
Flexible, Multi-platform Middleware for Wireless
Sensor and Actuator Networks

Rui Miguel Guerreiro Francisco
Instituto Superior Tecnico

rui.miguel.guerreiro.francisco@ist.utl.pt

Abstract—In these days technology is present everywhere, such
as in our homes or in our jobs. This presence of technology
in our lives can bring some important advantages because the
devices can start doing tasks that in the past only humans
could do. The devices gain these new characteristics when they
become connected to the Internet. This leads to the birth of
a new paradigm named Internet of Things. With Internet of
Things the devices have access to more information and with it
they can make better decisions. With the progress made in the
communication between the Internet objects, another paradigm
called Wireless Sensor Network emerged. The Wireless Sensor
Network is composed by small sensing nodes which perform
the acquisition, collection and analysis of data. However, the
Wireless Sensor Network has some problems such as energetic
consumption and CPU load. The almost infinite capability of
storage, the large processing speeds and the rapid elasticity makes
Cloud Computing a very good solution to these problems. This
work proposes a middleware that seamlessly integrates sensors
and actuators on multiple platforms, to efficiently manage the
resources of the devices and achieve efficient communication with
various platforms (cloud, mobile). The goal is to allow the flow of
execution to be transferred between the device and the platform
under certain conditions.

Keywords: Internet of Things, Machine-to-Machine,
Wireless Sensor Networks, Cloud Computing, Middleware

I. INTRODUCTION

The revolution that has occurred in the past years in sensor
and actuator technology is making much easier to build
Wireless Sensor and Actuator Networks (WSAN). This WSAN
consists in a set of nodes (sensors and actuators) that cooperate
among them to achieve the goal of collecting data and make
some decisions based on collected data. Autonomous network
nodes either have a short range, or their computation power is
weak. But when used collectively they are effective over large
areas offering higher computational power.

Nowadays WSAN have a more pronounced growth, and it is
not unreasonable to expect that in a few years our lives become
dependent of WSAN in certain areas such as environmental,
medical, transportation entertainment and city management.
Although there has been an evolution of the nodes in WSAN
these continue to have limited battery, limited computational
power, etc. And with these problems the network node can
crash due to lack of sufficient resources, and this may lead
to jeopardize the smooth operation of the infrastructure. So,
in such cases sensor and actuator networks cannot operate as
stand-alone networks.

But there must be an efficient way for the captured data to be

stored and manipulated. Cloud computing may offer attractive
solutions for these issues. Indeed, it allows the reduction of the
initial costs associated with the computational infrastructure.
Another relevant aspect is that the cloud computing resources
are easily and automatically adjustable according to the real
infrastructure needs. This way, the computational resources
are easily scalable following the growth of the infrastructure.
Another important point is related with the fact that the
customer only pays for the cloud resources that he actually
used, therefore he does not have the problem of paying for
resources that were not used. But the most important aspect
to this work is that the cloud computing ensures unlimited
battery, unlimited storage, unlimited computational power due
to its immense of resources.

Now that a possible solution to the problem has been
found, is necessary to find a way to know when the node
of WSAN does not have the capability to perform some
operation, and how to communicate in a transparent manner
using the cloud infrastructure. To solve these issues efficiently
it is necessary a mediator that manages the resources of the
nodes of WSAN efficiently and communicates transparently
to users with various platforms. We can call this mediator a
middleware.

II. RELATED WORD

This section presents and discusses some interesting related
work to the Middleware for Wireless Sensor and Actuator
Networks. It is necessary to have in mind that robots can be
considered a WSAN with extended functionalities. The related
work that is going to be described hereafter does not satisfy
completely our requirements.

A. ROS

Robot operating System [1] is an open source operating
system for robots that was designed to achieve a specific set
of challenges taking into account the goal for developing large-
scale service robots. The philosophical goals of ROS are: Peer
to Peer, Tools-based, Multi-lingual, Thin and Free and open
source. These philosophical goals influence the design and
implementation of ROS, as described hereafter.

a) Peer to Peer: ROS system consists in a number of
different hosts connected at runtime in a peer to peer topology.
Peer to Peer connectivity combined with buffering or “fanout”
software modules is used to avoid unnecessary traffic flowing
across the wireless link that occurs in central server.



b) Multi lingual: because many people have their pre-
ferred programming language. For these reasons ROS supports
four languages C++, Python, Octave and LISP.

c) Tools-based: ROS has a microkernel instead of a
monolithic development and runtime environment. In this
microkernel a large number of small tools are used to build
and run ROS components.

d) Thin Most: drivers and algorithms could be used in
other projects, but some code has become so entangled with
the middleware that it is difficult to extract. To solve this
problem ROS encourage all drivers and algorithm developers
to write standalone libraries without dependencies on ROS.
This is achieved by placing virtually all complexity in libraries
and only creating small executables.

The fundamental concepts of ROS implementation are:
node, messages, topics, and services. Nodes are processes that
perform computation. ROS is typically comprised of many
nodes. The nodes communicate with each other by passing
messages. A message is a typed data structure and can be
composed of other messages and array of other messages.
A node sends a message by publishing it to a given topic.
A node that is interested in a specific date will subscribe.
In general publishers and subscribers are not aware of each
other. Publish-subscribe mode is a flexible communication
paradigm but broadcast routing scheme is not appropriate for
synchronous transactions. To treat this issue ROS has services.
A service is composed by name and a pair of messages: one
for the request and the other for the response.

B. Player/Stage

Player/Stage system is a middleware platform for mobile
robotics applications that guarantees an infrastructure, drives
and algorithms [3] [4]. The main features of this middleware
are the platform-programming language, transport protocol-
independence, open source, and modularity.

Main components of this middleware are the player and
the stage. The component player is a device repository server
where we can find robots sensors and actuators. Each one of
these devices have an interface and a driver. The interface is
used by the client of this middleware to obtain information
collect by the sensor to control the actuator.

The algorithms implemented by the drivers can receive data
from other devices, process the received data and then send
it back. Other thing the drivers can do is to create arbitrary
data when needed. The other component (stage) is a graphical
simulator that models devices in a user defined environment.

This system has an architecture with three tiers. In the
first tier the clients are software developers for specific robot
application. The player which provides common interfaces for
different robots and device are the second tier. The third tier
is the robots, sensors, and actuators.

Different programming languages like C,C++, Java, and
Python are used to access services. Client side libraries are
in form of proxy objects. Clients can connect to the Player
platform to access data, send commands, or request configu-
ration changes to an existing device in the repository.

C. MARIE (Mobile and Autonomous Robotics Integration
Environment)

Integration Environment is a middleware that was made for
developing and integrating new and legacy robotic software
[5]. MARIE is a flexible middleware, which allows sharing
among developers, reuse of code and integration of different
robotic software.

The main characteristics of MARIE are interoperability and
reusability of robotic application components.

The architecture of the MARIE middleware is divided in
three layers which are the following: Core, Component and
Application. The core layer is where we can find the services
for communication, low-level operating functions and finally
the distributed computing functions.

The second layer (component) is the layer that is used to add
components that are going to be constantly used by services
and to support domain specific concepts.

Finally the application layer has some services and tools
that are going to be very useful to build and manage the
integrated application. One of the most important aspects
of this middleware is its flexibility. This is visible for the
middleware to provide some services that allow the adaptation
of different communication protocols and applications.

MARIE uses the Adaptive Communication Environment
(ACE) communication framework. This framework allows a
variety of software components to connect to MARIE using a
centralized component. Apart from the centralized component,
there exists four functional components that are: application
adapters, communication adapters, communication managers,
and application managers. The application adapter behaves
as proxy between the central component and the application.
The goal of communication adapters is to translate the data
exchange between application adapters. The connections are
created and managed by the communication managers. Finally,
application managers instantiate and manage components lo-
cally or across distributed processing nodes. MARIE also
provides mediator interoperability layers among adapters and
managers.

D. RoboEarth Cloud Engine (Rapyuta)

Rapyuta is cloud robotic platform for robots that implements
a platform as a Service (PaaS) framework [2]. This framework
is open source and is built upon a clone based model.

This clone based model provides secured customizable
computing environment (clone) in the cloud. This way the
robots can receive help in heavy computation. The robots
connect to the Rapyuta and can start the computing envi-
ronment by their own initiative, launch any computational
node uploaded by the developer, and communicate with the
launched nodes using the WebSockets protocol. The use of
WebSockets protocol provides a full duplex communication
channel between the robot and the cloud with predefined
messages. The computing environments that are started by
the robots have high bandwidth connection to the RoboEarth
repository. Thus, the robots are allowed to process their data
inside the computational environment in the cloud without the



downloading and local processing. Another aspect of this plat-
form is that the computing environments are interconnected
with each other.

The architecture of Rapyuta consists mainly of four ele-
ments: the computing environment, the communication proto-
cols, the core tasks and the command data structure. The com-
puting environments are built with Linux Containers. These
containers provide isolation of processes and system resources
within a single host, and they allow the applications to run at
native speed because they do not emulate hardware. Linux
containers allow easy configuration of disk, memory limits,
I/O rate limits and Central processing unit (CPU) quotas. Thus
it is possible to enable one environment to be scaled up to fit
the biggest machine instance of the IaaS provider or scaled
down to just relay data to the Hadoop backend.

The computing environment has to run any process that
is a ROS node. All processes within a single environment
communicate between them using ROS interprocess commu-
nication. The communication protocols of Rapyuta are di-
vided in three parts: internal communication protocol external
communication protocol and the communication between the
Rapyuta and the applications that are running inside the Linux
container. The internal communication protocol is the protocol
that covers all the communication between the processes of
Rapyuta. The external module has the goal to define the data
sent between the physical robot and the cloud. The core task
has four task sets: master, robot, environment and container.
The master is the task controller that monitors and maintains
the data command structure. The robot is defined by the
capabilities necessary to communicate with the computing en-
vironment. Finally the container is defined by the capabilities
necessary to start/stop computing environment.

Finally Rapyuta is organized in a centralized command
data structure with four components. The network is the most
complex of the four. These components are used to organize
the communication protocols and to provide abstraction to all
platform. The next component is the user that is the group
of humans that has one or more robots that are going to be
connected to the cloud. The authentication of these robots is
made by API key that is unique to each user. To manage
the robots that are running in the computing environment,
there exists the loadBalancer. Finally the distributor has the
functionality to distribute incoming connections from robots
over the available robots.

All the mentioned middleware solves problems that this
work also tries to solve such as: flexibility (MARIE), code
reuse, modularity (ROS) and even share information with other
devices (player/stage). However, some of these middleware are
constrained by the limited capacity of the device (actuators
sensors robots) where they are executed. As is the case of the
player/Stage middleware that solves some problems that our
proposed solution tries to solve, but brings other problems,
like when one device sends some data to other device and
the device that receives the information does not have the
capabilities to run at the moment or even never. This way
the device will perform the action even if he has no capacity

for such.
Contrary to the other middleware, Rapyuta middleware can

solve the problem inherent to the limitations of the hardware
by running some algorithms on the cloud platform. But in this
the middleware does not exists an algorithm that decides when
is necessary to run some code in the cloud or in device (robot,
actuator sensor).

III. SOLUTION

This section introduces the distribution of modules over
system components and communication architecture.

It is followed by the discussion of system modules. This
discussion elaborates on the techniques used to make the
system objectives possible.

A. System Components

The system consists in two separate physical components:
devices running applications (for example clients) and the
cloud that makes data processing and saves data (for example
server)(see Fig. 1) . The different logic is distributed among
them. There are four types of communication between these
two components through the protocols TCP, UDP, SSH and
HTTP REST. There is also a publish subscribe model for
internal communications in the device. Many of the messages
exchanged by these protocols trigger events in system compo-
nents.

Fig. 1. System Components

Device: Devices are equipments (example cell phones,
tablets, and computers) that have a minimum capacity to
be able to run applications. Compared to other hardware
components, they have limitations such as limited memory
and limited battery. Inside of these limited devices there are
running applications that were developed by programmers. It
is inside of these applications that the management model
and cloud client side model are going to be run (see Fig.
1) if the application programmers do not want the hardware
components to reach exhaustion because of exhaustive work,
ensuring that their application to have a longer life.

Cloud: It is an open and flexible cloud platform that enables
to rapidly create, deploy and manage applications. And uses
the Platform as a Service model. The main goal of this
component is to give to the applications that are running in
devices under limiting constraints, more processing power and
memory, allowing the device components not to be pushed to
the limit.



The cloud server side model runs in this component (see
Fig. 1).

B. Manager Module

The management model aims to determine the state of
certain hardware components, as well as the state of the Inter-
net connection (depends on how the application programmer
defines a good connection or bad connection). The hardware
components that will be monitored are the battery, the CPU
and the memory. The application programmer defines each
component’s critical state on a configuration file, before the
middleware starts to be used. When one of these components is
equal or superior to the critical value and Internet connection is
good (the definition of a good Internet connection state is also
defined by the application programmer) a certain execution
will no longer be run on the device and starts to be executed
in the cloud.

Fig. 2 shows the state machine of the management model.

Fig. 2. state machine of the management model

The management model is initialized in the ”Middleware”
state when the ”Application” state sends a command to ”start
the management middleware” (initialization class monitor).
The “Middleware” state contains the conditions for the com-
ponents to be monitored. These conditions are updated by the
state ”Monitoring” through a shared queue between the two
states.

The ”Monitoring” status is initialized when the ”Middle-
ware” state receives the command to initialize the management
middleware. This state is always checking the conditions of
the Wi-Fi signal quality and the conditions of the battery, CPU
and memory, through calls to device hardware that runs the
application (example robots and actuators) and is integrated
with the middleware. The values obtained are compared with
the critical values stipulated by the application programmer.
The CPU test load is a little bit different from the other
tests because it only sends a notification if the read values
were three times superior to the critical value. This option
avoids reactions to sporadic peaks. If the signal quality of the
wireless network is below the critical value stipulated by the
application programmer the remaining monitoring tests will

not be performed. After each monitoring cycle of the hardware
components the ”Monitoring” state goes into sleep mode (for
example one minute). The sleep mode duration is also defined
by the application programmer.

The ”Application” state sends requests to the state ”Mid-
dleware” on the conditions of a certain component (example
battery) awaiting for a reply of ”True” or ”False”. If the answer
is ”False” it means that the state of the component is below
the critical status (and hence running with enough resources
on the device, so that no action is needed) stipulated earlier
by the application programmer. This way the programmer’s
application can continue to run without any changes, and no
event is initiated. This moment is depicted in the state machine
through the transition between the ”Application” state and
”Function” state. The transition between the ”Application”
state and the ”Do Something” state represents the situation
where the response sent by the ”Application” state is equal to
”True”. When the answer is equal to ”True” it means that
the conditions of the component exceed the critical value.
In these cases the application programmer has the freedom
to choose which action to take after receiving the message.
One possible option can be to use the services that a cloud
platform provides. For example performing a certain action
on a machine provided by the cloud platform. This way some
load is removed on the application and on the device that is
running the application, and some resources are released (for
instance, making available more memory).

C. Cloud Module

The cloud module has the goal of reducing the load on
the hardware components. This cloud module is divided into
two sub modules: the cloud client and the cloud server. In
the following paragraphs both modules will be described. The
cloud module state machine is shown in Fig. 3.

Fig. 3. Cloud module state machine



D. Cloud Client Side

The Cloud Client Side module depicts the communication
between the application and the cloud. This communication
is initialized when the programmer application makes an
initialization call to the middleware. This boot is portrayed in
the connections between the ”Application” state and ”Reading
Socket” state and between the ”Application” state and the
”Cloud” state. The first step is to boot the server in the
cloud via an SSH command. This way it is possible to
execute a command remotely. Secondly the TCP socket and
the UDP socket from the client side are created. Lastly are also
configured the access settings of POST and GET commands
of HTTP REST protocol. When the application programmer
intends to perform an upload of information in the cloud or
download information a POST or GET command to cloud is
sent.

The response of the cloud can be one of these four options:
either it is a confirmation that the information was successfully
saved, or there was an error while performing the operation
of storage of information, or the information requested by the
GET command, or message for some reason was not been
possible to obtain the information requested. This commu-
nication is represented in the transitions between the states
”Application”, ”Upload / Download” and ”Cloud”.

In the case of UDP / TCP connections between application
and cloud there are two types of connection: the blocking
call and the non-blocking call. A blocking call is portrayed
through the linking between the states ”Application”, ”Block-
ing Sending”, ”Cloud”, ”Function” and ”Reading Socket”.
In this connection a message is sent to the cloud with the
following information: the function name and the arguments
that the function needs executed. After the message is sent
the state ”Blocking Socket” enters a blocking state and waits
for the result of the function that is going to be executed in
the cloud. This result will be delivered by the state ”Reading
Socket.”

In the non-blocking connection a message equal to the
blocking connection is sent. But in this case the state does
not stays blocked after the message is sent, the program
continues to run and when the response is returned by the
cloud it is saved in the device memory until the program
needs the response. The states involved in this connection are
”Application”, ”Sending”, ”Cloud”, ”Function” and ”Reading
Socket.” The state ”Reading Socket” after being initialized
enters in block mode waiting for new entries in the socket that
arrive from the state ”Cloud”. When there is a new message on
the socket this will be processed in two ways depending on the
information of one of the fields of the message. If this field is
”True” the message is from a blocking function and the result
of the function is sent to the state ”Sending Blocking”. In the
case of field is ”False” the function name and the function
result will be stored in the device memory until the program
needs the result of this function.

E. Cloud Server Side
This module depicts the communication between the cloud

and the application. The component is initialized when the ma-
chine where the application server is running receives a SSH
connection with the start command. The state ”Cloud” after his
startup gets locked waiting to receive messages from the client.
To ensure greater efficiency in real-time situation that uses a
TCP connection this state contains a mechanism that drops
packets. This mechanism aims to solve a possible problem
that can occur when the speed of transmission of packets is
much higher than the packet reading speed. This can bring an
undesirable delay to the application programmer that is using
the middleware. Because of that the mechanism is based on
the idea that if a new packet arrives and a previous packet
was not yet read, the oldest packet is discarded and replaced
by the new packet, as this new packet is much more recent
than the last. Upon receipt of the message and its decoding
it is possible to identify the name of the function intended to
be performed and which are its arguments. Knowing what is
the name of the function to be performed it is possible to go
from state ”Cloud” to ”Function” state. The ”Function” state
consists in the execution of the functions that were chosen by
the application programmer to be in the cloud. At the end of
the execution of a function a message is sent to the client (state
”Reading Socket) with the function name, with the function
result and a small information for the state ”Reading Socket”
can identify if the response is to the blocking function or
to the non-blocking function. The sending of the message is
portrayed by the link between the ”Cloud” state and ”Reading
Socket” state.

In Fig. 4 it is possible to see in more detail the messages
exchanged between the following components: the application,
middleware and the cloud.

Fig. 4. Messages exchanged between the following components: the
application, middleware and the cloud

In Fig. 4 the ”start” section represents the commands sent to
initialize the middleware and cloud. The section ”Monitoring”
represents the messages sent between the application and the
middleware to verify the states of the components: battery,
CPU load, memory and Wi-Fi signal quality. The following
section represents the messages exchanged to do an upload or



download of information between application and the cloud
and the remaining represent the messages that are sent to
achieve the distribution of execution flows, differing on the
existence of blocking, waiting for a reply and a non-blocking
state.

F. Flexibility

To allow the middleware to be as flexible as possible, and
simultaneously guaranteeing that it was not necessary to create
a solution for every type of language, the following tools were
used: IKVM and jython.

IKVM1 is Open Source software that allows to directly
run compiled Java code in C Sharp, transforming a jar in a
dll. The IKVM has the following components: a Java Virtual
Machine (JVM) implemented in .NET, implementation of Java
libraries in .NET, a tool that translates Java byte code to IL
NET and tools that enable interoperability between Java and
.NET. Jython [7] [9] is the successor of JPython and is an
implementation of the Python programming language in Java.
The Jython programs can import and use any Java class, with
the exception of some standard modules. Furthermore Jython
includes almost all modules of the standard Python distribu-
tion, with only some of the modules originally implemented
in C.

Using these two tools, the middleware becomes more flexi-
ble because the core of the middleware can be executed on C
Sharp and Python.

IV. EXPERIMENTAL RESULTS ASSESSMENT

The objectives of the result assessment is the validation of
the implementation , and the determination of adequate system
improvements. For achieving these goals, several metrics were
firstly defined. This chapter is divided into areas of analysis
consisting of sets of testing experiments that cover different
analysis aspects. Results are gathered through the execution of
a number of experiments that were defined for each area. These
results are stored, taking into account the expected value and
standard deviation for the set of samples of the targeted met-
rics. In the end, results analysis are presented in a chart format,
so that their interpretation is clearer to the reader. The general
assessment methodology focuses on testing, and if possible
validating, the different parts of the system individually, and
then progressively integrating more complexity. The detailed
experimental methodology is described under each test area
subsection.

A. Metrics

The following metrics were used to evaluate the potential
gains that may be brought by the solution:

• Energy consumed when running the application alone
• Energy consumed when the middleware is integrated with

the application
• Time that takes to perform a function in the device
• Time that takes to perform a function when the middle-

ware is integrated

1http://www.ikvm.net/ (accessed last time on 14 May 2014)

• Delay times when exists migration of execution flow to
the cloud platform

• CPU load when application runs stand-alone
• CPU load when running with the help of the cloud.

B. Scenario of Tests

To test the middleware in the worst conditions that an
application may be subject an application that makes video
processing was chosen. This choice was due to the fact that
this kind of applications need a huge CPU load, spending
a lot of battery, and requiring rapid responses. The first test
scenario consists on the integration of the developed middle-
ware with an Android application (which was being developed
in YDreams Robotics). This Android application uses the
Computer Vision Library (OpenCV) to do face detection,
as well as face tracking after the detection. As this is an
application that makes a lot of image processing, it turns out
to be a fairly heavy application in terms of CPU processing
power, battery consumption and generated traffic. Thus, the
device performance gets worse over time. This test intends to

• Check what is the percentage of spent battery
• What are the CPU loads during the application execution
• If the inclusion of middleware brings some significant

delays to the application that uses it
In this scenario one BQ tablet with the Android operating

system was used, and one virtual machine with one core and
1,75GB of Random-access memory (RAM)for the Microsoft’s
Cloud Platform.

C. Analysis of Energy Consumed

This application underwent two experimental test setups to
check percentage values for the battery energy spent during
the execution of the application described above. These exper-
iments lasted 40 minutes and were repeated 5 times. The first
experimental setup set the baseline, where the application that
detects and tracks the human face was the only one running
on the Android operating system and without any interference
from the middleware. The second experimental setup consisted
of the same application but integrated with the middleware,
being part of the algorithm implemented in the cloud. In the
graphs of Fig. 5 and Fig. 6, it can be observed that there were
no gains with the transferring of certain application execution
flows to the cloud. In both figures and in Table I it is possible
to see that the results are better when the middleware is
not integrated. Although these are almost irrelevant because
the difference between the obtained values with the presence
of middleware and the values without the presence of the
middleware never exceed the 8%. The fact that does not exists
any gains in relation to the percentage of battery energy spent
with the integration of middleware may be due to excessive
use of the camera as it is a hardware component that consumes
a lot of battery. But this fact does not explain everything
because the test that is conducted without the presence of
the middleware also used this component extensively. Another
aspect that may have influenced the results to be different
from what was expected (the battery values being lower with

http://www.ikvm.net/


the presence of the middleware) is the constant access to the
wireless network because after the connection is made with the
cloud, this connection will only be closed when the application
is turned off or the application programmer specifies an order
of termination of the connection. And this constant access
consumes some battery [6] [8].

Fig. 5. Energy Consumed without using the cloud

Fig. 6. Energy Consumed using the cloud

TABLE I
ENERGY CONSUMED (PERCENTAGE OF BATTERY CHARGE)

Experimental
setup

Without
Cloud

With Cloud

Average
working
battery charge
(battery at
the end of
experiment)

73,6% 66,4%

Standard De-
viation

2,70 3,04

Average of
the battery
charge spent
by the five
tests

25,2% 32,6%

Standard De-
viation

3,11 3,04

D. Analysis of CPU Load

To check whether there are advantages in using this middle-
ware in relation to the CPU load, the ”Face Detect/Tracking”

application was subjected to the following testing experiments
(these tests lasted 20 minutes and were repeated five times):

• In the first experimental setup the application that detects
and tracks the human face was the only one running on
the Android operating system and without any interfer-
ence from the middleware.

• The second experimental setup consisted of the same
application but integrated with the middleware. The appli-
cation only sends messages composed by pictures frames
from the camera and sends these to the cloud with the
analysis of the picture frames made in the cloud.

From figures II, 7 and 8, it is possible to notice that there
was a significant gain with the migration of the detection and
tracking algorithms to the cloud. This increase is explained by
the fact that the heavier work is being done in the cloud, which
alleviates the processing in the device’s CPU that is running
the application, as it only needs to get the frames and sending
them. By reducing the CPU load, the lifetime of the battery
should increase. As previously explained, this was not the case
due to other factors, such as more battery energy required for
wireless communications.

Fig. 7. CPU Load without the presence of the middleware

Fig. 8. CPU load with the usage of the middleware

The image processing algorithms requires a lot of CPU to be
executed. This situation may preclude those others applications
that should run properly (may enter a blocking state) while the
image processing applications are also running. The same also
happens with image processing application that ceases to have
the CPU just for itself, competing for resources such as CPU



TABLE II
CPU LOAD

Experimental
setup

without
Cloud

With Cloud

Average Of
the CPU
Load

68,98% 45,84%

Standard De-
viation

3,53 1,15

processing time, and this competition may create difficulties to
its execution, reducing the framerate, for example less frames
per second for the analysis. In order to prove that the utilization
of the developed middleware is a good solution to solve this
competition problem for limited resources, the following test
scenarios were performed: checking the CPU status when an
exhaustively analysis of 100 frames is made, and checking the
time consumed

• when the analysis is done on the BQ tablet
• when it is done in the cloud.

Through the observation of Table III and Fig. 9, one can
verify that when the processing is made in the tablet, the CPU
load reaches saturation values. On the other hand, the usage
of cloud processing originates a significantly lower CPU load
at the tablet.

Fig. 9. Load in exhaustive case of heavy consumption of CPU computational
resources by applications

It can be concluded that the integration of the middleware
is beneficial when we want to run reliably more than one
application on a device of limited resources, because with
the transferring of execution flows to the cloud much of the
processing is done outside the device thus freeing some of
the CPU load, so that other device applications can also be
executed.

E. Analysis of Time spent

The time delay that can exist to perform certain execution
flows in the cloud is addressed hereafter.

As expected the integration of the middleware brought some
delay to the execution of the application and this delay may
increase when the message size increases.

After the execution of the test (Tables IV, VI and V) it was
observed that there is a significant delay when the algorithm

TABLE III
CPU COMPARATIVE LOAD IN EXHAUSTIVE CASE

Without
Cloud

With Cloud

CPU Load
average

98,69% 25,53%

CPU Load
standard
deviation

1,20 2,28

Average of
the execution
time of the
algorithms
(ms)

1292 1100

Standard
deviation of
the execution
time of the
algorithms

5,60 4,80

is executed in the device. This longer delay is explained by
the the network conditions where not being the best in terms
of quality. But the factor that most impacts this delay is the
utilization of the TCP communication between the application
and cloud. Although this means of communication is quite
reliable because none of the sent messages is lost, it can
also bring much delay because when there is any error in
the network the lost message segments will be sent again
until message reaches its destination, thereby translating into
an extra delay when sending the message. Even with the
implementation of a mechanism to discard messages, these
are only discarded when the message is fully received

In this test it can also be verify the occurrence of high
standard deviation values. This is due to image variations in
terms of complexity, since image complexity can cause the
increase or decrease of the algorithm execution time.

TABLE IV
TIME (IN MS) SPENT TO DETECT AND TRACK FACE WITH THE PRESENCE

OF THE MIDDLEWARE (WITHOUT TRANSMISSION TIME)

Experimental Setup

Detect Average (ms) 157,19
Standard Deviation 4,79

Track Average(ms) 9,51
Standard Deviation 25,29

V. CONCLUSIONS

Recent technological advances have presented new concepts
applied to the various economic sectors of our society. WSN
and M2M are emerging concepts in areas of growing interest.
Indeed, the idea of monitoring several types of parameters in
various environments has been motivating significant research
works in these areas. Concerning some challenges presented



TABLE V
TIME (IN MS) SPENT TO DETECT AND TRACK FACE WITH THE PRESENCE

OF THE MIDDLEWARE (WITH TRANSMISSION TIME)

Experimental Setup

Detect Average (ms) 575,56
Standard Deviation 28,18

Track Average(ms) 423,16
Standard Deviation 0,934

TABLE VI
TIME (IN MS) SPENT TO DETECT AND TRACK FACE WITHOUT THE

PRESENCE OF THE MIDDLEWARE

Experimental Setup

Detect Average (ms) 195,06
Standard Deviation 5,56

Track Average(ms) 56,95
Standard Deviation 0,93

by WSN’s deployments, Cloud Computing platforms are a
prominent element that can respond in a more efficient and
powerful way to such issues. This thesis proposes a mid-
dleware whose major goal is to solve the problem of lack
of resources in devices such as limited memory and battery,
with the help of cloud platforms. The proposed architec-
ture’s most important models are the management and cloud
models. The management model aims to monitor the most
problematic hardware components and communicate whenever
some of these components are in a critical condition. The
cloud uses two sub modules. One is cloud client module
and this module communicates with the management module
and sends messages to the cloud server module, for instance
whenever one of the components is in a critical state. The
cloud server module is running in the cloud platform and is
where the chosen algorithms are running. These algorithms
start to be executed when the cloud server module receives a
message from the cloud client module. The performed tests
demonstrate that the use of the cloud to solve the lack of
resources problem in devices is quite advantageous because
it allows the CPU load to be reduced to lower values. This
leads to battery with extended autonomy, thereby providing
less inconvenience to device users. It also avoids applications
entering in a blocking state due to lack of memory, and allows
running more applications in simple device that otherwise
would exceed the available resources. But most importantly,
the decision wether to run an application locally or remotely
is done dynamically, according to the status of the available
resources as checked through active monitoring.

However, in certain situations it cannot be ensured that
all issues are solved with the cloud introduction, because
some of problems are typical to hardware components (like
the utilization of camera that spends a lot of battery). The
solution also presented a small flaw with regard to time lost
when performing certain flows in the cloud. This delay is not
related with the running time of the algorithm, but instead

with the time lost in sending the message between the device
(robot or actuator) and the cloud and vice versa. This problem
relates to the fact that the middleware uses a TCP protocol for
communications which, though a reliable transport means, it
introduces latencies due to the error-checking for packets.

This middleware will be beneficial for programmers who
want to make the most of the hardware resources available on
the devices.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R Wheeler, and A. Ng. ”ROS: an open-source Robot Operating System.”
ICRA workshop on open source software. Vol. 3. No. 3.2. 2009.

[2] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea, . ”Rapyuta:
The roboearth cloud engine.” Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013.

[3] M. Kranz, R. Rusu, A Maldonado, M. Beetz, and A. Schmidt. ”A
player/stage system for context-aware intelligent environments.” Proceed-
ings of UbiSys 6 (2006): 17-21.

[4] R. Rusu, A. Maldonado, M. Beetz, M. Kranz, L. Mösenlechner, P. Holleis,
and A Schmidt. ”Player/stage as middleware for ubiquitous computing.”
Proceedings of the 8th Annual Conference on Ubiquitous Computing
(Ubicomp 2006)(Sept. 2006). 2006.

[5] C. Cote, Y. Brosseau, D. Letourneau , C. Raı̈evsky, and F. Michaud .
”Robotic Software Integration Using MARIE.” International Journal of
Advanced Robotic Systems 3.1 (2006).

[6] N. Balasubramanian , A. Balasubramanian, and A. Venkataramani. ”En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications.” Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference. ACM, 2009.

[7] S. Pedroni, and N. Rappin. ”Jython essentials”. O’Reilly Media, Inc. 2002
[8] R. Mayo, and P. Ranganathan. ”Energy consumption in mobile devices:

why future systems need requirements–aware energy scale-down.” Power-
Aware Computer Systems. Springer Berlin Heidelberg, 2005. 26-40.

[9] R. Bill Jython for Java programmers. Sams Publishing, 2002.


	Introduction
	Related word
	ROS
	Player/Stage
	MARIE (Mobile and Autonomous Robotics Integration Environment)
	RoboEarth Cloud Engine (Rapyuta)

	Solution
	System Components
	Manager Module
	Cloud Module
	Cloud Client Side
	Cloud Server Side
	Flexibility

	Experimental Results Assessment
	Metrics
	Scenario of Tests
	Analysis of Energy Consumed
	Analysis of CPU Load
	Analysis of Time spent

	Conclusions
	References

