TagusVanet: A low-cost, integrated framework for
development, validation and deployment of VANET

Joao Duarte Gomes, Ricardo Chaves, Teresa Vazio
Instituto Superior Técnico
Av. Cavaco Silva, Taguspark, Oeiras, Portugal
Email: {joao.d.gomes, ricardo.chaves, teresa.vazao} @tecnico.ulisboa.pt

Abstract—Vehicular Ad-Hoc Networks are an emerging mo-
bility paradigm focussed on improving road safety and traffic
efficiency. However the current available solutions are very ex-
pensive and developing applications for this environment can be a
daunting task. Also given the number of different manufacturers
and the number of vehicles, deploying and validating these
applications can be extremely difficult.

In this work, the issues of developing, validating and deploying
applications are addressed. A low-cost platform, which uses com-
mercial, off-the-shelf hardware is used. This platform supports a
software architecture which is designed to address heterogenous
application support and validation. Applications are supported by
using a policy-based approach which allows the platform to be
configured, on a per-application base, in a simple way. Integrated
with this approach, is a simple API which allows developers
to focus on their application, not on how their application’s
requirements are met. To complete this solution, several tools are
made available to allow for an easy validation of the applications,
both in field and lab settings through emulation of field conditions.
Testing is done to assure the emulator’s behaviour is correct and a
proof of concept application shows the capabilities of the proposed
solution.

Keywords—TagusVanet, low-cost platform, policy-based ap-
proach, integrated framework, vanet deployment, vanet validation

I. INTRODUCTION

The advances of wireless communications and embedded
systems lead to the emergence of Vehicular Ad-Hoc Network
(VANET), which is seen nowadays as a mean to increase
road safety and travel efficiency. This new type of networks
introduces new challenges that have driven the attention of the
research community and standardisation bodies, as surveyed in
[1], [2]. Also new business opportunities have been identified
by auto manufacturers, road operators, fleet transportation and
software development companies.

The currently foreseeable VANET applications can be di-
vided into three main categories: safety-oriented, convenience
(or traffic management) and commercial [3]. Safety-oriented
applications focus on assisting the driver in handling poten-
tially dangerous situations by actively monitoring the environ-
ment and listening to the messages being exchanged between
nodes. Convenience applications enable a more efficient traffic
flow and increased vehicle throughput, by sharing information
with the road infrastructure, centralised traffic control systems
and even other vehicles. Finally, commercial applications focus

on providing the driver with ways of improving satisfaction,
entertainment and productivity.

These new types of applications demand for new communi-
cations paradigms due to the specific requirements they have:
safety-oriented applications need to guarantee the dissemina-
tion of time-critical information in a very short period of
time; in traffic management applications, each node broadcasts
information gathered from the vehicle sensors, to all the
neighbour nodes, in a timely accurate way; and finally, com-
mercial applications need to deal with the transport, routing
and location problems that arise in VANET due to the nodes’
mobility pattern and scenario characteristics. As all these
problems are very challenging, a significant research activity is
been driven to solve them. Therefore, a wide range of routing
protocols [4], location services [5], efficient data dissemination
strategies [6] and medium access control mechanisms [7] have
been proposed.

Standardisation efforts are being conducted in the Institute
of Electrical and Electronics Engineers (IEEE), International
Standard Organization (ISO) and European Telecom Standard-
ization Institute (ETSI). These efforts lead to the design of
a new protocol stack specifically targeted to support safety-
oriented applications, the Wireless Access in Vehicular Envi-
ronments (WAVE). The IEEE also proposed a new 802.11-
based standard, which is able to cope with the specificities
of VANET: the very short connection time that may arise
in several mobility conditions and the existence of multiple
applications with different priorities that need to share the
wireless medium. Nevertheless, they are is still in the early
stage of development and several testbeds have been designed
with the existing IP protocol stack and available wireless
technologies to validate the concept [8], [9], [10]. Aside from
the design cost, one of the main problems in building a demon-
strator is the difficulty of assessing the physical conditions of
it’s operation. This is mainly related with signal propagation
and node mobility. Hence, field tests are quite expensive and
impossible to repeat in similar conditions and, due to this,
there is a huge overhead associated with process of design
and developing new applications and protocols.

Our work aims to solve this problem, by providing a VANET
platform that offers an integrated framework for development
and validation of applications. In order to facilitate the devel-
opment of such applications, standard APIs are used and a
set of policies that cover the most important requirements of
a wide set of applications are implemented. Applications can



be validated by emulating real VANET behaviour, through the
use of adequate propagation and mobility models, and by using
traffic analysis.

II. RELATED WORK AND BACKGROUND
A. VANET Communication

The data produced by applications in a VANET can be
transmitted in many different ways depending on the address-
ing scheme used [11]. Current networks use unicast, anycast,
multicast and broadcast communication modes.

However, these addressing modes are unable to fulfil the
needs of all the emergent VANET applications, as a significant
set of them requires the dissemination of information within
a given region of interest. For this type of applications a new
communication mode is needed: the geocast communication
[12]. In geocast communication, data is disseminated within a
certain area and, for this, nodes need to be identified by their
position, instead of by their IP addresses.

The use of geocast communication may cause a situation,
usually known as Broadcast-Storm [13], where all nodes in
the destination region rebroadcast the message at the same
time. This leads to a state of frequent contention and increased
packet collisions, causing an increase in backoff timers. To
address this issue, a probability based scheme was developed
[13], where each node computes a rebroadcast probability
using Formula 1, on a per-packet basis, where D;; represents
the relative distance between node i, the current node, and j,
the node that last broadcasted that packet, and R the average
transmission range.

2 (1
R

This way it’s ensured that the nodes closer to the Source are
less likely to rebroadcast the message when neighbours farther
away have already done it.

As stated previously, VANET-oriented applications have
multiple requirements, regarding addressing and message life-
time.

Dij =

B. VANET standards

As stated previously WAVE is a set of standards proposed
by IEEE, composed by the IEEE 802.11p and IEEE 1609.1
through 1609.4 standards. These standards have the purpose
of easing wireless access in vehicular environments, and their
reference architecture is presented in Figure 1.

802.11pDefines the PHY layer and MAC sublayer, improved
for vehicular environments.

1609.1 Describes the resource manager, which is in charge
of managing access to the system’s communications
resources.

1609.2 Defines the security services associated with the
network stack defined by the other 1609.x standards.

1609.3 Specifies the LLC sublayer, Network and Trans-
port layers and the WAVE Short Message Protocol
(WSMP).

1609.4 Extends the 802.11p MAC sublayer to support mul-
tichannel operation and service priority manage-
ment.

Resource manager

0SI model

layer 4 UDP/TCP
05! model
layer3 IPv6 Security
Lc WME services
Oolmodss Multichannel MLME
BV operation extension
WAVE MAC MLME
el WAVE PHY PLVE
V = Vv
Data Management
plane plane

[J IEEE 1609.1 [ IEEE 1609.3 [ IEEE 802.11p
[C] IEEE 1609.2 [] IEEE 1609.4

Fig. 1: WAVE communication stack indicating the standard
that covers each set of layers. [14]

In order to be used with the WSMP, an application message
set was defined, the SAE International (SAE) J2735 standard.
In this standard a set of messages are defined, which are
intended to support most VANET-oriented applications [15].
This message set is composed of a number of Message Types,
being each Message Type composed by Data Elements or Data
Frames:

1) Data Elements are the most basic type of information
defined in this standard, for example, the vehicle’s
heading or latitude. They convey only a single type of
information and in the standard there are over 150 Data
Elements defined.

2) Data Frames are composed of one or more Data
Elements or Data Frames, for example a vehicle’s
3D location is composed of its latitude. longitude and
altitude above sea level. They have the purpose of
relaying more complex pieces of information and more
than 70 are defined in the standard.

Among the messages defined by the standard are a Basic
Safety Message (BSM). Used to carry vehicle-state informa-
tion for safety-oriented application support, carrying informa-
tion like the vehicle’s coordinates, current speed and vehicle
size. Another message us the A La Carte Message (ALCM), a
generic message with flexible content chosen by applications
according to their needs.

In this standard, all the elements are defined in the formal
language ASN.1 [16]. For the over-the-air translation, the DER
encoding is used, in this format every data item is encoded in
three fields, Tag, Length and Value [17].

C. Platforms and testbeds

VANET experimental solutions are essential for validation
purposes and several testbeds have been proposed with the
aim of assessing the technology and applications [18]. Tech-
nology focussed solutions experiment on the applicability of
the currently available technology in the vehicular field and
application focussed solutions analyse how current existing



applications behave in vehicular environments. Next we will
describe some relevant projects in the field in order to define
the design goals of our system.

In the COM2REACT project [19] Vehicle to Vehicle (V2V)
based communications are evaluated, with IEEE 802.11b based
communications, with the conclusion that Line of Sight (LOS)
is one of the most important issues in vehicular commu-
nications. A multi-hop testbed created at the University of
Murcia, Spain [18]. It comprises up to 4 vehicles and their
communication is based on the Optimized Link State Routing
(OLSR) protocol. The authors point out that while OLSR is a
good reference point for VANET research, it fails to address
all the issues related to vehicular communication. Vehicle to
Infrastructure (V2I) communications are studied in FleetNet
[20] and at the University of California, Davis [21] in different
ways, but come to the same conclusion on the use of UDP
instead of TCP due to TCP’s poor performance in mobile
wireless environments.

In C-Vet [10], V2V, V2I and Infrastructure to Infrastructure
(I2I) communications are used, the VANET testing platform is
supported by a mesh network of routers, working as a back-
bone. This solution focuses on testing application behaviour
and how VANETSs can support applications. The authors con-
cluded that VANET-specific applications are mostly based in
geographic routing and require the existence of a Location
Service.

Another platform that studies application behaviour in
VANET environments is called CarTorrent [22]. This work
focusses on V2V information sharing and it addresses infor-
mation retrieval strategies in highly mobile scenarios.

In Orbit [23] a large scale testing solution is presented. The
solution incorporates up to 100 nodes and focuses on the study
of packet delivery rates in dense VANET environments. The
authors study the behaviour of some VANET applications but
also state that the simulation of node mobility is an issue that
remains to be addressed.

Finally, in the Network on Wheels project [24], a hybrid
simulation and emulation solution is presented. This solution
emulates the VANET network stack on top of the Linux net-
work stack, and the emulated nodes run on a single machine.
This solution does not enable field testing, meaning that it is
only usable in a laboratory environment.

III. TAGUSVANET PLATFORM

Given the interest that VANETSs have aroused in different
communities, it is expected that in the near future, the devel-
opment of applications for these networks will have a huge
growth. Despite the wide diversity of applications that can
arise, the set of requirements that differentiates them is very
limited and can be grouped in a very simple way.

Hence, the main challenge is to find an easy way of defining
the application requirements and enforce the mechanisms
needed to satisfy them.

We decided to use a policy-based management approach
to support our view and implement our platform. Instead of
specifying policies related to specific applications, we specify
a set of policies related to each application type. These policies

will be than translated into network-level policies that enforce
the requirements.

The next sections provide additional insights into our plat-
form.

A. SW architecture

Our aim is to create a low cost platform for application
development and test that simplifies the creation of VANET-
oriented applications and VANET-related research. This is
achieved in two ways: use of current standards and use
of policies. The current standards are used to communicate
between nodes and abstract the inner workings of sensors
installed in the node. The policies strive to provide an ap-
plication developer with a simple interface, which is used to
define the application’s needs and abstract some of the inner
workings of a VANET. This enables the developer to focus
more on the applications functionality, freeing it to create
better applications. Network behaviour is modelled according
to the application needs, by mapping higher layer policies into
network layer ones.

The software architecture of the platform is depicted in
Figure 2, comprising the main modules: Application Developer
Interface, Emulator, and Main System.

Application
(Deployment)

[ S—
Sumo Trace L Mobility SAE J2735)
Exporter Log —

Depl t Emulator

Application

’ sumMo | l Gul | (Development)

Network Probe

Applications

Custom API PCAP

Message

Formatter
App Degelopment
Interface

SAE J2735_[C_ _

S Validation

Emulator Emulator

Node Manager

Aservices
M in System

wMEA

Fig. 2: Platform architecture.

TAGUSVANET
PLATFORM

a) Application Developer Interface: This module com-
prises a single component: the Message Formatter. The
Message Formatter receives/sends messages to applications
during development phase, using a very simple custom
Application Programming Interface (API). These messages are
converted into the standard SAE J2735 format so that they can
be processed by the Main System module.

b) Emulator: The aim of the Emulator module is to
create a set of tools that allow the developer to emulate a
real VANET.

These tools should allow an easy validation of the ap-
plication in the deployment environment. These two aspects



are spliced in the module into two different components: the
Validation and the Deployment.

Concerning the Validation, we can consider that the val-
idation process is twofold: first, we need to guarantee that
the messages are adequately built; second, we need to verify
whether the application’s requirements are met or not. The
validation of the message format may be easily performed
by capturing and visualising the generated message with a
network probe. To verify the requirements fulfilment, the entire
message flow must be monitored. This means that, every node
must be able to store in a log file all the information that passes
through it (received or generated by the node itself). Logging
is a service provided by the Main system module and used
by the Emulator module. An integration with Wireshark' tool
facilitates the debugging.

Concerning the Deployment, we can think that the appli-
cation’s deployment is validated if we can reproduce in the
laboratory real working conditions of the VANET. These con-
ditions imply that each node in the lab has a behaviour similar
to one in a real environment. Hence, real data gathered from
vehicles (vehicle position) and adequate propagation models
are provided. The platform can also be supplied with simulated
data from vehicles. This data is provided by Simulation of
Urban MObility (SUMO)?, which can be seeded with real data
from road networks. The propagation models implemented so
far are the Free Space Path Loss Model (FSM) [25] and the
Single Knife Model (SKM) [26].

¢) Main system: The Main System is divided into three
components, the Configuration Manager, which is in charge
of configuring the system’s behaviour, the Services, in charge
of providing support for the Core and applications as required
and the Core, which implements the network policies and
handles data from and to the applications.

The Configuration Manager is in charge of parsing the
applications needs, in form of an application policy, and
converting them to network-level policies which are used by
the Core. To achieve this, the Configuration Manager is
composed of two elements, the Application Policy Parser
and the Network Policy Parser.

All the services supported by the platform are grouped into
the Services component. The current version, includes the
basic services needed to support the majority of applications,
namely: the Logging, Neighbour Manager and Node Man-
ager.

The Core component is responsible for the coordination of
the communication process. For this, three different core ser-
vices are needed: the Message Dispatcher, Policy Manager
and the Communication Manager.

The Message Dispatcher is in charge of information flow.
It receives data from the lower layers and sends it to the App
Interface block, or it selects and sends messages from the
applications or from the services.

The Policy Manager is in charge of enforcing the Network-
oriented Policies needed to support the applications and de-
fined according to the associated Application-Policy.

Uhttp://www.wireshark.org/
Zhttp://sumo-sim.org/

To enable the platform to support multiple access networks,
the Communication Manager is used. It allows the platform
to be used in multiple contexts, from production systems,
equipped with IEEE 802.11p radios, to testbeds, which can
be based in any access network available.

IV. POLICY-BASED APPROACH

In order to simplify the development of new VANET ap-
plications, several types of policies were defined. While some
policies like the Application-oriented Policies define what an
application developer has to worry about when developing a
new application. Others, like the Network-oriented Policies
define how each message is handled. The next sections will
detailed them.

A. Application-oriented Policies

As stated in Section I, VANET-oriented applications have
multiple requirements. For instance, a given type of application
may need to use broadcast to disseminate information during
a short period of time, while, other type, may need to send
data using geocast communication, for a single event. These
requirements must be introduced in the platform in order to
create the appropriate processing rules, at the network level.

Next, we will present the policies that were defined at the
application-level.

1) Policy-Definition: Regardless of the purpose of the ap-
plication, all VANET-oriented applications have some of the
same requirements. These requirements can be expressed in
the following policy:

App Name | App ID | Communication Type |
<Optional >

The App Name field is defined by the developer and is used
to provide the developer with a simple, user friendly way of
identifying the application in case there is a need to update
the application’s requirements.

The App ID is used by the policy enforcer when handling
messages from each application. Because it is used for each
application this field has to be chosen in a way that, while
it may not be user friendly, the enforcer is able to use it
efficiently. A possible solution is to attribute a different integer
value to each application.

The Communication Type field is set by the developer
according to the application’s addressing requirements. This
field’s value can be one of the following: Unicast, Geocast or
Broadcast.

The Optional field is, as the name implies, optional and can
be used to specify useful information that does not fit anywhere
else. This field can be repeated as necessary, the different infor-
mation is separated by colons, in order to improve readability.
So far this field can be one of the following: Message Lifetime,
Region Format, Region Size, Region Direction. All of these
fields, need to have values. For this end, the optional fields
have the following format: Field = Value.



In order to further ease the developer’s work, the most
common numerical values of these fields have been converted
to a small set of keywords. These keywords can be used by the
developer to ease the development but these fields can also be
defined using a custom numerical value if the developer sees
fit. In the following tables this capability is represented by the
Custom keyword.

In the Message Lifetime and Region Size fields, the conver-
sion between keywords and value is shown in Table .

Keyword ‘ Value Keyword ‘ Value
Short 100 ms Small 200 m
Medium 2 min Medium 500 m
Long 10 min Wide 2 km
Custom Input in ms/s/min/h Custom Input in m/km

TABLE I: Message Lifetime and Region Size keywords.

The Region Format and Region Direction fields have no
need for numeric values, in this case the keywords possible
are shown in Table II.

Format Direction
Circular Back
Rectangular Front
Polygonal Left
Sector Right

TABLE II: Region Format and Region Direction keywords.

For the Region Format keywords, the destination region
specification in the IEEE 1609.2 standard [27] was used and a
new keyword was defined. The Sector keyword is defined as
a circular sector, with a 45 ° angle.

The Region Direction field is to be used with the Sector
keyword. This field defines the orientation of the circular sector
in relation to the current heading of the source node.

2) Policy-Examples: This formal policy can be applied to
the applications referenced in Section II-A.

For example, in the case of an Emergency Vehicle Warning
(EVW) application, a formal policy will take the following
form:

EVW | 0 | Geocast | Message Lifetime = Short, Region Format
= Sector, Region Size = Small, Region Direction = Front

What this policy states is that the application with the App
Name EVW uses Geocast-based communication and its App
ID is 0. This policy also defines the following geographical
characteristics: the region of interest encompasses all the nodes
within a 200 m long circular Sector in Front of the source node
and that it’s messages have a lifetime of /00ms.

Since not all VANET-oriented applications have the same
requirements, other applications’ requirements may be associ-
ated with simpler policies.

For a Fleet Management (FM) application targeted at sparse
rural networks, where the nodes send their data to whoever is
available, is based in Broadcast communication. In spite of
not needing to address a specific node in the network, this

application still has very specific message lifetime needs. In
this case these needs are expressed using a numerical value
for the message lifetime.

FM | 3 | Broadcast | Message Lifetime = 24h

B. Network-oriented Policies

1) Policy-Definition: As noted in the previous sections, each
application has its own requirements, in terms of addressing
and message lifetime. The applications also expect that every
message is delivered only once and as such they don’t have
be prepared for duplicate messages.

These requirements can be summarised in some policies.
These policies can be applied to each received message, with
the objective of meeting the application’s requirements and
assuring the application developer of how each message is
handled.

More formally all policies have the following format:

Id | Target | Trigger | Rules | Actions | Constraints

The Id is used to refer to the policy. The Target is who the
message is intended to, the target can be a single node, the
Destination Node, a Set of Nodes, the Region of Interest, or
all the nodes in the source’s neighbourhood.

The Trigger is the event that prompted the execution of this
policy. The event can be either a new message is Received, an
Internal Action or a Timeout, both generated by another policy.

The Rules are applied in a chain, where each rule has two
possible outcomes, true or false. When a rule returns true,
the next rule is evaluated, otherwise the according action is
taken. In the last rule, two actions are taken, one for a positive
outcome and one for the negative outcome.

An Action specifies what is to be done in case a Rule fails.
In the case of the last Rule, two actions are specified, one
for each possible output. The actions taken can be as simple
as Discard, Send to Network or Deliver to Application, which
don’t need additional processing, or more complex actions,
which are described by other policies, for example Forward
or Update Broadcaster.

The Constraints are applied to each Action the policy has,
these can be of any type or format that apply to the action they
pertain. For example, the constraints of the Forward action are
in the form of a probability, with possible values between O
and 1.

2) Policy-types: This formal policy can be used to specify
how each message is treated according to it’s application’s
needs. The following policies show how the application’s needs
are addressed at a network level.

The more simple case is when a message is broadcasted, a
Policy for handling Broadcast messages can be:



RxBroadcast | All Nodes | Received Message | { isValid?;
notDuplicate?; isSource? } | { Discard; Discard; Deliver to
Application; Forward() } | { ;;; where p=1 }

This Policy, named RxBroadcast, is targeted at All Nodes
in the current nodes neighbourhood and is only triggered
when a Broadcast message is received. Next the message is
passed through a chain of rules, where some verifications are
applied. The first check is if the message is Valid, then if it
is not a Duplicate. If the message fails one of these checks,
it is discarded. Next the current node is check if it is the
Source, if this check fails the message is Delivered to the
Application. Otherwise the message is Forwarded to all the
nodes in the sources neighbourhood, with the constraint that
the probability defined in Equation 1 is equal to one, meaning
that this message is always transmitted.

In the case of Unicast, this Policy looks like this:

RxUnicast | Destination Node | Received Message | { isValid?,
notDuplicate?; isNextHop?; isDestination? } | { Discard;
Discard; Discard; Forward(); Deliver to Application } | { ;;;
where p = 1; }

is Discarded. Then if the message is duplicate, the larest
broadcaster information is updated to so that the Broadcast
prevention mechanism is used. Otherwise, the message is
Forwarded to the neighbouring nodes, using the Broadcast
prevention mechanism, and Delivered to the application it
belongs.

In order to fully implement the Broadcast-Storm prevention
mechanism, three more policies have to be defined. These
specify the Forward, UpdateBroadcaster and PreventDieOut
policies, that support such mechanism.

The Forward policy is the following:

Forward | Node Set | Internal Action | isProbOverThreshold? |
{ PreventDieOut(); Send To Network } | { Where
timeout = t; }

The Forward policy is targeted at a Node set and triggered
by an Internal Action. Next the message forwarding probability
is checked if it’s above 50%, if it is, the message is Sent to
the Network, otherwise, the PreventDieOut policy is called.

The PreventDieOut policy is used, as it’s name implies, to
prevent the message dying out while preventing Broadcast-
Storms, as specified by Tonguz and Wisitpongphan [13].

What this means is that the Policy, which is named RxU-
nicast, has a target, that is the Destination Node, which is
called when a new unicast message is Received. This message
goes through a chain of rules to ensure that the application’s
requirements are met. These rules verify is the message is
Valid, Duplicate or if the current node is the Destination
Node. If the message is Invalid or Duplicate, the message is
discarded. Next the current node checks if it is the message’s
Next Hop, the message is discarded if it isn’t for this node.
The choice of Next Node can be done using one of the
many Unicast-oriented protocols available. Next if the current
node is the Destination Node, the message is delivered to the
application it belongs. Otherwise the message is Forwarded
to the next hop, as in broadcasting messages, these messages
have the constraint that the forwarding probability is equal to
one.

In Geocast, like in broadcast and unicast, every message has
to be checked if it is still relevant. However when a message
isn’t relevant, in the case of Geocast, some actions need to
be taken in order to prevent the broadcast storm problem
described in Section II-A. The Geocast-oriented Policy is the
following:

RxGeocast | Node Set | Received Message | { isValid?,
inRegion?; notDuplicate?; } | { Discard; Discard;
UpdateBroadcaster(); Forward() + Deliver to Application } | {
3 where p = p;; }

So the Policy named RxGeocast is targeted at all the Nodes
in Region of Interest of this message. The message is then
checked for its Validity and Discarded if it is Invalid. Next
the current node checks if it is In the Region of Interest, if
this message is irrelevant to the current node, the message

PreventDieOut | Node Set | Timeout | Rebroadcast? | {
Discard; Forward() } | { ; Where p = 1}

Since the PreventDieQOut policy is only used when in Geo-
cast, the policy is targeted at the Set of Nodes in the region
of interest and triggered by a Timeout. The message is then
checked if it’s suitable for Rebroadcasting. The message is
Discarded if it’s not and Forwarded with a probability of one,
if it is.

For a message to be validated for Rebroadcasting, it is
necessary to keep track of messages rebroadcasted by other
nodes. The policy that handles this behaviour is expressed in
by the following:

UpdateBroadcaster | Node Set | Internal Action | isCloser? | {
Discard; Discard } | { ; }

The UpdateBroadcaster policy, as the PreventDieQOut policy,
is targeted at the Set of Nodes in the region of interest and, like
the Forward policy, triggered by an Internal Action. This policy
checks if the message broadcaster is Closer to the current node
than the last broadcast of the same message, in either case the
message is Discarded.

V. EVALUATION

In order to evaluate the developed platform, several tests
were performed. The tests were conducted in both real and em-
ulated scenarios, in order to access the usability of the features
included in the platform. All the tests were performed using
the software platform detailed in Section III. The following
sections detail these tests.



A. Emulator Module

Several tests were performed on the emulator modules
to assess its behaviour. These tests were focussed on the
propagation models used.

In order to test how each model behaves, each model was
tested by itself. For each the physical characteristics of the
802.11b physical layer were used, in this case a frequency
of 24GHz and a channel bandwidth of 20MHz. The test
consisted on varying the value of the distance between sender
and receiver. After each model was tested individually in
the previously detailed setting, for each value of distance,
the Packet Delivery Ratio was computed. This computation
consisted of summing all the "would-be” delivered packets,
for a distance value, and dividing that value for the number
of test packets for that value. The resulting PDR graphs are
depicted in Figure 3.

S-R distance vs Packet Delivery Ratio

1 * + " g o
TRGM
08 X

06~

04 -

Packet Delivery Ratio
®

02

s L I e -
0 20 40 60 80 100 120 140 160 180 200
S-R distance (m)

Fig. 3: Propagation model behaviour.

From these results, it is also concluded, that the results for
FSM are consistent with the findings in [28], where the authors
found that the Packet Delivery Ratio experiences a sudden and
steep drop at a distance of 140m.

Next the models were implemented in the platform and the
impact of two models in the Control Channel (CCH) delivery
success rate was tested. In this test, two propagation models
were used, FSM and SKM, the latter configured as in the previ-
ous test. These models were chosen for their representation of
both the best and worst possible communication conditions. In
this test, the nodes were emulated to be stationary and within
LOS.

The results are shown in Figure 4.

As expected, the more conservative model has a greater
impact on the delivery success rate. Another result, this test
shows is that when the number of nodes is increased, the
success rate is decreased, albeit little, meaning that the number
of packet collisions increases and this may lead to critical
information being lost.

B. Field Demonstrator

In order to demonstrate the platform’s functionalities a proof
of concept application was developed. This application was

CCH Success Rate

ss Rate

Control Channel Succes

2 3 4
Number of nodes.

Fig. 4: Propagation model impact on the CCH.

geocast-based and used three nodes, two On-Board Units
(OBUs) and one Road Side Unit (RSU), one of the OBUs
was stationary and the the RSU was positioned in a second
floor window of the main building. This application was used
to show the platform’s information dissemination capabilities
and sensor data gathering.

The following Application-level policy was created to sup-
port this proof of concept:

PoC | 0 | Geocast | Region Format = Circle, Region
Size = Medium, Message Lifetime = Medium

In Figure 5, the RSU is shown in cyan, the stationary OBU
in pink and the mobile OBU in yellow. The figure also shows
the OBU’s sensor information, as received by the RSU.

VI. CONCLUSIONS

This focuses on VANET application development, validation
and deployment. To address these issues a software architec-
ture is defined, which is split into three main components,
the Application Developer Interface, Emulator and Main
System. In order to ease the developers work in defining and
configuring the platform to meet his applications requirements
a policy-based solution for this problem is also defined.
The Application Developer Interface defines a Custom API,
which allows the developers to inform the platform of their
applications’ needs. The Emulator supplies a number of tools
to support the development of applications. Finally, the Main
System is the core the platform, it implements the policy
enforcement mechanism and is the platform’s contact with the
other nodes.

After the platform was defined and developed, a series of
tests were devised to test its features, the main focus was the
Emulator. The tests showed that the used propagation models
were correctly emulating the field conditions and showed the
impact on the CCH of the different propagation models. One
proof of concept application was developed to demonstrate the
platform’s functionalities in the field, with great results.



CAR1

Time: 15:58:38 Speed: 37
RPM: 2045

Fig. 5: Example of information retrieved from the platform.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

H. Hartenstein and K. P. Laberteaux, “A tutorial survey on vehicular ad
hoc networks,” Comm. Mag., vol. 46, no. 6, pp. 164-171, Jun. 2008.
[Online]. Available: http://dx.doi.org/10.1109/MCOM.2008.4539481

Y. Toor, P. Mhlethaler, A. Laouiti, and A. de La Fortelle, “Vehicle
ad hoc networks: Applications and related technical issues,” IEEE
Communications Surveys and Tutorials, pp. 74-88, 2008.

F. Bai, H. Krishnan, V. Sadekar, G. Holland, and T. ElBatt, “Towards
characterizing and classifying communication-based automotive appli-
cations from a wireless networking perspective,” 2006.

X. Hong, K. Xu, and M. Gerla, “Scalable routing protocols for mobile
ad hoc networks,” Network, IEEE, vol. 16, no. 4, pp. 11-21, Jul 2002.

R. Friedman and G. Kliot, “Location services in wireless ad hoc and
hybrid networks: A survey,” Techanical Report, Technion Computer
Science, 2006.

W. Chen, R. K. Guha, T. J. Kwon, J. Lee, and Y.-Y. Hsu, “A survey
and challenges in routing and data dissemination in vehicular ad hoc
networks,” Wireless Communications and Mobile Computing, vol. 11,
no. 7, pp. 787-795, 2011.

H. Menouar, F. Filali, and M. Lenardi, “A survey and qualitative
analysis of mac protocols for vehicular ad hoc networks,” Wireless
Communications, IEEE, vol. 13, no. 5, pp. 30-35, 2006.

K. C. Lee, S.-H. Lee, R. Cheung, U. Lee, and M. Gerla, “First
experience with cartorrent in a real vehicular ad hoc network testbed,”

in 2007 Mobile Networking for Vehicular Environments. 1EEE, 2007,
pp. 109-114.

C. Pinart, P. Sanz, I. Lequerica, D. Garcia, I. Barona,
and D. Sdanchez-Aparisi, “Drive: A reconfigurable testbed for

advanced vehicular services and communications,” in Proceedings
of the 4th International Conference on Testbeds and Research
Infrastructures for the Development of Networks & Communities,

ser. TridentCom ’08. ICST, Brussels, Belgium, Belgium:
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, pp. 16:1-16:8. [Online].

Available: http://dl.acm.org/citation.cfm?id=1390576.1390595
M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau, “C-vet the

(11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

ucla campus vehicular testbed: Integration of vanet and mesh networks,”
in Wireless Conference (EW), 2010 European, April 2010, pp. 689-695.

H. Krishnan, F. Bai, and G. Holland, “Commercial and public use
applications.”

A. Festag, G. Noecker, M. Strassberger, A. Liibke, B. Bochow,
M. Torrent-Moreno, S. Schnaufer, R. Eigner, C. Catrinescu, and
J. Kunisch, “NoW - Network on Wheels: Project Objectives,
Technology and Achievements,” Proceedings of 5th International
Workshop in Intelligent Transportation, no. March, pp. 211-216, 2008.
[Online]. Available: http://www.network-on-wheels.de/documents.html

O. Tonguz and N. Wisitpongphan, “On the broadcast storm
problem in ad hoc wireless networks,” 2006. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4374403

R. Uzcitegui and G. Acosta-Marum, “WAVE: A Tutorial,” Communi-
cations Magazine, IEEE, vol. 47, no. 5, pp. 126 —133, May 2009.

S. International, “DSRC Implementation Guide,” pp. 1 —210, Feb 2010.

ITU-T, “Information technology  Abstract Syntax Notation One
(ASN.1): Specification of basic notation,” Recommendation X.680, pp.
1 — 194, Nov. 2008.

——, “Information technology ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER),” Recommendation X.690, pp. 1
— 38, Nov. 2008.

J. Santa, M. Tsukada, T. Ernst, and A. Gomez-Skarmeta, “Experimental
analysis of multi-hop routing in vehicular ad-hoc networks,” in Testbeds
and Research Infrastructures for the Development of Networks Com-
munities and Workshops, 2009. TridentCom 2009. 5th International
Conference on, April 2009, pp. 1-8.

V. Gonzdlez, A. L. Santos, C. Pinart, and F. Milagro, “Experimental
demonstration of the viability of ieee 802.11b based inter-vehicle
communications,” in Proceedings of the 4th International Conference
on Testbeds and Research Infrastructures for the Development of
Networks & Communities, ser. TridentCom ’08. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008, pp. 1:1-1:7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1390576.1390578

A. Festag, H. FuBler, H. Hartenstein, A. Sarma, and R. Schmitz,
“FLEETNET: Bringing Car-to-Car communications into the real world,”
Computer, vol. 4, no. L15, p. 16, 2004.

F. Hui and P. Mohapatra, “Experimental characterization of multi-hop
communications in vehicular ad hoc network,” in Proceedings of the 2nd
ACM international workshop on Vehicular ad hoc networks. ACM,
2005, pp. 85-86.

K. Lee, S.-H. Lee, R. Cheung, U. Lee, and M. Gerla, “First experience
with cartorrent in a real vehicular ad hoc network testbed,” in 2007
Mobile Networking for Vehicular Environments, May 2007, pp. 109—
114.

K. Ramachandran, M. Gruteser, R. Onishi, and T. Hikita, “Experimental
analysis of broadcast reliability in dense vehicular networks,” in Vehic-
ular Technology Conference, 2007. VIC-2007 Fall. 2007 IEEE 66th,
Sept 2007, pp. 2091-2095.

R. A. W. R. Costa, S. Sargento, “Development of a Hybrid Simulation
and Emulation Testbed For VANETS,” June 2009.

ITU-R, “P.525 : Calculation of Free-Space Attenuation,” Recommenda-
tion P.525-2, pp. 1 — 3, Aug. 1994.

——, “P.526 : Propagation by diffraction,” Recommendation P.526-13,
pp. 1 — 43, Nov. 2013.

“IEEE standard for wireless access in vehicular environments security
services for applications and management messages,” IEEE Std 1609.2-
2013 (Revision of IEEE Std 1609.2-2006), pp. 1-289, April 2013.

D. Pham, Y. ekerciolu, and G. K. Egan, “Performance of IEEE 802.11b
Wireless Links: An Experimental Study,” in TENCON 2005 2005 IEEE
Region 10, Nov 2005, pp. 1-6.



