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Resumo

A presença da tecnologia pode trazer algumas vantagens importantes para a nossa vida quotidiana,

pois alguns dos dispositivos estão a ficar mais inteligentes e podem começar a fazer algumas tarefas

que no passado, apenas os seres humanos poderiam fazer. Os dispositivos obtêm estas novas carac-

terı́sticas quando estes se ligam à Internet. Estes acontecimentos levaram ao nascimento de um novo

paradigma chamado Internet das Coisas. Desta forma os dispositivos têm acesso a mais informação

tornando possı́vel tomar melhores decisões. Com os progressos realizados ao nı́vel da comunicação

entre os objetos da Internet, surgiu outro paradigma que se chama redes de sensores sem fios. Estas

redes são compostas por pequenos sensores que realizam a aquisição, recolha e análise de dados.

No entanto, as redes de sensores sem fios têm alguns problemas ao nı́vel do consumo energético e

processamento. A capacidade quase infinita de armazenamento, as grandes velocidades de processa-

mento e a rápida elasticidade faz da computação em nuvem uma boa solução para estes problemas.

Para gerir com eficiência os recursos dos dispositivos e conseguir uma comunicação eficiente com

várias plataformas móveis, este trabalho propõe um middleware que integra sensores e atuadores em

múltiplas plataformas. Dando assim a possibilidade de transferir fluxos de execução entre dispositivos

e a plataforma cloud, sob certas condições.

Palavras-chave: Internet das Coisas, Máquina a Máquina, Redes de sensores sem fios,

Computação em nuvem, Middleware
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Abstract

In these days technology is present everywhere, such as in our homes or in our jobs. This presence

of technology in our lives can bring some important advantages because the devices can start doing

tasks that in the past only humans could do. The devices gain these new characteristics when they

become connected to the Internet. This leads to the birth of a new paradigm named Internet of Things.

With Internet of Things the devices have access to more information and with it they can make better

decisions. With the progress made in the communication between the Internet objects, another paradigm

called Wireless Sensor Network emerged. The Wireless Sensor Network is composed by small sensing

nodes which perform the acquisition, collection and analysis of data. However, the Wireless Sensor

Network has some problems such as energetic consumption and CPU load. The almost infinite capability

of storage, the large processing speeds and the rapid elasticity makes Cloud Computing a very good

solution to these problems. This work proposes a middleware that seamlessly integrates sensors and

actuators on multiple platforms, to efficiently manage the resources of the devices and achieve efficient

communication with various platforms (cloud, mobile). The goal is to allow the flow of execution to be

transferred between the device and the platform under certain conditions.

Keywords: Internet of Things, Machine-to-Machine, Wireless Sensor Networks, Cloud Com-

puting, Middleware
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Chapter 1

Introduction

The revolution that has occurred in the past years in sensor and actuator technology is making much

easier to build Wireless Sensor and Actuator Networks (WSAN). This WSAN consists in a set of nodes

(sensors and actuators) that cooperate among them to achieve the goal of collecting data and make

some decisions based on collected data. Autonomous network nodes either have a short range, or

their computation power is weak. But when used collectively they are effective over large areas offering

higher computational power.

Nowadays WSAN have a more pronounced growth, and it is not unreasonable to expect that in

a few years our lives become dependent of WSAN in certain areas such as environmental, medical,

transportation entertainment and city management. Although there has been an evolution of the nodes in

WSAN these continue to have limited battery, limited computational power, etc. And with these problems

the network node can crash due to lack of sufficient resources, and this may lead to jeopardize the

smooth operation of the infrastructure. So, in such cases sensor and actuator networks cannot operate

as stand-alone networks.

But there must be an efficient way for the captured data to be stored and manipulated. Cloud com-

puting may offer attractive solutions for these issues. Indeed, it allows the reduction of the initial costs

associated with the computational infrastructure. Another relevant aspect is that the cloud computing

resources are easily and automatically adjustable according to the real infrastructure needs. This way,

the computational resources are easily scalable following the growth of the infrastructure. Another im-

portant point is related with the fact that the customer only pays for the cloud resources that he actually

used, therefore he does not have the problem of paying for resources that were not used. But the most

important aspect to this work is that the cloud computing ensures unlimited battery, unlimited storage,

unlimited computational power due to its immense of resources.

Now that a possible solution to the problem has been found, is necessary to find a way to know when

the node of WSAN does not have the capability to perform some operation, and how to communicate in

a transparent manner using the cloud infrastructure. To solve these issues efficiently it is necessary a

mediator that manages the resources of the nodes of WSAN efficiently and communicates transparently

to users with various platforms. We can call this mediator a middleware.
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1.1 Goal

The main purpose of this work is to design, implement and test a middleware for collecting, sharing

and transmitting data between systems of sensors and actuators. More specifically the middleware will

dynamically transfer execution flows between mobile devices and the cloud, according to the battery

status of the devices, the network performance and the device itself. To demonstrate the potential of the

solution a prototype will be implemented.

The expected goals of this work are the following:

• The design of a solution and architecture that solve the proposed problem;

• The development of a functional prototype for the proposed solution that allows to demonstrate the

potentialities of the middleware

• The deployment and evaluation of the developed prototype

1.2 Contributions

The contributions of this work are the following:

• A complete State of the Art document on the background of M2M communication, WSAN and its

integration with Cloud Computing and middleware resources management of WSAN ;

• A comparative evaluation of currently related architectures;

• The development of a middleware for collecting, sharing and transmitting data.

1.3 Document Organization

This work is organized as follows. Chapter 2 presents a review on the State of the Art for the current

work and the description of some related architectures. The architecture for the solution is presented

in Chapter 3, referring the different parts of the system while abstracting contextual details. Chapter

4 clarifies the architectural implementation process in the rationale behind its methodology criteria and

requirement-oriented decisions. Chapter 5 provides a basis for the assessment methods, while present-

ing the experimental results of this solution. In the last chapter, final remarks are made, along with a

contextualised summary of the contributions. Finally, future work is proposed.
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Chapter 2

State Of The Art

This section starts with the explanation of a promising paradigm, named Internet of Things (IoT). This

paradigm is presented in section 2.1 discussing several potentialities and some application scenarios.

Afterwards section 2.2 presents an emerging paradigm called Internet of Intelligent Things (IoIT). In

section 2.3 it is described a new communication paradigm, called Machine-to-Machine (M2M), as well as

its main challenges. Then, in section 2.4 it is presented an emerging technology named Wireless Sensor

and Actuator Networks. The Cloud Computing area is presented in section 2.5 as well as its concepts

and incredible potentialities. Next, in section 2.6 it is described the impact that the cloud computing

concepts and characteristics could bring to the M2M and Wireless Sensor Network’s area. Being the

robots constituted by sensors and actuators, one robot could also be considered like a Wireless Sensor

Network (WSN). This way in section 2.7 it is presented Cloud Robotics that is a new paradigm aiming

to solve some current robotics issues. Finally, some interesting cloud-based platforms will be presented

and analysed.

2.1 Internet of Things

Internet changed the way we communicate. And as time passed by a large number of objects were

connected to the Internet, giving birth to the Internet of Things , which refers to a multitude of uniquely

identifiable objects (things) that are connected through the Internet [1]. For instance, fridges might be

connected to the Internet and present people with information about current fresh food stock, clothes

might read relevant biomedical information and alert people if any action is needed, or umbrellas might

receive information from the weather service and glow when it is about to rain so people do not forget

to take them. The concept behind IoT is ”the pervasive presence around us of a variety of things or

objects – such as Radio-Frequency Identification (RFID) tags, sensors, actuators, mobile phones, etc. –

which through unique addressing schemes are able to interact with each other and cooperate with their

neighbours” [2]. The IoT paradigm is therefore changing, and will continue to change, the lives of people

worldwide, whether its effects are obvious to the user or not. Application areas are various, spanning

from home automation, assisted living, e-health, smart energy management, logistics, automation, etc.

3



According to a joint study by GSMA and Machine Research[4], there are 9 billion connected devices in

the world today. By 2020, there will be 24 billion and over half of them will be non-mobile devices such as

household appliances. The importance of the IoT paradigm [3] [4] has already been recognized world-

wide. For instance, the U.S. National Intelligence Council [4] lists the IoT among the six technologies

that may impact U.S. national power by 2025.

Figure 2.1: Internet Of Things (some of possible connected applications)

Some studies made by GSM and Machine Research have concluded that in 2020 the top ten con-

nected applications are (see figure 2.1):

Connected Car Vehicular platforms behind today’s satellite navigation or stolen vehicle recovery de-

vices.

Clinical Remote Monitoring Reducing healthcare costs by remote monitoring and immediate, local

corrective actions, for instance.

Security Remote Monitoring Using wide-area connected security systems for providing higher quality

and cheaper solutions.

Assisted Living Enabling better quality of life and independence for senior and infirm people, as well

as improved health tracker systems.

Pay-As-You-Drive Car Insurance Insurance policy that charges users according to driving behaviour.
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New Business Models for Car Usage Exploiting car connectivity for providing value-added services

such as vehicle tracking and remote access.

Smart Meters Number of smart meters deployed globally is expected to increase by an order of mag-

nitude. Benefits include remote meter reading and a reduction in fraud and theft.

Traffic Management Cities traffic management includes connected road signs and tolling for improv-

ing the efficiency of traffic flow.

Electric Vehicle Charging (EVC) EVC as a connected activity, for locating, booking and paying for

vehicle charging.

Building Automation Energy savings, better quality of life by intelligent usage of domestic appliances

to ensure optimum use of energy.

IoT enables a state of ubiquitous networking in which every object in our daily lives could be a potential

connected thing on the Internet, with its own set of sensors, actuators and, possibly, these could even

have a sense of purpose and intelligence to react to their surroundings, which leads us to the IoIT. But

before diving into the IoIT, lets describe some of the challenges that the IoT still has yet to overcome [3],

such as:

Connectivity the still on going deployment of IPv6, which has not reached most end users, and the

fact that the range of available IPv4 addresses is clearly insufficient. In addition, the possibility of having

billions of things uniquely addressable over the Internet, presents a challenge to the goal of ubiquitous

computing, which IPv6 should solve with the advantages of allowing easier network management and

improved security features.

Energy management of sensors and actuators although there has been large improvements in this

aspect with the appearance of technologies that allow to recharge batteries without the need of an

external power source – such as producing energy through bodily movements and through the usage

of environmental energies. Improvements in this area are even more evident in the new paradigm since

these objects need to have computing capabilities to enable them to take decisions and act accordingly.

Creation and usage of standards for the various systems that are connected by this paradigm.

This will enable IoT to evolve so that networks and various sensors become integrated and standardized.

Turning connected objects into robots requires small, low-weight and cheap sensors, actuators and

processing hardware as components for robots that exhibit complex behaviours, integrating mechanisms

for social interactions, autonomous navigation and object analysis, among others.
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2.2 Internet of Intelligent Things

New paradigms for the Internet of Things are therefore crucial for migrating from nowadays sensor

networks into networks of intelligent sensors enabled with actuation mechanisms. Such future networks

will consist of the ”Internet of Intelligent Things”. This paradigm is the next step in the evolution of

networking, for creating the experience of an ubiquitous [5], and intelligent, living, internet. It derives

from the need to give commonplace objects the ability to comprehend their surroundings and to make

decisions autonomously. Hence, decisions do not need to be sent to core decision making nodes, by

giving intelligence to sensors and giving them the ability to act according to the stimulus perceived by

sensors, enabling the IoIT to respond better to time-critical situations because the decisions are made

in a non-centralized way [7].

The best way to be clear what is IoIT and how IoIT can help the improve of people lives is an

example of scenario [28].Imagine a coffee mug mat that is connected to the IoT and has connected to it

a few sensors (heat sensor and a pressure sensor) with them we imagine this mat doing things such as

remembering the user’s preferred coffee temperature or knowing if the coffee mug is empty or not. But

why would the coffee mug need to know these things? Imagine, if the user dislikes really hot coffee the

mat – being a smart object – can warn the user (through an acoustic signal or other) that the coffee is

too hot for them, or if the mug has been empty for too long the mat can remember the user to put it in

the washing machine.

2.3 Machine-to-Machine

One of the main concepts behind IoT is Machine-to-Machine communication. M2M communication is a

definition of rules and relationships between computers, embedded processors, smart sensors actuators

and mobile device without human interaction [10]. The main idea is to connect different devices that

communicate through different technologies (for example Bluetooth to transfer data).

There are four types of communication between devices. First we have the internal type that occurs

when two M2M devices are in the same private address. When we have a communication between two

M2M devices without an intermediary is called direct, if there is a intermediary is called indirect. Then

when one of the two devices use public address and the other has private address the communication

between them is indirect and external. Finally when both M2M devices use public addresses their

communication is external and direct. Current wireless networks are optimally designed for human-to-

human (H2H) communications, so M2M to be reliable, scalable, secure and manageable like H2H it is

necessary to solve some challenges [8].

Some of those challenges are unique to M2M Communication. For example M2M network needs to

support a larger number of devices and these devices access the network frequently to transmit small

bursts of data. At the moment some standard groups, such as IEEE, 3GPP and ETSI, have become

more active in seeking a solution to this problem due to market demands.

The most notable application areas of M2M are security, transportation, e-health and manufacturing.
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M2M communication has expanded beyond one-to-one communication and changed into a system of

networks that transmits data to personal appliances [9].

2.4 Wireless Sensor and Actuator Networks

The advances in computing, communication and sensing technologies are prompting to a new genera-

tion of sensor network the wireless sensor and actuator networks [11] [12].

WSAN is a distributed system of sensor nodes and actuator nodes that are interconnected over wire-

less link. The three essential components in a WSAN are: sensors, actuators and base stations. The

base station is responsible for monitoring and managing the network through communication with sensor

and actuator. Sensor gets information over physical world, next the sensor transmits the collect infor-

mation to the actuator. These nodes are low-cost, low-power small devices and equipped with limited

sensing data processing and wireless communication capabilities. The actuator receives the informa-

tion through single-hop or multi-hop and performs some actions to change the behaviour of the physical

system. Comparable to sensors actuators nodes these have stronger computation and communication

power and longer battery life because of more energy consumption. But resource constraints apply to

both [13]. The nodes of WSAN can be stationary or mobile.

WSN and WSAN share some common consideration such as reliability connectivity scalability and

energy efficiently but the coexistence of sensors and actuators cause difference between WSAN and

WSN. The primary concern in WSN it is power consumption however in some WSAN is more important

reliable communication [14]. There are characteristics of WSAN that are unique like real time require-

ment and coordination.

Real time requirement The response to the sensor input may need to be fast depending on the

application. For example, in a fire application, actions should be initiated on the event area as soon

as possible. The collected and delivered information must be valid in the moment of the acting. For

example, if the sensors detect a problem in one area and transmit this information to the actuator this

problem must be in the same area when the actuator start acting. From what was said earlier the issue

of real time is very import.

Coordination In WSN the central entity executes functions of data collection and coordinator. While

in WSAN what happens is a coordination. Sensor-actor coordination provides the transmission of event

features. In order to make the right decisions to perform an action, the actuators need to coordinate with

each other when receiving the event information.

There are some challenges for this emerging sensor network. Wireless channels have adverse prop-

erties such as path loss, multi-path fading, adjacent channel interference, Doppler shifts and half duplex

operations. These are known to be unpredictable and inherently unreliable. In the case of lower power
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communication and in the presence of node mobility it is much noticed [15].With this characteristic pre-

viously mentioned it is very difficult to ensure the quality of service (QOS) of the network. The difficulty

to ensure QOS results in time-varying delay and packets loss as regards the application control. All of

this could significantly degrade the control performance or even cause system instability.

The applications controls are being revolutionized with the advent of WSAN. WSAN can become

the backbone of many control applications enabling an unprecedented degree of distributed control.

The use of WSAN in control application brings many advantages such as more flexible installation and

maintenance, fully mobile operation and monitoring and control of equipments in hazardous and pre-

viously difficulty to access environments and the most important low costs [16]. There are two types

of architectures the automated architecture and the semi-automated architecture [11].In an automated

architecture there is no controlling entity. The controllers are inside the actuators and control algorithms

that decide what actions to make will be executed on the actuator nodes. In the other architecture (semi-

automated architecture) one or more controller entities exist. The controller entities are embedded in the

base stations or separated nodes equipped with computation and communication capacities. In these

architectures sensor collected information and the controller execute certain control algorithms to decide

what action to make and send to the actuator.

2.5 Cloud Computing

Cloud Computing is fundamentally an evolution of distributed systems technologies such as Cluster

Computing and Grid Computing, relying heavily on the virtualization of resources. Before mentioning

the characteristics, elements, concepts and other important things of cloud it is important to define cloud

computing. According to the National Institute of Standards and Technology the definition of Cloud

computing [34] is as follow:

Cloud computing is a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage applications and services) that can

be rapidly provisioned and released with minimal management effort

or service provider interaction

NIST (National Institute of Standards and Technology)

The main goal of cloud computing is to make a better use of distributed resources, combine them

to achieve higher throughput and to be able to solve large scale computation problems [33]. Cloud

computing has 7 major components: application, client, infrastructure, platform, service, storage, and

processing power.

In the definition of cloud computing previously mentioned there are some important characteristics

such as Broad Network Access, Resource Pooling, On-Demand Self Service, Rapid Elasticity and Mea-

sured Service, as described by previous research work[34] [35].

Cloud computing services are categorized into three service models [36] (see figure 2.2):
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Figure 2.2: Cloud computing map

Infrastructure as a Service (IaaS) IaaS offers computing resources such as processing and storage

which can be obtained as a service.

Platform as a Service (PaaS) Independently of lower layers issues, software developers write their

applications according to a given set of platform specifications, independently of lower layer infrastruc-

ture issues.

Software as a Service (SaaS) Cloud consumers send their application to a hosting environment in

the cloud.

Data storage as a Service(DaaS) DaaS is a special type of IaaS in which storage is provided as a

separate cloud service using virtualized resources.

Cloud computing can also be classify in four ways according to its structure model: Public Cloud,

Private Cloud, Hybrid Cloud and Community Cloud [36] (see figure 2.2).

The utilization of cloud computing can bring some advantages to its clients (organization, simple

clients, etc.) and to devices that use the cloud such as easy management, cost reduction, uninterrupted

service, disaster management, green computing as detailed in [33].

However, cloud computing still offers some challenges, namely concerning security, costing model,

charging model or service level agreement [35].
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2.6 M2M communications in cloud

M2M refers to technologies that empower devices with the ability to communicate with each other [17]

[18]. In M2M, sensors are often employed to capture events which are relayed through a network to

an application that translates them into meaningful information. With the IoT, M2M has expanded be-

yond one-to-one communication and changed into a system of networks that transmits data to personal

appliances.

Sensor Commons is a future state whereby data will be available in real-time, from a multitude of

sensors that are relatively similar in design and method of data acquisition. This allows comparing data

across multiple sensors (important for cooperative sensing). Devices do not need to be all calibrated

together however, one of the devices should ensure that all are more or less recording the same with

similar levels of precision. In order to be able to store, process and display the information gathered

by the multitude of sensors that build a M2M system, significant computing power is required. With the

emergence of Cloud Computing this problem can be more easily addressed as described hereafter.

Indeed, Cloud Computing allows for data collection, processing, interface and control to be separated

and distributed to the most appropriate resources. Current M2M implementations combine the above

mentioned aspects into one solution, either chips in sensor bodies or an on-site laptop or desktop PC

tied within a local network perform the data processing and determine the control logic.

However, once data moves to the Cloud most current limitations disappear [19][20] [21]. Storing

data in the cloud means that, from a storage point of view, data buffers within devices no longer matter.

Cloud storage is near limitless and so historic data can be saved for as long as it is considered valuable.

Applications are also not restricted by small processors, low-power consumption, and special purpose

programming languages. In addition, there is not only access to super-fast processors [22] [23] [24], but

if there are server or storage bottlenecks, these can be quickly addressed by launching on-demand more

servers or horizontally scaling storage. Lastly, interfaces can move to Web browsers, mobile phones,

wallboards, and tablets, eliminating the need for having screens as a part of every device. Separating

the processing data input from display not only means lower costs (less components to the devices)

but also easier upgrading of diagnostics and far better visualization capabilities. Hence, separating

the components and putting the data in the Cloud allows devices to get smarter while not necessarily

becoming more complex.

2.7 Cloud Robotics

The revolution that has occurred in the past years in sensor and actuator technology is making much

easier to built WSAN. This WSAN consists in a set of nodes (sensors and actuators) that cooperate

among them to achieve the goal of collecting data and make some decisions based on collected data.

A node of the network autonomously has a short range or their computation power is weak but when

used collectively they are effective over large areas and with a biggest computing power. Nowadays

WSAN growth is more pronounced and it is not unreasonable to expect that in a few years our lives
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become to be a little dependent of WSAN in certain areas such as environmental, medical, transportation

entertainment and city management. Although there has been an evolution of the nodes in WSAN

these continue to have limited battery, limited computation power, etc. And with these problems the

network node can crash due to lack of sufficient resources to perform, and therefore jeopardizes the

smooth operation of the infrastructure. So sensors and actuators network cannot operate as stand-

alone networks.

But there must be an efficient way for the captured data to be stored and manipulated. Cloud com-

puting may offer attractive solutions for these issues. Indeed, it allows the reduction of the initial costs

associated with the computation infrastructure. Another relevant aspect is that the cloud computing re-

sources are easily and automatically adjustable according to the real necessities of infrastructure. This

way, the computational resources are easily scalable following the growth of the infrastructure. Another

important point is related with the fact that the customer only pays for the cloud resources that he actually

used, therefore he does not have the problem of paying for resources that were not used.

Robotics has faced strong barriers in its evolution because there are inherent challenges to it that

until recently technologies were unable to overcome. Researchers have been able to apply robotics to

controlled environments because robots in factories have fixed behaviors and simple sensory systems

for pre-defined stimulus. But for robotics to reach a level of pervasiveness in which robots are present

in our daily lives, robots need to adapt themselves to environments that can change very frequently

and need to be able to respond to unexpected events. Robots to reach this level of adaptation need to

analyze their surroundings and to store information about it and to process this information [25]. Robots

however usually do not have enough computational and battery power to process that information while

still being mobile and with a small form factor size.

Cloud Robotics is a new paradigm aiming to solve some of these current robotics issues. Cloud

robotics is a combination of cloud computing and robotics. Robots operating from a cloud can be more

portable, less expensive and have access to more intelligence than an ordinary robot [25]; these robots

could also offload CPU-heavy or energy demanding tasks to remote servers, relying on smaller and less

power demeaning onboard computers [26].

Robots in a cloud configuration can perform autonomous learning, obtain knowledge and share

knowledge, and even evolve. Through the robotics cloud, robots can execute collaborative tasks and

provide efficient services. Robots can upload and share their acquired knowledge on the servers, which

are responsible for knowledge, storage and scheduling [25].

The cloud is promising for the evolution of robotics, but it also has its short-comings. Robots rely on

sensors and feedback to accomplish a task, this might not be accomplished on the cloud because cloud

based applications can be slow or difficult to run because of Internet limitations [25], and robots usually

have several closed feedback control loops between sensors and actuators demanding real-time action,

for which network latency is an important concern.

Besides the introduction of the cloud for computing in robotics, there is a new paradigm in robotics,

which is Robotics as a Service (RaaS). By using a Service Oriented Architecture (SOA), robots can

publish their functionalities as services available to the clients and can extend those functionalities
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by searching for services available in the cloud [27]. RaaS provides some advantages like having a

layer of common services with standard interfaces, and making the invocations of the services device-

independent.

RoboEarth 1 is an existing solution for Cloud Robotics. This platform lets robots collect, store and

share information independently of specific robot hardware. Such capabilities enable robots to provide

functions and behaviours that were not explicitly programmed, such as the ability to recognize certain

objects. RoboEarth platform provides a repository in the cloud for robots and high-level components

for interaction with the robots, all packaged in a Representational State Transfer (REST)-full API. It

implements components for Robot Operating System (ROS) compatible operating systems, as well as

components for robot-specific controllers accessible via a Hardware Abstraction Layer platform.

2.8 M2M and cloud platforms

We will now briefly present and analyze some M2M cloud platforms, such as Axeda, RoboEarth and

SmartM2MPT.

Axeda Axeda2 platform is a complete M2M data integration and application development with infras-

tructure delivered as a cloud-based service. This platform guarantees scalability and security needs. In

addition offers a powerful development environment with flexible API.

The main characteristics of Axeda is the powerful open source API that has built-in functions to

access the core of the platform that provides to the user ability to manage assets, query and historical

data.

Axeda also has authentication, authorization and transportation security services. The web service

communication of this platform is based on Simple Object Access Protocol (SOAP) and REST. Another

important aspect is that an agent in a device can include more intelligent functions. Related with these

previously mentioned aspects is the Axeda AnyDevice Service. With these services it is possible for a

device to communicate with Axeda (even whenever the device protocol is unknown by Axeda) because

the protocol of the device is converted to one that Axeda understands. This enables customer’s partners

and system integrators to easily install, configure and use M2M devices that communicate with a propri-

etary protocol and/or are incapable of running an Axeda Agent or the Axeda Wireless Protocol (AWP).

So there exists a more vast set of M2M devices that can communicate with this platform [40].

SmartM2MPT SmartM2MPT3 is a M2M platform that was launched by Portugal Telecom.

This platform has the purpose to improve the communications between devices to make decisions

automatically, increasing this way the global efficiency of the systems and decreasing enterprises oper-

ating costs.

1http://roboearth.org/ (accessed last time on 14 May 2014)
2http://www.axeda.com (accessed last time on 1 June 2013)
3http://www.smartm2mpt.pt (accessed last time on 1 June 2013)
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SmartM2MPT has four basic services. The connectivity service has the functionality to manage

and supervise the communications between the deployed devices in real time. The monitoring service

allows the interaction and the achievement of the status of the assets in a continuously and remotely

way. Metering services are used to eliminate the on-site meter reading of electricity and water. Finally

the localization service is used to locate geographically the devices.

The SmatM2MPT platform can be applied in various branches of business such as industry, public

administration, agriculture, construction, distribution and healthcare.

RoboEarth RoboEarth4 [42] is a World Wide Web for robots. It is a giant network and database

repository where robots can share information and learn from each other about their behaviour and their

environment.

The goal of RoboEarth is to allow robotic systems to benefit from the experience of other robots. This

platform lets robots collect, store and share information independently of specific robot hardware. Such

capabilities, enables robots to provide functions and behaviors that were not explicitly programmed, such

as the ability to recognize certain objects. The creators describe it as platform that provides a repository

in the cloud for robots and high-level components for interaction with the robots, all packaged in a friendly

REST-full API.

RoboEarth provides a boost in the robots machine cognition, robot-to-robot interaction, their storage

and an ability to share knowledge, this also leads to a more sophisticated human-machine interaction.

2.9 Related Work

This section presents and discusses some interesting related work to the Middleware for Wireless Sen-

sor and Actuator Networks. It is necessary to have in mind that robots can be considered a WSAN

with extended functionalities. The related work that is going to be described hereafter does not satisfy

completely our requirements.

2.9.1 ROS

Robot operating System [37] is an open source operating system for robots that was designed to achieve

a specific set of challenges taking into account the goal for developing large-scale service robots. The

philosophical goals of ROS are: Peer to Peer, Tools-based, Multi-lingual, Thin and Free and open source.

These philosophical goals influence the design and implementation of ROS, as described hereafter.

Peer to Peer ROS system consists in a number of different hosts connected at runtime in a peer to peer

topology (figure 2.3). Peer to Peer connectivity combined with buffering or “fanout” software modules is

used to avoid unnecessary traffic flowing across the wireless link that occurs in central server.

4http://http://www.roboearth.org/ (accessed last time on 1 June 2013)
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Multi lingual because many people have their preferred programming language. For these reasons

ROS supports four languages C++, Python, Octave and LISP.

Tools-based ROS has a microkernel instead of a monolithic development and runtime environment.

In this microkernel a large number of small tools are used to build and run ROS components.

Thin Most drivers and algorithms could be used in other projects, but some code has become so

entangled with the middleware that it is difficult to extract. To solve this problem ROS encourage all

drivers and algorithm developers to write standalone libraries without dependencies on ROS. This is

achieved by placing virtually all complexity in libraries and only creating small executables.

The fundamental concepts of ROS implementation are: node, messages, topics, and services. Nodes

are processes that perform computation. ROS is typically comprised of many nodes. The nodes com-

municate with each other by passing messages. A message is a typed data structure and can be

composed of other messages and array of other messages. A node sends a message by publishing it

to a given topic. A node that is interested in a specific date will subscribe. In general publishers and

subscribers are not aware of each other. Publish-subscribe mode is a flexible communication paradigm

but broadcast routing scheme is not appropriate for synchronous transactions. To treat this issue ROS

has services. A service is composed by name and a pair of messages: one for the request and the other

for the response.

Figure 2.3: ROS Network Configuration

2.9.2 YARP

Yet Another Robot Platform [38] is an open-source project to reduce the effort in development of a

infrastructure-level software. It facilitates code reuse, modularity and so maximizes research-level de-

velopment and collaboration. The heart of YARP is a communication mechanism to make writing and

running such processes as easy as possible. YARP enables the write of processes that are location

independent and that can run on different machines without any changes in the code. This way it is pos-

sible to move the process between machines that are in a cluster to redistribute the computational load
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and to recover from hardware failure. Automatically allocating processes are ensured by the developer.

The addition of new components can interfere with the existing one in YARP infrastructures. But

this problem is alleviated allowing the inclusion of more processors to the network. The human cost of

stopping and restarting a process can be very high in robotics. These high levels are related with the

dependency that exists between the processes. YARP minimizes the dependencies between processes.

When a process is killed or dies this does not require processes to which it connects to be restarted.

And the communication channels between existing processes can continue without process restart.

For reducing dependencies with the operating system, YARP uses Adaptive Communication Envi-

ronment (ACE), an open source library providing a framework for concurrent programming across many

operating systems. Communication in YARP uses the Observer pattern. The state of special Port ob-

ject is delivered to any number of observers (in any processes). To manage these connections YARP

insulates the observed from the observer and the observees from each other. In YARP a port is an

active object managing multiple connections. Each connection has state that is changed by external

commands. YARP uses many different communication protocols such as Transmission Control Protocol

(TCP), User Datagram Protocol (UDP), multicast, etc. The ports can be connected programmatically

or at runtime. The communication is asynchronous and as such messages are not guaranteed to be

delivered unless a special provision occurs.

2.9.3 PEIS Kernal

Physically Embedded Intelligent Systems Kernel [31] is a middleware built employing the concept of

Ecology of Physically Embedded Intelligent Systems. The PEIS Kernel provides a shared memory

model, a simple dynamic model for self-configuration and introspection, and supports heterogeneous

devices.

The goal of this middleware is to provide a common communication and cooperation model that

can be shared among multiple robotic devices. Any robot device that has a software control in the

environment is considered a PEIS.

A PEIS is a set of inter-connected software components developed to control sensors or actuators.

All of these devices are connected by a uniform communication layer. This type of communication

allows the exchange of information between the PEIS devices, and it also allows dynamic joining or

leaving. Using a uniform cooperated model allows comparison between all of PEIS devices. Devices

that participate in the cooperative model can use functionalities of other PEIS devices to complete their

own functionalities.

The layer structure is divided into three layers: the communication layer, peer to peer network layer

and Tuple layer (figure 2.4). The communication layer at the lowermost abstraction is used to provide

potential communication links and device detection for shared medias. This layer also provides services

for initializations, calling functionalities, etc. This communication layer also serves as a bridge translating

message to a more compact protocol suitable on the low-bandwidth network.

On top of the communication layer is the peer to peer network layer that uses P2P algorithms for
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Figure 2.4: The applications tack used for individual PEIS components

optimizing connectivity and performing routing.

Finally the Tuple layer is on top of the peer to peer network layer. In this layer functionalities are

implemented for maintaining the distributed tuplespace and the API functionalities used by component

programs. Tuplespace is a decentralized version of the shared memory where a number of tuples

containing keys and other data can be stored and retrieved by any participating process using an abstract

tuple. In PEIS version of this space a tuple has been specified to consist of a namespace, key, data as

well as a number of meta attributes such as timestamps and expiration date.

The database implementation to store tuples assumes that each PEIS component can be used to

store all relevant tuples. This database gives some special attention to an abstract tuple, a tuple in which

one or more fields have been initialized to a wild-card value while the remaining fields have been given

concrete value. This abstract tuple is used for three reasons. The first one is they are used whenever

an application is accessing the database to query the current value of a tuple. Other reason is before a

PEIS can access tuples at a remote location, a subscription to the corresponding tuples must be made.

And third reason is abstract tuples are used by the event mechanism to setup callbacks when tuples

changes value.

2.9.4 Player/Stage

Player/Stage system is a middleware platform for mobile robotics applications that guarantees an in-

frastructure, drives and algorithms [28] [29]. The main features of this middleware are the platform-

programming language, transport protocol-independence, open source, and modularity.

Main components of this middleware are the player and the stage. The component player is a device

repository server where we can find robots sensors and actuators. Each one of these devices have an

interface and a driver. The interface is used by the client of this middleware to obtain information collect

by the sensor to control the actuator.

The algorithms implemented by the drivers can receive data from other devices, process the received
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data and then send it back. Other thing the drivers can do is to create arbitrary data when needed. The

other component (stage) is a graphical simulator that models devices in a user defined environment.

This system has an architecture with three tiers. In the first tier the clients are software developers for

specific robot application. The player which provides common interfaces for different robots and device

are the second tier. The third tier is the robots, sensors, and actuators.

Different programming languages like C,C++, Java, and Python are used to access services. Client

side libraries are in form of proxy objects. Clients can connect to the Player platform to access data,

send commands, or request configuration changes to an existing device in the repository.

2.9.5 MARIE (Mobile and Autonomous Robotics Integration Environment)

Mobile and Autonomous Robotics Integration Environment is a middleware that was made for developing

and integrating new and legacy robotic software [32]. MARIE is a flexible middleware, which allows

sharing among developers, reuse of code and integration of different robotic software.

The main characteristics of MARIE are interoperability and reusability of robotic application compo-

nents.

The architecture of the MARIE middleware is divided in three layers which are the following: Core,

Component and Application. The core layer is where we can find the services for communication, low-

level operating functions and finally the distributed computing functions.

The second layer (component) is the layer that is used to add components that are going to be

constantly used by services and to support domain specific concepts.

Finally the application layer has some services and tools that are going to be very useful to build

and manage the integrated application. One of the most important aspects of this middleware is its

flexibility. This is visible for the middleware to provide some services that allow the adaptation of different

communication protocols and applications.

MARIE uses the Adaptive Communication Environment (ACE) communication framework. This

framework allows a variety of software components to connect to MARIE using a centralized compo-

nent. Apart from the centralized component, there exists four functional components that are: appli-

cation adapters, communication adapters, communication managers, and application managers. The

application adapter behaves as proxy between the central component and the application. The goal

of communication adapters is to translate the data exchange between application adapters. The con-

nections are created and managed by the communication managers. Finally, application managers in-

stantiate and manage components locally or across distributed processing nodes. MARIE also provides

mediator interoperability layers among adapters and managers.

2.9.6 RoboEarth Cloud Engine (Rapyuta)

Rapyuta is cloud robotic platform for robots that implements a platform as a Service (PaaS) framework

[30]. This framework is open source and is built upon a clone based model.
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This clone based model provides secured customizable computing environment (clone) in the cloud.

This way the robots can receive help in heavy computation. The robots connect to the Rapyuta and

can start the computing environment by their own initiative, launch any computational node uploaded by

the developer, and communicate with the launched nodes using the WebSockets protocol. The use of

WebSockets protocol provides a full duplex communication channel between the robot and the cloud with

predefined messages. The computing environments that are started by the robots have high bandwidth

connection to the RoboEarth repository. Thus, the robots are allowed to process their data inside the

computational environment in the cloud without the downloading and local processing. Another aspect

of this platform is that the computing environments are interconnected with each other.

The architecture of Rapyuta consists mainly of four elements: the computing environment, the com-

munication protocols, the core tasks and the command data structure. The computing environments

are built with Linux Containers. These containers provide isolation of processes and system resources

within a single host, and they allow the applications to run at native speed because they do not emulate

hardware. Linux containers allow easy configuration of disk, memory limits, I/O rate limits and Central

processing unit (CPU) quotas. Thus it is possible to enable one environment to be scaled up to fit the

biggest machine instance of the IaaS provider or scaled down to just relay data to the Hadoop backend.

The computing environment has to run any process that is a ROS node. All processes within a single

environment communicate between them using ROS interprocess communication. The communication

protocols of Rapyuta are divided in three parts: internal communication protocol external communication

protocol and the communication between the Rapyuta and the applications that are running inside the

Linux container. The internal communication protocol is the protocol that covers all the communication

between the processes of Rapyuta. The external module has the goal to define the data sent between

the physical robot and the cloud. The core task has four task sets: master, robot, environment and

container. The master is the task controller that monitors and maintains the data command structure.

The robot is defined by the capabilities necessary to communicate with the computing environment.

Finally the container is defined by the capabilities necessary to start/stop computing environment.

Finally Rapyuta is organized in a centralized command data structure with four components. The

network is the most complex of the four. These components are used to organize the communication

protocols and to provide abstraction to all platform. The next component is the user that is the group of

humans that has one or more robots that are going to be connected to the cloud. The authentication of

these robots is made by API key that is unique to each user. To manage the robots that are running in

the computing environment, there exists the loadBalancer. Finally the distributor has the functionality to

distribute incoming connections from robots over the available robots.

2.10 Home automation and Sensing Platforms

The usage of IoT technology in Home automation and Ambient Intelligence environments is a powerful

means to interconnect objects and materials, supported by wireless network solutions enabling the

automatic acquisition of such data. We will first give a brief overview of IoT Platforms and equipment
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that is already available that can be employed as a starting point in IoIT implementation, presenting their

comparative evaluation.

There are platforms that enable the creation of IoIT projects and extensions of these, such as Social

Internet of Things and Robot as a Service projects

Cosm [48] (formerly Pachube) that lets sensors and other equipment post and read data to feeds

– much like twitter works for people – which allows them to trade messages and take action. Other

Home Automation platforms include openRemote [49] and openHAB [50]. These solutions allow users

to connect virtually any device and have the platform take action when a command is given or when a

condition is met. Ninja Blocks [30] provides a set of open source hardware parts for people to create

their own custom devices that connect to the platform, whereas openHAB and openRemote use more

standard hardware platforms like Arduino.

Platforms like IFTTT [52] and SmartThings [53] are platforms that are more oriented towards defining

intelligent behaviour from devices, like informing the thermostat that the users are close to their home,

through the GPS in their smartphone, and thus turning on the Air Conditioning.

Funf [54], developed at MIT Media Lab, is another open source sensing and data processing frame-

work, now a commercial product. Funf consists on software modules (Probes) that act as controllers

and data collectors for each sensor’s data. It also allows intelligent processing of the personal captured

data (e.g. monitoring a person’s physical activity by an activity monitor probe that already incorporates

motion logic over the accelerometer sensor, and sharing such data on the network). With respect to

backend storage, it allows saving data on a remote backend (e.g. on a cloud) or via Wireless Sensor

Networks.

SenseWeb [55] is a large-scale ubiquitous sensing platform, aimed at indexing globally sensor read-

ings. Its open-source layered modular architecture allows to register sensors or sensor data repositories,

using web-based sensing middleware.

The following table 2.1 presents a comparative overview for these platforms.

2.11 Discussion

All the mentioned middleware solves problems that this work also tries to solve such as: flexibility

(MARIE), code reuse, modularity (YARP and ROS) and even share information with other devices

(player/stage and PEIS Kernal). However, some of these middleware are constrained by the limited

capacity of the device (actuators sensors robots) where they are executed. As is the case of the

player/Stage middleware that solves some problems that our proposed solution tries to solve, but brings

other problems, like when one device sends some data to other device and the device that receives the

information does not have the capabilities to run at the moment or even never. This way the device will

perform the action even if he has no capacity for such.

Contrary to the other middleware, Rapyuta middleware can solve the problem inherent to the limi-

tations of the hardware by running some algorithms on the cloud platform. But in this the middleware

does not exists an algorithm that decides when is necessary to run some code in the cloud or in device
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Platforms Supported
OS

Programming
Languages

Communication
Protocols

Hardware License

Cosm Multiplatform javascript,
ruby

HTTP
(RESTfull
API)

Any Hard-
ware

Proprietary

OpenHAB Multiplatform
(JVM)

Java-OSGI Any protocol
(depends on
bindings

Any Hard-
ware

Open
Source
(GPLv3)

Ninja Blocks Multiplatform
(the blocks
run Ubuntu)

Ruby,
Node.js,
PHP, Python

HTTP
(REST-
full API),
Any protocol

NinjaBlocks
(Open-
Source)

Proprietary,
OpenSource
hardware

openRemote Multiplatform Java HTTP
(RESTfull
API)

Any Hard-
ware

Open
Source

SmartThings iOS, Android SMART HTTP
(RESTfull
API)

Only sup-
ported
hardware

Proprietary

IFTTT Web App Non - pro-
gramable

HTTP No hardware
required

Proprietary

Table 2.1: Home Automation platforms comparison

(robot, actuator sensor).
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Chapter 3

Proposed Solution

Based on the concepts presented in section 2, this section presents the proposed architecture as well

as its detailed description. The described solution is to be applied in a flexible, multi-platform middleware

for wireless sensor and actuator networks. This solution intends to distribute execution flows between

mobile devices and the cloud, according to the battery status of the devices, the network performance

and the device itself (security aspects are left outside this thesis scope).

The architecture can be divided into four relevant layers (figure 3.2). The first one is the hardware

layer that is related with WSAN and robots. The second is the middleware layer. This layer aims to

mediate between the hardware and the application. The third layer is the application layer that allows

the user interaction with the system. Finally the last layer of this architecture is the cloud computing

system. This platform will be responsible to store some information and process the data collected by

devices that do not have sufficient resources to perform the operation.

These four parts will be described in detail in the following subsections. Hereafter some important

considerations about the target environment of this solution will be stated.

3.1 Environment

This architecture does not have a specific real deployment scenario, so it was designed to be a generic

deployment. Therefore, the specific technical details of the solution may be adjustable according to

the characteristics of each particular application case. Despite the existence of these variations, some

environmental requirements were defined:

• The device has to perform all the operations by itself, even in situations of critical point, because

it does not have a good network connection to send data to cloud infrastructure or it is out of

range for finding a device, or the discovered device also does not have enough resources to do

the requested operation.

• The device does not have enough resources to perform the operation, like lack of CPU or lack of

battery. But the network connection is also not good enough to send data to cloud infras-

tructure. When this occurs the device searches for others devices that have sufficient resources.
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Figure 3.1: Proposed Architecture

• Whenever the device does not have sufficient resources to do an operation and the network con-

nection is good, the data will be sent to the cloud infrastructure. This way the operation that the

device cannot do is execute at the cloud. After the requested operation finishes the result is sent

back to the device that has requested the cloud to do this job.

3.2 Hardware

The hardware layer of the architecture (see Figures 3.2 and 3.1) is the WSAN infrastructure or the robot

hardware (such as the robots produced by Ydreams Robotics 1 have produced) . This infrastructure is

composed by three types of nodes: actuator, processing, and sensor. The sensor collects information

from the physical world. Actuators receive the information from the sensor or from the middleware,

and perform some actions. The processing unit is the device that runs the application that controls the

1http://http://http://www.ydreamsrobotics.com// (accessed last time on 1 June 2013)
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Figure 3.2: Architecture

hardware, collects information from the hardware and was created by the programmer.

Although processing units have stronger computation and communication power, and hence need

longer battery life than actuators and sensors, in many situations they make the energy bottleneck.

Because of the battery, the computation power is limited at the nodes, and these may start to fail due to

lack of energy resources.

3.3 Middleware

The Middleware runs inside the application (is integrated with the programmer application) and can be

considered as an extension of the operating system which provides a transparent communication layer

between the hardware and the applications. The objective of this middleware is to solve some problems

that a modular design has, such as interoperability and communication configuration. To achieve the

objectives mentioned above the proposed middleware needs the following resources:

Simplifying the development process application development is not easy for the robotic environ-

ment because each robot manufacturer has its own API. Middleware should simplify the development

process by providing higher-level abstractions with simplified interfaces that can be used by developers.

Support communications and interoperability The robotic and WSAN modules are designed and

implemented by different manufacturers. The middleware must provide functions that help to have an

efficient communication and simple interoperability mechanisms between these modules.

Provide efficient utilization of available resources The device (single sensor, single actuator, robot)

may have single or multiple microprocessors, one or more interconnection network and it needs to

execute intensive task in real time. Therefore efficient utilization of the resources is needed. Middleware

helps in efficiently utilizing these resources [39] [41].
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Providing heterogeneity abstraction The communication and cooperation between hardware and

software is very important. To hide the complexity of the communication level and the heterogeneity of

the modules the middleware is used as a collaboration software layer

Supporting integration with other systems A device (single sensor, single actuator, robot) needs to

interact with other devices to help each other to achieve their goals in real time. Therefore the middleware

should provide real time interaction services with other systems.

Supporting low resources devices devices (single sensor, single actuator, robot) may have several

limitations such as limited power, small memory, limited connectivity, and so the middleware needs to

have adequate functionalities to manage the resources.

Providing automatic recourse discovery The devices (single sensor, single actuator, robot) are dy-

namic systems due to their modularity and mobility. Therefore automatic and dynamic resource discov-

ery and configuration are needed in the middleware.

To provide the above mentioned functionalities the middleware is divided in three layers (see Figure

3.3): the communication layer, the peer to peer network layer and manage device layer. The communi-

cation layer provides potential communication links with multi platform such as cloud or mobile device,

and also provides device detection for shared information. The goals of this layer consists on providing

heterogeneity abstraction and supporting communications and interoperability. The layer also provides

services for initializations, calling functionalities, etc (see figure 3.3).

On top of the communication layer is the peer to peer network layer that uses algorithms that opti-

mizes the connectivity or algorithms that performs routing. With the peer to peer network layer is possible

to achieve integration with other systems and automatic discovery.

The manage device layer runs an algorithm of problems detection to detect if the device has lack of

battery and if the load of CPU is too high. This it way it is possible to support low resource devices and

provide an efficient utilization of available resources.

3.4 Application

These applications will be running on smartphones, tablet, WSAN nodes or in robots with different

operating systems and are not written by the programmer that deploys the middleware.

The application can have these types of actions:

• obtains a textual or graphical representation of the information acquired by the device which can

be stored in the device or in the cloud platform depending on certain conditions.

• has the capability to process information received from the device

• performs operations according to the results of information processing.
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• performs some types of operation in a device

The middleware will be integrated with the application thereby ensuring that the application receives

information about the status of the hardware components that the middleware is monitoring. Thus the

integration between application and the middleware can help to avoid critical situations (examples excess

CPU usage) and prevent the death of the device (for example lack of battery)

3.5 Cloud Platform

The cloud-based platform that will be used in this work can be one of the platforms referred in section

2.5, acting as a support system. It will be in charge of two relevant functions: data processing, data

storage (Figure 3.3). As this solution is cloud-based, the cloud computing resources can be easily and

automatically adjusted according to new application demands or as the application’s requirements grow.

Data Processing The Data Processing component is in charge of processing the data that is sent by

the devices. This component is going to do the heavy work that the device can not do because it does

not have enough battery or simply does not have computing resources to process the collected data.

And after this component obtains the result it is sent back to device. This component allows the device

not to crash by executing the work that the device could not do.

Data Storage This component is in charge of storing in a persistent way the collected data from each

node of the WSAN. This way, if some of the devices do not have space to store the collected data

because the device memory is full, this can be transmitted to the cloud platforms, so that the data is not

lost. This date is not dropped because with the help of the middleware, the application sends the data

to be directly store in the cloud when the memory of device is almost full.
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Figure 3.3: Detailed Architecture
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Chapter 4

Implementation

The developed system is to resolve and minimize certain problems that the hardware components (CPU,

memory, battery of devices) can bring to applications. During the system implementation, decisions

aimed at overcoming the challenges that are inherent to the development of the architecture had to be

made. The rationale behind these decisions will be explained, together with the different options. A key

approach in the development methodology was the exploitation of existing frameworks and libraries in

the proposed solution implementation process. By taking advantage of existing validated work (for ex-

ample Windows Azure or IKVM), the development focus is shifted, thus effectively tackling the problems

at hand. Examples of this approach are materialized by harnessing the potential of works, such as:

• Windows Azure

• ini4j.jar 1

• IKVM 2

• jython [46]

• openssh

• OpenHab 3

Moreover, when facing equivalent solutions that would cover the systems requirements, preference

was given to open source solutions. In addition, technological choices that would benefit system con-

figuration flexibility and modularity were preferred, as these properties were deemed relevant. Lastly,

system-level platform portability was taken as global criteria in the choice of tools to approach each of

the system implementation challenges.

The objective of this work consists in building a middleware that enables applications that run on

devices with limited resources to transfer their flow of execution to the cloud in order to keep working,

and therefore that a device’s life expectancy increases. To make this goal possible we resorted to the

use of a cloud platform. This choice will be explained in the following sections.
1http://ini4j.sourceforge.net/ (accessed last time on 14 May 2014)
2http://www.ikvm.net/ (accessed last time on 14 May 2014)
3http://www.openhab.org/(accessed last time on 14 May 2014)
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Another important point in this work is the design of a flexible and modular middleware that is ag-

nostic to the application’s programming language. Otherwise, application programmer users would not

feel receptive to the use this middleware, for not supporting the language in which the application was

developed.

Nowadays the ”Internet of Things” is a theme in focus on the media and academia, the integration of

the middleware with a platform which is regarded as the glue of ”Internet Of Things” has very interesting.

For that reason OpenHab, will also be described in detail.

4.1 Cloud

The cloud platform is one of the most important points of this middleware, it is with the help of cloud

platform that will be solved some hardware problems, such as: revolving lack of a memory device. So, it

is important to choose a cloud that meets certain requirements:

• The chosen platform fits into one of these two categories: Infrastructure as a Service or Platform

as a Service. The main difference between PaaS and IaaS concerns the amount of control that

users of the services exercise over the system. Total control is provided by IaaS. PaaS instead lets

vendors manage everything, and thus typically provides little control to users. This translates into

virtually zero administration costs for users of PaaS. IaaS, in contrast, has administration costs

similar to those of a traditional computing infrastructure. Although there are these little differences

between IaaS and PaaS, the choice of the model to use is not very important because it is only

required that the cloud has the ability to run code created by the application programmer who uses

the middleware.

• Another important aspect in choosing a good cloud solution is having a large and dynamic com-

munity support.

• To be an open and flexible platform, it also has to allow for quickly create, deploy and manage

applications. In other words, it can satisfy any expected application needs.

• It also must allow the use of any language and tool.

Nowadays many of the cloud platforms already fulfill the above requirements. The best-known cloud

platforms are Amazon Elastic Compute Cloud (AWS)4, Google Cloud Platform 5 and Windows Azure 6.

Of the three platforms the chosen to be used during development and testing of the middleware was the

Microsoft cloud (Windows Azure). As the three platforms fit the choice points mentioned above, the point

that weighed more in choosing this cloud solution over the other two was the fact that there existed a

priori knowledge of this cloud platform, allowing a faster learning of all application programming interface.

The choice of Windows Azure does not preclude that the middleware in the future cannot contain more

4http://aws.amazon.com/pt/ec2/ (accessed last time on 14 May 2014)
5https://cloud.google.com/ (accessed last time on 14 May 2014)
6http://azure.microsoft.com/ (accessed last time on 14 May 2014)
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clouds, giving the possibility to choose which cloud the application programmer prefers and have more

confidence.

4.2 Choice of the language

The programming language chosen for developing this middleware was Java. This choice was due to

the fact the Java technology does not have any cost related to its use and has a satisfactory support

from the Java community that in nowadays is very extensive. This fact is reflected on community events,

available material, articles, journals and forum discussions. This way the communication between Java

programmers is easier. Java is also a technology that enables parallel processing which for solution

development, is quite important and has portability, as the same code can run on different platforms

without the need for code changes and so the applications can easily be migrated across multiple ma-

chines. And there was already some experience with this programming language. Although the core

of the middleware has been developed in Java that does not preclude that the application programmer

(person that is going to use the middleware) cannot use the language he normally uses. To allow the

middleware to be as flexible as possible, and simultaneously guaranteeing that it was not necessary to

create a solution for every type of language, the following tools were used: IKVM and jython.

IKVM7 is Open Source software that allows to directly run compiled Java code in C Sharp, transform-

ing a jar in a dll. The IKVM has the following components: a Java Virtual Machine (JVM) implemented in

.NET, implementation of Java libraries in .NET, a tool that translates Java byte code to IL NET and tools

that enable interoperability between Java and .NET. Jython [46] is the successor of JPython and is an

implementation of the Python programming language in Java. The Jython programs can import and use

any Java class, with the exception of some standard modules. Furthermore Jython includes almost all

modules of the standard Python distribution, with only some of the modules originally implemented in C.

Using these two tools, the middleware becomes more flexible because the core of the middleware

can be executed on C Sharp and Python.

4.3 OpenHab

OpenHab8 is an open source software that allows the integration of different systems and home automa-

tion technologies in one solution. This software is different because all the other systems of this area

only cover certain types of equipment specified by the system manufacturer, being almost impossible

to integrate new equipments. Being an open source solution that is maintained by a large community

and that does not depend of a single company the problem mentioned above is solved, being this policy

the driver for OpenHAB. This software is open source and is mould to the point of being able to be

used outside the world of home automation and to be used in other space such as: smart gardens that

responds to commands sent per visitor. So, using OpenHab is not a bad idea, considering this software

7http://www.ikvm.net/ (accessed last time on 14 May 2014)
8http://www.openhab.org/(accessed last time on 14 May 2014)
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as the glue of the ”Internet of things”.

The OpenHAB runtime is a set of Open Service Gateway initiative (OSGi) bundles deployed on an

OSGi framework. It is a pure Java solution. Being based on OSGi, which allows adding and removing

functionality during runtime without stopping the service. This open source software has two different

internal communication channels: an asynchronous event bus and a stateful repository. The event bus

is the base service of OpenHAB. The bundles that do not require stateful behaviour use the runtime

service to inform other bundles about events and to be updated by other bundles. The main two types

of events are: Commands which trigger an action or a state change of some item/device and status

updates which inform about a status change of some item/device. Not all functionality can be covered

purely by stateless services. Out of this reason openHAB also offers the Item Repository. This repository

is connected to the Event Bus and keeps track of the current status of the items. The Item Repository

can be used whenever it is necessary to be able to access the current state of items.

OpenHab software has a great potential, and the integration of a resource management middleware

could make this software even more powerful. The aim of this integration is to show to show that the

integration of the middleware developed is able to resolve and delay the onset of certain problems at the

hardware level such as the lack of battery or memory.

4.4 Communicaton

This middleware is divided into two parts, the management of certain hardware components and the

cloud component.

The communication between these two components and the application that uses middleware is

guaranteed through: publish/subscribe channel, the secure shell protocol (OpenSSH) and sockets

(these sockets use TCP and UDP protocols). In this client-server architecture, the communication oc-

curs between the cloud (the server) and the programmer application in the client, being the socket the

endpoints of this architecture. For this communication to be possible we must first create a Secure Shell

(SSH) communication channel allowing to run commands remotely to boot the server in the cloud. As

one of the goals is to satisfy most applications requirements such as speed of execution, the middleware

provides two types of sockets: a TCP socket and an UDP socket.

To meet the requirements of real-time applications, the middleware provides a socket with UDP

protocol. Using this protocol, the communication between the application and the cloud will be very fast

although this protocol does not guarantee that packets reach their destination. Even with this restriction,

the use of this protocol allows the main requirement of real-time applications (predictability) to continue to

be fulfilled, even if part of the application code is running on another machine. Although UDP is a big help

in situations of real-time for the reasons already given, its lossy nature may also not be very acceptable

if there is necessity of the application to run in real-time, but the integrity must be maintained at all

costs. For these situations, the middleware uses the TCP protocol with a mechanism that drops packets

that are outdated and have not yet been processed. In the case of applications with more stringent

security requirements, integrity of exchanged messages, ordering of messages, and guaranteeing the
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delay time in the transmission has no inconvenience to the application, the middleware guarantees that

these requirements are met by providing a socket that uses the TCP communication protocol [45].

To ensure greater efficiency in the delivery of the message between the client and the server, and

vice versa, it was used JavaScript Object Notation (JSON) [47]. JSON is a text format for serializing

structured data. This format supports text objects, being their dimensions reduced and their reading

simplified. These characteristics are quite advantageous as they allow the speed of transmission of

messages, as well as the processing speed, to be faster. To ensure that the application programmer

always has access to the state of the CPU, the battery and the memory of the device, it is used the

Publish/Subscribe model (see figure 4.1) in which the hardware monitoring software is the publisher

and the application is the subscriber. To this end there is a Java Queue (FIFO) for each hardware

component, which is shared between the hardware monitoring software and the application. These

queues always keep an entry with the hardware component state, according to the middleware settings

chosen by the application developer. This way it is always ensured that whenever a hardware component

reaches the critical point defined by the application programmer itself, the application will be informed of

this event.

Figure 4.1: Publish-Subscribe example

The communication between application and the Microsoft cloud when it comes to data storage and

downloading of information from the cloud is ensured by the Microsoft cloud API that uses the Hypertext

Transfer Protocol (HTTP) REST protocol.

4.5 User configuration

To ensure that the configuration of certain points of the middleware is conforming to each application

needs, and to set certain aspects of the cloud (such as the login to the machine that was obtained in

the cloud), configuration files were used, employing the INI file format (ini4j.jar). This choice was due

to the fact these files are simple text files, with a very basic structure that is structured in sections and

properties. Furthermore this format is quite often used for drivers settings and and Linux and Unix

systems also use this file format for system configuration.

Because the Android platform (can be used as the device that execute all the operations of sensors

31



and actuators) does not support the ”ini4j.jar”, it also was used the SharedPreferences class to do the

necessary configurations. This class provides a framework that allows saving and retrieving data in a

persistent manner (so that it is always accessible). This framework is used in the Android community

for configuring applications because the data is stored in persistent form. This way the application

programmer only needs to input the configuration data once, allowing some inconveniences to disappear

during the execution of an application that uses the middleware, such as the login in the Azure virtual

machine.

4.6 System

This section introduces the distribution of modules over system components and communication archi-

tecture.

It is followed by the discussion of system modules. This discussion elaborates on the techniques

used to make the system objectives possible.

4.6.1 System Components

The system consists in two separate physical components: devices running applications (for example

clients) and the cloud that makes data processing and saves data (for example server)(see figure 4.2) .

The different logic is distributed among them. There are four types of communication between these two

components through the protocols TCP, UDP, SSH and HTTP REST. There is also a publish subscribe

model for internal communications in the device. Many of the messages exchanged by these protocols

trigger events in system components.

Device Devices are equipments (example cell phones, tablets, and computers) that have a minimum

capacity to be able to run applications. Compared to other hardware components, they have limitations

such as limited memory and limited battery. Inside of these limited devices there are running applications

that were developed by programmers. It is inside of these applications that the management model and

cloud client side model are going to be run (see figure 4.2) if the application programmers do not

want the hardware components to reach exhaustion because of exhaustive work, ensuring that their

application has a longer life.

Cloud It is an open and flexible cloud platform that enables to rapidly create, deploy and manage

applications. And uses the Platform as a Service model. The main goal of this component is to give

to the applications that are running in devices under limiting constraints, more processing power and

memory, allowing the device components not to be pushed to the limit.

The cloud server side model runs in this component (see figure 4.2).
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Figure 4.2: System Components

4.6.2 Manager Module

The management model aims to determine the state of certain hardware components, as well as the

state of the Internet connection (depends on how the application programmer defines a good connection

or bad connection). The hardware components that will be monitored are the battery, the CPU and the

memory. The application programmer defines each component’s critical state on a configuration file,

before the middleware starts to be used. When one of these components is equal or superior to the

critical value and Internet connection is good (the definition of a good Internet connection state is also

defined by the application programmer) a certain execution will no longer be run on the device and starts

to be executed in the cloud. The transaction to the cloud is going to be explaining in the section cloud.

Figure 4.3 shows the state machine of the management model.

The management model is initialized in the ”Middleware” state when the ”Application” state sends a

command to ”start the management middleware” (initialization class monitor). The “Middleware” state

contains the conditions for the components to be monitored. These conditions are updated by the state

”Monitoring” through a shared queue between the two states.

The ”Monitoring” status is initialized when the ”Middleware” state receives the command to initialize

the management middleware. This state is always checking the conditions of the Wi-Fi signal quality

and the conditions of the battery, CPU and memory, through calls to device hardware that runs the

application (example robots and actuators) and is integrated with the middleware. The values obtained

are compared with the critical values stipulated by the application programmer. The CPU test load is a
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Figure 4.3: state machine of the management model

little bit different from the other tests because it only sends a notification if the read values were three

times superior to the critical value. This option avoids reactions to sporadic peaks. If the signal quality of

the wireless network is below the critical value stipulated by the application programmer the remaining

monitoring tests will not be performed. After each monitoring cycle of the hardware components the

”Monitoring” state goes into sleep mode (for example one minute). The sleep mode duration is also

defined by the application programmer.

The ”Application” state sends requests to the state ”Middleware” on the conditions of a certain com-

ponent (example battery) awaiting for a reply of ”True” or ”False”. If the answer is ”False” it means that

the state of the component is below the critical status (and hence running with enough resources on the

device, so that no action is needed) stipulated earlier by the application programmer. This way the pro-

grammer’s application can continue to run without any changes, and no event is initiated. This moment

is depicted in the state machine through the transition between the ”Application” state and ”Function”

state. The transition between the ”Application” state and the ”Do Something” state represents the situ-

ation where the response sent by the ”Application” state is equal to ”True”. When the answer is equal

to ”True” it means that the conditions of the component exceed the critical value. In these cases the

application programmer has the freedom to choose which action to take after receiving the message.

One possible option can be to use the services that a cloud platform provides. For example perform-

ing a certain action on a machine provided by the cloud platform. This way some load is removed on

the application and on the device that is running the application, and some resources are released (for
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instance, making available more memory).

4.6.3 Cloud Module

The cloud module has the goal of reducing the load on the hardware components. This cloud module

is divided into two sub modules: the cloud client and the cloud server. In the following paragraphs both

modules will be described. The cloud module state machine is shown in figure 4.4.

Figure 4.4: Cloud module state machine

4.6.4 Cloud Client Side

The Cloud Client Side module depicts the communication between the application and the cloud. This

communication is initialized when the programmer application makes an initialization call to the middle-

ware. This boot is portrayed in the connections between the ”Application” state and ”Reading Socket”

state and between the ”Application” state and the ”Cloud” state. The first step is to boot the server in the

cloud via an SSH command, this way it is possible to execute a command remotely. Secondly the TCP

socket and the UDP socket from the client side are created. Lastly are also configured the access set-

tings of POST and GET commands of HTTP REST protocol. When the application programmer intends

to perform an upload of information in the cloud or download information a POST or GET command to

cloud i sent.
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The response of the cloud can be one of these four options: either it is a confirmation that the

information was successfully saved, or there was an error while performing the operation of storage of

information, or the information requested by the GET command, or message for some reason was not

been possible to obtain the information requested. This communication is represented in the transitions

between the states ”Application”, ”Upload / Download” and ”Cloud”.

In the case of UDP / TCP connections between application and cloud there are two types of connec-

tion: the blocking call and the non-blocking call. A blocking call is portrayed through the linking between

the states ”Application”, ”Blocking Sending”, ”Cloud”, ”Function” and ”Reading Socket”. In this connec-

tion a message is sent to the cloud with the following information: the function name and the arguments

that the function needs executed. After the message is sent the state ”Blocking Socket” enters a blocking

state and waits for the result of the function that is going to be executed in the cloud. This result will be

delivered by the state ”Reading Socket.”

In the non-blocking connection a message equal to the blocking connection is sent. But in this case

the state does not stays blocked after the message is sent, the program continues to run and when

the response is returned by the cloud it is saved in the device memory until the program needs the

response. The states involved in this connection are ”Application”, ”Sending”, ”Cloud”, ”Function” and

”Reading Socket.” The state ”Reading Socket” after being initialized enters in block mode waiting for new

entries in the socket that arrive from the state ”Cloud”. When there is a new message on the socket this

will be processed in two ways depending on the information of one of the fields of the message. If this

field is ”True” the message is from a blocking function and the result of the function is sent to the state

”Sending Blocking”. In the case of field is ”False” the function name and the function result will be stored

in the device memory until the program needs the result of this function.

4.6.5 Cloud Server Side

This module depicts the communication between the cloud and the application. The component is

initialized when the machine where the application server is running receives a SSH connection with the

start command. The state ”Cloud” after his startup gets locked waiting to receive messages from the

client. To ensure greater efficiency in real-time situation that uses a TCP connection this state contains a

mechanism that drops packets. This mechanism aims to solve a possible problem that can occur when

the speed of transmission of packets is much higher than the packet reading speed. This can bring

an undesirable delay to the application programmer that is using the middleware. Because of that the

mechanism is based on the idea that if a new packet arrives and a previous packet was not yet read, the

oldest packet is discarded and replaced by the new packet, as this new packet is much more recent than

the last. Upon receipt of the message and its decoding it is possible to identify the name of the function

intended to be performed and which are its arguments. Knowing what is the name of the function to be

performed it is possible to go from state ”Cloud” to ”Function” state. The ”Function” state consists in the

execution of the functions that were chosen by the application programmer to be in the cloud. At the end

of the execution of a function a message is sent to the client (state ”Reading Socket) with the function
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name, with the function result and a small information for the state ”Reading Socket” can identify if the

response is to the blocking function or to the non-blocking function. The sending of the message is

portrayed by the link between the ”Cloud” state and ”Reading Socket” state.

In Figure 4.5 it is possible to see in more detail the messages exchanged between the following

components: the application, middleware and the cloud.

Figure 4.5: Messages exchanged between the following components: the application, middleware and
the cloud

In Figure 4.5 the ”start” section represents the commands sent to initialize the middleware and cloud.

The section ”Monitoring” represents the messages sent between the application and the middleware to

verify the states of the components: battery, CPU load, memory and Wi-Fi signal quality. The following

section represents the messages exchanged to do an upload or download of information between appli-

cation and the cloud and the remaining represent the messages that are sent to achieve the distribution

of execution flows, differing on the existence of blocking, waiting for a reply and a non-blocking state.
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Chapter 5

Experimental Results Assessment

The objectives of the result assessment is the validation of the implementation, and the determination

of adequate system improvements. For achieving these goals, several metrics were firstly defined. This

chapter is divided into areas of analysis consisting of sets of testing experiments that cover different

analysis aspects. Results are gathered through the execution of a number of experiments that were

defined for each area. These results are stored, taking into account the expected value and standard

deviation for the set of samples of the targeted metrics. In the end, results analysis are presented in a

chart format, so that their interpretation is clearer to the reader. The general assessment methodology

focuses on testing, and if possible validating, the different parts of the system individually, and then

progressively integrating more complexity. The detailed experimental methodology is described under

each test area subsection.

5.1 Metrics

The following metrics were used to evaluate the potential gains that may be brought by the solution:

• Energy consumed when running the application alone

• Energy consumed when the middleware is integrated with the application

• Time that takes to perform a function in the device

• Time that takes to perform a function when the middleware is integrated

• Delay times when exists migration of execution flow to the cloud platform

• CPU load when application runs stand-alone

• CPU load when running with the help of the cloud.
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5.2 Simulation scenario

5.2.1 First Scenario

To test the middleware in the worst conditions that an application may be subject an application that

makes video processing was chosen. This choice was due to the fact that this kind of applications

need a huge CPU load, spending a lot of battery, and requiring rapid responses. The first test scenario

consists on the integration of the developed middleware with an Android application (which was being

developed in YDreams Robotics). This Android application uses the Computer Vision Library (OpenCV)

to do face detection, as well as face tracking after the detection. As this is an application that makes a

lot of image processing, it turns out to be a fairly heavy application in terms of CPU processing power,

battery consumption and generated traffic. Thus, the device performance gets worse over time. This

test intends to

• Check what is the percentage of spent battery

• What are the CPU loads during the application execution

• If the inclusion of middleware brings some significant delays to the application that uses it

In this scenario one BQ tablet with the Android operating system was used, and one virtual machine

with one core and 1,75GB of Random-access memory (RAM) for the Microsoft’s Cloud Platform.

5.2.2 Second Scenario

The second test scenario is the integration of the middleware with the Android application of BIOPLUX 1.

This Android application connects via Bluetooth to a bracelet that contains a motion sensor. This sensor

is always sending coordinates to the Android application that saves the coordinates in a file. As the

Android device has reduced memory resources it is very likely that the Android memory will eventually

be fully allocated after some time because the file will grow. The integration of the middleware with the

Android application will solve this issue because when the occupied memory reaches a certain value

the data will be sent to the cloud. This way the application will not block, and data will not be lost. With

this test, whenever the memory arrives to values equal or superior to 50% occupancy and the Internet

connection is good (where what is a good Internet connection is defined by the application programmer),

a group of files is sent to the cloud. This test scenario will evaluate if after the uploading of the files, the

state of the memory will drop below 50% occupancy. And finally it will be checked if the files that were

sent to the cloud were saved successfully. This test used a Plux motion bracelet, a BQ tablet with an

Android operating system, and as a Cloud resource the Windows Azure Blob Storage.

1http://www.physioplux.com/index.php/pt/ (accessed last time on 14 May 2014)
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Figure 5.1: Motion Bracelet

5.3 Analysis

5.3.1 Energy Consumed

This application underwent two experimental test setups to check percentage values for the battery

energy spent during the execution of the application described above. These experiments lasted 40

minutes and were repeated 5 times. The first experimental setup set the baseline, where the application

that detects and tracks the human face was the only one running on the Android operating system and

without any interference from the middleware. The second experimental setup consisted of the same

application but integrated with the middleware, being part of the algorithm implemented in the cloud. In

the graphs of Figures 5.2 and 5.3, it can be observed that there were no gains with the transferring

of certain application execution flows to the cloud. In both figures and in table 5.1 it is possible to see

that the results are better when the middleware is not integrated. Although these are almost irrelevant

because the difference between the obtained values with the presence of middleware and the values

without the presence of the middleware never exceed the 8%. The fact that does not exists any gains

in relation to the percentage of battery energy spent with the integration of middleware may be due to

excessive use of the camera as it is a hardware component that consumes a lot of battery. But this fact

does not explain everything because the test that is conducted without the presence of the middleware

also used this component extensively. Another aspect that may have influenced the results to be different

from what was expected (the battery values being lower with the presence of the middleware) is the

constant access to the wireless network because after the connection is made with the cloud, this

connection will only be closed when the application is turned off or the application programmer specifies

an order of termination of the connection. And this constant access consumes some battery [44].
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Figure 5.2: Energy Consumed without using the cloud

Figure 5.3: Energy Consumed using the cloud

5.3.2 CPU Load

To check whether there are advantages in using this middleware in relation to the CPU load, the ”Face

Detect/Tracking” application was subjected to the following testing experiments (these tests lasted 20

minutes and were repeated five times):

• In the first experimental setup the application that detects and tracks the human face was the only

one running on the Android operating system and without any interference from the middleware.

• The second experimental setup consisted of the same application but integrated with the middle-

ware. The application only sends messages composed by pictures frames from the camera and

sends these to the cloud with the analysis of the picture frames made in the cloud.

From figures 5.2, 5.4 and 5.5, it is possible to notice that there was a significant gain with the

migration of the detection and tracking algorithms to the cloud. This increase is explained by the fact

that the heavier work is being done in the cloud, which alleviates the processing in the device’s CPU that

is running the application, as it only needs to get the frames and sending them. By reducing the CPU

load, the lifetime of the battery should increase. As previously explained, this was not the case due to

other factors, such as more battery energy required for wireless communications.
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Experimental
setup

Without
Cloud

With Cloud

Average
working bat-
tery charge
(battery at
the end of
experiment)

73,6% 66,4%

Standard
Deviation

2,70 3,04

Average
of the bat-
tery charge
spent by the
five tests

25,2% 32,6%

Standard
Deviation

3,11 3,04

Table 5.1: Energy Consumed (percentage of battery charge)

Experimental setup without Cloud With Cloud
Average Of the CPU Load 68,98% 45,84%

Standard Deviation 3,53 1,15

Table 5.2: CPU Load

The image processing algorithms requires a lot of CPU to be executed. This situation may preclude

those others applications that should run properly (may enter a blocking state) while the image pro-

cessing applications are also running. The same also happens with image processing application that

ceases to have the CPU just for itself, competing for resources such as CPU processing time, and this

competition may create difficulties to its execution, reducing the framerate, for example less frames per

second for the analysis. In order to prove that the utilization of the developed middleware is a good solu-

tion to solve this competition problem for limited resources, the following test scenarios were performed:

checking the CPU status when an exhaustively analysis of 100 frames is made, and checking the time

consumed

• when the analysis is done on the BQ tablet

• when it is done in the cloud.

Through the observation of table 5.3 and Figure 5.6, one can verify that when the processing is made

in the tablet, the CPU load reaches saturation values. On the other hand, the usage of cloud processing

originates a significantly lower CPU load at the tablet.

Without Cloud With Cloud
CPU Load average 98,69% 25,53%

CPU Load standard deviation 1,20 2,28
Average of the execution time of the algorithms (ms) 1292 1100

Standard deviation of the execution time of the algorithms 5,60 4,80

Table 5.3: CPU Comparative Load in exhaustive case
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Figure 5.4: CPU Load without the presence of the middleware

It can be concluded that the integration of the middleware is beneficial when we want to run reliably

more than one application on a device of limited resources, because with the transferring of execution

flows to the cloud much of the processing is done outside the device thus freeing some of the CPU load,

so that other device applications can also be executed.

5.3.3 Time spent

The time delay that can exist to perform certain execution flows in the cloud is addressed hereafter.

As expected the integration of the middleware brought some delay to the execution of the application

and this delay may increase when the message size increases.

After the execution of the test (Tables 5.4, 5.6 and 5.5) it was observed that there is a significant

delay when the algorithm is executed in the device. This longer delay is explained by the network con-

ditions not being the best in terms of quality. But the factor that most impacts this delay is the utilization

of the TCP communication between the application and cloud. Although this means of communication

is quite reliable because none of the sent messages is lost, it can also bring much delay because when

there is any error in the network the lost message segments will be sent again until message reaches

its destination, thereby translating into an extra delay when sending the message. Even with the imple-

mentation of a mechanism to discard messages, these are only discarded when the message is fully

received

In this test it can also be verify the occurrence of high standard deviation values. This is due to

image variations in terms of complexity, since image complexity can cause the increase or decrease of

the algorithm execution time.
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Figure 5.5: CPU load with the usage of the middleware

Figure 5.6: Load in exhaustive case of heavy consumption of CPU computational resources by applica-
tions

5.4 Functional test

To test whether the hardware management mechanism runs before an application enters a blocking

state, or even crashes due to lack of resources, the following test scenario was performed: after the

memory of the Android reaches half its capacity, another application sends all files at a specific folder

to the cloud and erases them from Android device memory, freeing the memory so that the application

can continue to run reliably. Through images 5.7 and 5.8 we can see that all the files that were in the

folder were successfully stored in the cloud, proving that the management mechanism is reacting when

the memory reaches is a critical point.
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Experimental Setup

Detect Average (ms) 157,19
Standard Deviation 4,79

Track Average(ms) 9,51
Standard Deviation 25,29

Table 5.4: Time (in ms) spent to detect and track face with the presence of the middleware (without
transmission time)

Experimental Setup

Detect Average (ms) 575,56
Standard Deviation 28,18

Track Average(ms) 423,16
Standard Deviation 0,934

Table 5.5: Time (in ms) spent to detect and track face with the presence of the middleware (with trans-
mission time)

5.5 Discussion

It can be concluded that the usage of this middleware in applications that can have limited hardware

resources (e.g. battery, CPU) brings some advantages for the lifetime of an application and avoids that

the application enters in lock status because of lack of resources. However, in certain applications it is

impossible to make gains on all hardware components as seen in aforementioned experimental tests.

This is the case for applications that make excessive use of certain hardware components that require

a lot of battery. Although the middleware also makes the device to lose some energy due to higher

communication transmissions, this spending is often small when compared with the consumption by an

application that has quite high CPU processing needs. But the downside of this middleware concerns

the fact that the times of sending and receiving messages to the cloud are high. However this point

can be improved with the implementation of UDP communications if the cloud platform allows. Even

with these restrictions the developed middleware proves that it can solve some problems that exists in

devices that are limited in terms of resources.
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Experimental Setup

Detect Average (ms) 195,06
Standard Deviation 5,56

Track Average(ms) 56,95
Standard Deviation 0,93

Table 5.6: Time (in ms) spent to detect and track face without the presence of the middleware

Figure 5.7: Azure Interface (showing that the file was uploaded to the cloud at 10h47)

Figure 5.8: Android Log (showing that the file was sent to the cloud at 10h47)
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Chapter 6

Discussion and Conclusions

Recent technological advances have presented new concepts applied to the various economic sectors

of our society. WSN and M2M are emerging concepts in areas of growing interest. Indeed, the idea

of monitoring several types of parameters in various environments has been motivating significant re-

search works in these areas. Concerning some challenges presented by WSN’s deployments, Cloud

Computing platforms are a prominent element that can respond in a more efficient and powerful way

to such issues. This thesis proposes a middleware whose major goal is to solve the problem of lack of

resources in devices such as limited memory and battery, with the help of cloud platforms. The proposed

architecture’s most important models are the management and cloud models. The management model

aims to monitor the most problematic hardware components and communicate whenever some of these

components are in a critical condition. The cloud uses two sub modules. One is cloud client module

and this module communicates with the management module and sends messages to the cloud server

module, for instance whenever one of the components is in a critical state. The cloud server module is

running in the cloud platform and is where the chosen algorithms are running. These algorithms start

to be executed when the cloud server module receives a message from the cloud client module. The

performed tests demonstrate that the use of the cloud to solve the lack of resources problem in devices

is quite advantageous because it allows the CPU load to be reduced to lower values. This leads to

battery with extended autonomy, thereby providing less inconvenience to device users. It also avoids

applications entering in a blocking state due to lack of memory, and allows running more applications

in simple device that otherwise would exceed the available resources. But most importantly, the deci-

sion wether to run an application locally or remotely is done dynamically, according to the status of the

available resources as checked through active monitoring.

However, in certain situations it cannot be ensured that all issues are solved with the cloud introduc-

tion, because some of problems are typical to hardware components (like the utilization of camera that

spends a lot of battery). The solution also presented a small flaw with regard to time lost when perform-

ing certain flows in the cloud. This delay is not related with the running time of the algorithm, but instead

with the time lost in sending the message between the device (robot or actuator) and the cloud and vice

versa. This problem relates to the fact that the middleware uses a TCP protocol for communications
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which, though a reliable transport means, it introduces latencies due to the error-checking for packets.

This middleware will be beneficial for programmers who want to make the most of the hardware

resources available on the devices.

6.1 Future Work

In order to improve the results of this work and to render the middleware even more flexible, robust and

efficient, there are some points that must be referenced for possible improvements of the solution.

As already mentioned in this work, the solution was testes only with one cloud platform (Windows

Azure). These days much of the cloud platforms already provide the requirements needed to support the

middleware objectives and achieve to run it viably. So in the future the intention is to cover the greatest

number of possible cloud platforms, and not be restricted to a specific cloud. Possible examples of

cloud platforms that the solution may come to support are Amazon Elastic Compute Cloud or Google

Cloud Platform. At this point the middleware only supports Android operating system when it comes

to mobile operating system as such it is fundamental to open the range of mobile platform supported

by the middleware such as operating systems from Apple and Microsoft. As important as the mobile

operating system supported by the middleware is to run without any restriction over the biggest number

of programming languages allowing the programmer that uses this middleware to make changes in his

solution.

Although the middleware is focused in an environment where there is always a wireless network

available and with good access, these requirements are not always fulfilled. Because Wi-Fi can be

overused this can delay communication with the cloud. This issue can bring some inconvenient for

applications that require fast answers. And if the middleware is used in places where network access is

done via GPRS can also bring some inconvenience to the solution. To counter this problem one possible

solution would be to let the middleware decide when it is viable to use or not the internet connection and

if the internet connection is not in good state find a solution that fulfilled the objective of extending the

lifetime of one device and not take this extreme case of use. Therefore it would be important to find

other solutions besides the cloud to perform this flow distribution. A possible example would be to use

Bluetooth technology to find equipment nearby that has the ability to perform the intended task and that

at that very moment were available to do it. Thus it is possible to have more than one solution and do

not stay limited to the cloud, although the cloud is the best solution for cases of transfer flows because

it has always unlimited resources which in normal equipments such as smartphones is not possible to

find.

As future work was also interesting to give more functionality to the cloud platform beyond allowing

the transfer of flows between themselves and the application: for example allow connection between

two applications being the cloud an intermediary between the two. Finally we cloud improve the speed

of communication between the middleware and cloud and Vice Versa.
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”Player/stage as middleware for ubiquitous computing.” Proceedings of the 8th Annual Conference

on Ubiquitous Computing (Ubicomp 2006)(Sept. 2006). 2006.

[30] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea, . ”Rapyuta: The roboearth cloud engine.”

Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013.

[31] M. Broxvall, B. Seo, and W. Kwon. ”The peis kernel: A middleware for ubiquitous robotics.” In Proc.

of the IROS-07 Workshop on Ubiquitous Robotic Space Design and Applications. 2007.

[32] C. Cote, Y. Brosseau, D. Letourneau , C. Raı̈evsky, and F. Michaud . ”Robotic Software Integration

Using MARIE.” International Journal of Advanced Robotic Systems 3.1 (2006).

[33] Y. Jadeja, and K. Modi. ”Cloud computing-concepts, architecture and challenges.” Computing, Elec-

tronics and Electrical Technologies (ICCEET), 2012 International Conference on. IEEE, 2012.

[34] P. Mell, and T. Grance. ”The NIST definition of cloud computing.” National Institute of Standards

and Technology 53.6 (2009): pp. 50.

[35] T. Dillon , C. Wu, and E. Chang. ”Cloud computing: issues and challenges.” Advanced Information

Networking and Applications (AINA), 2010 24th IEEE International Conference on. Ieee, 2010.

[36] S. Patidar, D. Rane, and P. Jain. ”A survey paper on cloud computing.” Advanced Computing &

Communication Technologies (ACCT)”. 2012 Second International Conference on. IEEE, 2012.

[37] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R Wheeler, and A. Ng.

”ROS: an open-source Robot Operating System.” ICRA workshop on open source software. Vol. 3.

No. 3.2. 2009.

[38] G. Metta, P. Fitzpatrick, and L. Natale. ”YARP: Yet Another Robot Platform.” International Journal of

Advanced Robotic Systems 3.1 (2006).

[39] N. Mohamed , J. Al-Jaroodi, and I. Jawhar. ”A review of middleware for networked robots.” Interna-

tional Journal of Computer Science and Network Security 9.5 (2009). pp. 139-148.

[40] M, Castro , A. Jara, and A. Skarmeta. ”An analysis of M2M platforms: challenges and opportunities

for the Internet of Things.” Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),

2012 Sixth International Conference on. IEEE, 2012.

[41] N. Mohamed , J. Al-Jaroodi, and I. Jawhar. ”Middleware for robotics: A survey.” Robotics, Automa-

tion and Mechatronics, 2008 IEEE Conference on. IEEE, 2008.

53



[42] O. Zweigle, R. Molengraft, R. d’Andrea, and K. Häussermann, . ”RoboEarth: connecting robots
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