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Abstract

The focus of this thesis is to develop a method of performing a full 6D Simultaneous Localization

and Mapping (SLAM) using an RGB-D sensor in an unknown environment. The map is represented

in 3D plus color which allows for a human operator to easily identify interest zones. The built map

also allows posterior navigation with two different sensors: an RGB-D sensor such as the used for

mapping, or an RGB camera. While navigating in the built map it is possible to track other vehicles in

the scenario as long as they were previously identified with an visual marker.

The robot pose is estimated based on natural features of the environment using feature extraction

methods such as SURF or GFT. These features are used as landmarks for pose estimation in frame

associations.

In order to perform the complete map and trajectory estimation, the algorithm is based on graph-

based minimization methods and libraries such as iSAM with square root information matrix factor-

ization.

To reduce the complexity of the optimization, it is used a keyframe based approach where only

selected frames contribute for the map construction. Furthermore, while performing online SLAM,

the complexity is further reduced by only searching for pose estimation associations in similar frames

within a neighborhood.

The experimental results were executed both in a quadcopter and handheld cameras, showing

robustness to very different environments.

Keywords

Simultaneous Localization and Mapping, incremental Smoothing and Mapping, RGB-D map, Vi-

sual Odometry, Vision-Based Localization
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Resumo

O foco deste trabalho é desenvolver um método capaz de realizar Localização e Mapeamento

Simultâneo (SLAM) em 6D, usando para tal um sensor RGB-D, num ambiente desconhecido. O

mapa é representada em 3D com cor, permitindo a um operador humano a identificação facilitada das

zonas de interesse. O mapa construído também permite a navegação posterior com dois sensores

diferentes: um sensor RGB-D, como o utilizado para o mapeamento, ou uma câmara RGB. Durante

a navegação no mapa criado é possível identificar e localizar outros veículos no cenário, desde que

tenham sido previamente identificados com um marcador visual.

A estimativa da pose do robô é feita baseado em landmarks naturais do ambiente usando como

métodos de extracção de landmarks tais como SURF GFT. Esses landmarks são usados como pon-

tos de referência para a estimativa de pose entre associações de imagens.

Para realizar o mapa completo e a respectiva estimativa de trajectória, o algoritmo é baseado em

métodos de minimização de grafos e bibliotecas como o iSAM com Square Root Information Matrix.

A fim de reduzir a complexidade da optimização é utilizada uma abordagem baseada no imagens-

chave onde apenas magens seleccionadas são usadas para a construção do mapa. Além disso,

durante a execução do SLAM on-line a complexidade é ainda mais reduzida por haver apenas uma

procura para estimação de associações de pose em imagens semelhantes, dentro de uma área

circundante.

Os resultados experimentais foram executados tanto num micro veículo aéreo não tripulado como

em mão, mostrando a robustez para ambientes variados.

Palavras Chave

Localização e mapeamento simultâneo, Mapeamento e suavização incremental, mapeamento

RGB-D, Odometria Visual, Localização Baseada em Visão
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1.1 Motivation

Using Search and Rescue robots in urban environments in catastrophes or emergency situations

is becoming increasingly important. They are able to actuate in environments that could cause harm

to a human, such as radioactive contaminated zones, collapsed buildings or even environments where

humans cannot reach such as small confined spaces.

The robots can then be instructed to perform various tasks such as exploration and mapping of

unknown areas, transport of heavy or dangerous loads, surveillance and rescue.

Using teams of robots instead of a single robot to perform a task has several advantages[1] such

as:

• Building several smaller, simpler robots allows for a more flexible and robust system;

• Approach to more complex problems by dividing the problem in several sub-problems that then

can be approached by different robots;

• If a robot has a failure, the remaining robots can replace him, adding redundancy to the system.

For these reasons, it is extremely important to enable cooperation among a team of robots in a

search and rescue scenario.

In this thesis the concept of Simultaneous Localization and Mapping is used because building a

map while being able to localize in a unknown environment is an essential skill for mobile robots in

GPS-deprived zones.

Using RGB-D sensors as means to acquire dense 3D data allows for a robust pose estimation

procedure due to the rich data that is provided from the camera, both giving an RGB image for

landmark extraction and a depth image for position extraction of given landmarks.

Furthermore, using an exact and efficient solving algorithm to the SLAM problem, such as iSAM,

allows for both incremental and offline optimizations providing a final globally optimal solution.

The rich data provided joined with the versatility of iSAM allows the development of robust algo-

rithms based on the built map, that give localization pose estimations on any robot that navigates in

the environment with an RGB camera or RGB-D sensor.

1.2 Problem Statement

In almost any mobile robot application, the robot must be able to accurately estimate its own pose.

The pose estimation is performed with proprioceptive readings, such as wheel encoders or IMU, and

exteroceptive readings, such as cameras or laser scanners.

While on many land robots the pose estimation problem can be reduced to estimating only Carte-

sian coordinates and the orientation, when using aerial robots it becomes necessary to estimate all

six degrees of freedom.

Using the sensors that a robot is usually equipped with, getting a pose estimate via odometry,

either wheel odometry or visual odometry, is trivial. The problem resides in maintaining an accurate

2



estimation over time, since odometry suffer from incremental drift since it doesn’t provide any mean

of direct pose correction and therefore it has unbounded error accumulation. The process of incre-

mentally integrating the odometry readings to obtain a pose estimation is known as Dead Reckoning

In order to improve this method, it is then useful to provide pose correction algorithms that allow

the robot to recognize areas that it already visited thus correcting the estimated pose. This method is

known as Explicit Loop Closure. Another possible method for pose correction is the usage of absolute

sensors such as GPS or beacons. Since the focus of this thesis is on indoor unknown environments,

the latter approach is discarded since it requires previous contact with the environment.

The construction of the map which the robot uses to navigate can be an abstract object. For a

robot, a map may be a sparse collection of landmarks with an associated pose. On the other hand,

for a human operator such map wouldn’t make sense since it would be hard to understand what’s

happening. For a human operator a map in the form of a blueprint or a dense 3D representation

would be more suitable. In that perspective, the usage of a RGB-D sensor seems appropriate since

it allows for both a map representation that the robot understands, such as sparse landmarks, and a

map that a human operator understands, such as a dense colored 3D map.

To provide a globally optimal constructed map, it is important to have an estimate of the complete

trajectory of the robot and not only the last pose. As such, a full SLAM approach makes more sense

in this context instead of a online approach since the full SLAM approach maintains and optimizes

the full robot trajectory. In the context of graph-based SLAM, the online approach is also known as

filtering approach, while the full SLAM approach is also known as smoothing approach.

1.3 Literature Review

SLAM has been a subject of study in the area of robotics for several years and has had many

different approaches to the problem. In the 80s, a stochastic approach of measuring spacial rela-

tionships by combining sequential states modeled with uncertainty was presented by Smith, Self and

Cheeseman [2]. Their approach was to use the Extended Kalman Filter to iteratively estimate the

robot’s pose. A few years later, in 1993, Gordon et al. published their work on Monte Carlo Filter[3], or

Particle Filter. In this work, the approach was to estimate the posterior density of state variables given

the observation variables knowing that their algorithm didnt require any assumption on the noise of

the system or state-space.

In 1997, Lu and Milios introduced the graph-based SLAM approach[4], that consisted in describing

the so called full SLAM problems, which takes in consideration the full set of measurements, as a least

square problem. It took, however, several years to graph-based SLAM to became popular due to the

complexity of solving the minimization problem. Recent developments in the fields of sparse linear

algebra resulted in efficient methods to solve the optimization problems and therefore the graph-based

SLAM gradually started getting attention, reaching the top state-of-the-art techniques with respect to

speed and accuracy[5] and as such it has been increasingly used in the field of mobile robotics.

Graph-based SLAM representation also has the particularity of being extremely intuitive since the
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construction of the graph represents the robot or landmark poses as nodes and connects them via

a sensor measurements. Currently, the graph-based SLAM problem is usually presented with one of

three different representations:

• Belief Net - the SLAM is represented as a direct acyclic graph where the nodes represent ran-

dom variables which only direcly depend on its predecessors.

• Factor Graph - where there are nodes for the random variables and probability factors that

structure the graph concerning their connections.

• Markov Random Field - the problem is represented in an undirected graph and does not have

factor nodes. Instead, its adjacency structure implies which variables are linked by a common

factor

While these representations are only an abstraction, they are helpful in creating an intuitive way of

visualizing the problem.

Nowadays there are three major approaches to the SLAM problem, even-though in this thesis only

the third will be approached:

• Kalman and information filter[2, 6, 7]

• Particle, or Monte Carlo, filter [8–10]

• Graph based slam [4, 11–14]

While initially, the optimization methods for graph-based SLAM were based on offline optimiza-

tions, continuous work has provided the changes necessary for the minimization algorithms to perform

iteratively.

Kaess and Dellaert [14] have been continuously working in the past years in the development of

SLAM algorithms via Square Root Information Smoothing eventually releasing incremental Smoothing

and Mapping (iSAM)[13].

iSAM performs fast incremental updates of the square root information matrix and yet is able to

compute the full map and trajectory of the vehicle at any given time.

While usually SLAM is performed to build a 2D map, using laser range finders and odometry, in

this thesis it is approached the concept of a full 3D map which implies 6D robot pose estimation in

an MAV[15, 16]. The fact of using an MAV deprives the possibility of using wheel odometry for pose

estimation and as such visual odometry[17, 18] methods are used.

The abstraction layer provided by the graph-based SLAM methods also allow for the integration of

several sensors, parameterizations and models creating an almost out-of-the-box tool for any SLAM

system.

1.4 Contributions

The contributions that this thesis provides are divided in two major categories:
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1. A method for an out-of-the-box visual SLAM algorithm, based on RGB-D keyframes, that in-

volves explicit loop closure techniques with an incremental graph solving approach. The SLAM

algorithm can be run on any kind of robot, being it aerial or land, or can even be run handheld.

The SLAM algorithm implemented in this thesis requires no prior knowledge of the mapping

scenario, the used robot or any other environment parameter, as long as the RGB-D sensor can

properly acquire data. The SLAM algorithm can be run online while mapping for fast results or

can be latter run in offline mode for stronger, more accurate results.

2. The usage the acquired map for localization and tracking of other vehicles. The map itself can

be used with any vehicle and not only the one that created the map, allowing for a wider range

of choices when performing a search and rescue operation. The localization and tracking can

be done with a RGB-D sensor or a simpler RGB camera.

The goal of this work is to develop a method to build a 3D map running in the quadcopters which

then can be passed to a land vehicle to self-localize. The quadcopter should be able to perform SLAM

to localize itself and incrementally build a map and, on a posterior run, should be able to track its own

and other robot’s path.

1.5 Thesis Outline

The thesis is organized in the following way: Chapter 2 presents the main theoretical aspects used

in the development of the thesis related to the iSAM graph optimization, the camera model and pose

estimation algorithms. Chapter 3 presents the hardware and sensors used in the project, along with

the developed software architecture. Chapter 4 shows the tests and results obtained, using handheld

and quadcopter mounted sensors , while mapping, self-localizing and tracking. Finally, Chapter 5

wraps up this thesis and comments on possible improvements and future work.
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This chapter is focused on the main theoretical aspects related with the development of this thesis

and the underlying project.

iSAM is introduced as a possible solution for the Simultaneous Localization and Mapping (SLAM)

problem, detailing the techniques that create the backbone of the algorithm. Computer vision re-

lated topics are approached explaining the used approaches to relevant data extraction and are also

introduced methods of pose estimation with the extracted 3D data.

2.1 Graph based SLAM for Pose Estimation

2.1.1 Introduction

The goal of any SLAM algorithm is to provide an estimation of both the map and the robot pose.

In this project it is used a graph-based SLAM algorithm named iSAM[12, 19]. iSAM is a SLAM

algorithm based on the square root information matrix[20] that is able to compute fast incremental

updates. It is then possible to add the sensors data as soon as it is available and get the current

estimate for the robot pose at that given instant.

iSAM uses a smoothing approach to SLAM, based on the least square problem and reaches a

solution based on matrix factorization. It also does variable reordering[13] in order to sparsify the

square root information matrix which speeds up the solving process.

2.1.2 Probabilistic Model

iSAM is modeled in terms of a belief network consisted by robots states X, landmarks L, control

inputs U and landmark measurements Z[19]

Figure 2.1: iSAM Belief Network[13]

In the above figure, xi represent the robot pose at instant i. lj represent the location of landmark

j. ui is the control input at instant i and zk is the kth landmark measurement. The edges represent

conditional dependences between the connected variables.

Assuming known correspondences between landmarks ik → jk, the joint probability is then given

by[14]:

P (X,L,U,Z) ∝ P (x0)

M∏
i=1

P (xi|xi−1, ui)

K∏
k=1

P
(
zk|xik, ljk

)
(2.1)

8



where P (x0) is a prior for the first robot state, P (xi|xi−1, ui) is the motion model and P (zk|xik, lj k
) is

the landmark measurement model.

A Gaussian noise model is also assumed for the robot motion model[21], W with associated co-

variance matrix Λ, and landmarks measurement model,V with associated covariance matrix Γ:

xi = fi (xi−1, ui) + wi

zk = hk

(
xik, ljk

)
+ vk

(2.2)

where wi is a normally distributed zero-mean process noise with the covariance matrix Λ and vk is a

normally distributed zero-mean measurement noise with the covariance matrix Γ

2.1.3 Least Squares Model

The associated least square problem, which gives the optimal X∗ and L∗ is then obtained by

minimizing the negative log of the joint probability distribution in Equation (2.1):

X∗,L∗ = arg max
X,L

P (X,L,U,Z)

= arg min
X,L

− logP (X,L,U,Z)
(2.3)

Then, getting the optimal X∗ and L∗ results to solving the following non-linear least square problem:

X∗,L∗ = arg min
X,L

{
M∑
i=1

||fi(xi−1, ui)− xi||2Λi +

K∑
k=1

||hk(xik, ljk)− zk||2Γk

}
(2.4)

The notation ||e||2Σ is used to describe the squared mahalonobis distance eTΣ−1e with covariance

matrix Σ.

This equation can then be solved with non-linear optimization methods such as Gauss-Newton or

Levenberg-Marquardt if the functions fi or hk are not linear and if a good linearization point is not

available.

2.1.4 System Linearization

While the previous Equation (2.4) can be solved with non-linear optimization methods, these meth-

ods rely on linearizing the functions in each iteration. The linearized function can then be used with

linear solving methods such as QR factorization which allow for efficient and incremental solving.

In Equation (2.4), the non-linear terms are fi and hk. Linearizing these terms can be done via

first-order Taylor expansion.

On the first term of Equation (2.4), the linearization is given by:

fi(xi−1, ui)− xi

≈
{
fi(x

0
i−1, ui) + F i−1

i δxi−1

}
−
{
x0
i + δxi

}
=
{
F i−1
i δxi−1 − δxi

}
− ai

(2.5)
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where F i−1
i is the Jacobian of the robot motion model fi(.) at the point of linearization x0

i−1 and is

defined by:

F i−1
i =

∂fi(xi−1, ui)

∂xi−1

∣∣∣∣
x0
i−1

(2.6)

and where ai = x0
i − fi(x0

i−1, ui) is the odometry prediction error.

The linearization of the second term is done similarly:

hk(xik, ljk)− zk

≈
{
hk(x0

ik
, l0jk) +Hik

k δxik + Jjkk δljk

}
− zk

=
{
Hik
k δxik + Jjkk δljk

}
− ck

(2.7)

where Hik
k is the Jacobian of the measurement function hk(.) with respect to a change in xik and jk

k

is the Jacobian of the measurement function hk(.) but this time with respect to a change in ljk , both

evaluated around the linearization point (x0
ik
, l0jk) getting:

Hik
k =

∂hk(xik , ljk)

∂xik

∣∣∣∣
(x0
ik
,l0jk

)

(2.8)

Jjkk =
∂hk(xik , ljk)

∂ljk

∣∣∣∣
(x0
ik
,l0jk

)

(2.9)

and where ck = zk − hk(x0
ik
, l0jk) is the measurement prediction error.

After the linearization of the model (2.5) and measurements (2.7) is perfomed, Equation (2.4)

becomes:

δθ∗ = arg min
δΘ

{
M∑
i=1

||F i−1
i δxi−1 +Giiδxi − ai||2Λi

+
K∑
k=1

||Hik
k δxik + Jjkk δljk − ck||

2
Γk

} (2.10)

where Gii = −Idx×dx is used as substitution of δxi in order to have the same notation along the whole

equation. The vector θ is the concatenation of robot poses and landmark variables.

Equation (2.10) is already a full linear least square problem but it can be further simplified in order

to be solved efficiently.

The matrices Λi and Γk can be removed from the equation if the terms F i−1
i ,Gii and ai are multi-

plied by Λi
T/2 and the terms Hik

k , Jjkk and ck are multiplied by Γk
T/2.

These simplifications allow to reach the simple least squares problem that can be described with:

Θ∗ = arg min
Θ

||AΘ− b||2 (2.11)

where A is a large but sparse measurement matrix, composed of the Jacobian matrices and b is the

concatenation of vectors ai and ck.
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2.1.5 Matrix Factorization

In the scope of normal equations, the linear least squares problem (2.11) can be also expressed

as:

ATAΘ = AT b (2.12)

QR decomposition helps to solve this kind of equations efficiently.

Matrix A can be decomposed into the product A = QR where Q ∈ Rm×m is a orthogonal matrix

and R ∈ Rn×n is a upper triangular matrix and in the case of iSAM is also the square root information

matrix:

A = Q

[
R
0

]
(2.13)

Applying the factorization to the least square problem of Equation (2.11) yields in:

‖AΘ− b‖2 =

∥∥∥∥Q [R0
]

Θ− b
∥∥∥∥2

=

∥∥∥∥QTQ [R0
]

Θ−QT b
∥∥∥∥2

=

∥∥∥∥[R0
]

Θ−
[
d
e

]∥∥∥∥2

= ‖RΘ− d‖2 + ‖e‖2

(2.14)

where
[
d
e

]
= QT b leaving ‖e‖2 as the residual of the least square problem.

The factorization then simplifies the problem to a linear problem with a unique solution:

RΘ∗ = d (2.15)

Due to R being upper triangular, solving this equation is just back-substitution and the result Θ∗ is the

whole robot trajectory and map.

iSAM uses QR factorization using Given’s rotation (2.16) in order to clear the entries bellow the

diagonal one at a time. While this is not the optimal way to do a full QR factorization, it is useful when

computing it incrementally since the matrix is sparse and only a handful of entries must be computed.

Figure 2.2: Given’s rotation used to eliminate an entry[13]

Using Given’s rotation (2.16) to perform QR factorization starts by eliminating the left-most non-

zero entry, continuing column wise, and it is applied to rows i and j, i > j, such that the chosen entry

(i, j) becomes zero.
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Φ =

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

]
(2.16)

After all entries bellow the main diagonal are zero, the resulting upper triangular matrix is the

square root of the R matrix of the QR factorization. By applying the same rotations to the vector b of

the least square problem, the formation of the dense Q matrix is avoided. This way, solving the least

square problem Ax = b with a sparse A matrix allows for faster solving.

The Given’s rotation are numerically stable if the rotations are determined the following way[22]:

(cos(φ), sin(φ) =



(1, 0) if β = 0(
−α

β
√

1+(αβ )
2
, 1√

1+(αβ )
2

)
if |β| > |α|(

1√
1+( βα )

2
, −β
α
√

1+( βα )
2

)
otherwise

(2.17)

where α = akk and β = aik.

2.1.6 Variable Reordering

With loops in the trajectory and multiple landmarks observations, correlation between current

poses and previously observed landmarks appears in the graph. These correlations create a large

increase of non-zero entries in the factor matrix which then results in a increased computation com-

plexity.

Finding the right order of the variables is NP-hard but there are efficient heuristics that yield

good results when applied to SLAM-specific problems such as Column Approximate Minimum De-

gree (COLAMD).

iSAM applies variable reordering every n-steps in order to keep the the R matrix sparse while not

increasing the overhead too much.

Figure 2.3: Matrix R before and after variable reordering[13]

2.1.7 State Definition

It is assumed that at each iteration, the robot performing SLAM has access to both a prior, which

could come from visual odometry or similar, and to an RGB-D image (or just RGB if the robot is only

using the graph to navigate).

The depicted problem has two main coordinate systems:
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• World Frame (XW , YW , ZW ) is a fixed frame and both robot poses and map are in respect to

it.

• Camera Frame (XCt , Y Ct , ZCt) is a moving frame that related the pose of the camera with the

World Frame. The landmarks associated with each robot pose are given in the camera’s frame.

Figure 2.4: World and Camera Frames

Every landmark observation is described in the respective camera frame, as explained in Figure

(2.1).

The odometry from pose xi to xi+1 is given in form of a quaternion Q and a translation vector t:

Q = [qx, qy, qx, qw]

T = [tx, ty, tz]
(2.18)

A quaternion to be valid must have unit norm so the following equation must be true:

q2
w + q2

x + q2
y + q2

z = 1 (2.19)

When using aerial vehicles it is very commom to use the euler angles Roll, Pitch, Yaw (RPY) which

give a better intuitive values to the robot pose than using quaternions.

To convert from quaternion to RPY:

roll = atan2(2 ∗ (qw ∗ qx + qy ∗ qz), q2
w − q2

x + q2
y + q2

z)

pitch = asin(2 ∗ (qw ∗ qy − qz ∗ qx))

yaw = atan2(2 ∗ (qw ∗ qz + qx ∗ qy), q2
w + q2

x − q2
y − q2

z)

(2.20)

and the reverse operation, from RPY to quaternion:

sy = sin(yaw ∗ 0.5); cy = cos(yaw ∗ 0.5);

sp = sin(pitch ∗ 0.5); cp = cos(pitch ∗ 0.5);

sr = sin(roll ∗ 0.5); cr = cos(roll ∗ 0.5);

qw = cr ∗ cp ∗ cy + sr ∗ sp ∗ sy;

qx = sr ∗ cp ∗ cy − cr ∗ sp ∗ sy;

qy = cr ∗ sp ∗ cy + sr ∗ cp ∗ sy;

qz = cr ∗ cp ∗ sy − sr ∗ sp ∗ cy;

(2.21)
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Throughout this thesis both the quaternion representation and the RPY or rotation matrix repre-

sentation will be used interchangeably since they all represent the same rotation.

2.2 Computer Vision

2.2.1 Introduction

In order to be able to perform SLAM in a full 3D environment it is necessary to use different

sensors than the usual laser range finder. It is necessary to get a dense pointcloud from which the

depth can be perceived and the interesting landmarks could be extracted. Using RGB-D cameras

gives the possibility of using the depth information to compute camera pose estimation as well as a

RGB image that allows for feature tracking and matching.

Figure 2.5: One RGB-D pointcloud captured with a Asus-Xtion Pro. Views of the same cloud from different
perspectives

With all the information that these kind of sensors provide, computer vision then becomes a main

component of 3D-SLAM.

2.2.2 Camera Model

Cameras are able to project 3D points into a 2D image plane (see Figure (2.6) )[23]. The projection

is described by a perspective transform:

λx′0 = ΠX′0 (2.22)

where X′0 are the points in the world frame using homogeneous coordinates, x′0 are the points in

image frame using homogeneous coordinates, λ is a scale factor and Π is the camera matrix:

Π = K
[
R t

]
(2.23)

The K matrix is the intrinsic parameters matrix and the R,t are the extrinsic parameters which

define the camera center and orientation in the world coordinate frame.
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Figure 2.6: Model of the projection of a World object into the camera frame [24]

The intrinsic matrix can be further detailed as such:

K =

kx γ cx
0 ky cy
0 0 1

 (2.24)

The parameters kx, ky represent the focal length in terms of pixels in the camera frame, cx, cy

represent the principal point of the image, normally around the center of the image and γ represents

the skew factor, normally around 0.

Since Equation (2.22) has a free variable λ, it can be solved up to a scaling factor. Using depth

information, it is possible to add a constraint that uniquely solves the equation.

Figure 2.7: Depth Map, black means a bad reading

It is assumed that the depth image is registered, which means both the depth and RGB image data

points are in the same coordinate system. Being in the same coordinate systems allows for the direct

correspondec of pixel (i, j) in the RGB with pixel (i, j) in the depth image. To perform the registration,

the extrinsic parameters between the two cameras were already applied to the images and as such

they can now be assumed as identity R = I, t = 0. Assuming also skew factor 0 for simplification, the

new equations are as follows:

Π′ =

kx 0 cx
0 ky cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 (2.25)
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Getting the points in the 2D image to 3D coordinates can be calculated:

λ

xy
1

 =

kx 0 cx
0 ky cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (2.26)

Further solving the system gets to:

λ

xy
1

 =

kx 0 cx
0 ky cy
0 0 1

XY
Z

 (2.27)

λ

xy
1

 =

kxX + cxZ
kyY + cyZ

Z

 (2.28)

Since Z is given by the depth map, it is possible to fix the λ value:

λ = Z (2.29)

Solving in order of X:

X =
Z(x− cx)

kx
(2.30)

and Y:

Y =
Z(x− cy)

ky
(2.31)

With Equations (2.29), (2.30) and (2.31) is possible to go back and forth between 2D image points

and 3D world points.

2.2.3 Feature Detection

In order to extract useful landmarks and features from the mapping environment, it is necessary

to run feature extraction on the gathered images. All the feature detection is made on the RGB image

since it is far more information rich that the depth map (see Figure (2.7) ).

Getting sparse features from a dense image [25] is also important when fast computational speed

is required because it represents a very significant complexity decrease.

2.2.3.A SURF: Speeded Up Robust Features

Speeded-Up Robust Features (SURF)[26] is a scale and rotation invariant detector and descriptor

based on the use of integral images and basic Hessian-matrix approximations.

Calculating the integral image is done the following way:

IΣ(x, y) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (2.32)

With Equation (2.32), the computation of the integral of any rectangular section is done with only

3 operations which allows for higher order filters to be applied without losing computational speed.
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Figure 2.8: The integral of the section (x,y) to (x+dx,y+dy) can be calculated with only 3 sums

i≤x+δx∑
i=x

j≤y+δy∑
j=y

I(i, j) = IΣ(x, y) + IΣ(x+ δx, y + δy)− IΣ(x, y + δy)− IΣ(x+ δx, y) (2.33)

To select the features to use, using Equation (2.33) helps computing the Hessian Matrix, which is

the image convolution over a second order Gaussian derivative, by only performing three additions:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
(2.34)

After computing the determinant of the Hessian matrix for all image points, the local maximums

are chosen using non-maximum suppression [27].

Regarding the feature descriptor, in order to distinguish one feature from another, this descriptor

creates a description of the intensity content within the interest point neighborhood.

To create rotation invariance, Haar wavelet responses are calculated in x and y directions.

After computing the descriptor, the scale invariance is implemented by normalizing the resulting

vector.

2.2.3.B Good Features to Track

Good Features to Track (GFT)[28] is a tracking algorithm for features based on dissimilarity and

motion models. This algorithm uses a translation motion model to compare consecutive frames and

affine motion model to compute the dissimilarity between distant frames. In this project, the GFT

algorithm is only used to estimate visual odometry so the translation motion model is preferred.

The image motion can be described by the following equation:

I(x, y, t+ τ) = I(x− ξ(x, y, t, τ), y − η(x, y, t, τ)) (2.35)

where δ = (ξ, η) is the displacement of each point in the instants between t and t+ τ .

Even though this model describes the generic motion model, it is often violated due to reasons

such as occlusions, disappearing features and lightning changes.

It is then used a local model that tries to compute the motion of a feature inside a given window:

δ = Dx + d (2.36)

where D is the deformation matrix and d is the translation.

In small windows, the deformation matrix is very prone to error which causes a bad estimate of the

feature motion. On the other hand, small windows are best used to tracking because they are most
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likely to contain features at a similar depth. Therefore, it is assumed that D is an identity matrix and a

pure translation model is adopted for tracking:

I2(x + d) = I1(x) (2.37)

where I2 is the second image and I1 is the first image.

Computing the motion is done by solving the following equation:

ε =

∫ ∫
W

[I2(x + d)− I1(x)]2ω(x)dx (2.38)

The main advantages of using GFT are its computational speed and ability to track moving features.

Due to these reasons, it is a good algorithm to base the visual odometry on.

2.2.4 Feature Matching

Feature matching consists in finding the same feature in two different images.

The method basically consist in minimizing the difference between the descriptors of one image

with the descriptors of another.

Figure 2.9: Matched features between two different images

When implementing feature matching with SURF descriptors, the algorithm is based on the mini-

mization of the euclidean distances among the features to match. As such, any algorithm that perform

this minimization is suitable to do the feature matching, being it K-dimensional Tree algorithms or brute

force algorithms. The trace of the Hessian matrix, described in Equation (2.34), is taken into account

in order to be robust to contrast variations.

In order to create a more robust matching operation, other techniques can be implemented:

• Ration test - Accept only a match if the best match distance is q times smaller than the second

best.

• Symmetry test - Accept only a match if it is both the best match from I1 → I2 and I2 → I1

• Epipolar geometry:

– Select 8 matches at random and estimate the Fundamental Matrix.
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– Accept only a match if it is in the epipolar line ±δ pixels of the other image.

– Retain the matches that were acquired from the fundamental matrix that discarded the

fewer matches

Algorithm 2.1 Robust SURF matching

Input: All detected keypoints
Output: Robust keypoints matched
for i = 1 to 2 do

for all detected features in Ii do
match1 ← GetBestMatch()
match2 ← GetSecondBestMatch()
if match1.distance < match2.distance ∗ q then
matchesi = matchesi +match1

end if
end for

end for
for all match in matches1 do

if not match in matches2 then
Reject match

end if
end for
for all match in matches2 do

if not match in matches1 then
Reject match

end if
end for
MaxMatches = 0
RobustMatches = {}
for i = 1 to iterations do
RandomMatches← Get8RandomMatches()
Matrix← EstimateFundamentalMatrix(RandomMatches)
CurrentMatches← GetEpipolarMatches(δ)
if CurrentMatches.count > MaxMatches then
RobustMatches← CurrentMatches
MaxMatches← CurrentMatches.count

end if
end for

With the implementation of the Algorithm (2.1) it is possible to get a very robust feature matching

system with near zero false positives. As a downside, depending on the threshold parameters, the

algorithm is prone to get a large quantities of false negatives. As such, its usage is dependent on

the final goal. In this project, this algorithm is mainly used to identify frames that belong to the same

mapping area so, in this case, it is better to have fewer stronger matches than the opposite.

2.2.5 ArUco

ArUco is a minimal Augmented Reality tracking library developed by the Universidad de Córdoba.

It is mainly used to create Augmented Reality[29] applications, like the name suggests, but it is also

useful in other applications such as tracking other robots.
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This library detects markers places in the environment and gives the camera position relative to

the marker itself.

Figure 2.10: Marker ID 26 generated from the ArUco library

This library functions in two major stages:

• Marker Detection

• Camera’s Pose Estimation

Regarding the Marker Detection stage, the image is first binarized using adaptive thresholding or

any similar method[30].

Then, the connected components are analyzed to search for interest areas where the marker might

be. Knowing that the marker is a rectangle, heuristics can be applied to select the best candidate

areas and thus extracting the marker position.

In order to identify the marker ID, a CRC error code is implemented to get the correct ID even

when small errors or occlusions appear in the image. If no valid ID is found, the detected candidate

marker is discarded.

Regarding the Camera’s Pose Estimation stage, Equation (2.26) is to be solved to estimate the

camera’s pose. When two parallel sides of the detected square marker are projected into the camera

frame, its equations can be described by:

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0
(2.39)

Given that the camera’s calibration is known and the marker’s size. Joining the two Equations (2.26)

and (2.39),the following system is reached:

a1kxX + b1kyY + (a1cx + b1cy + c1)Z = 0

a2kxX + b2kyY + (a2cx + b2cy + c2)Z = 0
(2.40)

Solving these equations and obtaining two normal vectors regarding the world frame, in order to get

the third vector the cross product is applied: n1 × n2
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Figure 2.11: A detected ArUco marker showing the associated axis

2.3 Pose Estimation

2.3.1 Introduction

In order for robot to be able to correctly navigate any environment, it is crucial for it to know its own

position and orientation, also known as pose.

The task associated with the determination of the pose of a robot is referred as pose estimation

and is the core of SLAM:

In order to the robot to be able to localize itself it needs a map, but in order to create a map it

needs to know its pose.

In order to solve this chicken and egg problem a map can be incrementally created and later

be corrected with loop closing techniques such as feature matching and pose estimation between

different frames gathered along mapping.

2.3.2 Generalized Iterative Closest Point

While Iterative Closest Point (ICP) is an algorithm employed to minimize the difference between

two pointclouds, comparing point to point, Generalized Iterative Closest Point (G-ICP)[31] is a gener-

alized model for standard ICP. G-ICP is based on attaching a probabilistic model to the minimization

algorithm of ICP. This description is made general such that both point-to-point ICP and point-to-

planeICP are particular cases of the model.

The standard point-to-point ICP algorithm is described the following way:
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Algorithm 2.2 Iterative Closest Point
T ← T0

while not converged do

for i← 1 to N do
mi ← FindClosestPointInA(T · bi)
if ||mi − T · bi|| ≤ dmax then
wi ← 1

else
wi ← 0

end if
end for
T ← arg min

T
{
∑
i wi||T · bi −mi||2 }

end while

Assuming perfect correspondence between point ai from pointcloud A and point bi from pointcloud

B, using the correct transformation T∗ it is known that:

b̂i = T∗ · ai (2.41)

Considering an arbitrary transformation T, the distance between the points ai and bi is given by:

dT
i = bi − T · ai (2.42)

The standard ICP minimization step is the following:

arg min
T

{∑
i

wi||T · bi −mi||2
}

(2.43)

Assuming ai and bi are points that are given from independent Gaussian Distributions, described in

equation 2.42, can be statistically described by:

dT∗

i = N(b̂i − (T∗) · âi, CBi + T∗CAi T∗T ) = N(0, CBi + T∗CAi T∗T ) (2.44)

Using Maximum Likelihood Estimator (MLE) to the above equation in order of T yields:

T = arg max
T

∏
i

p(dT
i ) = arg max

T

∑
i

log(p(dT
i ) (2.45)

In order to simplify the equation, using equation 2.44 the key step of the G-ICP algorithm is ac-

quired:

T = arg min
T

∑
i

dTT
i (CBi + TCAi TT )−1dT

i (2.46)

Figure 2.12: Visualization of the Iterative Closest Point Algorithm [32]
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Comparing Equation (2.46) with the minimization step of point-to-point ICP in Equation (2.43), it

can be observed that the later is a special case the equation where:

CBi = I

CAi = 0

Comparing with point-to-plane algorithm [31], it can be observed that it is also a special case where:

CBi = P−1
i

CAi = 0

where Pi is the projection of a point into the surface normal at bi.

2.3.3 Random Sample Consensus

Random Sample Consensus (RANSAC)[33] is a robust estimator that is used to fit a model to

experimental data. It is a model that takes into account all given data and iteratively tries to select a

subsection of the data that minimizes a given cost function.

The algorithm works in a simple way[34]:

• Select a random subset of data

• Fit model parameter into the subset of data

• Evaluate the quality of the model into the whole input data

Figure 2.13: RANSAC algorithm trying to get the model of a line. a) Raw data. b) Two random points selected.
c) Model estimated with those points and inliers. d) 2 other random points selected. e) Model estimated with the
new points and inliers. f) Model estimated with the best model inliers

These steps are repeated until a maximum iteration threshold is reached or when the probability

of finding a better model is lower than a predefined threshold η0.
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First, a subset of points is randomly selected from all the estimated keypoints.

The model used in RANSAC to estimate the pose is the Rigid Body Transform:

di = Rmi + t + Vi (2.47)

where di and mi are two matched points and R and t are the rotation matrix and translation vector

that transform one point into the other, corrupted by the noise Vi.

Finding R∗ and t∗ consists in minimizing the least squares criterion given by:

ε2 =

N∑
i=1

||di − Rmi + t||2 (2.48)

In order to minimize equation 2.48, the point set di and mi should have the same centroid.

Calculating the centroids

d =
1

N

N∑
i

di dci = di − d

m =
1

N

N∑
i

mi mci = di −m

(2.49)

which then rewriting equation 2.48 yields in:

ε2 =

N∑
i=1

||dci − Rmci||2

=

N∑
i=1

(dTcidci +mT
cimci − 2dciRmci)

(2.50)

To minimize the equation, the last term has to be maximized. This problem is also known as

the orthogonal Procrustes problem. This problem can be solved with Singular Value Decomposition

(SVD) to maximize the trace of the matrix:

H =

N∑
i=1

mcid
T
ci (2.51)

SVD decomposes the matrix H into H = UΛVT . From there, R̂ is given by:

R̂ = UVT (2.52)

When estimating R̂, if the two datapoints are planar it may happen that the determinant of R̂ is -

1 which indicates a reflection instead of a rotation. In this special case, the optimal rotation[35] is

expressed as:

R̂ = U

1 0 0
0 1 0

0 0 det(UVT )

VT (2.53)

Calculating the translation t is then:

t̂ = d− R̂m (2.54)

Getting the parameters R̂ and t̂ that describe the transformation, using equation 2.47 gives the

distance that each point is from the corresponding match. This way it is possible select a list of
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inliers by selecting the matches whose distances is less than δ and thus evaluating the quality of the

estimation.

Regarding the stopping criteria, the number of iterations needed to ensure with probability z that

the calculated model is the best model is given by[33]:

k =
log(1− z)
log(1− b)

(2.55)

where b is wn and w is the probability of a match being an inlier and n is the number of data points

used to estimate the model. In practical cases, since w is difficult to know beforehand, this value is

estimated with each iteration giving w = Best Number of correct Matches
Total Number of Matches
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This chapter gives an overview of the used hardware specifications as well as the system archi-

tecture and development decision that were made.

It is mainly focused the aspects of the RGB-D sensor used, the quadcopter characteristics and

the system’s software arquitecture.

3.1 ASUS Xtion Pro Live

3.1.1 Introduction

ASUS Xtion Pro Live (see figure 3.1) is a kinect-like sensor that can provide RGB-D images from

a USB camera. It has a multi-language (C#, C++, JAVA) API that facilitates the integration with other

applications. Robot Operating System (ROS)[36] has a package that allows to receive and process

RGB-D images from this camera and sends it to other ROS nodes which is helpful in the context of

robotics and real time operations.

Figure 3.1: ASUS Xtion Pro Camera

3.1.2 Specifications

Regarding its specifications:

Power Usage < 2.5W
Distance of usage 0.8m to 3.5m
Sensors RGB, Depth, 2 microphones
Depth Image Resolution VGA (640x480) : 30 fps - QVGA (320x240): 60 fps
RGB Resolution SXGA (1280*1024) - VGA (640x480)
Dimensions 18 x 3.5 x 5 cm - 230g

Table 3.1: ASUS Xtion Pro Live Specifications
[37]

The most interesting aspects, in the scope of Micro Aerial Vehicles (MAVs) and robotics are its low

power usage and small dimensions. The fact that it is small, comparatively with others sensors such

as Kinect (30 x 7.5 x 6.5 cm - 1.3kg) makes it a better choice to use in small vehicles. Regarding the
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official max distance of 3.5m, the sensors outputs distances further than that up to 7m. The values in

the further away readings are not as accurate as in the closer readings.

3.1.3 RGB and Depth Images

Figure 3.2: RGB-D Image from the Xtion Pro

The RGB camera in the Xtion Pro ends up being a low cost camera with no customization available

regarding the aperture size or shutter speed. Not being able to tweak the shutter speed may make

the camera’s captured images blurry, specially in rotational movements. Regarding to the camera’s

aperture size auto regulation it creates abrupt brightness and contrast changes when the camera

automatically decides to change its value. Fortunately, the camera does not perform auto-focus so

the intrinsic parameters remain constant. In order to compensate for the lack of customization of the

camera parameters, more robust and computational expensive algorithms have to be used in order to

get good computer vision results.

When calibrating both the RGB and IR camera the following intrinsic parameters were obtained:

Camera Kx Ky Cx Cy
RGB 544.422 544.119 315.385 237.311
IR 570.342 570.343 314.500 235.500

Table 3.2: Camera’s intrinsic parameters obtained via calibration

and the distortion parameters kc for the Red-Green-Blue (RGB) camera:

kc1 kc2 kc3 kc4 kc5
0.037 -0.127 0.002 -0.002 0

Table 3.3: RGB camera distortion parameters

3.2 Quadcopter

3.2.1 Introduction

In the context of Search and Rescue, the used approach is to use a MAV that is running a SLAM

algorithm and then a land vehicle navigates in the processed map and is tracked by the MAV As such,

a UAVision Quadcopter UX-4001 mini is used as the MAV. The quadcopter hardware was developed
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by a Portuguese company UAVision R©while the middle-ware and low level software is handled by

Paparazzi autopilot.

Figure 3.3: UAVision Quadcopter UX-4001 mini [38]

3.2.2 Hardware Specifications

The quadcopter has a wingspan of 65, 7cm and its hardware can be divided in four different cate-

gories: Chassis, Sensors, Actuators and Communication.

The Chassis is made of carbon fiber which is lightweight and resistant.

The sensors are:

• 3 gyroscopes

• 1 3-axis Accelerometer

• 1 pressure sensor

• 1 magnetometer

• 1 outdoor GPS receiver

Regarding the actuators, each wing has a brush-less DC motor controlled by an Electronic Speed

Controller (ESC).

The communication part consists of bluetooth module, a Pulse Position Modulation (PPM) radio

receiver and a XBee module.

Without any additions to the quadcopter the payload is 500− 700g.

The above hardware is the core of the quadcopter but other hardware can be added such as Laser

Range Finders, a PandaBoard computer, sonars, optical flow sensors and cameras.

The algorithm is being run of on an Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz with 8GB of

RAM computer, outside the quadcopter.

3.3 Software Architecture

3.3.1 Introduction

The software that is running to perform SLAM is divided into three major modules: Visual Odom-

etry, Keyframe Mapping where full slam is implemented, and Localization where the robot uses an
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already computed map and self-localizes in it.

The nodes were implemented in C++ and were incorporated into the ROS framework in order to

facilitate the communication between different parts of the system. Using ROS is also helpful in the

way that a great number of repositories are freely available with a vast diversity of drivers and utility

libraries. OpenCV[39] also provides several useful functions to use while handling visual processing

algorithms.

3.3.2 Visual Odometry

Since a MAV is unable to get a viable odometry via wheel encoders, other means to estimate the

vehicle motion must be used. The most common method used then is visual odometry which consists

of determining the vehicle motion by analyzing camera images[17, 18].

With any kind of odometry, real time results are mandatory and as such it is important to use

algorithms that perform simple computations to estimate the pose of the vehicle.

To estimate the camera motion, the problem can be first split into two parts: getting the interesting

features, and the motion estimation itself.

Regarding the first part, computing the features, this step is essential because it creates a much

simpler analysis and instead of analyzing the full cloud, only a selected number of points tested. While

a full pointcloud has several thousand of points, if only the interesting features are used, the system

has a much lower complexity due to only using around 100 to 200 features. To detect the features

GFT algorithm is used since it selects the best features to use in a tracking scenario and is also very

fast to compute. This step has a tremendous impact on the overall performance.

Algorithm 3.1 Visual Odometry Architecture

Input: pointcloud
Output: Pose estimation
Pose← Identity()
while running do

Image← GetNewImage()
Features← DetectFeatures(Image)
Points← GetDepthForFeatures(Features)
if Model is Empty then
Model← Points

else
Transformation← GICP (Model)
if Transformation is Ok() then
Pose = Pose ∗ Transformation

end if
end if
Publish(Pose)

end while

The next step is estimating the motion that the camera performed. After the key features are se-

lected, those features are aligned into a DataModel[18] using G-ICP. The DataModel is a pointcloud

of the features that were detected so far, up to a cap, represented in the World Frame. Having a model
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of the features allows for a robust G-ICP when compared to pure incremental G-ICP because it helps

to reduce the drift that normally occurs with odometry.

To implement the G-ICP, the cost function between two features is given by the Mahalanobis

distance from a point to a distribution:

dist(fa, fb) =
√

∆fa,fb(Σa + Σb)−1∆T
fa,fb

∆fa,fb = µa − µb
(3.1)

where fi is feature i and µi and Σi are its mean and covariance matrix.

After the the cost function is minimized and the motion parameters estimated, the model is updated

to contain the most recent points.

Considering the general rigid body transformation:

T =

[
R t
0 1

]
(3.2)

the image points can be transformed into the model frame:

µ′ = Rµ+ t

Σ′ = RΣRT
(3.3)

A point is considered if the distance on Equation (3.1) to the nearest point is lower than a given

threshold ε. The features that were not associated are then added to the DataModel. Since the

model has a maximum number of features, to preserve real-time computational speed, when the cap

is reached the oldest features start to be replaced by the newer features.

Finally, the DataModel is updated with a Kalman Filter where the previous distribution m is treated

as the prior and the current observation d is treated as the observation.

Both the DataModel and the observation d are a set of 3D features containing a mean and a

covariance: f = {µ,Σ}. This way the DataModel is:

µ
[M ]
t = µ

[M ]
t−1 + Σ

[M ]
t−1 (3.4)

where µ[M ]
t is the DataModel’s current state and Σ

[M ]
t−1 is the model noise. The observation d model

is similar:

µ
[D]
t = µ

[M ]
t−1 + Σ

[D]
t−1 (3.5)

where µ[D]
t is the observation state and Σ

[D]
t−1 is the observation noise. Note that there are points that

are inserted into the DataModel outside the Kalman Filter procedure and as such the dimensionality

of the filter increases. These points are inserted into the model with the sensor’s reading and asso-

ciated noise. Also note that there are points in the model that are not observed in every observation.

These points are not updated in the corresponding iteration.

The Kalman Filter prediction at time t is:

µ̃t = µ
[M ]
t−1

Σ̃t = Σ
[M ]
t−1

(3.6)

and the update:

32



Kt = Σ̃t

(
Σ̃t + Σ̃t

[D]
)−1

µ
[M ]
t = µ̃t +Kt

(
µ

[D]
t − µ̃t

)
Σ

[M ]
t = (I −Kt) Σ̃t

(3.7)

Since in ROS any process can listen to the visual odometry publications, it is useful to have it

as correct as possible. As such, when the localization node, described in Section 3.3.4, is running

and the SLAM graph is optimized, the newest pose from the graph is used to correct the odometry

reading.

3.3.3 Keyframe Mapping

Using RGB-D sensors to extract the most important frames of a video is a approach often used

in Visual SLAM [40, 41] since it reduces considerably the complexity of the problem. Several metrics

can be used when selecting the keyframes such as clustering [42] or more general cost functions [43].

The approach for this project consist in saving a frame as a keyframe every time the MAV moves

more than a predefined distance d or rotates more than a predefined angle θ.

d and θ should be such that the system has enough information to create a correct and useful

trajectory estimate but it cannot be too small which would create the concept of keyframe useless. A

value between 10 to 20 cm on d and 5 to 10o on θ give good results for the tested environments.

The keyframe mapper node should be running in parallel with the visual odometry in order to get

the current position estimate to use as prior and to allow the choosing of keyframes.

Algorithm 3.2 Keyframe Mapping Architecture

Input: RGB-D image sequence
Output: 3D Map + 6D robot trajectory
while navigating do

Pose← GetPoseFromOdometry()
if Pose is FarEnough(r) then
Image← GetNewImage()
Frame← CreateFrameWithFeatures(Pose, Image)
AddKeyframe(Frame)
FrameMatches← FindCorrespondences(Frame)
AddToGraph(FrameMatches)
Pose← OptimizeGraph()
SendCorrection(Pose)

end if
end while
Correspondences← CreateGlobalCorrespondences()
AddToGraph(Correspondences)
OptimizeGraph()
SaveMap()

Once a keyframe is chosen, the image keypoints and descriptors are computed using the SURF

algorithm. SURF is used because it provides a robust result in moving environments and lightning

changes.
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Then the similar keyframes within a range r are selected in order to try and compute rigid body

transformations from the current keyframe to the others. Only searching within a range r allows

for real time processing because a large amount of keyframes are automatically excluded from the

computation. Within the selected range, the candidate keyframes for processing are the keyframes

that present the highest similarity to the current keyframe.

Then, a robust matching Algorithm (2.1) is run so the false positives are discarded.

With the remaining candidate keyframes, the pose transformation is computed based on RANSAC.

If the pose estimation is successful, the graph factor that connects the two keyframes is added to the

optimization graph. If the pose estimation fails due to small number of features, no graph factor is

added and instead the remaining landmarks are added. Adding the features helps the getting a better

estimate if in the future any other keyframe observes any of those added landmarks. In no other

occasion landmarks are added to keep the graph as simple as possible.

When all correspondences are created and added to the optimization graph, iSAM is used to

incrementally optimize it and get a more recent estimate of the map and the robot’s trajectory. The

most recent robot pose is then sent to the odometry algorithm to correct the pose.

While real-time SLAM gives acceptable results for a rough map, in order to get an accurate map the

optimization should be run again after all the data is acquired in order to refine the map and trajectory

estimated. In this offline optimization the searching of a keyframe within a range r is dropped and all

similar keyframes are searched for a possible transformation. While this slows the process, it gives

more information that the graph can use to create a fine SLAM estimate.

Finally, the map and trajectory are saved so that any other program can later use it to self-localize.

The main ROS node structure can be visualized in the following figure:

Figure 3.4: ROS mapping nodes

3.3.4 Localization

Localization ends up being a subproblem already addressed in the keyframe mapping but since

time complexity, while important, is not as critical as when performing SLAM it is then possible to add

other features while self-localizing such as locating and tracking other vehicles.

The localization process can be executed with two distinct camera types, a normal RGB cam-

era and a RGB-D. This allows for the diversification of the robots hardware which also allows for

diversification on their tasks since normally a RGB camera is smaller and lightweight.
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The program runs similarly for both sensors, with the only difference being the algorithm to esti-

mate the camera’s pose. With the RGB-D sensor, since full depth information is available, the algo-

rithm is simple estimating a Rigid Body Transformation as in the Mapping part. With the RGB sensor,

due to lack of depth data, the Perspective Transform is estimated instead.

Algorithm 3.3 Localization Architecture

Input: RGB-D/RGB image
Output: Pose, tracked pose
Pose← Identity()
ArucoPose← Null
while running do

Image← GetNewImage()
Frame← CreateFrame(Pose, Image)
AddKeyframe(Frame)
if FoundAruco(Image) then
ArucoPose← AssociateAruco(Frame)
AddToGraph(ArucoPose)

end if
FrameMatches← FindCorrespondences(Frame)
AddToGraph(FrameMatches)
Pose← OptimizeGraph()
Publish(Pose)
Publish(ArucoPose)

end while

The program starts by first loading the previously computed map. The map consists of the

keyframes along with their pose. The keyframe itself consists of an RGB and a depth image.

An iSAM graph is then created with all the relevant keyframe data and each keyframe pose is

initialized with a high value associated in the information matrix so that posterior optimizations during

the localization are unable to change the map nodes.

Since this ROS node runs in soft-real time characteristics, time while important, is not critical. As

such a frame is added as keyframe as soon as there are computational resources available.

Then, on each keyframe, an ArUco marker is searched. If one is found the procedure to track

other vehicles, described in Section 3.3.5, is run.

Just as in the mapping process, described in Section 3.3.3, the most similar map frames within a

range are selected to estimate a pose and the features are matched.

In the case of the RGB localization, the camera pose is estimated by trying to find the R and t that

minimizes the projection error of the 3D points into the 2D images.

λx′0 = K
[
R t

]
X′0

ε2 = ‖λx′0 − x0‖
2

(3.8)

This equation can be solved iteratively using numeric optimization methods or can be latter used

to measure the total error of the estimation.

There are efficient algorithms such as Perspective-Three-Point [44] and Efficient Perspective-n-

Point (EPnP) [45].
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In practice, EPnP is used for estimating the pose and Equation (3.8) is used for accepting the

estimation if it is below a certain threshold.

Finally, the computed pose is added do the optimization graph and the graph is optimized to yield

the latest camera pose estimate.

The main functional block and module interaction between Visual Odometry and Localization can

be seen in the following figure:

Figure 3.5: VO + Localization Architecture

3.3.5 Tracking other vehicles

The feature to track other vehicles in an extension to the localization part of the project.

The main reason the tracking cannot be done while performing SLAM resides with the fact that

a keyframe has to be added everytime another vehicle is found and that would slow down the al-

gorithm to a point where it would be unusable due to the clustering of keyframes. Although while

localization there is also the possibility of keyframe clustering, since the localization is done in regard

to the original map keyframes, the computational complexity remains constant throughout the whole

process.

Each vehicle to be tracked has an ArUco marker (see Figure (2.10) ) attached to its body so that

it can be seen from the tracking vehicle.

Since each ArUco marker has a different ID, this allows for multiple vehicle tracking with ease.

In each keyframe, the RGB image is searched for markers and if one is found, the camera’s pose

is extracted as explained in Section 2.2.5.

The marker itself is identified in the graph as a 3D landmark since only the position is tracked.

Creating an association in the optimization graph between that landmark and the camera’s pose

allows for the marker’s position estimate to change if the associated camera position also changes.

Since it is assumed that the vehicle is moving, if the marker is seen in another frame a new landmark

is added along with a new constraint.

To avoid outliers, usually in the form of salt and pepper noise, a robot is only considered to be
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correctly identified if there were more than one reading in the radius rmarker of any reading. All

the readings are then clustered in rmarker size clusters and the output reading is the average of the

readings inside. This average works as a low pass filter that removes small Gaussian noise that

occurs, due to the tracking vehicle estimate not being perfect, when the tracked vehicle is stopped

and the tracking vehicle is moving.
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In this chapter is focused on showing the experiment results obtained with the development of this

thesis.

It is given an overview of the used datasets in experimentation and the corresponding results

regarding visual odometry, keyframe mapping and navigation with emphasis in the time performance

of each task the optimization cost function error in various different modes.

4.1 Datasets

The experimental results presented in this chapter are processed from two different datasets that

show different aspects of the implemented software architectures.

In both datasets the data is recorded into a file using the ROSBAG application from ROS. The

dataset data is composed of four different information streams: the rectified RGB image, the RGB

camera’s calibration, the rectified depth image and a stream that gives the relative transformation

among the physical system’s most important sections. While this last stream is constant, it may be

useful in the future in the case of using a servo to change the relative pose of the camera with the

quadcopter.

The transformation stream outputs at approximately 40Hz and the other streams output at approx-

imately 30Hz. Note that this is the frequency at which the program receives data, not the frequency

at which the algorithm works.

Due the impossibility to have a reliable ground truth system such as Vicon, other means for the

analysis of the quality of the solution are resorted to.

There are numerous thresholds and constants that can be tweaked and fine-tuned to give slightly

better results concerning each environment. In the case of both datasets used, no values are changed

to show robustness concerning variability in the mapping scenario.

The most important thresholds and constant are the following:

Visual Odometry:

• Max linear distance between two features: 1 ∗ 10−4m

• Minimum number of matches: 15 pairs

• Max model size: 1600 points

• Feature detector: GFT
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Mapping and Navigation:

• Max distance between keyframes: 10 cm

• Max angular distance between keyframes: 10o

• Number of features per image: 500

• Max number of candidates frames: 10

• Minimum number of matches: 16

• Feature detector: SURF

In order to better define each dataset a brief description is given for each one:

• Dataset 1 - Flight

This dataset consists of real data acquired with a flying quadcopter 3.2.1. On this dataset, the

quadcopter starts landed on the floor. It then takes off on a vertical movement and executes two

rough consecutive square trips with two distinct orientations, as seen in Figure (4.1). After the two

trips it lands again in a slight different position.

Figure 4.1: Quadcopter orientation of dataset 1.
A) First trip orientation. B) Second trip orientation

For this dataset, the metrics used for analyzing the quality of the solution is the total error after the

graph is optimized. The total duration of the dataset is 1 minute and 34 seconds (94 seconds).

The following picture gives an overview of the captured dataset 1:
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Figure 4.2: Dataset 1 overview

• Dataset 2 - Handheld

This datasets consists of real data acquired with the RGB-D sensor navigating handheld through-

out two runs. The goal is to get a stable trajectory where a ground-truth is terms of position can

be easily obtained. In this dataset, the sensor starts already facing the path, it then navigates three

meters forward. When it reaches that point it navigates one meter back and one meter of the left.

Finally it returns one meter to the right and two meters back to the starting point. The sensor is al-

ways with roughly the same orientation throughout all the dataset. This run is used for mapping the

environment.

The following picture given an overview of the run used for mapping the environment:
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Figure 4.3: Dataset 2 mapping overview

On another run, used for navigation, while the sensor is performing the same maneuver, there

is another robot with an ArUco marker standing four meters away in the direction the sensor is fac-

ing. When the sensor returns to the starting position, the robot with the marker moves three meters

towards the sensor.

The following picture given an overview of the run used for navigating and tracking in the environ-

ment:
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Figure 4.4: Dataset 2 mapping overview

On both runs the trajectory is approximately the same with a constant orientation, following the

path described in Figure (4.5).

Figure 4.5: Sensor position while performing dataset 2

The ROSBAG files gathered while creating the datasets are available in [46].
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4.2 Visual Odometry

Regarding Visual Odometry, there is mainly one issue that has to be addressed due to the real

time performance necessity and that is the time complexity of the algorithm.

Time performance is highly related to the specification of the computer where the algorithm is

being run on.

4.2.1 Time performance

Concerning time performance, it is useful to see how much time is being used to process each

individual frame, Figure (4.6) and (4.7), and to see which processes take more time, Figure (4.8) and

(4.9).

The goal is then to obtain a visual odometry estimate with such a frequency that it is useful and

meaningful in a real time performance scenario.

Figure 4.6: Visual Odometry Frame Duration on Dataset 1

Figure 4.7: Visual Odometry Frame Duration on Dataset 2
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From the comparison of the last two figures, it is possible to see that there are some differences

in processing time related to different mapping scenarios. Even in Dataset 2, where the average

processing time is superior, a decent odometry frequency can be obtained.

Figure 4.8: Detail on Visual Odometry processing time, dataset 1

Figure 4.9: Detail on Visual Odometry processing time, dataset 2

To understand why there is variation in the registration procedure time, the number of features and

time spent can be seen in the following figure:
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Figure 4.10: Relation between number of features and the time spent processing

From the Figure (4.10) it’s possible to see that there is correlation between the two variables. The

linear regression indicates the following equation:

Time(ms) = 0.14887 ∗#Features+ 19.9

R2 = 0.8602
(4.1)

From Figure (4.8) it is easy to see that the variations of processing time observed in Figure (4.6)

are due to the variations of registration process where G-ICP is used to estimate the pose.The time

variation that appears is related to the different number of features that were processed in each frame

due to the continuous changes in the orientation of the quadcopter from and to areas that the RGB-D

sensor cannot read.

On the second dataset, since the sensor is always facing the same direction, the number added

features is more constant at a higher value than on dataset 1, creating a slightly larger processing

time.

The feature extraction process remains fairly constant throughout both datasets since it mainly

depends on the image size, which is always constant.

Total Time
Average

Total Time
Variance

Feat. Extract
Average

Feat. Extract
Variance

Registration
Average

Registration
Variance

Dataset 1 54.34 ms 272.86 ms2 18.50 ms 0.95 ms2 38.78 ms 271.97 ms2

Dataset 2 80.60 ms 56.26 ms2 18.37 ms 0.85 ms2 62.17 ms 56.31 ms2

Table 4.1: Mean and Variation time of various parts of the Visual Odometry system

4.2.2 Size Complexity

Size complexity is highly correlated with time complexity since in most problems, the time the

problem takes to solve it depends on the number of features. In this case, the more the features

extracted, the stronger the estimate is. In that perspective, there is a trade-off between robustness

and speed.
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Figure 4.11: Number of features on the model to perform ICP in Dataset 1

Figure 4.12: Number of features on the model to perform ICP in Dataset 2

Figure (4.11) and (4.12) shows the total size of the model where the G-ICP runs in order to get the

pose estimate. There is a maximum number of allowed features to be inserted in the model in order

to avoid letting it grow indefinitely. After the maximum is reached, the features are excluded using an

FIFO, where the oldest features are removed first. The slope of the graph in the beginning is only

dependent on the number of features added per frame.
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Figure 4.13: Number of features added per frame to the model in Dataset 1

Figure 4.14: Number of features added per frame to the model in Dataset 2

Figure (4.13) and (4.14) show the number of features that are added per frame to the model.

Comparing Figure (4.13) with figure (4.6) it is possible to see that the frames that take the longest

to process are the frames that have the biggest amount of features.

The fluctuation of features added per frame is usually related to filming areas where the RGB-D

sensor cannot get readings which creates a fewer number of features to add. Note that while the

frames with more features have a slower processing speed, the robustness of the estimate is usually

stronger than one frame with less features.

4.3 Keyframe Mapping

Keyframe Mapping is the core application when performing SLAM. It allows to incrementally build

a map and perform explicit loop closure when loops are found. Since the SLAM algorithm can be

run in either real-time or off-line, with different end results, it is interesting to compare them since the
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results differ significantly with the method used. In the best case scenario, the online mapping will

give the roughly the same result as the offline mapping.

4.3.1 Online Performance

In online mode, there are some performance cuts that are made in order to improve time perfor-

mance, namely the number of maximum associations, the maximum distance from a query keyframe

to the others and also the number of iterations that a pose estimation may run.

Figure 4.15: Mapping processing time for each frame in dataset 1, in real-time mode

Figure 4.16: Mapping processing time for each frame in dataset 2, in real-time mode

Figures (4.15) and (4.16) show the time breakdown into different functions that each keyframe

needs to run.

It is interesting to note that while feature extraction starts by using a large percentage of time per

keyframe in the initial frames, it is quickly overrun by the creation of the correspondences to other

keyframes. This latter process is a computational heavy processes where all the pose estimation is
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performed. In order to cap the maximum time performance, there was imposed a maximum number

of associations as indicated in Chapter 4.1.

Building the candidate matrix is a process which time performance linearly varies along the number

of keyframes. In order to avoid an unbounded growth, only the keyframes within a certain distance

are considered for pose estimation.

The solving of the graph is a rather inexpensive procedure since most calculations were already

made before, while creating the pose transform from all the candidate keyframes. There is only a slight

increase in the processing time associated with the graph solving when there were added landmarks

to the graph due to a small number of matches.

Figure 4.17: Number of Associations per frame in dataset 1, online

Figure 4.18: Number of Associations per frame in dataset 2, online

Since the dataset 1 in performed in a hostile environment for mapping, with large windows with

sunlight and the quadcopter was performing fast movements, the low number of associations per

keyframe pictured in Figure (4.17) are justified. The results only begin being acceptable in the last

frames where the robot revisits an already mapped area and is able then to perform some pose
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estimations.

In dataset 2, since the environment was better controlled, it is easy to see from the graph on

Figure (4.18) that there was a successful online mapping of the area since most keyframes have

connections. When the slope is negative the robot is exploring new areas and when the slope is

positive or constant the robot is revisiting areas already seen.

4.3.2 Offline Performance

Regarding offline mapping it is useful to note that a keyframe can be connected to any other and

not only those within a range and also the threshold of the number of iterations on the pose estimation

procedure is put at a higher value. An advantage of the offline method versus the online method is

that in offline mode, a keyframe that perform a connection to a posterior keyframe and not only with

one that happened before.

While comparing the two methods against the same dataset it is possible to see that the offline

mapping method has more keyframes that the only method. This happens because offline mapping

first gathers the frames necessary running only visual odometry and this allows to get the real distance

between keyframes near the minimum distance specified. Online mapping has to wait for a frame to

be processed before saving the next frame so when the vehicle is moving too fast, the computational

speed may not be able to catch up and frames that would be selected as keyframes in the offline

mode are thus discarded.

Figure 4.19: Mapping processing time for each frame, in dataset 1, offline mode
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Figure 4.20: Number of Associations per frame in dataset 1, offline

Comparing Figure (4.20) with Figure (4.17) it is possible to compare the number of associations

performed with both methods. It is obvious to notice that the offline method performed much better in

term of number of associations. Each keyframe takes more time to run, as pictured in Figure (4.19),

getting values as high as 12 seconds per frame.

It is also possible to see that the online mode has fewer keyframes than the offline mode. This

difference is due to the fact that the computational requirements for each keyframe analysis take more

time than the time the quadcopter takes to travel the defined distance that separates the keyframes.

Furthermore, the number of associations among keyframes has a bigger value with the offline mode,

which then provides a stronger pose estimate. This last happens because the offline mode has all

keyframe available to compare while the online mode only has the past keyframes.

Figure 4.21: Mapping processing time for each frame, in dataset 2, offline mode
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Figure 4.22: Number of Associations per frame in dataset 2, offline

In dataset 2, comparing Figure (4.18) with Figure (4.22), it can be concluded that in fact the number

of associations higher per frame which results in a map built with higher certainty. The time spend per

frame, shown in Figure (4.21), is also much higher than in online mode.

Figure 4.23: Number of features per association, dataset 1, offline
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Figure 4.24: Number of features per association, dataset 2, offline

Analyzing the average number of features per association, pictured in Figures (4.23) and (4.24), it

is possible to see that the average number of features per association in the first dataset is lower than

on the second dataset. This happends because the large windows on the first dataset create large

areas of the image that cannot be analyzed to depth information and therefore the number of useful

features per frame is much lower.

4.3.3 Trajectory Estimate

Due to the publishing of the estimated pose values over time, it is possible to draw the estimated

trajectory that the robot performed during the visits to the dataset locations. To facilitate this task, the

RVIZ tool from the ROS package is used which provides out of the box plotting tools for robot poses

and more. This allows for an easy interface with the user which enables to see the robot’s pose in a

3D space.

This way is possible to have a visual comparison between the results of both mapping execution

modes.

When visualizing the 3D map it is necessary to have attention to the following details:

• Red Arrow with a blue number - Pose of the keyframe indicated by the number

• Green line - Trajectory of the robot

• Black sphere - Position of tracked robots

• Orange line - Trajectory of tracked robots
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Figure 4.25: Robot trajectory estimation in online mode in dataset 2, visualised with RVIZ

Figure 4.26: Robot trajectory estimation in offline mode in dataset 2, visualised with RVIZ

Regarding dataset 1, it is possible to see that the outcome using online mapping, shown in Figure

(4.25), was not as good as it may be needed for a real robotic scenario. It is possible to see that some

of the keyframes were badly estimated and as such there are different layers of ground and ceiling at

different heights and an overall weak performance. Using the offline execution, the overall outcome

has a much higher quality in terms of good pose estimations. It is possible to see that most keyframes

have a correct pose estimation and the back projection of the map gives a correct result. One thing

that may be confused with bad results are the different changes in color of concurrent walls/floor. This

phenomenon happens due to the automatic aperture size regulation of the camera, as explained in

the Chapter 3.1.3.

56



Figure 4.27: Robot trajectory estimation in online mode in dataset 2, visualised with RVIZ
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Figure 4.28: Robot trajectory estimation in offline mode in dataset 2, visualised with RVIZ

In regard to dataset 2, comparing both execution modes in Figure (4.27) and Figure (4.28) it is

possible to see that both results are very similar. This was an already foreseen outcome since there

were a significant number of association among keyframes in online execution, as seen in Figure

(4.18). From the top view, it is also possible to see easily the trajectory described in the dataset

introduction which further assures the result is correct.

Interesting keyframes that can be compared to the "groundtruth" are keyframe #9 (#11 in online)

that is positioned at the tip of the path, keyframe # 15 that indicates the left extremity and finally, the

keyframe # 24 which is the end point.

Location "Groundtruth" Offline Offline Online Online Time
x;y x;y Euclidean Error x;y Euclidean Error

tip 3 ; 0 2.9 ; 0.33 0.35 3.01 ; 0.37 0.37
left 2 ; 1 1.88 ; 0.98 0.12 1.94 ; 1.08 0.1
end 0 ; 0 0.17 ; -0.26 0.31 0.34 ; -0.17 0.38

Table 4.2: Comparison to groundtruth

As seen in the Table (4.2), there are some differences compared to the groundtruth but since the

the groundtruth was obtained by following a path it should just be used as an indicator and not taken

strictly. Note also that since the path was only to give guidance on the x and y axis, it doesn’t make

sense to use any ground truth in the z axis. Another important aspect to consider is that since the
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map is constituted by keyframes, there may not be a keyframe exactly at the location of analysis thus

increasing the error. The keyframes selected were the nearest to the points of reference.

4.4 Localization

After the mapping has been done, it is possible to use that map to left-localize with any robot that

has a RGB-D sensor or a simple calibrated RGB camera.

In this scenario, while time is important for real time performance, since the localization intent is to

give discrete pose corrections, the time complexity isn’t as crucial as in mapping where a delay may

seriously impact the final result. While self-localizing, if one frame takes more time to analyze than

predicted, the only drawback is that the pose correction lags by that amount, while in mapping the lag

can create a great drop in possible matches which would degrade the quality of the map.

As in mapping, due to the lack of ground truth, the method to compare the performance is by

analyzing the optimization solver cost function error.

It is important to notice that Visual Odometry is not running while performing the RGB localization

since the depth data is not available from a simple RGB camera. This way, when estimating the

robot trajectory with the RGB-D sensor, there is already a prior that is added to the graph before the

optimization.

While self-localizing, there is also the interesting feature that allows to track other vehicles identi-

fied with an ArUco marker.

Note while the full localization algorithm consists in both visual odometry and pose corrections, in

this chapter only the pose correction performance is being analyzed since the visual odometry was

already analyzed in section 4.2.
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4.4.1 RGB-D Localization

Figure 4.29: RGB-D Localization on Dataset 1

Figure 4.30: RGB-D Localization on Dataset 1

The localization of dataset 1 was based on the same input that was used to build the map. As

such the trajectory that is built here is similar to the trajectory in figure 4.26. In this dataset no tracking

of other vehicles was made so the localization algorithm only indicates the position of the RGB-D
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sensor.

In figure 4.30, it is possible to see that the time taken to analyze each frame is approximately equal

since the complexity depends on the map size and on the number of associations made per frame.

Figure 4.31: RGB-D Localization on Dataset 2

Figure 4.32: RGB-D Localization on Dataset 2
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In the dataset 2 localization scenario, as previously explained, an ArUco marker was added so that

the RGB-D sensor could track it. It is possible to see that the sensor performs the same maneuver as

in the mapping procedure and acceptably track the other robot position (indicated with black spheres).

The processing time for the keyframes varies slightly more than in the dataset 1 example due to

more variation on the number of keyframe associations that could be created.

# Poses # Nodes # Factors Error per Factor Total Squared Error
Dataset 1 51 162 1045 0.09 m 8855.8 m2

Dataset 2 41 107 631 0.358 m 50968.9 m2

Table 4.3: Number of objects in RGB-D localization graph

By the table 4.3 it is possible to see that the error per factor in the first dataset is very small while on

the second dataset already has a more significant value. This is due to the fact that the mapping and

localization were done with the same dataset and method. In the second dataset, while the method

was the same, the localization video is different from the mapping video so the extra moving object

create extra error on some frames.

Keyframe "Groundtruth" Graph RGB-D Euclidean
x;y x;y Error

tip 3 ; 0 3.19 ; 0.32 0.37
left 2 ; 1 2.03 ; 0.99 0.03
end 0 ; 0 0.15 ; 0.01 0.15

Table 4.4: Comparison to "groundtruth" in RGB-D localization

Note that the "groundtruth" values are only an indication since the sensor navigation was done

handheld and the keyframe selected to measure was the closest to the reference point.

4.4.2 RGB Localization

Localization can also be performed with a simple RGB camera which allows for a huge variety of

application using smaller, cheaper robots.

Since the method used to estimate the pose between the RGB and RGB-D is very different, it is

interesting to see how the results differ.
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Figure 4.33: RGB Localization on Dataset 1, visualized with RVIZ

Figure 4.34: RGB Localization on Dataset 1

Analyzing figure 4.33 and comparing it with 4.29 it is possible to see that the trajectory is roughly

the same. Analyzing 4.34 it is noticeable that there is a greater number of keyframes in the RGB

localization. This happens because a keyframe that has no association with others is not added while

self-localizing and since in RGB localization the number of valid keypoints per frame is higher, since

the keypoints for which there would be no use in a RGB-D localization due to lack of depth information

can be used without any problem in a RGB localization scenario.
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Figure 4.35: RGB Localization on Dataset 2, visualized with RVIZ

Figure 4.36: RGB Localization on Dataset 2

Once again the results estimated with RGB-D show in figure 4.31 are very similar to the results

observed in the RGB localization show in figure 4.35.

# Poses # Nodes # Factors Error per Factor Total Squared Error
Dataset 1 64 175 1382 0.145 m 40598.5 m2

Dataset 2 54 133 810 0.166 m 18170.3 m2

Table 4.5: Number of objects in RGB localization graph
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Keyframe "Groundtruth" Graph RGB Euclidean
x;y x;y Error

tip 3 ; 0 2.85 ; 0.29 0.32
left 2 ; 1 2.1 ; 0.95 0.11
end 0 ; 0 0.16 ; -0.27 0.31

Table 4.6: Comparison to "groundtruth" in RGB localization

Once again, the values in the "groundtruth" are only an indication since the sensor has handheld

while performing the self-localization and that it was chosen the nearest keyframe to the reference

point which may not be exactly at the point itself.

Overall the rates at which the different modules run are:

Module Rate
Visual Odometry 12-16Hz
Real Time SLAM 0.75-1.25Hz

RGB-D Localization 0.66-1Hz
RGB Localization 0.66-1Hz

Table 4.7: System’s Module Performance Rates

65



66



5
Conclusions and Future Work

67



In this thesis RGB-D sensors were shown to provide the versatility necessary to develop a full

6D SLAM algorithm based only on the sensor data. While the visual odometry suffers from the

typical drift, noticed specially in fast rotational movements due to blur, the pose correction techniques

implemented can easily overcome that obstacle and provide a reliable pose estimation along time.

A visual SLAM algorithm was developed that can both run online and offline. While the online

mode has the obvious advantage of fast results, in the presence of environments with a lack of unique

features, the results may be sub-optimal. The offline algorithm offers the robustness that the online

algorithm lacks and provides ann optimal map in most conditions, at the trade-off of speed.

While the usage of graph-based solutions is common to the SLAM problem, by implementing incre-

mental updates with iSAM to the graph-solving algorithm it is then possible to run online optimization-

based SLAM algorithms. Due to the versatility of iSAM, it can be used both incrementally and in

batch-solving which allows for only one solver for all depicted SLAM and navigation problems reached

in this thesis.

It can be noticed from the given results that both the RGB-D and RGB pose correction algorithms

give similar results which allows for heterogeneity in robot builds, once the map has been constructed.

Finally and as future work, while some issues were approached, others were left unaddressable

and could be developed for a more complete search and rescue environment, such as:

• Usage of both RGB and RGB-D features when both are available for a more robust approach to

moving objects

• Integration with other sensors of the robots such as an IMU, which could help as a prior for pose

estimation and thus avoiding the motion blur problem.

• Experimentation with different feature extractors for faster performance, such as ORB[47] or

different feature descriptors, such as FREAK[48]

• Using other RANSAC algorithms in pose estimation [49]
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