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Abstract

The characterization of specific places or more general geographic regions is essential to a variety of
decision-making processes, particularly in the context of problems related with urbanism or demographic
studies. In the context of my MSc thesis, I propose new ways of characterizing geographic regions, through
the usage of georeferenced information extracted from location-based social networks and from popular
Web 2.0 services, such as Twitter, FourSquare or Flickr. The specific methods that I propose in my
dissertation characterize geographic regions with basis on information extracted from publicly available
georeferenced photos, shared by the users of Flickr, together with auxiliary information available from
raster datasets containing geographic information (e.g., elevation or population density) about the desired
locations. Data classification techniques are used to estimate the boundaries of vague regions, or to infer
geographic characteristics like the land coverage. The classification methods are based on Support Vector
Machines, leveraging on multiple Gaussian kernels to increase the estimation accuracy. An extensive set
of experiments attests to the effectiveness of the proposed methods.

1 Introduction

The characterization of geographic regions is an important aspect for urban planning, also having im-
portant applications in marketing (e.g., in choosing business locations, advertisement placing, etc.) or in
urbanism and demographic studies, among others. In the context of my MSc dissertation, I am proposing
new ways to characterize geographic areas with information extracted from georeferenced data published on
on-line services and location-based social networks, like Twitter1, FourSquare2 or Flickr3. The increasing
usage of these services has turned them into sources that are rich in georeferenced data that can be ex-
ploited to extract patterns relevant to geographic characterization. These patterns can be extracted from
characteristics like the number of entries associated to different places, timestamps associated to visits to the
different entries/regions, multimedia contents related with the different regions, the kinds of users that visit
specific places, etc. To characterize geographic regions, I proposed to leverage on data classification tech-
niques, based on Support Vector Machines (SVM) and Multiple Kernel Learning (MKL). I have specifically
made experiments on two real-world problems related to geographic characterization, namely estimating the
boundaries of vague regions, and estimating the land coverage classification of geographic regions. I proposed
to use one-class SVMs for the estimation of vague regions, and multi-class SVMs for the estimation of land
coverage classes. The remaining contents of this article are organized as follows. Section 2 surveys previous
work related with the two experiments that I have made. Section 3 details the two experiments, showing how
data collected from Flickr can be used to define vague regions and to classify various zones of cities in terms
of their land coverage. Section 4 presents the results that I obtained in the context of both experiments.
Finally, Section 5 summarizes the main conclusions of this work.

1http://twitter.com/
2http://foursquare.com/
3http://www.flickr.com/
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2 Related Work

This section is composed of two different subsections, where Section 2.1 presents previous work concerned
with defining the boundaries of vague regions, and Section 2.2 overviews previous work related to land
coverage classification and to the usage of georeferenced multimedia resources for terrain classification.

2.1 Defining the Boundaries of Vague Regions

Territorial subdivisions and geographic borders in general are essential for the analysis of many different
types of phenomena, not just in the geographical information sciences but also in areas such as sociology,
political science, history, and economics (Grady et al., 2012; Newman, 2006). Since these vague regions
are frequently used in natural language discourse, the development of methods for their assessment and
cartographic representation assumes a particular importance.

The delineation of vague geographic concepts has indeed been widely studied in the geographical infor-
mation sciences (Schockaert, 2011; Vasardani et al., 2013). Previous work has explored different methods for
delimiting imprecise regions (Schockaert, 2011; Vasardani et al., 2013), most of them based on knowledge
about points which are known to be inside or outside of the regions to be defined, often assuming that names
for vague regions co-occur frequently with other place names. Different sources of information have been
experimented with, including user questionnaires (CIESIN and CIAT, 2005; Clough and Pasley, 2010), infor-
mation about points and geospatial relations described in maps and gazetteers (Alani et al., 2001), textual
information published on the Web (Arampatzis et al., 2006; Jones et al., 2008; Goldberg et al., 2009), or
georeferenced photos published on sites like Flickr (Grothe and Schaab, 2009).

In what I consider to be the most relevant previous work, Grothe and Schaab (2009) described two
methods for the automatic delineation of vague regions based on Flickr data, namely a method based on
Kernel Density Estimation (Brunsdon, 1995) and another based on One-Class Support Vector Machines, i.e.
a variant of the classical Support Vector Machines (SVM) classification approach requiring only positive ex-
amples (Munoz and Moguerza, 2006). The same authors have also described techniques for the optimization
of the parameters required by both algorithms, when used for delimiting vague regions.

2.2 Land Classification with Georeferenced Multimedia

Previous work has also argued that georeferenced photo collections can enable a new form of observational
inquiry, which has been termed proximate sensing (Jacobs et al., 2007). While the traditional field of remote
sensing is mostly based on the usage of overhead images from distant scenes (e.g., satellite imagery) to derive
geographic information (Hu and Wang, 2013; Vatsavai et al., 2011), proximate sensing is instead concerned
with the usage of ground-level images of close-by objects and scenes, also with the objective of deriving
geographic information of relevance to a variety of problems.

The idea of creating maps with basis on ground-based image sensors was perhaps first introduced as
an application of the Archive of Many Outdoor Scenes (Jacobs et al., 2007, 2009b,a), which is a dataset
of images from publicly available webcams collected from approximately 20,000 outdoor webcams located
all around the world, with images recorded at every 30 minutes and with many of the cameras associated
with geolocations that were either provided by the maintainer or inferred automatically (e.g., from the IP
address). Relying on this, or on similar datasets, different machine learning methods have been used to
predict environmental properties from Web imagery. For instance, image segmentation for the detection
of tree regions was used in applications related to plant phenology (Jacobs et al., 2009a; Riordan et al.,
2010), while canonical correlations analysis was used to predict wind velocity in scenes with visible trees
or flags (Jacobs et al., 2009a). Water vapor pressure was inferred in scenes with large depth of field, using
an image feature based on contrast (Jacobs et al., 2009b). Cloud maps have been estimated with basis on
regression analysis (Murdock et al., 2013), and semi-supervised methods have been proposed to estimate
atmospheric visibility from webcam data (Xie et al., 2010). However, these previous approaches were mostly
based on the availability of properly placed image sensors (i.e., cameras), and they relied on very specific
features that are only effective for certain types of environmental applications and certain types of scenes.
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Murdock et al. (2013) have for instance tackled the specific problem of estimating satellite cloud maps
from a collection of ground-based photos, through a random forest regression technique. Their approach uses
historical georeferenced satellite imagery to learn a regression model that maps the ground imagery to the
satellite cloud map, considering infrared imagery obtained from Geostationary Operational Environmental
Satellites4 as the ground truth cloud measurements. The authors explored eight different representational
choices for inferring the cloud status based on the ground-level imagery (i.e., low-dimensional projections
based on Principal Component Analysis or Partial Least Squares, computed on either the full image, the
sky pixels only, or the ground pixels only, and the histogram of hues for the sky pixels only or for the top
20 rows in the image). The authors also considered several different alternatives for spatially interpolating
the sparse measurements obtained from the individual images (i.e., spline interpolation, nearest neighbors
interpolation, and kriging), in order to produce a complete cloud map.

3 Overview on the Experiments

This section describes the general methodology for the two experiments that constitute the focus of my
MSc thesis. Section 3.1 introduces the usage of one-class SVMs within a multiple kernel learning setting,
which was the method used in the experiments related to the delineation of vague regions. Section 3.2 intro-
duces the usage of multi-class SVMs, which supported the experiments related to land coverage classification.

3.1 Characterizing Vague Regions with Flickr Data and One-Class SVMs

In my work, I proposed to use one-class supervised learning to find the boundaries of vague regions,
mostly leveraging on data collected from photo sharing services like Flickr. Let R be the actual footprint
of a region (i.e., the set of all points that belong to the region). My objective is to infer an approximation
R′ for the footprint, that is as similar as possible to R, derived from a sample dataset S. The dataset S
consists of N individual observations xi corresponding to geospatial coordinates that represent points on the
surface of the Earth, with 1 ≤ i ≤ N . Each of the observations xi ∈ S can also be associated to a set of
descriptive features (e.g., the estimated population, the terrain elevation, or the land coverage classification
type at point xi). Only samples of a single class are considered for the set S (i.e., I only consider positive
examples of points belonging to the vague region), as I only have access to cases where a given user uploaded
a photo into Flickr, containing an association to some specific geospatial coordinates, and containing a tag
with the name of the vague region. Hence, the problem is to identify the complete set of points that most
probably lie in R, through the supervised classification procedure. A model is learned from the dataset S,
and I then apply it to all possible points, classifying them as either belonging or not to the region. This
results in an estimated footprint R′. Points located in R∩R′ are correctly identified as belonging to R (true
positives), while those located in R′−R are falsely identified as belonging to R (false positives). The goal is
to maximize the number of true positives, while at the same time minimizing the number of false positives.

As for the supervised learning model, I considered the usage of one-class Support Vector Machines (Munoz
and Moguerza, 2006). Support Vector Machines (SVMs) are widely applied in data classification tasks. The
general method is based on the statistical learning theory, and is characterized by having good efficiency
and generalization capabilities, compared to other data classification methods. The goal in traditional SVM
classification is to decide to which one of two classes a given observation belongs to, but if the dataset consists
only of specimen of a single class, the formulation of the SVM problem changes slightly. In the one-class
setting, the goal is to decide whether a new observation has the same properties as the samples included in
the training dataset or not. In the latter case, the point is considered an outlier.

The result of an SVM learner is an α-weighted linear combination of kernel values plus a bias term b,
corresponding to the following equation where the xi, with i = 1, . . . , N , are the training examples, labeled
with yi ∈ {±1} in the case of binary classification tasks, and always with yi = 1 for one-class SVMs.

4http://www.oso.noaa.gov/goes/
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f(x) = sign

(
N∑
i=1

yi × (αi × k(xi, x) + b)

)
The learning method for one-class SVMs considers a free hyper-parameter ν that expresses the maximum

fraction of outliers, obtained after solving an optimization problem, with 0 ≤ ν ≤ 1. If information on the
uncertainty included in the training dataset is available (e.g., by an analysis of the training data), the
expected fraction of errors can be expressed in ν. In a previous related work, Grothe and Schaab (2009)
reported on good results for delimiting vague regions with one-class SVMs and Flickr data, when setting the
ν parameter to 0.14. In my experiments, I also used this value.

Recent developments, as reported in the literature on SVMs and on other kernel methods, have shown
the benefits of considering multiple kernels (Gönen and Alpaydin, 2011). Thus, in this set of experiments, I
also relied on a modern SVM-based method that uses multiple kernels.

Kernels have typically to be chosen a-priori (i.e., in my experiments, I used a combination of multiple
Gaussian kernels, with different features and/or kernel widths). The parameters of the one-class SVM model
are determined by solving the following optimization problem:

max θ

w.r.t. θ ∈ R, β ∈ RM and α ∈ RN

s.t. 0 ≤ β,
M∑
k=1

βk = 1,

N∑
i=1

αi = 1, and θ ≤
M∑
k=1

βk
1

2

N∑
i=1

N∑
j=1

αiαjkk(xi, xj) ∀ 0 ≤ α ≤ 1

νN

In the previous equation, the parameter ν is the pre-specified regularization parameter, N is the number
of training examples, the parameters α are the weights assigned to each training example, and the parameters
β are the weights assigned to each of the M sub-kernels kk(x, x′) . I used the implementation for multiple
kernel learning of one-class SVM classifiers that is provided in the shogun5 machine learning toolkit. Within
shogun, the above optimization problem is solved using semi-infinite programming (Hettich and Kortanek,
1993). The reader is referred to the paper by Sonnenburg et al. (2006) for more details about shogun and
about multiple kernel learning in general.

Besides the geospatial coordinates of latitude and longitude for each point xi ∈ S, I also considered addi-
tional features for each of the observations, namely (i) features relative to population statistics, (ii) features
relative to land coverage types, (iii) features derived from elevation data, and (iv) features obtained from
textual tags associated to the photos in Flickr. In the case of features (i), (ii) and (iii), the GDAL-convert6

tool was used to generate raster datasets in a common representation format, from publicly available datasets
encoding these types of information (i.e., from the Gridded Population of the World (GPW7) dataset encod-
ing the distribution of human population across the globe, the Global Land Cover Facility (GLCF8) dataset
encoding land coverage features, and the NASA Shuttle Radar Topographic Mission (SRTM9) dataset en-
coding terrain elevation features). The features derived from textual tags were computed from information
directly available from Flickr (i.e., the top most relevant tags associated to the training photos).

3.2 Multi-Class SVMs and Multiple-Kernel Learning

Large collections of georeferenced photos can also perhaps be used to derive maps depicting what-is-
where on the surface of the Earth. I specifically focused on the task of using georeferenced image collections
to perform land-coverage classification, a problem for which one can easily access ground-truth data for
performing the evaluation. Thus, I investigated whether the classification of feature vectors derived from
georeferenced images can be used to assign land-coverage labels to the individual cells of a raster, in order
to create maps.

5http://shogun-toolbox.org
6http://www.gdal.org/
7http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/
8http://www.landcover.org/
9http://srtm.csi.cgiar.org/
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Let R be a raster-based representation for a given study region, composed of a set of individual cells
ri ∈ R that are organized as a rectangular grid. Each cell ri ∈ R is associated to a land-cover class cri from
a finite set of classes C. My objective was to infer an approximation R′ for the land-coverage classes of the
cells in the study-region, that is as similar as possible to R (i.e., that has as many cells as possible assigned to
the correct class), derived from a sample dataset S. The dataset S consists of N individual observations xi
corresponding to geospatial coordinates that represent points within the study region, with 1 ≤ i ≤ N . Each
cell from R denotes a region that can contain zero, one, or many observations xi (i.e., the N observations are
sparse and unevenly distributed). Each of the observations xi ∈ S is associated to a set of descriptive features
(e.g., the geospatial coordinates, visual content descriptors, or textual tags annotating a photo taken at point
xi). The feature vectors from a subset of observations Strain ⊂ S, in my case corresponding to observations
annotated with tags that are highly related to the names of the land-coverage classes in C, are used to learn
a classification model. The complete set of observations S is used to derive feature vectors for all of the cells
ri ∈ R′, by averaging the feature vectors of all observations contained in each given cell ri, or by averaging
the feature vectors of the five closest photos in the case of cells that do not contain any observations (i.e.,
cells without any observation are represented through a weighted average of their five closest observation,
where the weights correspond to the inverse of the geometrical distance towards the center of the cell, as
computed through Vincenty’s geodetic formulae (Vincenty, 1975)). The learned classification model is then
applied to the feature vectors of all cells ri ∈ R′, this way producing the land-coverage map.

To efficiently find the five closest photos to a cell, I relied on a KD-Tree data structure to index the
positions of the photos (Bentley, 1975). A KD-Tree is essentially a binary tree in which every node is a
k dimensional point (i.e., two dimensional, in my case). Every non-leaf node corresponds to a splitting
hyperplane, which can guide nearest neighbor searches through half-spaces.

In what regards the classification approach, I again considered the usage of Support Vector Machine
classifiers (Munoz and Moguerza, 2006). The goal in traditional SVM classification is to decide to which
one of two classes a given observation belongs, although multi-class problems can also be handled through
SVMs, for instance through the heuristic one-vs-one or one-vs-all strategies, or through slight changes in the
formulation of the SVM optimization problem. In the set of experiments repeated on this section, I relied
on a modern SVM-based method that uses multiple kernels and that directly handles multi-class problems.

f(x) = arg max
y∈Y

 N∑
i=1

yi ×

αi × M∑
j=1

βj × kj(Φj(xi; yi)− Φj(xi; y),Φj(x; yi)− Φj(x; y)) + byi


In the previous equation, the parameters α correspond to the weights assigned to each training example,

β corresponds to the kernel weights, and ΦK(x; y) are joint feature maps given by λ(y) ⊗ x, where the
parameter λ(y) is a class attribute vector, and x is a training instance. As in the experiment described in
Section 3.1, kernels have to be chosen a-priori, and the parameters of the multi-class model are determined
by solving the following optimization problem:

min
α

γ −
∑
i

αiyi

s.t. ∀i : 0 ≤ αiyi ≤ C, ∀i : ∀u 6= yi : αiu ≤ 0, ∀i :
∑
u∈Y

αiu = 0, ∀u :
∑
i

αiu = 0 and

∀K : γ ≥ 1

2

∑
i,j,u,v

αiuαjv〈ΦK (xi, u) ,ΦK (xj , v)〉

In the previous equation, the parameter C is a pre-specified regularization parameter. The expression
〈ΦK (xi, u) ,ΦK (xj , v)〉 is the dot product between two feature maps. In my experiments, I used the imple-
mentation for multiple kernel learning of multi-class SVM classifiers that is provided in the shogun machine
learning toolkit. Within shogun, and similarly to the case of one-class SVMs, the above optimization prob-
lem is solved using semi-infinite programming (Hettich and Kortanek, 1993). The reader is again referred to
the paper by Sonnenburg et al. (2006) for more details about shogun and multiple kernel learning in general.

Besides the geospatial coordinates of latitude and longitude for each observation xi, and similarly to the
case of the experiments concerned with delimiting vague regions, I also considered additional features for each
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of the observations, namely (i) external features relative to population statistics gathered from the GPW
dataset, (ii) external features derived from elevation data taken from the NASA SRTM dataset, (iii) visual
features extracted from the photos, and (iv) features obtained from textual tags associated to the photos
in Flickr. In what concerns the visual content features, most of them correspond to MPEG-7 descriptors
extracted from the photos, although I also used some other popular content descriptors from the literature
on image retrieval, that are available in the dataset from the 2013 MediaEval Placing Task (Hauff et al.,
2013). The features related to the textual tags correspond to 300 binary features indicating the presence or
absence of each tag. The textual tags were chosen based on 3 heuristics that determine each tag’s relevance
to land-coverage classes, and that are detailed in the dissertation.

4 Experimental Results

This section presents the experimental methodology and the obtained results for the two tasks addressed
in the context of my MSc research, with Section 4.1 addressing the delineation of vague regions, and Sec-
tion 4.2 addressing the task of land coverage classification.

4.1 Delimiting Vague Region Boundaries

I evaluated the proposed approach for delimiting vague regions using a large collection of Flickr photos
originally gathered in the context of the SAPIR10 (Search on Audio-visual content using Peer-to-peer Infor-
mation Retrieval) European project, namely the Content-based Photo Image Retrieval (CoPhIR) collection,
which has recently been made available, and that is described in a paper by Bolettieri et al. (2009). Several
previous studies have collected their own subsets of Flickr photos, but I argue that using a common dataset
facilitates the reproducibility of the experiments reported here.

As precise regions for my evaluation, I started with the 11 European countries that were used by Grothe
and Schaab (2009), and that were originally selected for their diversity in size, shape, and the availability
of geotagged photos, this way allowing for testing the proposed approaches under varying conditions. The
ground-truth geographic boundaries were obtained from the shapefiles available from the GADM11 database
of global administrative areas. Having unambiguous footprints makes it possible to evaluate the estimations
with quantitative measures, for which I used the traditional accuracy, recall, precision, and F1 metrics.

In a first set of experiments, I focused on models that only used geospatial coordinates associated to
Flickr photos, comparing the usage of a traditional one-class SVM classifier, as reported by Grothe and
Schaab (2009), against the usage of one-class SVM models combining three different Gaussian kernels, with
widths γ corresponding to the values of

√
2/2,

√
2, and 2×

√
2. The hyper-parameter ν of the SVM classifiers

was set to 0.14 on all experiments (i.e., the same value that was used by Grothe and Schaab (2009)), after
an initial set of tests in which I have also tried the values of 0.01, 0.1 and 1.

Table 1 presents the obtained results for the 11 European countries that were considered, showing that
the usage of multiple kernel learning outperforms traditional one-class SVMs. Approximate randomization
testing (Edgington, 1969) was used to compare the outputs of these two methods over all the considered
countries, in terms of the 4 different evaluation metrics. The results showed that the classifiers are indeed
significantly different at the level of 0.05. Notice that even though I am using the same 11 countries that
were considered by Grothe and Schaab (2009), my results cannot be directly compared, given that I used a
different set of Flickr photos, and a different source of ground truth information for the boundaries. However,
I did re-implement the approach originally presented by these authors (i.e., one-class SVMs using a single
kernel and the geospatial coordinates), afterwards testing it in my dataset – see Table 1.

Table 2 presents the obtained results over the same 11 European countries that were considered in my
first set of experiments, comparing models that only used the geospatial coordinates, against models that
used the additional features. In this case I used one-class SVM models combining six different Gaussian
kernels, three of them using only information from the geospatial coordinates (i.e., similarly to the case of

10http://www.sapir.eu/
11http://www.gadm.org/
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Table 1: Comparing models that use a single kernel, or a combination of Gaussian kernels.

One kernel using geospatial coordinates Three kernels using geospatial coordinates

Pre Rec F1 Acc Pre Rec F1 Acc

Albania 0.84 0.80 0.82 0.84 Albania 0.85 0.80 0.82 0.85
Belarus 0.93 0.30 0.45 0.61 Belarus 0.95 0.37 0.53 0.65
Croatia 0.63 0.48 0.54 0.79 Croatia 0.63 0.54 0.58 0.79
France 0.95 0.58 0.72 0.81 France 0.96 0.67 0.79 0.85
Germany 0.99 0.58 0.73 0.74 Germany 0.99 0.66 0.79 0.79
Greece 0.39 0.58 0.47 0.72 Greece 0.37 0.60 0.46 0.70
Ireland 0.72 0.80 0.76 0.77 Ireland 0.73 0.87 0.79 0.79
Italy 0.87 0.75 0.81 0.91 Italy 0.86 0.77 0.81 0.91
Luxembourg 0.92 0.63 0.74 0.83 Luxembourg 0.92 0.63 0.75 0.83
Switzerland 0.85 0.87 0.86 0.86 Switzerland 0.85 0.88 0.87 0.86
Ukraine 0.87 0.13 0.22 0.57 Ukraine 0.88 0.16 0.27 0.59

the experiments reported over Table 1), and the other three using the remaining features. For each group
of three kernels, the kernel widths were again selected as

√
Dm/2,

√
Dm, and 2 ×

√
Dm, where Dm is the

dimensionality of the corresponding feature representation. The values in bold that are shown both in
Tables 1 and 2 correspond to the best results that were obtained for each of the 11 countries, in terms of the
four different evaluation metrics that were considered in my experiments.

The results on Table 2 show that the additional features often lead to improved results, particularly the
features derived from population counts (i.e., in 5 of the 11 countries that were used in my experiments, the
best results in terms of precision were obtained with models that combined geospatial coordinates with the
population feature) and from the textual tags associated to the photos (i.e., in 8 of the 11 countries, the best
results in terms of recall were obtained with models that combined geospatial coordinates with the features
derived from the textual tags). Using photos from the CoPhIR dataset, the method that corresponds to the
usage the complete set of features that were proposed, through multiple kernel learning of SVMs, corresponds
to an average improvement of approximately 5.5% in terms of the F1 metric, over the one-class SVM approach
that corresponds to the method reported by Grothe and Schaab (2009).

In Figure 1, and for illustration purposes, we can see the results for six of the eleven countries that were
considered in my formal evaluation, namely for Italy, Switzerland, Greece, Germany, Ireland and Luxembourg.
All these results were obtained with the models that combined all the features that were proposed. In the
different maps that are shown in Figure 1, the areas painted in red represent the real footprints of each
country, while the areas in blue represent the estimated footprints. The green dots correspond to the
locations of the Flickr photos that were used to generate the results, and they show that while the data
acquired from Flickr naturally contains some errors (i.e., I am occasionally using some points that are not
located at the region being defined, because either the photo was assigned wrong coordinates, or because
the placename tag does not denote the place where the photo was taken), the assumption that these points
will be predominantly located within the vague region seems reasonable.

Besides the formal evaluation with quantitative measures of classification quality, involving regions whose
boundaries are well known, I have also analyzed the obtained results for a small set of vague regions. Formally
evaluating the performance of the proposed approach on vague regions is much harder, given that I cannot
easily access ground-truth information. However, I attempted to gather several illustrative examples of the
results obtained for vague regions, showing that they are indeed meaningful. For instance, for illustration
purposes, Figure 2 shows results for two vague concepts corresponding to large geographic regions, namely
the Alps and Anatolia. These results were obtained with models involving the complete set of features.
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Table 2: Comparison between SVM models using multiple kernels and different sets of features.

Coordinates and terrain elevation Coordinates and land coverage

Pre Rec F1 Acc Pre Rec F1 Acc

Albania 0.88 0.79 0.84 0.86 Albania 0.84 0.78 0.81 0.83
Belarus 0.96 0.43 0.59 0.69 Belarus 0.97 0.34 0.51 0.64
Croatia 0.62 0.56 0.59 0.79 Croatia 0.47 0.67 0.55 0.71
France 0.95 0.63 0.76 0.83 France 0.93 0.74 0.82 0.86
Germany 0.98 0.60 0.75 0.75 Germany 0.99 0.64 0.77 0.78
Greece 0.38 0.59 0.46 0.71 Greece 0.33 0.65 0.43 0.64
Ireland 0.74 0.84 0.78 0.79 Ireland 0.77 0.87 0.78 0.77
Italy 0.84 0.71 0.77 0.89 Italy 0.66 0.68 0.67 0.84
Luxembourg 0.87 0.63 0.73 0.81 Luxembourg 0.93 0.62 0.74 0.83
Switzerland 0.85 0.86 0.85 0.85 Switzerland 0.88 0.85 0.86 0.86
Ukraine 0.87 0.18 0.30 0.59 Ukraine 0.83 0.17 0.28 0.59

Coordinates and population Coordinates and data from all rasters

Pre Rec F1 Acc Pre Rec F1 Acc

Albania 0.87 0.82 0.84 0.87 Albania 0.84 0.83 0.84 0.85
Belarus 0.96 0.33 0.49 0.63 Belarus 0.99 0.37 0.54 0.66
Croatia 0.69 0.54 0.61 0.81 Croatia 0.66 0.57 0.61 0.81
France 0.98 0.65 0.78 0.85 France 0.98 0.69 0.81 0.86
Germany 0.99 0.65 0.79 0.79 Germany 0.99 0.64 0.78 0.78
Greece 0.57 0.66 0.61 0.82 Greece 0.52 0.67 0.59 0.80
Ireland 0.78 0.91 0.84 0.84 Ireland 0.78 0.90 0.84 0.84
Italy 0.98 0.78 0.87 0.94 Italy 0.97 0.73 0.84 0.93
Luxembourg 0.88 0.62 0.73 0.81 Luxembourg 0.89 0.62 0.73 0.81
Switzerland 0.87 0.86 0.86 0.86 Switzerland 0.87 0.83 0.85 0.85
Ukraine 0.98 0.14 0.25 0.59 Ukraine 0.97 0.13 0.23 0.58

Coordinates and tags Complete set of features

Pre Rec F1 Acc Pre Rec F1 Acc

Albania 0.83 0.82 0.83 0.84 Albania 0.86 0.82 0.84 0.86
Belarus 0.97 0.15 0.26 0.55 Belarus 1.00 0.27 0.42 0.61
Croatia 0.42 0.73 0.54 0.66 Croatia 0.65 0.62 0.64 0.81
France 0.95 0.87 0.91 0.92 France 0.96 0.70 0.81 0.86
Germany 0.99 0.74 0.85 0.84 Germany 0.98 0.67 0.80 0.79
Greece 0.36 0.72 0.48 0.66 Greece 0.59 0.71 0.64 0.83
Ireland 0.72 0.92 0.81 0.80 Ireland 0.80 0.90 0.85 0.85
Italy 0.69 0.74 0.72 0.85 Italy 0.97 0.73 0.84 0.93
Luxembourg 0.83 0.76 0.80 0.84 Luxembourg 0.86 0.68 0.76 0.82
Switzerland 0.80 0.91 0.85 0.84 Switzerland 0.84 0.82 0.83 0.82
Ukraine 0.90 0.37 0.52 0.68 Ukraine 0.98 0.17 0.29 0.60
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Figure 1: Results for six different countries using the complete set of features.

Figure 2: The obtained results for two large vague regions, namely the Alps and Anatolia.
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4.2 Land Coverage Classification

On what concerns the land coverage classification task, I evaluated the proposed approach using a large
collection of Flickr photos originally gathered in the context of the 2013 MediaEval Benchmarking Initiative
for Multimedia Evaluation12, a joint evaluation initiative focusing on new algorithms for multimedia access
and retrieval. Several previous studies have collected their own subsets of Flickr photos, but I again argue
that using a common dataset facilitates the reproducibility of the experiments reported here.

I focused on 4 separate regions that were chosen for their diversity in land-coverage types, and for the
availability of many geo-tagged photos taken from within these regions in the MediaEval collection. The
four regions correspond to metropolitan areas containing the cities of London, New York, Paris and Rome.
The ground-truth land-coverage classes for the considered study regions were obtained from the Global Land
Cover Facility (GLCF) dataset at a resolution of 1km per pixel. The availability of ground truth data makes
it possible to evaluate the estimations with quantitative measures, for which I again used the traditional
metric of accuracy, as well as macro-averaged recall, precision, and F1 scores.

After collecting the initial set of photos for each study region, I have that each region was then divided
into 4 quadrants, and I gathered a maximum of 375 photos from each quadrant, and for each land-coverage
class. The idea was to produce balanced training datasets, containing 1500 examples for each land-coverage
class, geospatially distributed over each region. After gathering photos from the different quadrants, if there
are still particular land-coverage classes with less than 1500 example photos, I attempt to gather other
examples associated to that particular class, from anywhere within the study region.

The two maps in Figure 3 show, for the regions of London and New York, the location of the photos in
the balanced training set, in blue, and all the remaining photos for these two regions, in red. Notice that
the remaining photos are used in the construction of the vectors that are to be classified, for each cell of the
resulting land-coverage rasters.

Each of the training instances, selected according to the aforementioned procedure, is associated to a
feature vector containing the geospatial coordinates from where the photo was taken, the elevation and
population density at that particular geospatial position, the descriptions for the visual contents of the
photo, and information regarding the occurrence of 300 specific tags. In my experiments, I then proceeded
to using different sub-sets of these particular features.

In a first set of experiments, I compared the usage of a single-kernel multi-class SVM classifier, against
the usage of multi-class SVM models combining three different Gaussian kernels, using only information
from the geospatial coordinates as the features describing each position. I wanted to see if the proximity
towards photos associated to a particular land-coverage class is enough to achieve a high accuracy. When

12http://www.multimediaeval.org/

Figure 3: Distribution of training photos, in blue, and for all the remaining available photos, in red, for the
metropolitan regions of London and New York.
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combining multiple kernels, the three kernel widths were selected as
√
Dm/2,

√
Dm, and 2 ×

√
Dm, where

Dm is the dimensionality of the corresponding feature representation (i.e., m = 2 in this case).
Table 3 shows the obtained results, where we can see that the model that combines three kernels performs

better in average that a more traditional SVM classifier. In terms of accuracy, we have that only for the
zone of Paris the traditional SVM classifier model performed better, also obtaining the same result for the
zone of New York, while the model with three kernels performed better for the zones of London and Rome.

Table 4 presents the obtained results over the same 4 regions that were considered in my first set of
experiments, but now comparing different types of models that used geospatial coordinates together with

Table 3: Comparison between models using a single kernel or a combination of Gaussian kernels.

One kernel using only the geospatial coordinates
Macro-Average Per-Class F1

Region Accuracy Precision Recall F1 Water Forest Land Urban
New York 0.77 0.56 0.57 0.56 0.86 0.83 0.25 0.28
London 0.58 0.54 0.57 0.56 0.86 0.49 0.47 0.36
Paris 0.52 0.28 0.36 0.32 0.00 0.20 0.69 0.15
Rome 0.57 0.48 0.59 0.53 0.78 0.49 0.39 0.02

Three kernels using only the geospatial coordinates
Macro-Average Per-Class F1

Region Accuracy Precision Recall F1 Water Forest Land Urban
New York 0.77 0.58 0.58 0.58 0.87 0.83 0.25 0.29
London 0.61 0.55 0.58 0.57 0.90 0.53 0.47 0.34
Paris 0.49 0.29 0.36 0.32 0.03 0.34 0.63 0.12
Rome 0.60 0.45 0.63 0.52 0.81 0.42 0.48 0.05

Table 4: Comparison between SVM models using multiple kernels and three or more different sets of features.
Coordinates, rasters and tag features

Macro-Average Per-Class F1
Region Accuracy Precision Recall F1 Water Forest Land Urban
New York 0.78 0.58 0.59 0.58 0.86 0.83 0.14 0.47
London 0.48 0.52 0.56 0.54 0.90 0.27 0.40 0.23
Paris 0.64 0.35 0.40 0.38 0.08 0.18 0.79 0.19
Rome 0.63 0.48 0.61 0.54 0.95 0.36 0.44 0.02

Coordinates, rasters and image content features
Macro-Average Per-Class F1

Region Accuracy Precision Recall F1 Water Forest Land Urban
New York 0.74 0.56 0.50 0.53 0.77 0.81 0.15 0.34
London 0.58 0.53 0.57 0.55 0.79 0.48 0.47 0.40
Paris 0.56 0.26 0.40 0.31 0.00 0.12 0.71 0.29
Rome 0.57 0.46 0.58 0.51 0.83 0.47 0.21 0.02

Complete set of features
Macro-Average Per-Class F1

Region Accuracy Precision Recall F1 Water Forest Land Urban
New York 0.74 0.56 0.50 0.53 0.77 0.81 0.15 0.34
London 0.58 0.53 0.57 0.55 0.79 0.48 0.47 0.40
Paris 0.56 0.26 0.40 0.31 0.00 0.12 0.71 0.29
Rome 0.57 0.46 0.58 0.51 0.83 0.47 0.21 0.02
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sets of other features (e.g., the textual tags, the visual content descriptors, or the information derived from
external raster datasets encoding population or terrain elevation). These models combined the same three
kernels from the first set of experiments, with three additional kernels that use the geospatial coordinates
together with the different sets of other features. The kernel widths were also selected in the same manner,
namely as

√
Dm/2,

√
Dm, and 2×

√
Dm.

Figure 4 illustrates the obtained results for the geographic region of New York, placing side-by-side the
ground-truth information and the estimate produced by the best-performing model. The red dots in the map
correspond to the location of the training photos, and the four different types of terrain are represented in
different colors. The class water is represented in blue, the class forest is represented in green, land is displayed
in yellow, and urban terrain is pictured in gray. Figure 4 shows that the model has a good performance in
the identification of the class water, represented in blue. In the zone of New York, the best-performing model
was also able to identify the main areas of the class urban. However, these are still significant differences
between the ground-truth maps and the estimates produced by my classification models.

5 Conclusions

The characterization of geographic regions assumes a particular importance in the context of urban
planning, demographic studies, and several other topics related to the geographic information sciences.
With the popularity of social web services and with their massive utilization, we have that large amounts of
useful raw data are nowadays publicly available, which I claim that can be used to extrapolate geographic
characteristics. In my dissertation, I presented two case studies, related to the characterization of geographic
regions, that leverage on georeferenced photos from Flickr. These case studies provide good examples to my
claim that information from social Web 2.0 services can be used to characterize geographic regions.

In a first set of experiments, which is detailed in Section 3.1, I evaluated an automated method, based on
multiple kernel learning of one-class SVMs, for delimiting imprecise geographic regions with basis on publicly
available data. The method uses one-class SVMs for interpolating from a set of points which are assumed
to lie in the region that is to be defined. These points correspond to geospatial coordinates associated to
Flickr photos tagged with the name of the vague region. Besides considering the geospatial coordinates for
the points, I also considered a rich set of descriptive features obtained from population, elevation and land
coverage raster datasets, as well as from textual tags. The overall approach for finding region boundaries
was evaluated by means of statistical classification measures, using a set of 11 regions whose boundaries are
well defined. The obtained results show that the refined method performs better than the simpler methods
described in the literature, based solely on interpolating from geospatial coordinates (i.e., better than the
previous study that was reported by Grothe and Schaab (2009), also based on one-class SVMs).

On another set of experiments, that was presented in Section 3.2, I have evaluated a method leveraging

Figure 4: Estimates for the region of New York paired with the ground-truth information.
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a large collection of georeferenced photos in order to estimate land-coverage maps. I described a collection
of features for representing the images that can properly retain information related to land-coverage. With
these features, I used multi-class SVMs, combining multiple Gaussian kernels, to predict the land-coverage
classes. The evaluation results show that the proposed method was able to obtain an average accuracy of
62%, when considering 4 distinct land-coverage classes. While unlikely to replace satellite imagery in the
short term, the results demonstrate the plausibility of leveraging the vast collections of georeferenced photos,
existing on repositories such as Flickr, for large-scale monitoring of geospatial properties.
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