
Multipath TCP Protocols

Dinamene de Lima Correia Almeida Barreia

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics Engineering

Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Examination Committee

Chairperson: Prof. Paulo Jorge Pires Ferreira
Supervisor: Prof. Fernando Henrique Côrte-Real Mira da Silva

Member of the Committee: Prof. António Manuel Raminhos Cordeiro Grilo

November 2014

ii

Acknowledgments

I would like to thank my parents for all their support and encouragement throughout this journey, for

always being there for me thereby allowing this project to be accomplished.

I would also like to acknowledge my dissertation supervisor Prof. Fernando Mira da Silva for its

insight, support and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends that helped me grow as a person and were there for me during

the good and bad times in my life. Thank you.

iii

iv

Abstract

The paradigm of data networks is ever changing, with the increasing number of devices, mobility, access

diversity and ubiquitous applications. Nowadays, Transmission Control Protocol (TCP) is the most pop-

ular protocol to transmit and deliver information reliably over the Internet. However, conventional TCP

makes use of a single path connection, not taking advantage of multihoming and multiple paths that are

increasingly available to end point devices, namely mobile devices and servers in high resilient config-

urations. MultiPath TCP (MPTCP) has been developed to address these TCP limitations. The MPTCP

protocol aims to make use of path diversity, in order to offer a better overall network connectivity, in-

creasing resilience to failures, performing load balance between available paths, when more than one

is available, and to allow multihoming support without the need to modify the already existing devices

currently scattered over the network. The objective of this project is to create a testbed that can assess

the benefits and limitations of MPTCP protocol, namely in mobile application scenarios.

Keywords: MultiPath TCP; Resilience; Performance; Testbed; Throughput; Multihoming.

v

vi

Resumo

O paradigma das redes de comunicações encontra-se em constante mudança, tendo um número cada

vez maior de dispositivos, móveis, necessitando de uma maior diversidade de acessos e recorrendo

cada vez mais ao uso aplicações ubı́quas. O TCP é o protocolo mais usado para transmitir e entregar

informação de forma fiável através da Internet. No entanto, este protocolo recorre ao uso de uma

única ligação, não aproveitando o multihoming e os diferentes caminhos que possam estar disponı́veis

entre os dispositivos, ou seja, dispositivos móveis e servidores com configurações de alta resiliência. O

protocolo MPTCP está a ser desenvolvido para lidar com estas limitações do TCP. O protocolo MPTCP

pretende fazer uso da diversidade de caminhos por forma a oferecer uma melhor conectividade da

rede global, aumentando a capacidade de resistência a falhas, realizando o balanceamento de carga

entre os caminhos disponı́veis, quando existe mais do que um disponı́vel, e para permitir o suporte de

multihoming sem a necessidade de modificar os dispositivos que se encontram actualmente espalhados

pela rede. O objetivo deste projeto é criar um plataforma de testes que possa avaliar os benefı́cios e

limitações do protocolo MPTCP, nomeadamente em cenários de dispositivos móveis.

Palavras-chave: MultiPath TCP; Resiliência; Desempenho; Plataforma de Testes; Multihom-

ing.

vii

viii

Contents

Acknowledgments iii

Abstract v

Resumo vii

List of Figures xiii

List of Tables xv

Listings xvii

Acronyms xix

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 2

1.3 Document Structure . 2

2 State of the Art 3

2.1 Multipath Approaches . 3

2.1.1 Link Layer . 3

2.1.2 Network Layer . 4

2.1.3 Transport Layer . 4

2.1.4 Application Layer . 5

2.2 Alternative IETF Multipath Approaches . 5

2.2.1 Multipath Solutions . 5

2.2.2 Multihoming Solutions . 7

2.2.3 Alternative Approaches to Multipath Scenarios . 7

3 Multipath TCP 9

3.1 Goals . 9

3.2 Transport Layer Structure . 10

3.3 Connection Handling . 12

ix

3.3.1 Connection Establishment . 12

3.3.2 Exchanging Data . 13

3.3.3 Connection Release . 14

3.4 Implementations . 14

3.5 MPTCP Scenarios . 15

3.5.1 Congestion Control and MultiPath Routing Schemes 15

3.5.2 Performance Evaluation of MultiPath Routing Schemes 17

3.5.3 Data Centers . 17

3.5.4 Advanced Applications . 18

4 TestBed 21

4.1 Conventional Wireless and Wired Scenarios . 21

4.1.1 Multihoming Solutions . 21

4.1.2 Subflow Analysis . 22

4.1.3 TCP and MPTCP Concurrent Scenarios . 23

4.2 Mobile Solution . 24

5 Implementation 25

5.1 Requirements . 25

5.1.1 Laptops . 25

5.1.2 Desktop Computers . 26

5.1.3 Mobile Phone . 26

5.2 MPTCP Configuration . 26

5.3 Network Routing . 28

5.4 Evaluation Tools . 30

6 Methodology and Evaluation 33

6.1 Tests . 33

6.1.1 Scenario A - Multihoming MPTCP with WiFi and Ethernet Connections 34

6.1.2 Scenario B - Multihoming MPTCP with two Ethernet Connection 35

6.1.3 Scenario C - Subflow Analysis . 36

6.1.4 Scenario D - TCP Analysis . 37

6.1.5 Scenario E - TCP and MPTCP Concurrent Scenarios 37

6.1.6 Scenario F - Mobile Solution MPTCP . 39

6.1.7 Scenario G - Mobile Solution TCP . 41

6.2 MPTCP Evaluation . 42

6.3 Results . 42

6.3.1 Wireshark Capture of MPTCP Connection Handling 42

6.3.2 Throughput Measurements . 44

6.3.3 Recovery Time . 47

x

6.3.4 Handover . 48

6.3.5 Upstream and Downstream Bandwidth Links . 52

6.3.6 Concurrency on Network Links using Simulation 52

6.3.7 Subflows . 53

6.3.8 Summary Analysis . 54

7 Conclusions 57

7.1 Syntheses . 57

7.2 Discussion and Future Work . 58

Bibliography 62

xi

xii

List of Figures

3.1 Transport Layer Structure . 11

3.2 MPTCP Connection Initiation . 13

4.1 Multihoming MPTCP with WiFi and Ethernet Connection 22

4.2 Multihoming MPTCP with two Ethernet Connections . 22

4.3 MPTCP Subflow Analysis WiFi . 22

4.4 MPTCP Subflow Analysis Ethernet . 22

4.5 TCP and MPTCP Concurrent Scenarios with Ethernet and WiFi Connections 23

4.6 TCP and MPTCP Concurrent Scenarios with Ethernet Connections 23

4.7 Mobile Device Scenario . 24

6.1 Test Scenario A - Multihomed with WiFi and Ethernet Connections 34

6.2 Test Scenario B - Multihomed with Two Ethernet Connections 35

6.3 Test Scenario C - WiFi Connection . 36

6.4 Test Scenario C - Ethernet Connection . 37

6.5 Scenario E - Ethernet and WiFi Connections . 38

6.6 Scenario E - Ethernet Connections . 38

6.7 Scenario F - Mobile Connection . 40

6.8 Wireshark screenshot showing MPTCP message for Beginning a connection 43

6.9 Wireshark screenshot showing MPTCP message for creating a new Subflow 44

6.10 Wireshark screenshot showing MPTCP message for Closing the connection 45

6.11 MPTCP with a Strangled Link Connection . 47

6.12 Scenario A.4 : MPTCP Handover between WiFi and Ethernet 49

6.13 Scenario A.5 : MPTCP Handover between Ethernet and WiFi 49

6.14 Scenario B.3 : MPTCP Handover between two Ethernet Connections 50

6.15 Scenario F.4 : MPTCP Handover between 4G and Campus WiFi Network 50

6.16 Scenario F.5 : MPTCP Handover between Campus WiFi and 4G Network 50

6.17 Scenario F.6 : MPTCP Handover between Campus WiFi and Local WiFi Network 51

6.18 Scenario F.7 : MPTCP Handover between Local WiFi and Campus WiFi Network 51

6.19 Scenario F.8 : MPTCP Handover between Local WiFi and 4G Network 51

6.20 Scenario F.9 : MPTCP Handover between 4G and Local WiFi Network 52

xiii

xiv

List of Tables

3.1 MPTCP Option Subtypes . 12

6.1 Throughput of Wireless And Wired Connections without Network Congestion 46

6.2 Throughput Measurements of Mobile Interfaces . 46

6.3 Throughput of Wireless And Wired Connections in Congested Networks 47

6.4 Recovery Time of Wireless And Wired Connections . 48

6.5 Recovery Time of Mobile Connections . 48

6.6 Connection Links with Similar Upstream and Downstream 53

6.7 Load Balancing between Five Simulated Clients . 54

xv

xvi

Listings

5.1 Example Ethernet Interface Configuration, eht0 and eth1 28

5.2 Routing Configuration Example two Ethernet Connections 28

5.3 Example the Result Routing Configuration, two Ethernet 29

5.4 Example Wireless Interface Configuration, wlan0 . 29

5.5 Routing Configuration Example Ethernet and WLAN Connections 29

6.1 Subflow Information of Multihomed MPTCP . 53

6.2 Subflow Information of Five Clients using MPTCP Subflow Implementation 55

xvii

xviii

List of Acronyms

3G third Generation

4G fourth Generation

ACK Acknowledgement

AP Access Point

API Application Programming Interface

bwm bandwidth monitor

CFLB Controllable per-Flow Load-Balancing

cmpTCP Concurrent Multipath Transport Control Protocol

CMP-SCTP Concurrent Multi-Path Stream Control Transmission Protocol

CMT Concurrent Multipath Transfer

DMP-streaming Dynamic MPath-Streaming

DNS Domain Name System

DoS Denial-of-Service

DSN Data Sequence Number

DSS Data Sequence Signal

DWC Dynamic Window Coupling

ECMP Equal-Cost Multi-Path

EWTCP Equally-Weighted TCP

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISP Internet Service Provider

LACP Link Aggregation Control Protocol

xix

LAN Local Area Network

LTE Long-Term Evolution

MIPv6 Mobility Support in IPv6

MIPv4 Mobility Support for IPv4

mTCP multiple paths TCP

MPTCP MultiPath TCP

MSS Maximum Segment Size

NAT Network Address Translation

OLIA Opportunistic Linked Increases Algorithm

P2P Peer-to-Peer

pTCP Parallel TCP

QoS Quality of Service

RLB Randomized Load Balancing

RTT Round-Trip Time

SBPP-SCTP Sender-Based Packet Pair SCTP

SCTP Stream Control Transmission Protocol

Shim6 Protocol Shim6

SPB Shortest Path Bridging

TCP Transmission Control Protocol

TMPP Transparent MPTCP Proxy

UDP User Datagram Protocol

VLAN Virtual LAN

WAN Wide Area Network

WLAN Wireless Local Area Network

WMN Wireless Mesh Networks

W-SCTP Westwood SCTP

xx

Chapter 1

Introduction

The evolution of portable devices, such as mobile phones, tablets and laptops, made it important to

always be reachable and have a high throughput connection, since most of the critical applications that

run on these devices spread their computation across cloud systems, resorting to data centers spread

around the world. At the same time, many devices developed the capability of connecting to the Internet

with at least two different interfaces in each type of device, such as WiFi and 3G, or Ethernet and WiFi,

in order to optimize the available communication infrastructures. On the other hand, the data centers

spread across the world usually support multihoming, being connected to two or more networks in order

to improve resilience for the services provided.

For many years the Transmission Control Protocol (TCP) [1] has been a fundamental component

of the Internet protocol stack and the most reliable communication protocol for data transmission, but

it only allows a single path between a source and a destination. Although the basic model of TCP

understands the essential mechanisms required to control flow and congestion, by itself it does not

assure real-time delivery in cases of critical congestion connections or breaks on a support link. With

the increasing mobility of devices, with ubiquitous and critical applications, it has become very important

to have reliable connections.

The Internet is coming to a point where the high increase on the number of users, providers and

services are beginning to stress its scalability, so it is important to adapt the existing protocols to make

them able to explore the benefits that may arise from existing multipath connectivity.

With the objective to work around the limitations of conventional TCP protocol and increase the re-

liability of connections, several authors have proposed different approaches, like Stream Control Trans-

mission Protocol (SCTP) [2], Concurrent Multi-Path Stream Control Transmission Protocol (CMP-SCTP)

[3], multiple paths TCP (mTCP) [4], Parallel TCP (pTCP) [5], Protocol Shim6 (Shim6) [6] and others. All

these protocols have limitations that make them difficult to deploy on the Internet, as it will be discussed

later on.

Recently the Internet Engineering Task Force (IETF) has created a work group to develop a standard

of a multipath protocol at the transport layer that can be easily deployable. Having this in consideration

an extension for the TCP protocol has been proposed, the MultiPath TCP (MPTCP) [7], where each

1

connection between two points can actually use multiple parallel routes, using congestion detection

techniques to determine the actual path to be followed.

As we will see, MPTCP [8] has the potential to increase throughput, reliability and flexibility in con-

nections. The fact that it is an extension of TCP and has backward compatibility makes it easier to be

deployed on the Internet than other previous proposals.

1.1 Motivation

The motivation for implementing a multipath TCP protocol is to improve robustness and performance of

end-to-end connections. This solution allows the use of multiple paths by the same TCP connection to

maximize resource usage, increase redundancy and resilience.

This protocol offers multihoming capability, resorting to the use of different available network inter-

faces on current devices, providing a better throughput. For mobile devices this protocol can allow

smooth connection handover, without loosing application connectivity.

The use of multipath connections also offers benefits to data center operations, since it can contribute

to improved throughput, offer larger path diversity and better fairness.

1.2 Objective

The main goal of this project is to study and evaluate the new emerging MPTCP protocol, with the

objective of creating a functional MPTCP testbed.

In order to make this possible the project is divided in two phases. On the first phase we focused our

attention on an academic analysis and research of the different approaches that have been proposed

for multipath TCP protocols by the IETF. The second phase is where we implemented and tested the

different scenarios and techniques for the MPTCP protocol, created a testbed and evaluated the possible

application on Técnico Lisboa internal network.

This thesis describes the work carried out, combining both phases and proceeding to an objective

analysis of the MPTCP protocol.

1.3 Document Structure

This document is structured in seven chapters, described as follows. Chapter 2 describes an overview

description of the related work that has been developed on this topic, where we can namely identify

the different IETF approaches for MPTCP. In Chapter 3 is detailed the structure of the current MPTCP

implementation. Chapter 4 defines the project’s architecture, an overview of the proposed solution for

the implementation and a description of the key components. Chapter 5 describes the implementation

process followed by its evaluation in Chapter 6. In Chapter 7 a summary and conclusions on the work

developed can be found, taking into account the future of the project.

2

Chapter 2

State of the Art

This chapter reviews the concept and state of the art of MultiPath TCP (MPTCP), the different Internet

Engineering Task Force (IETF) approaches to handle multipath and multihoming scenarios, and possible

applications for this subject. A research on other related projects is also presented and discussed.

2.1 Multipath Approaches

Over time there has been some debate about what approach should be taken in order to provide a pro-

tocol that can benefit from the simultaneous use of several paths so as to exploit the available resources

in the network, also being interesting if it could be made possible the efficient use of multiple interfaces

to ensure constant connectivity on mobile devices.

Researchers argue different implementation solutions. Some support the notion that the best layer for

its implementation should be the network layer to provide these benefits. Some even have implemented

their solution in the application layer, resorting to specific applications that spread the chunks of files

into different peers, only caring about increasing throughput. In local area networks, it is also possible

to explore path diversity at the link layer.

The implementation of a multipath protocol at the transport layer. Benefits from the transparency to

the network layer and provides a relative independence to the application layer, avoiding the requirement

to change the well established link and network layers. On the other hand, since MPTCP is a TCP

extension, conventional single path TCP applications can be used without any change at the application

level.

In the following subsections, is analyzed in deeper detail some of these alternative approaches.

2.1.1 Link Layer

A solution to provide multipath at link layer is to use Link Aggregation Control Protocol (LACP). This

protocol uses a link layer bundling approach. Link bundling occurs by aggregation of switch ports in

order to use multiple network connections in parallel to increase throughput and create redundancy in

case of link failure.

3

A solution that takes advantage of a multipath scheme at the link layer is the Shortest Path Bridging

(SPB) [9]. The IEEE 802.1aq based on IEEE 802.1Q Ethernet Bridging, allows the use of multiple equal

cost paths in mesh Ethernet network environments. This solution supports a much larger solution of

layer two topologies which can be used at the data center nodes, but it can not make use of multiple

interfaces available.

Another multipath approach implementation for the link layer has been suggested to achieve higher

throughput at Wireless Mesh Networks (WMN) [10]. This solution needs to implement a multi-channel

link layer in combination with multi-path routing in order to efficiently and intelligently route the traffic to

achieve a better throughput in these networks.

The link layer is responsible for the channel and packet scheduling, the first is used to control which

channel the information will be received and the second when to send the packets. The multipath-routing

scheme is responsible for selecting the best two paths to the gateway.

A solution at this level has great potential to achieve a good performance and higher end-to-end

throughput for this type of networks, offering these benefits by resorting to decomposing the traffic

across different channels, scheduling different times and finally using different routes.

Layer 2 multipath solutions are mostly restricted at the local area networks, and do not cope to

possible multipath diversity that is often available at the network layer.

2.1.2 Network Layer

Implementing a multipath TCP protocol at the network layer seems natural. In this case it would have a

single connection at the transport layer and the packets would be scattered across different flows. The

load balancing is performed at the connection level and not at packet level, in conjunction with the fact

that this solution only offers a single connection at the transport layer the throughput will be dictated

by the most congested link or the slowest, because the congestion control of the different paths are

aggregated by the transport protocol.

This solution, however, may mitigate unnecessary retransmissions at the transport layer due to

packet re-ordering, causing a significant reduction of the connection’s throughput. One of the causes

of this unnecessary retransmission, occurs because most of the network devices scattered across the

Internet do not support and do not recognized the traffic generated. In order to implement a multipath

solution at the network layer it is necessary to resort to an upgrade of the network devices currently in

use, scattered across the Internet.

2.1.3 Transport Layer

The implementation of a multipath protocol at the transport layer has the possibility of gathering infor-

mation like capacity, latency and congestion state at each path used. With this information it is possible

to react to congestion in the network and move the traffic to avoid the congested paths.

A multipath implementation at this layer allows it to be transparent for both upper and lower layers,

which means that it will use multiple flows that look just like regular TCP connections and the traffic

4

moves without been retained at middleboxes that exist on the network.

The implementation of multipath protocol at the transport layer, can offer functions of path manage-

ment, packet scheduling, congestion control and even subflow interface without needing to modify the

upper and lower layers. In this sense, in order to support a multipath link, it is only required that the end-

points support the protocol and it is not necessary to update any existing router or layer three component

between the endpoints.

2.1.4 Application Layer

An example of application layer solutions are Peer-to-Peer (P2P) protocols, as BitTorrent[11], the multi-

path approaches that works at chunk granularity and has the objective of increasing throughput. They

achieve their objective by downloading the different chunks of a file through different peers, choosing to

download from the fastest servers available.

BitTorrent achieves job-level resource pooling in many-to-one transfers. It behaves like uncoupled

multipath congestion control, by running independent congestion control on each path, with paths having

different end-points.

It is possible to develop a multipath application that can provide multihoming for the available devices

and servers using P2P protocols. The problem with this type of solution is that it can bring limitations to

other users of the network, being so that an implementation at this level will offer an unfair competition

for the resources available.

In fact it makes use of path diversity given that there are multiple servers available, but does not cope

with end to end multipath.

2.2 Alternative IETF Multipath Approaches

Over the years, the IETF has created a work group that has been investigating the simultaneous use of

multiple paths at the transport layer. MPTCP was not the first approach, but it is both the most recent

and promising.

2.2.1 Multipath Solutions

One of the first efforts to implement a transport protocol that would allow multiple streams across dif-

ferent paths was Stream Control Transmission Protocol (SCTP) [2], which offers a reliable transfer of

user messages between two SCTP endpoints. It provides during the startup association a list of multiple

IP addresses in combination with an SCTP port so that each endpoint can form a compatible transport

address. The motivation for this protocol was based on the limitations of the TCP for the actual applica-

tions in order to send data reliably on top of the User Datagram Protocol (UDP) [12]. Another motivation

was to natively support multihoming at the transport layer. The major problem of this protocol comes

from the fact that it is not easily deployed on the Internet, due to legacy devices that do not recognize

5

the protocol and mark its traffic as malicious or unknown. It does not offer a strict ordering across the

different streams and can not use aggregate bandwidth on multiple paths.

An interesting approach that was important for the evolution into this protocol was the mTCP [4]. This

is an end-to-end protocol that can aggregate available bandwidth between parallel redundant paths, that

are very common between a pair of hosts, achieving a better performance and more robustness to path

failures. This protocol works by stripping a flow’s packets across multiple paths. It can provide a higher

end-to-end throughput and it also supports a shared congestion detection mechanism in order to avoid

paths that have shared congestion.

Another approach is the protocol pTCP[5]. This protocol is a end-to-end transport layer approach for

aggregation of bandwidth on multihoming agents (mobile hosts). This protocol can separate loss recov-

ery from congestion control and also performs an intelligent stripping of the data across the available

connections.

Other SCTP-based approaches, such as Sender-Based Packet Pair SCTP (SBPP-SCTP) and West-

wood SCTP (W-SCTP), also have the ability to allow simultaneous use of multiple streams [13].

Another approach, the one that shows more resemblance to the protocol that is being studied, is the

Concurrent Multi-Path Stream Control Transmission Protocol (CMP-SCTP) [3]. This protocol is an ex-

tension for the SCTP protocol that benefits from the multihoming feature in order to increase throughput

between two multihomed endpoints. This extension adds fault tolerance by sending data concurrently on

all paths, instead of using probes to test the available paths. It uses a single sequence space across an

association of multiple paths, it assumes a mechanism of single congestion control and another of sin-

gle retransmission on all the paths. The use of a single sequence space allows it to perform end-to-end

load sharing with Concurrent Multipath Transfer (CMT) at the transport layer. The sender can receive

acknowledgment information on either of the return paths, which achieves an effective load distribution

at transport layer.

An interesting approach of an extension of SCTP with TCP New Reno [14] is Concurrent Multipath

Transport Control Protocol (cmpTCP) [15]. This extension was based on a evolution of CMT protocol.

To avoid congestion window management problems the authors developed a Markov model for its esti-

mation, with the possibility of modification of each path independently. The authors have also introduced

for each path a virtual retransmission queue and have implemented a different association, initiation and

termination, in order to allow concurrency by all the paths.

In the last few years the IETF has published a series of documents that describe and discuss MPTCP.

The guidelines used for this project are based on [16]. This RFC defined the structure for the MPTCP

protocol. In [7] it can be found the different available extensions that are supported by MultiPath TCP.

For this protocol to evolve, it was necessary a careful implementation with its interface application [17],

in order to ensure backward compatibility to regular TCP.

6

2.2.2 Multihoming Solutions

An interesting aspect of MPTCP is that it can take advantage of using simultaneously several interfaces

available in a device, allowing it to improve connectivity reliability in mobile equipments.

An approach for mobility is the Mobility Support in IPv6 (MIPv6) [18]. The MIPv6 is a protocol that

allows nodes to be reachable while they’re moving, as long as they’re in a IPv6 Internet. This is possible

because the mobile node has three IPv6 addresses, the first one being the node’s home address, the

second the node’s link-local address and the third is the mobile node’s care-of-address. These three

addresses allow the home-agent and the foreign-agent to create a tunnel, while the node is away, which

enables the home agent to know how to find the mobile node independently of its location. Before the

MIPv6, there was also an implementation of mobility for IPv4, Mobility Support for IPv4 (MIPv4) [19].

This protocol was the base for the MIPv6, with the difference that it assumed that every node on the

network had a unique address, which as become obsolete with the growth of the number of personal

computers and the emergence of everyday objects connected to the Internet, such as mobile phones,

tablets, watches, TVs, cars and so on. The major problem with these mobility solutions is that they do

not provide seamless handover.

Another mobility approach that has multihoming capability is the Shim6 protocol [6]. This is a Layer

3 protocol, which means that this IPv6 solution allows the implementation of multipath at packet level

instead of routing at connection level. The major drawback of this protocol is that the load balancing is

carried out at the connection level, meaning that the throughput is highly affected by the slowest or most

congested link.

Although the security part of the protocol is not the focus of this project, it is important to have in

mind that there are some security threats for multihoming solutions. In [20] it is described the threats

that exist for these type of solutions.

One of the most common threats on a topology like this one happens when the attacker is identified

as a valid source/destination. Another threat can cause packets to be sent to an unknown locater, that

no longer exists or is unreachable, making them to be dropped by the network. An attacker can perform

redirection in order to create a third party Denial-of-Service (DoS). Finally it might accept packets from

unknown or unverified sources, which can lead to packet injection on the receiver end.

Given that a multihoming solution is supposed to allow hosts to use multiple parallel connections,

without impacting the protocols at the transport and application layers, this makes it more susceptible to

these types of threats.

2.2.3 Alternative Approaches to Multipath Scenarios

Other projects are being developed, these projects are not yet a final version and have not been ap-

proved by the IETF, but they provide a different point of view of what’s to come about the topic of this

paper.

Beijnum has developed an application perspective of a multipath TCP protocol that is only imple-

mented on the side of the sending host, without requiring any modifications to the receiver end [21].

7

This view allows the protocol to either use the available capacity on the different multiple paths, or dy-

namically find the best performing one, with the final objective to get a higher throughput.

In order to reduce the computational overhead for an MPTCP connection establishment and its TCP

subflows, C. Paash and O. Bonaventure have been doing research available in [22]. For this study the

authors assume that the MPTCP handshake proposed is executed in a controlled environment and that

security attacks are not an issue.

A different point of view that is being developed, by Xue et al., is the Transparent MPTCP Proxy

(TMPP) [23]. The idea behind their work is to allow MPTCP-unaware hosts to use multiple path support.

It may be used in the access network or the operator’s network. TMPP works like a gateway in a

Network Address Translation (NAT) environment, by changing the received packets and retransmitting

them again.

Since MPTCP is a recent subject, Bagnulo et al., is developing a study of the possible threats in this

matter [24]. The authors have defined types of attackers and a combination of possible attacks in order

to present different solutions to deal with the threats, always keeping in mind to ”make MPTCP no worse

than the currently available single-path TCP”.

The actual IETF version of MPTCP is described in deeper detail on Chapter 3.

8

Chapter 3

Multipath TCP

This chapter describes some of the most relevant properties and services of the current MPTCP draft,

as described in RFC 6824 [7]. Also describes potential advanced applications for this protocol.

3.1 Goals

In this section is described the primary goals defined for MPTCP and the rules that it must abide to.

The goals that MultiPath TCP aims to meet at a functional level is to improve throughput and

resilience. In order to improve throughput a MultiPath TCP connection over multiple paths should not

achieve a throughput worse than a single TCP connection over the best path in that group of paths. To

improve resilience MultiPath TCP paths must be interchangeable and must never be less resilient than

a regular single-path TCP.

The goals that MultiPath TCP aims to meet at application compatibility is to follow the same service

model as TCP, offer backward compatibility and support some kind of TCP’s session continuity. In order

for MultiPath TCP to follow TCP’s service model it needs to ensure that the delivery is in-oder, reliable

and byte-oriented. However MultiPath TCP might not be able to provide the same level of consistency of

a single TCP connection throughput and latency. MultiPath TCP has to provide backward compatibility

to existing TCP API’s in order to allow its use by existing applications, only needing to be upgraded at

the end host’s operating systems.

MultiPath TCP should support some kind of TCP’s session continuity. However the circumstances

may be different. In regular TCP session continuity occurs when a session survives a brief connection

break, by retaining the state of the end host before the timeout occurs, the Internet Protocol (IP) ad-

dresses will remain constant during that time. However in MPTCP a different interface might appear. So

it is desirable to support a kind of break-before-make session continuity. A break-before-make session

is when it interrupts the failed connection before establishing a new one.

The goals that MultiPath TCP aims to meet at network compatibility is to be compatible with the

Internet as it exists today, retain the ability to fall back to regular TCP and should have the ability to

work with both IPv4 and IPv6 interchangeably. In terms of compatibility with the Internet as it is today,

9

MultiPath TCP is constrained to appear as TCP does to be able to traverse predominant middleboxes,

such as firewalls and NATs. It may be needed to MultiPath TCP fall back to regular TCP when there

are a group of incompatibilities too great to overcome for the multipath extension on a path. The need

for MultiPath TCP to have the ability of interchangeably work with both IPv4 and IPv6 happens when a

connection operates over both IPv4 and IPv6 networks.

At the users compatibility point of view the goals are to enable new MultiPath TCP flows to coexist

with existing single-path TCP flows, without being too aggressive towards them. In a shared bottleneck

MultiPath TCP flows may not purposely harm users using single-path TCP flows, beyond the impact that

would occur from another single-path TCP flow. Also on a shared bottleneck multipath flows must share

the bandwidth fairly, as it would occur at a shared bottleneck with single-path TCP.

From a security point of view, MultiPath TCP has to provide a service no less secure than regular,

single-path TCP.

In order to achieve the primary goals described before for MPTCP, the congestion control algorithm

selected has to comply with the following goals:

• Goal 1 : Improve Throughput A multipath flow should perform at least as well as a single-path

flow would on the best of the paths available to it.

• Goal 2 : Do no harm A multipath flow should not take up any more capacity on any one of its

paths than if it was a single path flow using only that route.

• Goal 3 : Balance congestion A multipath flow should move as much traffic as possible off its

most congested paths, subject to meeting the first two goals.

These three goals are in accordance with the goals defined and have the capability to offer a better

throughput solution for a MultiPath TCP protocol. The first goal assures that the multipath flow should

never have a lower performance than the singular-path TCP flow on the fastest path available, being in

accordance with the functional level goal defined for MultiPath TCP. The second goal is in accordance

with the users compatibility point a view. The third and final goal is an addition to the MultiPath TCP

goals to get the higher throughput available, by moving the traffic on to less congest links.

3.2 Transport Layer Structure

In this section we describe the structure that MPTCP uses at the transport layer.

The MPTCP splits the transport layer into two sublayers as it can be seen in Figure 3.1. The upper

sublayer is responsible for gathering the information necessary to manage the connection and operates

end-to-end. The lower sublayer is responsible for the subflows, in order to make them be seen as a

single TCP flow and allows the TCP component to operate segment-by-segment. This structure was

designed in order to be transparent to both the higher and the lower layers.

In order to manage the multiple TCP subflows below the MPTCP extension has to implement path

management, packet scheduling, subflow interface and congestion control functions.

10

Figure 3.1: Transport Layer Structure

The path management is responsible for detecting and using the available paths between two hosts.

This function is also responsible for the mechanism of signaling alternative addresses to hosts and to

set up new subflows joined to an existing MultiPath TCP connection.

At the packet scheduling is where the byte stream received from the application is broken into

segments in order to transmit them on one of the subflows available. Also at the packet scheduling, the

connection-level re-ordering is performed whenever the packets are received from the TCP subflows.

To allow the correct ordering of the segments sent on the different subflows, the MPTCP design uses

a data sequence mapping, by associating the segments to a connection-level sequence numbering. In

order to have the correct information of the subflows available the packet scheduler depends upon the

information acquired from the path management component.

The congestion control function is responsible for coordinating the congestion control across the

subflows. This coordination is responsible for scheduling which segments should be sent on which

subflow and at what rate, is also a part of packet scheduling.

The subflow interface is responsible to transmit on the specified path, the segments received from

the packet scheduling component. Upon receiving a segment the subflow passes the data to the packet

scheduling for connection-level reassembly.

Since MPTCP underneath uses TCP for network compatibility, it ensures in-order, reliable delivery.

To detect and retransmit lost packets at the subflow layer TCP adds to the segments its own sequence

numbers.

Internet Assigned Numbers Authority (IANA) has created a sub-registry to be used by MPTCP in the

TCP Options field, as defined in RFC 6824 [7]. The TCP Option reserved for MPTCP is the Kind 30.

It has a variable length and a 4-bit subtype field entitled ”MPTCP Option Subtypes”. The subtypes are

listed in Table 3.1 and will be briefly described through the rest of this document.

11

Value Symbol Designation

0x0 MP CAPABLE Multipath Capable
0x1 MP JOIN Join Connection
0x2 DSS Data Sequence Signal
0x3 ADD ADDR Add Address
0x4 REMOVE ADDR Remove Address
0x5 MP PRIO Change Subflow Priority
0x6 MP FAIL Fallback
0x7 MP FASTCLOSE Fast Close

0x8-0xe Unassigned
0xf Reserved for Private Use

Table 3.1: MPTCP Option Subtypes

3.3 Connection Handling

This section describes how MultiPath TCP handles connections, since the establishment to the conclu-

sion of a connection.

3.3.1 Connection Establishment

At this point we describe how a new MPTCP connection starts and also how the establishment of new

subflows occurs.

To establish a new connection the application will open a regular TCP socket, which will start the

initial TCP subflow. As MPTCP has the need to be transparent to both network and application layer,

until this point the connection is apparently the same as a regular TCP.

After the initial TCP connection, if both endpoints support MultiPath TCP capability, the MPTCP

session can start on either host.

We will now explain a slightly simplified solution for a new MPTCP session and subflow establishment

in order to describe the main idea, as shown in Figure 3.2.

To establish a new subflow from the Host A to Host B, the Host A receives from the DNS that it can

reach Host B at the Address 1.

Now a three-way handshake is used similar to regular TCP, in order to continue transparent to the

network, but at the options field it carries MPTCP specific options that it is only understood by the end-

system stack.

The MP CAPABLE option is inserted on the handshake to allow both hosts to inform each other that

they have MPTCP capability. The first handshake in order to begin the MPTCP session from the Host A,

starts by sending a SYN with a MP CAPABLE option in order to notify the other host that it has MPTCP

capability. The Host B responds with a SYN and ACK, with MP CAPABLE option that announces token B

to the peer. The token is a local identification of the connection on a host. Now the Host A responds

with a ACK, with MP CAPABLE option announcing his token A. At this step the MP CAPABLE option is

still present so the server can wait until the end of the handshake to create the state. A final ACK is sent

to assure that the final MPTCP security data is received.

12

Figure 3.2: MPTCP Connection Initiation

The MPTCP session is now complete, from this point we explain how to add new subflows on a

MPTCP session. At any point either hosts can try to establish new subflows.

Assume that Host A wants to create a subflow between its Address 2 and Host B Address 1. Again a

new TCP three-way handshake starts, but the option in use is different, because now new subflows that

will be created need to be attached to the existing MPTCP session. The option that will be used to create

new subflows will be MP JOIN. Host A can establish new subflow using the addresses <A.2,B.1>, Host

A Address 2 with Host B Address 1, but it needs to be join to the correct context in Host B. To achieve this,

Host A attaches token B to the MP JOIN option. Host B responds with SYN and ACK, with MP JOIN

option without a token, because Host A already has a state for that subflow. Then Host A sends ACK

with the MP JOIN, in the context of Host B. And the final ACK is sent and the subflow is ready to be

used.

If a new address becomes available on one of the hosts, that new address needs to be announced

to the other host before using it to connect a new subflow to the MPTCP session. First the host has

to notify the other host with ADD ADDRESS option of the MPTCP, containing the new address before

starting a subflow handshake.

In the case where a subflow stops responding there is also a REMOVE ADDRESS option to remove

that address from the connection.

3.3.2 Exchanging Data

At this point it will be explained how MPTCP exchanges data across the multiple subflows.

To allow reliable and in-order delivery of the data across the subflows, MPTCP uses a 64-bit Data

13

Sequence Number (DSN) , which numbers all data sent over the MPTCP connection, and each subflow

has its own 32-bit sequence number space as in regular TCP.

MPTCP specifies the mapping from subflow sequence space to data sequence space using a data

sequence mapping, that reassembles the data stream and is sent over the Data Sequence Signal (DSS)

option. The DSS contains the acknowledge and it is responsible for the information that allows the

data sequence mapping. This MPTCP mapping can in the event of failure retransmit data on different

subflows.

The data is scattered in segments over the available subflows and it needs to be acknowledged

when received. To acknowledge the data MPTCP does a two layer acknowledgment. First the data is

acknowledged on each subflow, as they behave like regular TCP flows. Then the data is acknowledged

by the data sequence numbering by using a cumulative Data Acknowledgment, that is sent on one of

the subflows.

3.3.3 Connection Release

At this point it will be described the closing of a MPTCP connection.

In a regular TCP connection the FIN is announced when an application calls close() on a socket,

indicating that it has no more data to send. In MPTCP a FIN only affects the subflow on which is sent.

To actually close the connection in MPTCP there is an equivalent mechanism to the regular TCP

FIN, that is referred to as the DATA FIN. The DATA FIN is acknowledged at the connection level with a

DATA ACK. The DATA ACK message is only sent once all the data on the MPTCP connection has been

successfully received.

When the first DATA FIN is sent it triggers the return of both the DATA ACK and DATA FIN of the

other host. The DATA FIN only needs to be sent on one subflow and from the moment that it has

been acknowledged, all remaining subflows should be closed with standard FIN exchanges. These FIN

exchanges allows the middleboxes to clean up their state.

The MPTCP connection is considered closed once the DATA FINs sent by both hosts have been

acknowledged by DATA ACKs.

The option MP FASTCLOSE is used to abruptly close the whole connection, is only used by specific

implementation.

3.4 Implementations

To test the feasibility of the MPTCP protocol, several implementations were developed and tested, some

of which will be discussed and had a big influence in the direction taken by this project. With the evolution

of different implementations of MPTCP it became interesting to implement in other scenarios, such as

the use of smartphones with multiple network interfaces, data centers, mobile communications and

multihomed networks. In [25] can be found a group of other implementations that would be interesting

to evaluate with real network data. MPTCP is largely scalable and benefits from the fact that does not

14

require changes at the application layer

The success of MPTCP will mainly depend on how it can easily be implemented in the real world.

That is the objective of [26], which was the first Linux kernel implementation of MPTCP, enabling the

evaluation of different implementation scenarios in order to show how the results can be affected by

those choices. In order to provide a nearly perfect implementation the solution still needs to be im-

proved.This solution also needs to implement multipath-aware retransmission mechanisms, because

this solution still implements TCP retransmission mechanism on each subflow. It was used a testbeb to

analyze the performance, the throughput, the delay on the receiver buffer and showed that the coupled

congestion control of MPTCP is fairer than the single TCP congestion control scheme.

3.5 MPTCP Scenarios

Over the years there has been an interest in a protocol that not only offers seamless mobility, but that

can also benefit from the use of all the available interfaces on a device. At this point it will be discussed

different applications that have been envisaged for MPTCP implementation.

3.5.1 Congestion Control and MultiPath Routing Schemes

With the possibility of using multiple paths, concerns have arisen about congestion control of the data

sent on those paths. A great deal of work was put into research on congestion control algorithms and

path routing schemes that will optimally split the packets across the available paths, in order to achieve

improved performance and be more resilient to problems on particular paths.

In [27] is shown that the implementation of some congestion control algorithms solutions for multipath

TCP can be harmful, but is presented an algorithm that can improve throughput and fairness and be

safely deployed on the Internet. Equally-Weighted TCP (EWTCP) [28] algorithm is a weighted version

of multipath TCP and it can be fair to regular TCP traffic, but when used in multipath TCP is not very

efficient, because it does not split traffic evenly across the available paths. In this paper is also analyzed

the COUPLED congestion control algorithm, that makes better choices than the EWTCP, like falling

back to regular TCP when there is only one path and solves some fairness problems. Nonetheless

it has some issues, when the paths available have very different throughputs, which leads to unequal

RTTs, it tends to typically send all its traffic on the less congested path. The solution presented is

based on the SEMI-COUPLED congestion control algorithm that was modified in order to create an

implementation for MPTCP, believing that it has a good selection of paths and a balanced congestion,

also have designed it in order to ensure compatibility with existing TCP behavior.

Another effort on this subject is available in [29] and [30], where is presented a class of algorithms,

that recurring to minimal congestion feedback, can optimally and stably split the traffic. Considering

the availability of multiple paths, by overlaying the network with routers, the user can direct its flow by

using the source routing capability available on those routers. It also evaluates the possibility of the

use of multihoming capability, where the end hosts can separately address these paths. In this paper

15

is showed that a decentralized control framework can in a natural way extend from a single path to

a multipath case, and the total load through each link should not exceed its capacity, to maintain the

stability of the system.

In [31] is studied the benefits of combining a multipath routing with a coordinated congestion control

architecture. Performing load balancing at the lower level by using a Coordinated Multipath Conges-

tion Controller that splits the session load across the lowest-cost available set of paths. At an higher

level there is a periodical search for new paths using an algorithm that randomly selects them. This

paper concludes that combining efficient routing with the use of a good resource pooling algorithm can

bring robustness, resilience and performance improvement to the network, can also simplify the network

dimensioning for providers.

In [32] can be found a modification to TCP, that provides a practical multipath congestion control

algorithm, with the objective to be easily deployed and achieve TCP fairness, ensuring that MPTCP’s

design goals are met. It compares three congestion control algorithms : Fully Coupled, Linked Increases

Algorithm and Uncoupled TCP.

The Fully Coupled algorithm considers the case where all the flows have similar RTTs, the major

concern about this algorithm is that it causes what is referred to as ”flappiness”. Flappiness is said to

occur when the traffic of a multi-path connection tends to concentrate on one path and then another.

The Uncoupled TCP algorithm does not spread congestion, but it has difficulty to move traffic away

from congested links. The Linked Increases Algorithm is proposed in order to reduce flappiness and

combine resource pooling, it is a combination of the increase rule of the Fully Coupled and the decrease

rule of the Uncoupled TCP. This algorithm can be too aggressive for one of its paths failing the second

goal of MPTCP.

In order to compensate the different connections Round-Trip Time (RTT), it was studied a RTT Com-

pensator Algorithm, but it sacrifices some congestion balancing for improved stability.

To implement this algorithm it is necessary to choose between undesirable flappiness and uncoupled

subflows without network pooling resources, but this algorithm is still a variant of an improved and fair

congestion control algorithm.

In [33] can be found a congestion control algorithm that is very similar to the one referred above,

with the difference that this algorithm is more focused on the resource poolability when changes in the

network occur. There is also a implemented Linux solution in order to test and research how reliable and

deployable the algorithm can be, the algorithm showed that the resource pooling is an important step to

provide an algorithm that makes good path decisions, by avoiding high-congested ones.

Improving reliability and performance on the Internet made it necessary to adjust the routing metrics

to be more congestion sensitive, in [34] is studied how quickly routing can adapt, ensuring network

stability. This method was based on a fluid-flow model in order to analyze the stability of an end-to-end

algorithm, is shown that while the structural information may come from the network layer, it is more

natural to perform load-balancing at the transport layer. The key constraint on each route is its round-trip

time, for dynamic routing on their algorithm.

Based on Equal-Cost Multi-Path (ECMP) algorithm [35], it was proposed a method for next-hop

16

selection based on an invertible function [36]. The paper provides an implementation and evaluation

of the solution resorting to the Click modular router, where it analyzed the distribution of the packets.

Finally this solution shows a small variation of the optimum case, the ability of control path does not have

a significant impact on fairness on a local distribution.

3.5.2 Performance Evaluation of MultiPath Routing Schemes

In order to compare the different solutions formerly referred and their performance, in [37] it is introduced

the Dynamic Window Coupling (DWC). DWC is an algorithm that tends to differentiate if the flows share

or not a common bottleneck, and only couples MPTCP flows that share a common bottleneck. It is

shown that with the possible scenarios of implementation, the design goals of the previous solutions can

vary their performance from good to poor. The DWC can accurately detect a bottleneck and improve

throughput. It also can solve Linked Increases Algorithm’s problems, but at the expense of being less

friendly to users with single TCP connections.

It was mentioned above the Linked Increases Algorithm for MPTCP, in sub section 3.5.1. This

algorithm has its problems, its trade off between optimal resource pooling and responsiveness can

reduce the MPTCP’s throughput and be too aggressive to singular TCP users. So in [38] it was proposed

the Opportunistic Linked Increases Algorithm (OLIA) in order to solve those problems and to respect

MPTCP design goals. OLIA is also a window-based congestion control algorithm and compensates for

different RTTs. It performs close to an optimal solution, solving Linked Increases Algorithm’s problems,

with a small probing cost, it satisfies the three design goals of MPTCP and is responsive and non-flappy.

One of MPTCP’s benefits is how it can improve network performance. It has been made an effort to

evaluate and research its results. In [39] is evaluated the MPTCP’s performance from a point of view

of throughput optimization and load sharing. This paper uses a testbed with three possible scenarios,

which were, Ethernet-Ethernet, Ethernet-WiFi and 3G-WiFi. It shows that MPTCP has a better through-

put in homogeneous paths than a singular TCP connection, it also performs an equitable load sharing

on this type of paths. It has less throughput on paths with heterogeneous connections, but it offers

improved resilience by automatically switching traffic upon failure.

3.5.3 Data Centers

With the possibility of MPTCP to improve data center’s networks, there is some research on practical

implementation in data centers and how it can improve them.

It was proposed a deterministic scheme that allows hosts to select the load-balanced path to use for a

specific flow called Controllable per-Flow Load-Balancing (CFLB) [40], experimenting how it can improve

a data center’s performance and scalability by combining it with MPTCP. By testing the advantages of

using MPTCP hosts together with CFLB-enabled network is shown that it can cover all paths with minimal

cost. It also greatly improves the use of available diversity of paths offered by a data center network,

between pairs of servers.

Data Center’s have grown to an unprecedented size, due to the high quantity of applications created

17

to be runned in distributed systems, stressing the network fabric within data centers. This originated a

special interest in different data center topologies, in order to propose much denser interconnections,

but they pose a major difficulty in routing. Currently it is implemented Randomized Load Balancing

(RLB), which is not a favorable solution because it is probable that some links will never be selected

while others will be overloaded. A solution for this problem is implementing MPTCP, which allows

multiple connections between the servers with the automatically redirection of traffic according to a

flows congestion. To see how feasible this solution can be, in [41] it is tested through simulation the

effectiveness and robustness, of running MPTCP on data center’s network. It was found some limitation

on their practical implementation. Nonetheless, the results have been optimistic showing that MPTCP

can significantly improve throughput and fairness with a simple solution, by uniting path selection with

congestion control, such that traffic can move easily to paths that have spare available capacity.

It is impractical in a current data center to manually manage the tasks that need to be allocated, due

to a large amount of servers and connections. With present solutions like in Amazon EC2 data center,

that has a redundant structure, switches typically run a Equal-Cost Multi-Path (ECMP) routing variant.

In order to create a number of flows significant to come close to generate traffic balancing, it needs a

lot of TCP connections, this would not be scalable. Running a multi-stage topology with ECMP will very

likely cause flows to collide on at least one link. An implementation in a large data center of MPTCP

is evaluated in [42]. It proposes that exploring multiple paths with a congestion solution can be better

for the data center, by offering a better throughput, due to the higher usage of the network and a fairer

allocation of the capacity to flows. This work shows that the only place where MPTCP performed the

same as single TCP was when the flows where limited at one of the hosts, either on the sender or the

receiver. It also showed that MPTCP can actively relieve hot spots in the network, because it is very

effective at finding unused capacity, and real performance benefits with a throughput up to three times

higher.

3.5.4 Advanced Applications

The first implementation of a Linux kernel with MPTCP opened the doors to the research community to

test different implementations and topologies to evaluate how good the protocol really is.

In [43], it was tested the performance, load-balancing, robustness and congestion on a topology that

connects three servers with two switches, with multiple 1Gbps and 10Gbps to simulate LAN and WAN

networks. One server is used to create only TCP traffic to generate congestion on a specific link. To

simulate multiple connections, different VLAN’s were created. With this experience the results were

favorable by meeting the first and third goals of the MPTCP design, improve throughput and balance

congestion, it also improved throughput and robustness, but the second goal, do no harm, was not

verified as it was a bit unfair compared to single TCP. The tests showed that MPTCP works really well

in a stable environment, same bandwidth and close RTTs, but behaving worse otherwise. In this article

is also advised to be careful with the buffer sizes, because when the bandwidth increases the buffer and

Maximum Segment Size (MSS) have to also increase, which leads to increased processing.

18

To make better usage of the MPTCP protocol, applications need to be aware of its implementation.

The IETF is developing RFC 6897 [17] to take advantage of this solution. With applications aware

of the available multipath implementation the services can be prioritized, creating a better Quality of

Service (QoS) solution for its users. This type of solution is important to allow the applications to specify

preferences and control the behavior of the application itself, when reacting to the type of service to be

offered.

An interesting application of MPTCP is the a TCP-based multipath streaming scheme, Dynamic

MPath-Streaming (DMP-streaming) [44]. This study of audio/video streaming has been motivated by

the increasing availability of multiple paths between end hosts. Usually the retransmission mechanisms

of the TCP protocol violates real-time requirement for multimedia streaming, due to packet loss and

re-ordering at the receiving end. DMP-streaming dynamically distributes packets over multiple paths, it

was created a analytical model to evaluate its performance on wired networks, it does not need probing

the available network bandwidths and does not exploit error recovery nor rate adaptation. In this study

is shown that a TCP-based multipath streaming scheme achieves satisfactory performance when the

throughput has at least 1.6 times the video bitrate, with a few seconds of startup delay.

19

20

Chapter 4

TestBed

This chapter describes an overview of the different architecture setups for the testbed implementation.

It also presents a description of the key components of this project.

This project aims to experiment with the use of different implementation and simulation technique

models existent for MPTCP, to identify the limitations and potentials of the different approaches to this

protocol. In order to do an experimental study of the implementation proposals, we perform experimental

tests and benchmarking by developing a testbed.

This testbed takes into account two very distinct contexts. The first has the objective to evaluate

the implementation of MPTCP on LAN environments, where we proceed to assess the conventional

wired and wireless scenarios. The second context has the objective to evaluate MPTCP on a mobility

environment, using not only WLAN but also 3G4G connection through a network operator.

This testbed can be used to assert the viability of a possible application on Técnico Lisboa network.

4.1 Conventional Wireless and Wired Scenarios

The testbed, in this wireless and wired context, consists on the use of four static environment scenarios.

In order to achieve the results desired for the different scenarios, the computers used need to be running

a Linux Kernel with MPTCP enabled implementation.

4.1.1 Multihoming Solutions

The first scenario consists on a multihoming solution implementation of MPTCP, using two network in-

terfaces, WLAN and Ethernet, as show in Figure 4.1. The computers in use have two network interfaces

and are configured to use two different network links. This scenario allows us to obtain information of

load balancing used by the MPTCP protocol when encountered with different network interface connec-

tions. It also enables us to evaluate the handover between the different networks and the connection

recovery in case of failure in the network.

21

Figure 4.1: Multihoming MPTCP with WiFi and Ethernet Connection

The second scenario is similar to the first, seen as it is a multihoming solution implementation of

MPTCP, being so that in this scenario we use two network interfaces, both Ethernet, as show in Figure

4.2.

Figure 4.2: Multihoming MPTCP with two Ethernet Connections

In this scenario we can evaluate how the load sharing is accomplished when used in homogeneous

networks. We eventually will proceed to strangle one of the connections. This scenario will also allow

us to evaluate the resilience of the network.

4.1.2 Subflow Analysis

The third scenario, depicted in Figure 4.3 and 4.4 consist on moving the traffic using only one of the

network links, in order to evaluate MPTCP subflows and throughput. We test this scenario with a wired

and wireless connection, in order to evaluate the difference between the use of each network interface.

Figure 4.3: MPTCP Subflow Analysis WiFi

Figure 4.4: MPTCP Subflow Analysis Ethernet

22

We can capture the individual packets on each subflow in order to analyze the data transferred and

draw conclusions about MPTCP functionality and efficiency. The capture of the packets will be performed

at the endpoints resorting to the use of the Wireshark tool, with MPTCP support package installed.

This scenario also provides a direct comparison between MPTCP and TCP protocols.

4.1.3 TCP and MPTCP Concurrent Scenarios

Last but not least the four scenario is an implementation of a simulated network, as it is shown in Figure

4.5 and 4.6. This scenario consists on using two computers with MPTCP enabled implementation,

computers connected to two network, and two others using regular TCP, computers connected to one

network.

Figure 4.5: TCP and MPTCP Concurrent Scenarios with Ethernet and WiFi Connections

Figure 4.6: TCP and MPTCP Concurrent Scenarios with Ethernet Connections

23

This scenario provides an implementation that shows how the MPTCP protocol acts when there are

regular TCP flows on the same network, in order to evaluate its fairness and how it reacts to network

bottlenecks.

4.2 Mobile Solution

In our solution we test a mobile implementation for MPTCP, in order to evaluate the capability of mobil-

ity offered by the protocol and its handover between different network protocols. This is an interesting

approach that we implemented in an android smart phone to take advantage of its 3G/4G and WLAN ca-

pability, in order to evaluate how the protocol offers a better performance and reliability of the connection

while moving.

The use of a mobile phone with android operative system allows us to develop in a highly configurable

and heavily supported platform.

Figure 4.7: Mobile Device Scenario

To evaluate the throughput and handover we will use 3G/4G and WLAN interfaces, as shown in

Figure 4.7. This scenario allows to evaluate the handover between networks and the resilience of the

connection.

The developed testbed could also be implemented resorting to a virtual machine with multiple VLAN’s.

The VLAN’s could be used to simulate the use of multiple network interfaces.

24

Chapter 5

Implementation

This chapter describes the different phases perform to achieve the MPTCP testbed implementation.

The objective behind the testbed is to evaluate MPTCP performance in comparison to TCP in similar

scenarios. As it has been referred before, to implement a multipath solution we only need to modify the

endpoints of the network, end users or servers. In order to modify the endpoints, there are different Linux

Kernel implementations available with MPTCP capability. In this case we will choose the better solution

in order to implement our testbed. This chapter also describes the main components required by the

testbed, not only software but also hardware. After choosing the right solution, we proceed to explain the

necessary components for the network solution to create the different scenarios referred to in Chapter

4. And finally it describes the tests used to evaluate those scenarios, knowing that the endpoints have

the capability of supporting MPTCP connections.

5.1 Requirements

To implement the testbed we needed to find an operating system that would be easily configurable

and with full MPTCP support. Since Microsoft Windows and Macintosh Operating System (Mac OS)

are not an open source solution, we choose to use the Linux Operating System, both for the endpoint

devices and the server. Linux is one of the most common open source operating system. This testbed

was implemented in three different types of devices, such as laptops, desktop computers and a mobile

phone.

The mobile solution uses the most reliable and configurable environment, the Android mobile oper-

ating system.

5.1.1 Laptops

The laptops used were ASUS Eee PC 900A, with the Debian GNU/Linux Whezzy release. The Whezzy

release is ideal to install in this laptop because is not heavy for the device. The laptops have a built-in

802.11 b/g WLAN, and a Fast Ethernet interface.

25

We have installed a enabled MultiPath TCP - Linux Kernel Implementation [45], on the laptops to use

them as concurrent MPTCP clients. But the these devices do not support multihoming between the two

network interfaces, WLAN and fast Ethernet. The device only allows one interface to be used at a time.

Taking this into account we decided to use the laptops as TCP clients over the simulated network

scenario.

5.1.2 Desktop Computers

The desktop computers were initially chosen to use a Debian Whezzy distribution, but we ended up

using Ubuntu Saucy distribution. The Ubuntu Saucy is a Debian-based Linux operating system that

offers a wider range of drivers support.

We installed a enabled MultiPath TCP - Linux Kernel Implementation [45] v0-881, on the desktop

computers. In order to evaluate the use of MPTCP we needed to install networking tools that were

MPTCP aware. We also have modified an application that could measure the network used on each

interface in real time.

The desktop computers are equipped with two network interfaces, a gigabit Ethernet and a fast

Ethernet. In order to create the wireless connection on the client side we used EZ ConnectTM N

150Mbps Wireless USB2.0 Adapter (SMCWUSBS-N3), that supports IEEE 802.11 b/g/n connection.

From the server side we used the router MikroTik RouterBOARD 2011UAS-2HnD, which also supports

IEEE 802.11 b/g/n connection. The capabilities of the router used was the switch with and wireless ac-

cess point. At the scenario with multiple users, section 4.1.3, it was used the Cisco-Linksys WRT160N

Wireless-N Broadband Router as a switch to connect the different Ethernet users to the server.

We tried to evaluate a scenario that used more than two network interfaces, but the system at the

time it did not offer support for a implementation like this.

5.1.3 Mobile Phone

The mobile client is a LG Nexus 5 with Android 4.4. We installed the MultiPath TCP - Linux Kernel

Implementation [45] v0-86 available for the device. This device is equipped with 3G, 4G/LTE and WLAN

interface, that supports IEEE a/b/g/n/ac connection. The external network interface used in this project

depends on the network coverage of the service provider.

This distribution still does not allow multihoming, of 4G with WLAN simultaneously. Nonetheless, we

used it to evaluate the reaction to network failure, handover between networks and comparison of using

MPTCP and TCP connections.

5.2 MPTCP Configuration

As stated before, desktops computers are using MPTCP enabled kernels. Now it will be explained how

to configure the MPTCP options.

1http://www.multipath-tcp.org

26

http://www.multipath-tcp.org

To modify the kernel parameters in order to configure the system variables at runtime, is used the

sysctl interface. Below you can find the available options and their meaning.

net.mptcp.enabled

This option enables the use of MPTCP when it is set with the value 1. In order to disable just set

the variable with the value 0.

net.mptcp.mptcp syn retries

This option configures the number of retransmitted SYN with the MP CAPABLE option. After

sending the number of defined retransmission the MP CAPABLE option will not be sent on the

SYN. The default value is 3. This option exists to handle middleboxes that drop SYNs with unknown

TCP options.

net.mptcp.mptcp checksum

This option enables the use of MPTCP checksum when set with the value 1. In order to disable

just set the variable with the value 0.

NOTE Both sides (client and server) have to be disable not to use checksum.

net.mptcp.mptcp ndiffports

This option configures the number of subflows desired to create across the same pair o IP ad-

dresses. The value can be set, if greater than 1.

net.mptcp.mptcp path manager

Path manager is a modular structure that allows to choose between compiled path-managers.

This structure is needed to allow the creation of new subflows, also to advertise alternative IP

addresses in the ADD ADDR option. This option has three possible values:

default

If the path manager is set with this variable it will accept passive creation of new subflows.

But the host will not create new subflows and will not announce the available IP addresses.

fullmesh

If the path manager is set with this variable it will create a full-mesh between the available

subflows and all addresses.

ndiffports

If the path manager is set with this variable it will create the number of subflows defined in the

net.mptp.mptcp ndiffports.

The system can be configured to use multiple interfaces, multiple subflows per connection or just

fallback to regular TCP. The options above are used by the implemented version, mentioned in section

5.1.2. During the development of this project there have been new version releases, since MPTCP still

is an experimental project.

The Mobile solution is configured to support MPTCP environments, but at the time it does not offer

configurable options, neither for the creation of different subflows nor multihoming support.

27

5.3 Network Routing

In conventional scenarios, to configure the network routing we only need to be concerned with the

outgoing interface and the host destination. This occurs because the Linux kernel assumes that the

host only uses a default gateway and interface. Since MPTCP allows the use of multiple addresses on

various interfaces, by giving a different source or destination address to each subflow, it is not enough

to use a default configuration of the network routing.

Linux routing policies have the capability to allow the kernel to redirect the traffic to use a specific

routing table, according to the source address. In order to identify the available paths per interface, we

need to configure a routing table for each interface.

The Listing 5.1 and 5.2 are an example of a generic routing policy for two Ethernet connections, on

a host using MPTCP.

Listing 5.1: Example Ethernet Interface Configuration, eht0 and eth1

i f c o n f i g eth0 192.168.1.2 netmask 255.255.255.0 gw 192.168.1.1 dev eth0

i f c o n f i g eth1 192.168.2.2 netmask 255.255.255.0 gw 192.168.2.1 dev eth1

Assuming that we have two Ethernet connections, eth0 and eth1 with the configuration shown in

Listing 5.1. We need to create a routing table for each interface. This is achieved by using ip-rule, the

routing policy database management of Linux.

Afterwards we need to configure the routing tables created, Listing 5.2. Finally, after configuring the

tables we need to set the default route to use for the normal Internet traffic.

Listing 5.2: Routing Configuration Example two Ethernet Connections

Creat ion o f two d i f f e r e n t r o u t i n g tab les .

i p r u l e add from 192.168.1.2 tab l e 1

i p r u l e add from 192.168.2.2 tab l e 2

Conf igure the r o u t i n g tab les .

i p rou te add 192.168.1 .0 /24 dev eth0 scope l i n k tab l e 1

i p rou te add d e f a u l t v i a 192.168.1.1 dev eth0 tab l e 1

i p rou te add 192.168.2 .0 /24 dev eth1 scope l i n k tab l e 2

i p rou te add d e f a u l t v i a 192.168.2.1 dev eth1 tab l e 2

Defau l t rou te f o r normal i n t e r n e t − t r a f f i c

i p rou te add d e f a u l t scope g loba l nexthop v ia 192.168.1.1 dev eth0

First we configure all the traffic directed for the local network, in the example 192.168.1.0/24, not to use

the gateway. Then we need to redirect the traffic destined for an outside the local network to be routed

by a specific gateway, in the example 192.168.1.2.

28

After completing the routing policies configurations we will obtain a routing policy database, as the

one shown in Listing 5.3.

Listing 5.3: Example the Result Routing Configuration, two Ethernet

0 : from a l l lookup l o c a l

32764: from 192.168.2.2 lookup 2

32765: from 192.168.1.2 lookup 1

32766: from a l l lookup main

32767: from a l l lookup d e f a u l t

The routing policy database is now complete with the three default routing tables used by the Linux

kernel, which are the local, main and default tables. An the new tables for each interface in use.

The Listing 5.4 and 5.5 are an example of a generic routing configuration for an Ethernet with Wire-

less Local Area Network (WLAN) connections, on a host using MPTCP. This is a similar configuration

as the one before, the only difference is that we configure an WLAN connection on the second interface.

Listing 5.4: Example Wireless Interface Configuration, wlan0

i f c o n f i g wlan0 192.168.3.2 netmask 255.255.255.0 gw 192.168.3.1 dev wlan0

Listing 5.5: Routing Configuration Example Ethernet and WLAN Connections

Creat ion o f two d i f f e r e n t r o u t i n g tab les .

i p r u l e add from 192.168.1.2 tab l e 1

i p r u l e add from 192.168.3.2 tab l e 2

Conf igure the r o u t i n g tab les .

i p rou te add 10 .1 .1 .0 /24 dev eth1 scope l i n k tab l e 1

i p rou te add d e f a u l t v i a 10 .1 .1 .1 dev eth0 tab l e 1

i p rou te add 192.168.3 .0 /24 dev wlan0 scope l i n k tab l e 2

i p rou te add d e f a u l t v i a 192.168.3.1 dev wlan0 tab l e 2

Defau l t rou te f o r normal i n t e r n e t − t r a f f i c

i p rou te add d e f a u l t scope g loba l nexthop v ia 192.168.1.1 dev eth0

Whenever an interface becomes available or changes configurations, the MultiPath TCP kernel re-

quires these procedures to occur. It also requires to manually remove the previous configurations, by

deleting the policy rule and flush the routing table associated. Since this configurations are inefficient

and time consuming, it is more effective to have a script with the necessary configurations ready to de-

ploy. The NetworkManager is responsible for managing every interface on the Linux kernel. The script

uses a static implementation using IPv4. This solution could be extended to support IPv6, but for testing

29

purposes we have chosen to use only IPv4. Whenever the NetworkManager detects a new interface, or

loses a previous one, it automatically configures the interface accordingly.

The routers used in the implementation of the testbed do not use any specific configuration, beyond

the required for being in the same network as described in the scenarios on Chapter 4.

The device used in the mobile solution is automatically configured by the network manager imple-

mented by the Android MPTCP enabled solution.

5.4 Evaluation Tools

The experimental data was obtained with the use of well known tools, such as tcpdump, iperf, ping,

netstat and wireshark. These tools were previously modified in order to support the MultiPath TCP pro-

tocol. We also used the iproute2, a collection of user space utilities, more specifically the ss command

utility, to obtain network statistics. Also developed an application that allows us to listen to the data sent

on each interface.

The tcpdump tool manages to capture the packets sent over the available connections. Then, with

wireshark, we proceeded to perform a offline analysis of the packets transfered. This combination of

tools allows us to measure the performance of the protocols by evaluating the throughput of the data

transfered, the load balancing between the flows, the handover between connections, the connection

establishment time and the packets overhead.

With iperf we were able to obtain the network performance and evaluate the MPTCP protocol, how

it reacts to connection interruptions in one of the paths and how it adapts to failures. Artificial failures

were generated through physical intervention on one, or both, of the network interfaces. This tool allows

us simulate other users in the same link, by creating a number of clients competing for the server’s

connection. We were also able to test the protocol reaction to links which have the same upstream and

downstream bandwidth.

The netstat and ping are part of a collection of base networking utilities for Linux, net-tools, that

have the capability of displaying all the available network connections, test the reachability of a host on

a IP network, and has the ability to measure the RTT’s between each packet delivered. These network

utilities allows us to distinguish the MPTCP subflows.

The ss command utility gets information directly form the kernel, which offers a faster response than

netstat. With this utility we can obtain each subflow statistics, because it offers a larger collection of

information than the netstat.

The developed application is similar to the bwm tool, which is a bandwidth monitoring tool for Linux

environments, but instead of just showing the information on the console, the application stores the data

collected on each interface on a text file every 1/2 second.

On the mobile device we needed to install two applications for network evaluation. The first being an

iperf application called iPerf for Android 2, to allows us to connect with the server. The second one was

necessary to test the connection itself, to assure that the mobile phone was automatically configure to

2https://play.google.com/store/apps/details?id=com.magicandroidapps.iperf

30

https://play.google.com/store/apps/details?id=com.magicandroidapps.iperf

the right environment. In order to do that , we used the application Network Tools 3. The experimental

data needed to evaluate the mobile scenario was collect by the server side.

The MPTCP protocol is still at an early stage of development, therefore it is difficult to find networking

tools with MPTCP support, specially for the mobile environment.

With the use of the performance and management tools described above, we can obtain all the

experimental data needed to carried out the a valid tested solution. We will then compare the different

test results obtained to the regular TCP solution, in order to prove that MultiPath TCP performs as good

or better in this circumstances.

3https://play.google.com/store/apps/details?id=su.opctxo.android.networktools

31

https://play.google.com/store/apps/details?id=su.opctxo.android.networktools

32

Chapter 6

Methodology and Evaluation

The main objective of this testbed is to compare the use of MPTCP and TCP protocols. The testbed

was developed to evaluate the use of the MPTCP protocol on various type of network communications,

in order to assess the viability of deploying the protocol on Técnico Lisboa internal network .

This chapter describes the methodology and evaluation of the developed testbed, to ensure the

efficiency of this protocol.

In the Section 6.1 we begin by explaining the tests conducted and their scenarios, performed over

the detailed architecture in Chapter 4. Section 6.2 describes the metrics used to produce an objective

analysis of the MPTCP protocol implementation. The result of the tests carried out, using the tools

described in Section 5.4, can be found on Section 6.3.

6.1 Tests

The tests were performed over a real environment scenario, in order to distinguish from other solutions

who resort to use of simulated environments. The equipments used to implement the testbed and the

specifications about the hardware can be found on Section 5.1. As described in Section 5.2 we modify

the system to support the desired scenario tests.

The Mobile Client needs to install the enabled MPTCP version of the Android 4.4 in order to use

the protocol. When the tests require to use TCP, in order obtain data to compare to the same type of

connections, the smart phone needed to be setup with the original Android 4.4 operative system.

In order to get better results to compare the use of both protocols the tests were performed on two

different contexts, as stated before the conventional wireless and wired scenarios and mobile devices,

described in Chapter 4.

The first context allows us to evaluate and test the use of MPTCP over conventional wired and

wireless networks. While the second is more focused on mobile environments.

To implement the testbed we relied on several test scenarios described as follows.

33

6.1.1 Scenario A - Multihoming MPTCP with WiFi and Ethernet Connections

Figure 6.1: Test Scenario A - Multihomed with WiFi and Ethernet Connections

For this scenario we used two desktop computers, with MPTCP enabled distribution of Ubuntu Saucy.

Using two connections, the first being a wireless connection using a Wireless USB Adapter connected

to the a MikroTik Router. The second a RJ45 cable connecting the two computers directly. More speci-

fications can be found on Section 5.1.

This first test scenario collects information of a MPTCP multihoming implementation using Ethernet

and WLAN connections, as shown in Figure 6.1. The system should be configured to use multiple

interfaces, as described in the Section 5.2. In this scenario the computers were configured to use

two different network links, one for each network interface, similar to the routing examples described

in Section 5.3. The Server is connected to the Switch AP in order to simulate a wireless access point

connection in the network. The Client is connect to the Server via Ethernet, direct link, and via Wireless,

through the Switch AP.

To obtain adequate data from the use of multihoming solution with MPTCP, this scenario is divided

in eight sub scenarios.

Scenario A.1 This test allows us to gather information on the load balancing, performance and through-

put when using a Ethernet and WiFi connections, when there are no other users on the network.

Scenario A.2 This scenario tests the protocol’s reaction when the Ethernet link fails, providing informa-

tion about the response time to recover and evaluate the resilience of the network.

Scenario A.3 This scenario is similar to the previous sub scenario, Scenario A.2, but in this case the

Ethernet link is stable and the WiFi link fails.

Scenario A.4 This test scenario gathers information on the handover between different network con-

nections. In the beginning of the test the Client is using a WiFi connection but then suddenly

changes to Ethernet, closing the previous connection.

Scenario A.5 This test scenario is similar to the previous, Scenario A.4, but in this scenario the Client

begins the connection using Ethernet and then changes to WiFi.

Scenario A.6 In this test the Client loses connection on both interfaces and recovers. This test allows us

to collect information on protocol’s reaction when it does not have an available interface to redirect

the data and how it deals with loss of connection.

34

Scenario A.7 Tests the protocol’s reaction to links which offer the same upstream and downstream

bandwidth, providing routing information and load balancing over the network links.

Scenario A.8 This test scenario simulates other users in the same network link, by creating five clients

competing for the server’s connection. This allows us to observe the fairness of the protocol in a

congested link.

6.1.2 Scenario B - Multihoming MPTCP with two Ethernet Connection

Figure 6.2: Test Scenario B - Multihomed with Two Ethernet Connections

For this scenario we used two desktop computers, with MPTCP enabled distribution of Ubuntu Saucy.

Using two connections, both of them by using a RJ45 cable connecting the two computers directly on

each interface. More specifications can be found on Section 5.1.

This scenario is similar to the previous scenario 6.1.1, being that it is also a MPTCP multihoming

implementation, but in this case it uses two Ethernet connections, as shown in Figure 6.2. The system

needs to be configured to use multiple interfaces, as described in the Section 5.2. In this scenario

the computers should be configured to use two different network links, one for each network interface,

similar to the routing examples on Section 5.3. The Server and Client are directly connected through

Ethernet.

To obtain adequate data from the use of MPTCP multihoming solution, this scenario is divided in

seven sub scenarios.

Scenario B.1 This test allows us to gather information on the load balancing, performance and through-

put when using two Ethernet connections, when there are no other users on the network.

Scenario B.2 This scenario tests the protocol’s reaction when one of the Ethernet link fails, providing

information about the response time to recover and evaluate the resilience of the network.

Scenario B.3 This test scenario gathers information on the handover between different network con-

nections. In the beginning of the test the Client is using a network connection but then suddenly

changes to another, closing the previous connection.

Scenario B.4 In this test the Client loses connection on both interfaces and recovers. This test allows us

to collect information on protocol’s reaction when it does not have an available interface to redirect

the data and how it deals with loss of connection.

Scenario B.5 In this test proceed to strangle one of the links, to 10 Mbps, to observe how the protocol

sends the network traffic and how it deals with congested links.

35

Scenario B.6 Tests the protocol’s reaction to links which offer the same upstream and downstream

bandwidth, providing routing information and load balancing over the network links.

Scenario B.7 This test scenario simulates other users in the same network link, by creating a five clients

competing for the server’s connection. This allows us to observe the fairness of the protocol in a

congested link.

6.1.3 Scenario C - Subflow Analysis

Figure 6.3: Test Scenario C - WiFi Connection

For this scenario we used two desktop computers, with MPTCP enabled distribution of Ubuntu Saucy.

Using one Wireless USB Adapter connected to the a MikroTik Router. More specifications can be found

on Section 5.1.

This scenario gathers information of the MPTCP subflows implementation, using Ethernet and WiFi

connections separately, as shown in Figure 6.3 and Figure 6.4. The system should be configured to

use three subflows, these configurations are set using the options described in Section 5.2. In order to

obtain adequate data from the use of MPTCP subflows, this scenario is divided in eight sub scenarios.

The first four scenarios gather subflows information while using WLAN connection. The Client has a

WLAN interface that connects to the Server through the Switch AP, Figure 6.3.

Scenario C.1 This test allows us to gather information on MPTCP subflows while using a WiFi connec-

tion, when there are no other users on the network.

Scenario C.2 In this test the Client loses connection on the network interface. This test allows us to

collect information on protocol’s reaction to loss of connection, recovery time and evaluate the

resilience of the network.

Scenario C.3 Tests the protocol’s reaction to links which offer the same upstream and downstream

bandwidth, providing routing information and load balancing on the subflows.

Scenario C.4 This scenario simulates other users in the same network link, by creating a five clients

competing for the server’s connection. This allows us to observe the fairness between the subflows

connections and evaluate the response to a congested link.

The last four scenarios gathers subflows information while using Ethernet connection. The Server

and Client are directly connected through Ethernet, Figure6.4.

36

Figure 6.4: Test Scenario C - Ethernet Connection

For this scenario we used two desktop computers, with MPTCP enabled distribution of Ubuntu Saucy.

Using one RJ45 cable to connected them directly. More specifications can be found on Section 5.1.

Scenario C.5 This test scenario is similar to the described Scenario C.1. But in this test scenario the

Client is connected to the server using the Ethernet interface.

Scenario C.6 This test scenario is similar to the described Scenario C.2. But in this test scenario the

Client is connected to the server using the Ethernet interface.

Scenario C.7 This test scenario is similar to the described Scenario C.3. But in this test scenario the

Client is connected to the server using the Ethernet interface.

Scenario C.8 This test scenario is similar to the described Scenario C.4. But in this test scenario the

Client is connected to the server using the Ethernet interface.

6.1.4 Scenario D - TCP Analysis

This scenario collects the TCP information using the same tests of the previous Scenario C, section

6.1.3. The system needs to be configured to have MPTCP disable, this configurations are set using the

options described in Section 5.2. The data collected from using TCP, allows to make a direct comparison

between the use of both protocols.

6.1.5 Scenario E - TCP and MPTCP Concurrent Scenarios

For this scenario we used two desktop and two laptop computers. The desktop computers, Client and

Server, used the MPTCP enabled distribution of Ubuntu Saucy. The laptops, TCP Client1 and TCP

Client2, used the Debian Wheezy distribution.

This scenario uses two different type of connections, WiFi and Ethernet. The desktop, Client, uses

a Wireless USB Adapter connected to the server via a MikroTik Router, and a Ethernet connection

through a Cisco-Linksys Router. The laptop, TCP Client1 is connected to the server via WiFi through

the MikroTik Router. The laptop, TCP Client2 is connected to the server via Ethernet through the Cisco-

Lynksys Router. More specifications can be found on Section 5.1.

This test scenario gathers information of a network with both MPTCP and TCP users, as shown in

Figure 6.5 and Figure 6.6.

The Server is connected to the Switch AP to simulate a wireless access point in the network. The

TCP Client1 connects to the Server via Wireless, through the Switch AP. While the TCP Client2 is

37

Figure 6.5: Scenario E - Ethernet and WiFi Connections

connected to the Server through the Switch. The TCP Client1 and TCP Client2, do not have MPTCP

support. They sent data to the server using TCP protocol.

This test scenario is divided in this scenario is divided in six sub scenarios.

Scenario E.1 In this test scenario the Server and Client use MPTCP enabled configured to use mul-

tiple interfaces, as described in the Section 5.2. The Client connects to the Server via Wireless,

through the Switch AP. This scenario collects information to evaluate if the MPTCP multihoming is

aggressive towards the TCP traffic over the network, Figure 6.5.

Scenario E.2 This scenario is similar to the Scenario E.1, but in the case, the Client is connected to the

Server via Ethernet through the Switch, Figure 6.6.

Figure 6.6: Scenario E - Ethernet Connections

This scenario uses two different type of connections, WiFi and Ethernet. The desktop, Client,

38

uses two Ethernet connections to reach the server, the first through the MikroTik Router and the

second through the Cisco-Linksys Router. The laptop, TCP Client1 is connected to the server via

WiFi through the MikroTik Router. The laptop, TCP Client2 is connected to the server via Ethernet

through the Cisco-Lynksys Router. More specifications can be found on Section 5.1.

Scenario E.3 In this test scenario the Server and Client have MPTCP enabled configuration to use

three subflows, as described in the Section 5.2. The MPTCP Client connects to the Server via

Wireless, through the Switch AP. This scenario collects information to observe how the MPTCP

subflows react when there is TCP traffic over the network, Figure 6.5.

Scenario E.4 This scenario is similar to the Scenario E.3 but in this case, the Client is connected to the

server using the Ethernet interface, through the Switch, Figure 6.6.

Scenario E.5 This test scenario collects the TCP information using the same test of the Scenario E.3.

The Server and Client have the MPTCP configuration disabled, this configurations are set using

the options described in Section 5.2. The Client connects to the Server via Wireless, through the

Switch AP. This scenario allows us to evaluate regular TCP reaction to traffic sent over the network

WLAN, Figure 6.5.

Scenario E.6

This test scenario collects the TCP information using the same test of the Scenario E.4. The Server

and Client need to have MPTCP disable, this configurations are set using the options described

in Section 5.2. The MPTCP Client connects to the Server via Ethernet, through the Switch. This

scenario allows us to evaluate regular TCP reaction to traffic sent over the Ethernet link, Figure

6.6.

6.1.6 Scenario F - Mobile Solution MPTCP

This scenario is set in the context of mobile environments. In order to assess the MPTCP implementation

on this type of environments we used the architectural scenario described in Figure 6.7, based on the

architecture described on the Section 4.2. This scenario uses three types of connection, local WiFi

connection, campus WiFi connection and 3G/4G connection provided by a commertial 3G/4G Internet

Service Provider (ISP).

In the local WiFi connection allows us to gather information of the use of the protocol on a wire-

less environment without any restrictions. While the campus WiFi connection, Eduroam, allows us to

evaluate the protocol’s reaction when using a wireless environment with bandwidth restrictions and load

generated by several users. The 3G/4G connection allows to perceive the use of the protocol over public

networks.

In this scenario the Server and the Mobile User need to have MPTCP enabled solutions. The Server

needs to have MPTCP enabled and to be configured to use multiple interfaces, as described in the Sec-

tion 5.2. The Mobile User needs to support MPTCP connections. This was accomplished by installing

the Android 4.4 - MultiPath TCP - Linux Kernel Implementation, as noted in Section 5.1.3.

39

Figure 6.7: Scenario F - Mobile Connection

The Server in this scenario uses two connections. The first is a connection to the Switch AP to

simulate a wireless access point in the network. The second is a link connection to Técnico Lisboa

internal network.

This scenario is divided in nine sub scenarios, allowing us to gather information of the MPTCP

implementation on a smart phone Android, such as performance, throughput and handover between

networks.

Scenario F.1 In this scenario we collect information of using MPTCP protocol over a local WiFi con-

nection. In order to do so, the Mobile User was connected to the Server via wireless, through the

Switch AP.

The tests carried out in this scenario obtain information of the performance and throughput of the

connection. The first test, tests the connection over the local WiFi when there are no other users

on the network. The second test evaluates the protocol’s reaction to loss of connection, recovery

time and the resilience of the network, when the Mobile User loses the WiFi connection. This

loss is accomplished through link failure simulation, on the link that connects the Switch AP to the

Server. The third test allows us to evaluate the reaction of the protocol to links which offer the same

upstream and downstream bandwidth. Lastly theres a test that simulates five clients competing

for medium access to the server. Allowing us to observe the fairness between the load balancing

carried out in a congested link.

Scenario F.2 In this scenario we collect information of using MPTCP protocol over the WiFi campus

connection. In order to do that, the Mobile User was connected to the Server via Wireless, through

one of the campus Access Point (AP). The objective of this scenario is to evaluate the protocol’s

reaction when using a wireless environment with bandwidth restrictions and load generated by

several users.

40

This scenario assesses the same tests described on the Scenario F.1. The loss in this scenario

is accomplished by link simulation failure, over the link that connects the Server to Técnico Lisboa

internal network.

Scenario F.3 In this scenario we collect information of using MPTCP protocol in over a ISP network. In

order to do that, the Mobile User needs to be connected to the Server, using the 3G/4G interface.

Taking into account that the server has a Ethernet connection Técnico Lisboa internal network,

which allows it to access the Internet. The objective of this scenario is to evaluate the protocol’s

reaction when used over public networks.

This scenario assesses the same tests described on the Scenario F.1. The loss in this scenario

is accomplished by link simulation failure, on the link that connects the Server to Técnico Lisboa

internal network.

Scenario F.4 This test scenario gathers information about the handover between mobile to the campus

WiFi network. This test is interesting to evaluate the changes that occur when the Mobile User

changes from Técnico Lisboa internal network, where there are bandwidth restrictions and load

generated by several users, to a public network provided by the ISP.

Scenario F.5 This test scenario is the reverse of the previous test scenario, Scenario F.4. In this test

we collect information about the handover between campus WiFi and to mobile network.

Scenario F.6 This test scenario gathers information about the handover between campus WiFi to the

local WiFi network. This test is interesting to evaluate the changes that occur when the Mobile User

changes from the campus WiFi network, where there bandwidth restrictions and load generated

by several users, to the local WiFi network.

Scenario F.7 This test scenario is the reverse of the previous test scenario, Scenario F.6. In this test

we collect information about the handover between the local WiFi to the campus WiFi network.

Scenario F.8 This test scenario gathers information about the handover between the local WiFi to the

mobile network. This test is interesting to evaluate the changes that occur when the Mobile User

changes from the local WiFi network, where there are no other users, to a public network provided

by the ISP.

Scenario F.9 This test scenario is the reverse of the previous test scenario, Scenario F.8. In this test

we collect information about the handover between the mobile to the local WiFi network.

6.1.7 Scenario G - Mobile Solution TCP

This scenario collects the TCP information using the first three test scenarios described previously on

Scenario F. The Server was configured to have MPTCP disabled, this configurations are set using the

options described in Section 5.2. The data collected from using TCP, allows to make a direct comparison

between the use of both protocols.

41

6.2 MPTCP Evaluation

We will use the following metrics described in order to evaluate the proposed solution.

Through subflow analysis we can verify that the subflows available on the network really belong

to a single MultiPath TCP session. We need to also be able to verify that the different connections are

being used to efficiently transfer the data.

The network implementation allows us to evaluate if the protocol can be applied to the existent

infrastructures without the need for any adaptation, except at the endpoints. It allows us to evaluate if

the protocol is fair to other connections available in the network, by analyzing the concurrence between

the MPTCP subflows and the existing traffic.

With the experimental data we can evaluate the performance of the protocol. Evaluating if the load

balancing is actually being effective on the network. Comparing if the cumulative throughput in order to

effectively prove that it is equal or greater than a single TCP connection, with the same characteristics.

Additionally we can verify that the connection stays active after a network physical failure, to test the

protocol’s resilience to failure.

6.3 Results

This section presents the analysis results of the tests. The description of the test scenarios performed

can be found in Section 6.1.

Several tests were performed for each type of test scenario described, specifically 10 tests. The test

where performed in different times of day. All data was collected using the evaluation tools described on

Section 5.4.

The tests performed in the context of conventional wired and wireless networks had a duration of 100

seconds each, since no significant changes were found in tests with a longer time.

The tests performed in the context of mobile environment were measured for 60 seconds, because

a longer connection would entail greater expense, due to the use of 4G networks. In this context the

data was collected on Server side, due to limitations of the actual applications for Android with enabled

MPTCP implementation.

The values that will be presented are an average of the several measurements obtained for each

scenario.

6.3.1 Wireshark Capture of MPTCP Connection Handling

The Wireshark tool was used to examine the packets captured with the tcpdump tool. Following is

presented the screenshots of the most relevant messages of the MPTCP protocol, that are sent to

handle the connection, as described in Section 3.3. The MPTCP information is sent in the TCP Options

field, as can be seen in Figures 6.8, 6.9 and 6.10.

42

These images where captured in the Scenario A.1. The Client has the addresses 192.168.88.3 and

192.158.1.3, while the Server has the 192.168.88.2 and 192.158.1.2.

Figure 6.8: Wireshark screenshot showing MPTCP message for Beginning a connection

Figure 6.8 shows the Add Address MultiPath TCP option to establish a new connection. A host sends

the Add Address, signal ADD ADDRESS, to announce additional addresses in which it can be reached.

In order to identify the new connection the protocol combines the new address with the address id. As it

can be seen in the capture, the information exchange is carried out by the Server, informing the Client

that it contains another additional address, which belongs to the other interface available, it also sends

the protocol address id which is 2.

Figure 6.9 shows the Join Connection MPTCP option, to allow the host to create new subflows.

A host sends Join Connection, flag MP JOIN, to establish a new subflow with another host, after the

add address and the protocol id already been exchanged. In the capture the Client exchanges the

identification tokens and the address id in order to create a new subflow with the Server.

Figure 6.10 shows the MPTCP sending the DATA FIN option selected to initiate the closing of the

connection. The protocol also sets the TCP flag with FIN, to close the connection, in case the TCP

options are dropped. In the capture Server is sending the DATA FIN on one of the subflows being used,

to close all the subflows.

With these three images we can see the MPTCP protocol is very similar to TCP protocol. And that

43

Figure 6.9: Wireshark screenshot showing MPTCP message for creating a new Subflow

it sends the information needed in the Option field of the TCP protocol. To ensure the routing and com-

patibility the MPTCP also sends the relevant information over the TCP fields, in case the middleboxes

scattered over the network drop the TCP options field.

6.3.2 Throughput Measurements

In this subsection is described the performance results of both protocols in different test scenarios that

were deployed, previously described in the Section 6.1. As stated before, the values presented are an

average of several measurements obtained on each test scenario.

The Table 6.1 compares the performance of both protocols MPTCP and TCP, in the context of

conventional wireless and wired connection scenarios, when there is no congestion on the transfer

medium in use. As we will show below, the aggregation of multiple paths by MPTCP provides a total

bandwidth that is close to the sum of individual TCP flows.

As shown in the Table 6.1, the connection of MPTCP Subflow has a lower throughput than the

one obtain in TCP, scenarios C.1 and D.1 for WiFi, and scenarios C.5 and D.5 for Ethernet. This can

be explained with the overhead created for each subflow. In this case the MPTCP connection was

configured to use three subflows.

Comparing the MPTCP Scenario A.1 WiFi interface, it offers higher bandwidth than the similar one

44

Figure 6.10: Wireshark screenshot showing MPTCP message for Closing the connection

using TCP, Scenario D.1. The same occurs when using the Ethernet interfaces, MPTCP Scenario A.1

Ethernet and TCP Scenario D.5. Through all obtained results, MPTCP showed a higher throughput, in

multihoming scenarios with one subflow per network interface, than TCP for the same interface.

The Table 6.2shows the bandwidth capability of each network interface used in the context of mobile

scenario. Table 6.2 shows that MPTCP protocol have better performance, Scenario F.2 and F.3, than

the similar TCP ones, G.2 and G.3.

As it can be observed the MPTCP throughput in the Local WiFi network, Scenario F.1, is actually

lower than in the TCP case, Scenario G.1. The lower throughput obtained in the Scenario F.1 can be

considered a random event, since WiFi connections are subject to interference caused by networks

concurring in the same channel. The IEEE 802.11 b/g WiFi singal occupies five channels in the 2.4GHz

band frequency, this frequency only supports three channels without overlapping, to allocate the various

WLAN networks. This can cause collisions in the used WLAN, thus lowering its throughput, due to other

networks being used in the same channel. This interference can be seen on the Local WiFi Network link

represented in Figures 6.19 and 6.17.

Table 6.3 compares the performance of both protocols, MPTCP and TCP, when they are competing

with each other for bandwidth access, in the context of conventional wireless and wired connection

scenarios.

45

Wireless And Wired Connections
Test

Scenario Protocol Interface Throughput
(Mbps)

Scenario A.1 MPTCP
WiFi 47.8

Ethernet 98.2
Total 146

Scenario B.1 MPTCP
Ethernet 98.1
Ethernet 98.1

Total 196.2
Scenario C.1 MPTCP WiFi 40.7
Scenario C.5 MPTCP Ethernet 92.1
Scenario D.1 TCP WiFi 43.8
Scenario D.5 TCP Ethernet 94.1

Table 6.1: Throughput of Wireless And Wired Connections without Network Congestion

Mobile Environment

Test Scenario Network Protocol Throughput
(Mbps)

Scenario F.1 Local WiFi MPTCP 37.6
Scenario F.2 Campus WiFi MPTCP 7.8
Scenario F.3 ISP Network MPTCP 9.4
Scenario G.1 Local WiFi TCP 43.5
Scenario G.2 Campus WiFi TCP 2.5
Scenario G.3 ISP Network TCP 8.6

Table 6.2: Throughput Measurements of Mobile Interfaces

When using Ethernet network links the MPTCP has shown to be fair to TCP users over the same

network link, Table 6.3. However, when MPTCP competes in WLAN networks, it has shown to really

affect the connection of TCP users. This could be a problem on the operative system implementation of

the protocol.

Figure 6.11 shows the test Scenario B.5, to demonstrate how MPTCP acts when faced with a stran-

gled link. As observed the throughput sent on the interface with a strangled connection the protocol tries

to use all the bandwidth available in the link, thus increasing the overall throughput of the connection.

In conclusion, MPTCP protocol improves the connections throughput per interface, in comparison

to TCP. Which means, that it also improves the throughput of the overall connection. However, when

using MPTCP with multiple subflows this can not be assured, due to the overhead that each subflow

introduces in the connection. The higher the number of subflows, the greater the overhead introduced.

In congested environments, MPTCP is fair to TCP connections. However, this can not be assured

when the congestion occurs on wireless communications.

46

Wireless And Wired Connections
Test

Scenario User Protocol Interface Throughput
(Mbps)

Scenario E.1
Client MPTCP

WiFi 33.2
Ethernet 89.4

Total 122.6
TCP Client1 TCP WiFi 2.1
TCP Client2 TCP Ethernet 94.1

Scenario E.2
Client MPTCP

Ethernet 97.1
Ethernet 77.1

Total 171.2
TCP Client1 TCP WiFi 20.6
TCP Client2 TCP Ethernet 92.3

Scenario E.3 Client MPTCP WiFi 36.9
TCP Client1 TCP WiFi 0.2

Scenario E.4 Client MPTCP Ethernet 92.8
TCP Client2 TCP Ethernet 94.1

Scenario E.5 Client TCP WiFi 35.5
TCP Clien1 TCP WiFi 0.4

Scenario E.6 Client TCP Ethernet 94.1
TCP Clien2 TCP Ethernet 94.1

Table 6.3: Throughput of Wireless And Wired Connections in Congested Networks

6.3.3 Recovery Time

In this subsection is compared how both protocols react to network failure, as described on the scenarios

in Section 6.1.The failures were cause through physical intervention. The values obtained present an

average of the several measurements obtained on each test scenario.

Table 6.4 shows the time needed for the connection to recover from a failure, in the context of wireless

and wired connections. As it can be seen MPTCP recovers from failure in the same time, or less, than a

TCP connection.

As shown in Table 6.4 when using MPTCP with multihoming, the time to recover from failure is

influenced by the interface that takes the longer time to recover, Scenarios A.2, A.3, A.6, B.2 and B.3.

In the case when MPTCP is using subflows it recovers much faster than MPTCP multihomed and TCP,

Figure 6.11: MPTCP with a Strangled Link Connection

47

Wireless And Wired Connections

Test Scenario Protocol Interface Link
Failure

Recovery Time
(s)

Scenario A.2 MPTCP WiFi Yes 15
Ethernet No -

Scenario A.3 MPTCP WiFi No -
Ethernet Yes 15

Scenario A.6 MPTCP WiFi Yes 15.5
Ethernet Yes 15

Scenario B.2 MPTCP Ethernet Yes 13
Ethernet No -

Scenario B.4 MPTCP Ethernet Yes 12.5
Ethernet Yes 13

Scenario C.2 MPTCP WiFi Yes 6
Scenario C.6 MPTCP Ethernet Yes 4.5
Scenario D.2 TCP WiFi Yes 15.5
Scenario D.6 TCP Ethernet Yes 13

Table 6.4: Recovery Time of Wireless And Wired Connections

this occurs due to the fact that the connection remains active for a longer period of time, depending on

the number of subflows being used.

Mobile Environment

Test Scenario Network Protocol Link
Failure

Recovery Time
(s)

Scenario F.1 Local WiFi MPTCP Yes 12.5
Scenario F.2 Campus WiFi MPTCP Yes 15.5
Scenario F.3 ISP Network MPTCP Yes 11
Scenario G.1 Local WiFi TCP Yes 13.5
Scenario G.2 Campus WiFi TCP Yes 32.5
Scenario G.3 ISP Network TCP Yes 29

Table 6.5: Recovery Time of Mobile Connections

Table 6.5 shows the time needed for the connection to recover from a failure, in the context of mobile

scenarios. As shown in Table 6.5 the MPTCP is faster than TCP, to recover from failure.

The Scenario F.2 and F.3, take a less time to recover from failure, than Scenario G.2 and G.3. This

happens becauseMPTCP keeps the link status for a longer time than TCP.

In conclusion MPTCP is more resilient to failure than TCP.

6.3.4 Handover

In this subsection we compare the different handover scenarios. There is no TCP handover, because

when a interface loses connection and another connects, the TCP creates a new connection to the

server, closing the previous one.

The handover in the context of conventional wireless and wired scenarios, can be seen in the Figures

6.12, 6.13 and 6.14. While Figures 6.15 to 6.20 show the handover in the context of mobile environment

48

Figure 6.12: Scenario A.4 : MPTCP Handover between WiFi and Ethernet

Figure 6.13: Scenario A.5 : MPTCP Handover between Ethernet and WiFi

scenarios.

Figure 6.12, shows the connection reaction when occurs an connection switches from using WiFi to

the Ethernet interface. The connection takes 13 seconds to complete the handover.

Figure 6.13, shows the connection reaction when occurs an connection switches from using Ethernet

to WiFi interface. The connection takes 0.5 second to complete the handover.

Figure 6.14, shows the connection reaction when occurs an connection switches from using one

Ethernet to other Ethernet interface. The connection handover takes 4.5 seconds to complete.

The Figure 6.15 shows the handover between the 4G and Campus WiFi Network. The time to

complete the handover is the time that the mobile needs to complete the authentication process to the

Campus Network, which takes 3.5 seconds.

The Figure 6.16 shows the handover between the Campus WiFi and 4G Network. The time to

complete the handover is less than 0.5 seconds.

The Figure 6.17 shows the handover between the Campus WiFi and Local WiFi Network. The time

to complete the handover is less than 0.5 seconds.

The Figure 6.18 shows the handover between the Local and Campus WiFi Network. The time to

complete the handover is the time that the mobile needs to complete the authentication process to the

Campus Network, which takes 3.5 seconds.

49

Figure 6.14: Scenario B.3 : MPTCP Handover between two Ethernet Connections

Figure 6.15: Scenario F.4 : MPTCP Handover between 4G and Campus WiFi Network

Figure 6.16: Scenario F.5 : MPTCP Handover between Campus WiFi and 4G Network

50

Figure 6.17: Scenario F.6 : MPTCP Handover between Campus WiFi and Local WiFi Network

Figure 6.18: Scenario F.7 : MPTCP Handover between Local WiFi and Campus WiFi Network

Figure 6.19: Scenario F.8 : MPTCP Handover between Local WiFi and 4G Network

51

Figure 6.20: Scenario F.9 : MPTCP Handover between 4G and Local WiFi Network

The Figure 6.19 shows the handover between the Local WiFi and 4G Network. The time to complete

the handover is less than 0.5 seconds.

Finally the Figure 6.20 shows the handover between the 4G and Local WiFi Network. The time to

complete the handover is less than 0.5 seconds.

In the context conventional wireless and wired scenarios, the handover it is somewhat slow when

connecting to a Ethernet interface, as it was expected with the network drivers in use. In the context of

mobile environment scenarios the handover is almost seamless, except when the mobile user needs to

authenticate.

This shows that MPTCP has the avantage of keeping the same connection, even after the handover

between different networks.

6.3.5 Upstream and Downstream Bandwidth Links

In this subsection is described the evaluation of fairness of both protocols in links that use similar up-

stream and downstream bandwidth.

Table 6.6 shows the percentage of bandwidth used for a upstream and downstream in both contexts.

As shown in the Table 6.6, the MPTCP has a similar behavior to the TCP.

6.3.6 Concurrency on Network Links using Simulation

In order to test a more controlled environment to create concurrency over the network, it was simulated

the use of five clients on each scenario on the Table 6.7.

As it can be seen in Table 6.7 the MPTCP only loses fairness in networks with constrained con-

nection, Campus WiFi network. Otherwise the protocol reacts very similar as the TCP, in the same

situations.

52

Links with similar Upstream and Downstream

Test Scenario Protocol Context Interfaces Upstream Downstream
(Mbps) (%) (Mbps) (%)

Scenario A.7 MPTCP Wired and
Wireless

WiFi +
Ethernet 63.91 34 124.74 66

Scenario B.8 MPTCP Wired and
Wireless

Ethernet +
Ethernet 131.47 49 136.3 51

Scenario C.3 MPTCP Wired and
Wireless WiFi 15.15 36 26.71 64

Scenario C.7 MPTCP Wired and
Wireless Ethernet 27.64 23 91.44 77

Scenario D.3 TCP Wired and
Wireless WiFi 14.1 32 29.7 68

Scenario D.7 TCP Wired and
Wireless Ethernet 87.78 50 88.14 50

Scenario F.1 MPTCP Mobile
Environment

WiFi
(Local) 9.13 27 24.8 73

Scenario F.2 MPTCP Mobile
Environment

WiFi
(Campus) 1.39 32 2.97 68

Scenario F.3 MPTCP Mobile
Environment 4G 4.46 27 12.13 73

Scenario G.1 TCP Mobile
Environment

WiFi
(Local) 15.12 32 32.19 68

Scenario G.2 TCP Mobile
Environment

WiFi
(Campus) 0.56 19 2.46 81

Scenario G.3 TCP Mobile
Environment 4G 4.12 27 11.09 73

Table 6.6: Connection Links with Similar Upstream and Downstream

6.3.7 Subflows

In this subsection is shown subflow information obtained from using the netstat tool.

Listing 6.1: Subflow Information of Multihomed MPTCP

Act i ve I n t e r n e t connect ions (servers and es tab l i shed)

Proto Recv−Q Send−Q Local Address Foreign Address State

Local Token Remote Token

tcp 0 0 0 .0 .0 .0 :5001 0 . 0 . 0 . 0 : ∗ LISTEN

tcp 0 0 l o c a l h o s t : ipp 0 . 0 . 0 . 0 : ∗ LISTEN

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:59824 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:57846 ESTABLISHED

tcp6 0 0 [: :] : 1 2 8 6 5 [: :] : ∗ LISTEN

tcp6 0 0 ip6−l o c a l h o s t : ipp [: :] : ∗ LISTEN

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:59824 ESTABLISHED

3435536843 3884930593

When using a default multihomeding implementation, the protocol creates one MPTCP connection and

establishes the number of subflows needed, to have one for each available network interface. In the

53

Concurrency Between Simulated Clients

Test
Scenario Protocol Context Interface

Throughput
Total Client1 Client2 Client3 Client4 Client5

(Mbps) (Mbps) (%) (Mbps) (%) (Mbps) (%) (Mbps) (%) (Mbps) (%)

Scenario A.8 MPTCP Wired and
Wireless

WiFi +
Ethernet 132.96 23.28 18 25.47 19 31.3 23 27.3 21 25.61 19

Scenario B.7 MPTCP Wired and
Wireless

Ethernet +
Ethernet 185.69 51.91 28 38.62 21 34.81 19 33.37 18 26.98 14

Scenario C.4 MPTCP Wired and
Wireless WiFi 41.05 8.03 19 8.12 20 8.07 20 8.5 21 8.33 20

Scenario C.8 MPTCP Wired and
Wireless Ethernet 93.55 17.58 19 18.1 19 18.12 19 18.8 20 20.95 23

Scenario D.4 TCP Wired and
Wireless WiFi 41.85 8.51 20 8.48 20 7.86 20 8.5 20 8.5 20

Scenario D.8 TCP Wired and
Wireless Ethernet 94.27 18.86 20 18.84 20 18.86 20 18.85 20 18.86 20

Scenario F.1 MPTCP Mobile
Environment

WiFi
(Local) 25.16 5.76 23 5.43 22 4.62 18 4.98 20 4.37 17

Scenario F.2 MPTCP Mobile
Environment

WiFi
(Eduroam) 2.39 0.1 4 0.47 20 0.89 37 0.14 6 0.79 33

Scenario F.3 MPTCP Mobile
Environment 4G 12.22 1.88 15 2.91 24 1.3 10 3.25 27 2.88 24

Scenario G.1 TCP Mobile
Environment

WiFi
(Local) 47.29 9.53 20 9.61 20 9.54 20 8.28 18 10.33 22

Scenario G.2 TCP Mobile
Environment

WiFi
(Eduroam) 2.38 0.51 21 0.51 21 0.34 14 0.54 23 0.48 21

Scenario G.3 TCP Mobile
Environment 4G 11.92 2.22 19 4.57 39 1.94 16 1.6 13 1.59 13

Table 6.7: Load Balancing between Five Simulated Clients

listing 6.1 we can observe a normal MPTCP connection with two network interfaces.

In the listing 6.2 is shown that the protocol uses five MPTCP connections, one for each client. Know-

ing that a MPTCP connection supports three subflows, each of these subflows is created as a TCP

connection.

6.3.8 Summary Analysis

The MPTCP protocol has been tested successfully using existing infrastructures and adapting only the

endpoints.

After evaluating the test results, it can be concluded that MPTCP use multiple subflows in a single

MPTCP session. Each subflow appears to the system as a TCP connection. In a multihoming MPTCP

implementation it uses a subflow for each interface. When using a MPTCP subflow implementation it

creates the number of desired subflows.

MPTCP has shown to be as fair as TCP, most of the time. Not only when in concurrency with

TCP traffic over the network link, Table 6.3, but also concurrency between MPTCP simulated clients,

as shown section 6.3.6. It has also offer the same fairness to links that use similar upstream and

downstream bandwidth, as it was shown in section 6.3.5.

The MPTCP has shown to improve connection performance, by improving throughput of the overall

connection.

The MPTCP also showed to be more resilient than TCP. In section 6.3.3 it was shown that it recovers

from network failure more quickly than TCP and can perform handover of interfaces without losing the

connection, it was shown section 6.3.4.

54

Listing 6.2: Subflow Information of Five Clients using MPTCP Subflow Implementation

Ac t i ve I n t e r n e t connect ions (servers and es tab l i shed)

Proto Recv−Q Send−Q Local Address Foreign Address State

Local Token Remote Token

tcp 0 0 l o c a l h o s t : ipp 0 . 0 . 0 . 0 : ∗ LISTEN

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:43650 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:41414 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:47972 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:51300 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:42783 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40473 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40477 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:56828 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:36989 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40476 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40475 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:33078 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:39708 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:41111 ESTABLISHED

tcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40474 ESTABLISHED

tcp6 0 0 [: :] : 1 2 8 6 5 [: :] : ∗ LISTEN

tcp6 0 0 ip6−l o c a l h o s t : ipp [: :] : ∗ LISTEN

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40475 ESTABLISHED

2178822189 1509271798

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40476 ESTABLISHED

2150733962 3496238535

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40473 ESTABLISHED

843789494 3476187660

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40477 ESTABLISHED

2514456 3855578736

mptcp 0 0 mptcpdesktop2−POWE:5001 mptcpdesktop1−POW:40474 ESTABLISHED

3870348066 531314471

55

56

Chapter 7

Conclusions

7.1 Syntheses

In order to create a MultiPath TCP (MPTCP) testbed to identify the protocol potential and limitations, it

was necessary to study the evolution of the different approaches taken to produce a multipath protocol.

In the first part of this thesis we addressed mutipath implementation at different network layer. From

this analysis we justified why a multipath solution should be tested at the transport layer, since it brings

the possibility of being transparent to both the application and the network layers.

The work developped in this thesis confirms that the evolution of the multipath TCP protocol shows

several challenges in order to be easily deployable without the need of other changes at the network

and application level. The IETF MPTCP working group efforts have also been analyzed and taken into

account for the creation of the testbed.

In this work we have also described the recent structure of the implementation for MultiPath TCP, by

naming the goals defined for this protocol, explaining its structure and how it works, since the start until

the closing of a session.

A wide range of test scenarios were developed in this testbed in order to evaluate the use of MPTCP

protocol on real network environments. It was shown that MPTCP has the potential to improve con-

nectivity resilience or bandwidth in datacenters and mobile scenarios, as well as in other cases where

multihoming and multi path connections are available. Moreover, we made an extensive evaluation of

the MPTCP protocol, and we verified that it can in fact balance network congestion, offering higher

throughput and being more resilient to failures over the network. In several scenarios, MPTCP showed

overall performance better than conventional TCP.

Summarily we believe that this testbed shows that an implementation of this protocol over Técnico

Lisboa network will increase its overall performance. In summary, we we believe that this testbed shows

that an implementation of this protocol on some Técnico Lisboa services where multipath connections

are available may increase their overall resilience and performance.

57

7.2 Discussion and Future Work

The work developed so far, for a multipath protocol at the transport layer, with a Linux kernel implemen-

tation with MPTCP, allowed the research community to investigate different topologies and implementa-

tions.

Future work could focus on developing an implementation that would allow the use of a greater

number of interfaces, with several types of connection. Another point of focus, could be directed to the

development of a congestion control algorithm that would allow the protocol to compete more fairly in

wireless communication networks.

Another approach could be to develop MPTCP aware applications. Applications that would allow

to prioritize the type of traffic being used, on each interface. Other applications could be developed to

allow the configuration of the enabled MPTCP kernel in smartphones, in order to further test different

approaches of the protocol for this type of devices.

58

Bibliography

[1] Postel, J.: Transmission control protocol. RFC 793, Internet Engineering Task Force (September

1981)

[2] Stewart, R.: Stream Control Transmission Protocol. RFC 4960 (Proposed Standard) (September

2007)

[3] Iyengar, J., Amer, P., Stewart, R.: Concurrent multipath transfer using sctp multihoming over inde-

pendent end-to-end paths. Networking, IEEE/ACM Transactions on 14(5) (2006) 951–964

[4] Zhang, M., Lai, J., Krishnamurthy, A., Peterson, L.L., Wang, R.Y.: A transport layer approach for

improving end-to-end performance and robustness using redundant paths. In: USENIX Annual

Technical Conference, General Track. (2004) 99–112

[5] Hsieh, H.Y., Sivakumar, R.: A transport layer approach for achieving aggregate bandwidths on

multi-homed mobile hosts. Wireless Networks 11(1-2) (2005) 99–114

[6] Nordmark, E., Bagnulo, M.: Shim6: Level 3 multihoming shim protocol for ipv6. Technical report,

RFC 5533, June (2009)

[7] Ford, A., Raiciu, C., Handley, M.: TCP extensions for multipath operation with multiple addresses.

Internet-Draft draft-ietf-mptcp-multiaddressed-02.txt, IETF Secretariat, Fremont, CA, USA (July

2010)

[8] Wang, C., Sohraby, K., Li, B., Daneshmand, M., Hu, Y.: A survey of transport protocols for wireless

sensor networks. Network, IEEE 20(3) (2006) 34–40

[9] Allan, D., Ashwood-Smith, P., Bragg, N., Farkas, J., Fedyk, D., Ouellete, M., Seaman, M., Unbe-

hagen, P.: Shortest path bridging: Efficient control of larger ethernet networks. Communications

Magazine, IEEE 48(10) (October 2010) 128–135

[10] Tarn, W.H., Tseng, Y.C.: Joint multi-channel link layer and multi-path routing design for wireless

mesh networks. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communi-

cations. IEEE, IEEE (2007) 2081–2089

[11] Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics of Peer-to-Peer

systems. Volume 6. (2003) 68–72

59

[12] Postel, J.: User datagram protocol. RFC 768, Internet Engineering Task Force (August 1980)

[13] Perotto, F., Casetti, C., Galante, G.: Sctp-based transport protocols for concurrent multipath trans-

fer. In: Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE. (2007)

2969–2974

[14] Floyd, S., Henderson, T., Gurtov, A.: The newreno modification to tcpś fast recovery algorithm.

Technical report, RFC 2582, April (1999)

[15] Sarkar, D.: A concurrent multipath tcp and its markov model. In: Communications, 2006. ICC ’06.

IEEE International Conference on. Volume 2. (2006) 615–620

[16] Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural guidelines for multipath tcp

development. RFC6182 (March 2011), www. ietf. ort/rfc/6182 (2011)

[17] Scharf, M., Ford, A.: Multipath tcp (mptcp) application interface considerations. Technical report,

RFC 6897, March (2013)

[18] Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6. IETF. (June 2004) [Standards Track

RFC 3775].

[19] Perkins, C.: IP Mobility Support for IPv4. IETF. (August 2002) [Standards Track RFC 3344].

[20] Nordmark, E., Li, T.: Threats Relating to IPv6 Multihoming Solutions. RFC 4218 (Informational)

(October 2005)

[21] van Beijnum, I.: One-ended multipath TCP (May 2009)

[22] C. Paasch, E., Bonaventure, O.: MultiPath TCP Low Overhead (October 2012)

[23] K. Xue, J. Guo, P.H.L.Z.: TMPP for Both Two MPTCP-unaware Hosts (June 2012)

[24] Bagnulo, M., Bonaventure, O., Gont, F., Paasch, C., Raiciu, C.: Analysis of mptcp residual threats

and possible fixes. Analysis (2013)

[25] Barré, S., Bonaventure, O., Raiciu, C., Handley, M.: Experimenting with multipath tcp. SIGCOMM

Comput. Commun. Rev. 41(4) (August 2010) –

[26] Barré, S., Paasch, C., Bonaventure, O.: Multipath tcp: From theory to practice. In Domingo-

Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C., eds.: NETWORKING 2011. Volume

6640 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 444–457

[27] Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M.: Design, implementation and evaluation of

congestion control for multipath tcp. In: Proceedings of the 8th USENIX conference on Networked

systems design and implementation, USENIX Association (2011) 8–8

[28] Honda, M., Nishida, Y., Eggert, L., Sarolahti, P., Tokuda, H.: Multipath congestion control for shared

bottleneck. In: Proc. PFLDNeT workshop. (2009)

60

[29] Han, H., Shakkottai, S., Hollot, C., Srikant, R., Towsley, D.: Overlay tcp for multi-path routing and

congestion control. In: IMA Workshop on Measurements and Modeling of the Internet. (2004)

[30] Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D.: Multi-path tcp: A joint congestion

control and routing scheme to exploit path diversity in the internet. IEEE/ACM Trans. Netw. 14(6)

(December 2006) 1260–1271

[31] Key, P., Massoulie, L., Towsley, D.: Combining multipath routing and congestion control for robust-

ness. In: Information Sciences and Systems, 2006 40th Annual Conference on. (2006) 345–350

[32] Raiciu, C., Wischik, D., Handley, M.: Practical congestion control for multipath transport protocols.

University College of London Technical Report (2009)

[33] Wischik, D., Handley, M., Raiciu, C.: Control of multipath tcp and optimization of multipath routing

in the internet. In: Network Control and Optimization. Springer (2009) 204–218

[34] Kelly, F., Voice, T.: Stability of end-to-end algorithms for joint routing and rate control. SIGCOMM

Comput. Commun. Rev. 35(2) (April 2005) 5–12

[35] Hopps, C.E.: Analysis of an equal-cost multi-path algorithm. (2000)

[36] van der Linden, S., Detal, G., Bonaventure, O.: Revisiting next-hop selection in multipath networks.

In: Proceedings of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11, New York, NY, USA,

ACM (2011) 420–421

[37] Singh, A., Xiang, M., Konsgen, A., Goerg, C.: Performance and fairness comparison of extensions

to dynamic window coupling for multipath tcp. In: Wireless Communications and Mobile Computing

Conference (IWCMC), 2013 9th International. (2013) 947–952

[38] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., Le Boudec, J.Y.: Mptcp is not pareto-optimal:

Performance issues and a possible solution. In: Proceedings of the 8th International Conference

on Emerging Networking Experiments and Technologies. CoNEXT ’12, New York, NY, USA, ACM

(2012) 1–12

[39] Nguyen, S.C., Zhang, X., Nguyen, T.M.T., Pujolle, G.: Evaluation of throughput optimization and

load sharing of multipath tcp in heterogeneous networks. In: Wireless and Optical Communications

Networks (WOCN), 2011 Eighth International Conference on. (2011) 1–5

[40] Detal, G., Paasch, C., Linden, S.v.d., Mérindol, P., Avoine, G., Bonaventure, O.: Revisiting flow-

based load balancing: Stateless path selection in data center networks. Computer Networks 57(5)

(2013) 1204 – 1216

[41] Raiciu, C., Pluntke, C., Barré, S., Greenhalgh, A., Wischik, D., Handley, M.: Data center networking

with multipath tcp. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks.

Hotnets-IX, New York, NY, USA, ACM (2010) 10:1–10:6

61

[42] Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.: Improving datacenter

performance and robustness with multipath tcp. In: Proceedings of the ACM SIGCOMM 2011

Conference. SIGCOMM ’11, New York, NY, USA, ACM (2011) 266–277

[43] Veerman, G., van der Pol, R.: Multipath tcp: Hands-on. Technical report (2012)

[44] Wang, B., Wei, W., Guo, Z., Towsley, D.: Multipath live streaming via tcp: Scheme, performance

and benefits. ACM Trans. Multimedia Comput. Commun. Appl. 5(3) (August 2009) 25:1–25:23

[45] C. Paasch, S.B.e.a.: Multipath tcp - linux kernel implementation (2014)

62

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Document Structure

	2 State of the Art
	2.1 Multipath Approaches
	2.1.1 Link Layer
	2.1.2 Network Layer
	2.1.3 Transport Layer
	2.1.4 Application Layer

	2.2 Alternative IETF Multipath Approaches
	2.2.1 Multipath Solutions
	2.2.2 Multihoming Solutions
	2.2.3 Alternative Approaches to Multipath Scenarios

	3 Multipath TCP
	3.1 Goals
	3.2 Transport Layer Structure
	3.3 Connection Handling
	3.3.1 Connection Establishment
	3.3.2 Exchanging Data
	3.3.3 Connection Release

	3.4 Implementations
	3.5 MPTCP Scenarios
	3.5.1 Congestion Control and MultiPath Routing Schemes
	3.5.2 Performance Evaluation of MultiPath Routing Schemes
	3.5.3 Data Centers
	3.5.4 Advanced Applications

	4 TestBed
	4.1 Conventional Wireless and Wired Scenarios
	4.1.1 Multihoming Solutions
	4.1.2 Subflow Analysis
	4.1.3 TCP and MPTCP Concurrent Scenarios

	4.2 Mobile Solution

	5 Implementation
	5.1 Requirements
	5.1.1 Laptops
	5.1.2 Desktop Computers
	5.1.3 Mobile Phone

	5.2 MPTCP Configuration
	5.3 Network Routing
	5.4 Evaluation Tools

	6 Methodology and Evaluation
	6.1 Tests
	6.1.1 Scenario A - Multihoming MPTCP with WiFi and Ethernet Connections
	6.1.2 Scenario B - Multihoming MPTCP with two Ethernet Connection
	6.1.3 Scenario C - Subflow Analysis
	6.1.4 Scenario D - TCP Analysis
	6.1.5 Scenario E - TCP and MPTCP Concurrent Scenarios
	6.1.6 Scenario F - Mobile Solution MPTCP
	6.1.7 Scenario G - Mobile Solution TCP

	6.2 MPTCP Evaluation
	6.3 Results
	6.3.1 Wireshark Capture of MPTCP Connection Handling
	6.3.2 Throughput Measurements
	6.3.3 Recovery Time
	6.3.4 Handover
	6.3.5 Upstream and Downstream Bandwidth Links
	6.3.6 Concurrency on Network Links using Simulation
	6.3.7 Subflows
	6.3.8 Summary Analysis

	7 Conclusions
	7.1 Syntheses
	7.2 Discussion and Future Work

	Bibliography

