using alpha = 0.1 were the MAE and PHIT were equal to 0.7452 and 41.52%, respec-

tively. Although the MAE got worst, the PHIT increased slightly, thus contradicting

the pattern, in which generally the MAE increases and the PHIT reduces.

We also compared the impact when using the average of entities instead of the user,

but it did not have a positive impact on the system accuracy.
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Figure 7.6: KNN performance, when tuning the coe�cient ↵.

To conclude the evaluation, we compared the impact of using di↵erent similarity

metrics. To compare the user and entity similarities, we combined the Pearson cor-

relation and the novel metric. The results are shown in Table 7.4. The number of

neighbours used was 500 and ↵ = 0.1, motived by the results obtained previously. We

concluded that the best combination of the similarity metrics used: novel metric as

user similarity metric and the Pearson correlation as entity similarity to minimize the

MAE and use the Pearson correlation for both user and entity similarity to maximize

the PHIT.

user similarity metric entity similarity metric MAE PHIT

Pearson Pearson 0.7463 0.4152

Pearson novel 0.7462 0.4154

novel Pearson 0.7480 0.4118

novel novel 0.7464 0.4130

Table 7.4: Impact of using di↵erent similarity metrics for users and entities.
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7.3.4 Overall RS results

The RS proposed in the work, combined several techniques and to conclude this

Chapter. We present two Tables that summarize all the obtained RSs and their best

registered results regarding MAE and PHIT.

Table 7.5 presents the performance of the entity models when combined with the

SVD to create a RS. The results are compared with a baseline, which is the RS using

SVD applied to the original rating matrix, provided by the MovieLens-100k dataset

(ML).

Entity Model Using K-features MAE PHIT

Synopsis
nodes 200 0.755 0.411

entities 200 0.747 0.414

Keywords
nodes 160 0.756 0.416

entities 160 0.747 0.419

Rating matrix
nodes 200 0.799 0.397

entities 300 0.774 0.411

baseline — 200 0.748 0.413

Table 7.5: Evaluation results for the RS using SVD, with di↵erent Entity models, using

the nodes or entities.

The presented results shown an improvement, when using the entity model based

on: synopsis or keywords. The best performance was achieved with the keywords entity

model, yet almost equal to the one using synopsis or the baseline.

The summary evaluation of the RS, using the KNN algorithm is presented in the

Table 7.6. In this evaluation, we configure the RS parameters based on the entity

model using synopsis which was the only one evaluated in Section 7.3.3, for entity

models based on synopsis and keywords. We did not include the rating matrix because

of the obtained results in Table 7.5.

The results presented in Table 7.6, show that both Entity models performed better

than the baseline, yet the improvements were marginal. The best accuracy perfor-

mance, accomplished by the Entity model based on the synopsis was obtained when

using WS with ↵ equal to 0.1. The users similarity was computed with pearson cor-

relation and the novel metric (Eq. 3.4) was used to compute entities similarity. As for

the prediction the average was obtained using the user average rating.

The best accuracy performance, accomplished by the Entity model based on the

keywords, had the best MAE when using WS with ↵ equal to 0.1. The users and
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Entity
Model

similarity metric predition
avg.

based on
MAE PHIT

Equation user entity

synopsis

WS (↵ = 0.1) pearson pearson user 0.7463 0.4152

WS (↵ = 0.1) pearson novel user 0.7462 0.4154

WS (↵ = 0.1) novel pearson user 0.7480 0.4118

WS (↵ = 0.1) novel novel user 0.7464 0.4130

WS (↵ = 0.1) pearson pearson entity 0.7704 0.4066

MPC — pearson user 0.8034 0.3946

keywords

WS (↵ = 0.1) pearson pearson user 0.7460 0.4155

WS (↵ = 0.1) pearson novel user 0.7459 0.4157

WS (↵ = 0.1) novel pearson user 0.7482 0.4118

WS (↵ = 0.1) novel novel user 0.7458 0.4134

WS (↵ = 0.1) pearson pearson entity 0.7922 0.4022

MPC — pearson user 0.7937 0.3983

baseline WS (↵ = 0.0) pearson pearson user 0.7463 0.4153

Table 7.6: Evaluation results for the RS using KNN, using k = 500, with di↵erent

Entity models.

entities similarities both with the novel metric. As for the PHIT the best value was

obtained using the WS with ↵ equal to 0.1, with pearson correlation to compute the

users similarity and the novel metric to compute the entities similarity.
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Chapter 8

Conclusions

In this work was presented a RS for the cinematographic domain, which was able to

identify the users specific interests that we named entities. To identify them we used a

SOM that allowed a map representation of the user preferences. The identified entities

were afterwards applied to a CF algorithm, thus providing a more detailed and specific

user information in order to help in the predictions of ratings.

Our solution di↵ers from others since the entities of each user are mapped according

to groups of similar movies evaluated by the user, information that is used to make

predictions.

The defined objectives were accomplished: the developed work shows that our

solution is comparable to traditional RS regarding prediction accuracy and that SOM

allow the identification of users specific interests. Through our evaluation process, we

concluded that a marginal prediction accuracy was obtained in some of the presented

systems.

As future work, we propose a more extensive study regarding the configuration with

a fine tune of the SOM parameters and the exploit of the identified entities to enhance

the process of recommendation, as our main focus was to enhance the accuracy of

ratings predictions.
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“Semantic audio content-based music recommendation and visualization based

on user preference examples,” Information Processing and Management, vol. 49,

no. 1, pp. 13 – 33, 2013.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions,” Knowledge and

Data Engineering, IEEE Transactions on, vol. 17, no. 6, pp. 734–749, 2005.

[5] G. Song, S. Sun, and W. Fan, “Applying user interest on item-based recommender

system,” in Computational Sciences and Optimization (CSO), 2012 Fifth Inter-

national Joint Conference on, pp. 635–638, 2012.

[6] S. Gabrielsson and S. Gabrielsson, “The use of Self-Organizing Maps in Recom-

mender Systems.” Uppsala University, Department of Information Technology,

2006.

[7] M. Mandl, A. Felfernig, E. Teppan, and M. Schubert, “Consumer decision making

in knowledge-based recommendation,” Journal of Intelligent Information Systems,

vol. 37, no. 1, pp. 1–22, 2011.

[8] M. Lee, P. Choi, and Y. Woo, “A hybrid recommender system combining col-

laborative filtering with neural network,” in Adaptive Hypermedia and Adaptive

Web-Based Systems (P. Bra, P. Brusilovsky, and R. Conejo, eds.), vol. 2347 of Lec-

ture Notes in Computer Science, pp. 531–534, Springer Berlin Heidelberg, 2002.

[9] T. Kohonen, “Self-organized formation of topologically correct feature maps,”

Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

46



[10] D. Sovilj, T. Raiko, and E. Oja, “Extending self-organizing maps with uncer-

tainty information of probabilistic pca,” in Neural Networks (IJCNN), The 2010

International Joint Conference on, pp. 1–7, 2010.

[11] T. Yamaguchi and T. Ichimura, “Visualization using multi-layered u-matrix in

growing tree-structured self-organizing feature map,” in Systems, Man, and Cy-

bernetics (SMC), 2011 IEEE International Conference on, pp. 3580–3585, Oct

2011.

[12] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering

to weave an information tapestry,” Commun. ACM, vol. 35, pp. 61–70, Dec. 1992.

[13] J. Bobadilla, F. Serradilla, and A. Hernando, “Collaborative filtering adapted to

recommender systems of e-learning,” Knowledge-Based Systems, vol. 22, no. 4,

pp. 261 – 265, 2009. Artificial Intelligence (AI) in Blended Learning (AI) in

Blended Learning.

[14] X. Zhou, Y. Xu, Y. Li, A. Josang, and C. Cox, “The state-of-the-art in person-

alized recommender systems for social networking,” Artificial Intelligence Review,

vol. 37, no. 2, pp. 119–132, 2012.

[15] W. Carrer-Neto, M. L. Hernández-Alcaraz, R. Valencia-Garćıa, and F. Garćıa-
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