Accelerating a Bayesian Phylogenetic Inference
Application with OpenACC

Joao Pedro de Matos Neves

Abstract—The need for faster computing has been around ever since the birth of the first computers. Faster hardware
will almost always guarantee faster computing but occasionally the rate of hardware development is not enough for
some programs to deal with the vast information they need. When these programs need to be accelerated, algorithmic
optimizations have to be done that typically require changes to the program structure, in order to take advantage of
parallel architectures, such as Graphics Processing Units (GPUSs).

Several frameworks have been developed to take advantage of the GPUs available parallelism. However, this typically
requires major changes to the original program as well knowledge about the target GPU architecture. OpenACC is
a recent technology which targets the simplification of this process by giving compiler hints about the parallelization
strategy.

This thesis targets the acceleration of an important bioinformatics application using OpenACC. Thus, two important
results are taken: a) a performance comparison with CUDA; and b) a performance comparison with other parallel
implementations of the program.

Results show: that CUDA can have up to 2 times the performance of OpenACC regarding a single kernel, an overall
4.1 speed-up is achieved over the original serial MrBayes and that this implementation introduces some overhead when

compared to the state of the art but scales much better for larger datasets than the latter.

Index Terms—GPGPU programming frameworks, Phylogenetic Inference, OpenACC, MrBayes.

1 INTRODUCTION

OORE’s Law has impacted the world
Mof computing since it is appearance
in 1965 [Mack, 2011]. Roughly, Moore’s Law
states that the number of transistors in a chip
doubles every 18 months [MOORE, 1998]. For
the last three decades, Moore’s Law along with
Dennard scaling [Robert H. Dennard, 1974]
and device, circuit, microarchitecture,
architecture, and compiler advances led to
an exponential growth of microprocessor’s
performance [Hadi Esmaeilzadeh, 2011]. The
strive for greater performance led computer
engineers to adopt parallel multi-core architectures
for CPUs, and to enable general purpose features
on GPUs instead of just the usual graphical
features (GPGPU).

The main contributions of this document in-
clude using the new and emerging technology of
OpenACC and explaining what type of OpenACC

e |. P. M. Neves is with Instituto Superior Técnico (IST) from
Universidade de Lisboa.
E-mail: joao7neves@gmail.com

features are best suited for GPGPU computing. A
comparison in terms of performance between the
OpenACC technology and the CUDA technology
is presented. A good profile of the target program
is presented for both its serial and parallel ver-
sions. This document compares the implementation
achieved with other CUDA based state-of-the-art
implementations. An overall speed-up of 4.1x over
the original serial target program was achieved.

The target application is MrBayes 3.2.1. MrBayes
is a bioinformatics application. MrBayes uses the
DNA information of multiple species and attempts
to reconstruct the phylogenetic tree of that group of
species [John P. Huelsenbeck, 2001]. MrBayes can
greatly benefit from parallel computing in gen-
eral and the power offered by GPGPU in par-
ticular because the number of possible phyloge-
netic trees grows exponentially with the num-
ber of species as shown by the following Equa-
tion [Felsenstein, 1978]:

(2s — 3)!

Bls) = sag o

@

where B(s) represents the number of trees and s
the number of species. This means that there are a

total of ~ 3 x 107 possible trees for 10 species, or
~ 2 x 10! trees for 15 species.

2 RELATED WORK

To the extent of the author’s knowledge, currently
there are the following parallel implementations of
MrBayes that take advantage GPUs to accelerate the
application’s execution:

2.1

The first parallel implementation of MrBayes was
performed by Pratas et. al. [Frederico Pratas, 2009].
In this work, the authors, tried to compare the per-
formance of different computing architectures for
philogenetic inference, namely: multi-core CPUs,
IMB’s Cell processor and NVIDIA’s GTX 285 GPU.
This work foccused on the parallelization of the
Likelihood function. This function represents most
of the computational time spent by the application,
and the natural target for acceleration on parallel
architectures. Nevertheless, the authors have also
shown that the huge memory bandwidth require-
ments for the data transfers between the CPU and
the GPU result in a reduced performance, and other
algorithmic changes should be introduced in order
to further improve the execution.

Parallel Phylogenetic Likelihood Function

2.2 nMC3

In the sequence of the above mentioned work, an
improved version of MrBayes (nMC3) has been pro-
posed in [Jianfu Zhou and Wang, 2011]. This ver-
sion has the following improvements:

« nMC? exploits extra parallelism between the
CPU and the GPU.

« nMC3 uses a pipelining strategy to overlap as
much as possible the execution on the CPU and
GPU.

« nMC3 reduces the number of total CPU-GPU
transfers by transferring them as a single batch.

o The site likelihoods are also computed by the
GPU.

All of this causes nMC? to have an overall much

better performance than the aforementioned imple-
mentation [Jianfu Zhou and Wang, 2011].

2.3 oMcC?

hMC? [Zhou et al., 2010] and
oMC? [Jun Chai, 2013] propose coarser-grain
parallel approaches. They introduce further

improvements to nMC3, namely by using OpenMP,
MPI, and CUDA. oMC? targets multiple computers
(called nodes) each with a multi-core CPU and at
least one GPU. It begins by distributing the Markov
chain Monte Carlo among the nodes. Each node
has some CPU cores dedicated to computation and
other CPU cores to serve as GPU hosts. The first
CPU cores use OpenMP to distribute the workload
among them and the others use CUDA to send
some of the work to the GPU [Jun Chai, 2013].

24 tgMC?

Much like oMC?, tgMC? is based on the nMC?
algorithm, but it improves it substantially. The main
idea behind this algorithm is to fuse all of the ker-
nels used in nMC? into a single kernel in order to
prevent excessive global to local memory transfers
on the GPU side [Ling et al., 2013].

3 FRAMEWORKS
3.1 CUDA

CUDA (Compute Unified Device Architecture) is
a “parallel computing platform and program-
ming model” developed by NVIDIA [nVidia, 2013].
CUDA is available for C/C++ and Fortran and
enables the programmer to write parallel code for
the GPU.

CUDA is a high level language
(an extension of the ANSI C lan-
guage [Ali Bakhoda and Aamodt, 2009]) which

allows the programmer to write functions that
run on each CUDA core of the GPU in an SIMD
(Single Instruction Multiple Data)' fashion. This
means that every CUDA core will process the same
instruction but on different data. In addition to
this, CUDA has some built-in functions to transfer
memory from and to the GPU.

A kernel in CUDA can be declared using the
“__global " declaration specifier. The number of
threads a kernel will launch can be specified with
the “<<<..>>>" syntax. The unique thread ID
each thread has can be accessed through the vari-
able “threadldx”. Variable “blockIdx” is used to ac-
cess the blocks unique IDs and variable “blockDim”
contains the dimension of the block.

CUDA related functions wusually have their
names begin with “cuda”. The “cudaMemcpy” is

1. NVIDIA, calls this SIMT (Single Instruction Multiple
Thread) rather than SIMD but the meaning of both are sim-
ilar [S. Huang, 2009].

used for transfering data both from and to the GPU.
The distinction between the two cases is done with
the last argument of the function: “cudaMemcpy-
HostToDevice” defines a memory transfer from the
CPU to the GPU and “cudaMemcpyDeviceToHost”
defines a memory transfer from the GPU to the
CPU.

3.2 OpenACC

Much like what OpenMP [Bob Kuhn, 2010],
[OpenMP Architecture Review Board, 2013] does
for CPU threads, OpenACC does for GPU threads.
OpenACC reduces some of the complexity inherent
to parallel programming, thus the only thing the
programmer needs to do is to give some hints to the
compiler (called pragmas) as to indicate the regions
of the serial code that can be parallelized to run on
the GPU. These hints are a “collection of compiler
directives to specify loops and regions of code
in standard C, C++ and Fortran to be offloaded
from a host CPU to an attached accelerator,
providing portability across operating systems,
host CPUs and accelerators” [OpenACC, 2013].
This allows the programmer to parallelize code
much faster than with CUDA, but like OpenMP
one looses some control over what the GPU might
be executing.

OpenACC first appeared as a standard in
November, 2011 with its 1.0 version specifica-
tion [OpenACC-Standard.org, 2011]. This specifica-
tion describes the features of the different basic
pragmas available and required to write a parallel
kernel.

Some of the most important pragmas are:

o parallel - allows to transform a single for loop
into a parallel kernel. Can be used with the
loop construct to specify how the paralleliza-
tion is done.

o kernels - similar to the parallel pragma but at-
tempts to parallelize the inner nested for loops
as well. Can be used with the loop construct
to specify how the parallelization is done.

o data - allows management of data between the
CPU and GPU within the surrounding region
of code. It’s used to create a data region.

It is worth noting that OpenACC allows for two
types of parallelization approaches: i) automatic
parallelization, where the compiler attempts to par-
allelize the regions identified by the programmer
with the basic available pragmas (”parallel” and

“kernels”) without the need for any other infor-
mation; and ii) manual parallelization, that much
like in OpenMP, allows the programmer to have an
extra level of control over the execution by provid-
ing additional hints to the compiler. However, ex-
perimental results obtained in the study presented
herein suggest that it is almost always better to
specify how the parallelization is done manually.
When the compiler attempts to parallelize a loop,
it checks if the loop is data independent. If this
condition is not verified no parallelization is done
whatsoever.

4 PARALLELIZATION STRATEGY

In order to devise the best parallelization strat-
egy for MrBayes under OpenACC, we first
present an approach similar to the one used
in [Frederico Pratas, 2009]. This allows to compare
the performance of the computing system when
using CUDA and OpenACC, as will be shown later
in this document.

In order to have comparable results between the
different implementations and different runs of the
target application (MrBayes v3.2.1), we disabled
some computation shortcuts and CPU optimiza-
tions, and we have fixed the random seeds to a
tixed number. The target program (MrBayes 3.2.1)
is set to run in DEBUG_NOSHORTCUTS mode
which disables all computing shortcuts for process-
ing phylogenetic trees.

To better understand MrBayes’ structure and to
find its bottleneck, the application was profiled
with KCachegrind. This revealed the number of
times each function is called and the percent-
age of execution time it consumes. LogLike (used
to compute the likelihood of a tree) is the first
function called more than once during the pro-
gram. This function has a surrounding for loop
and it is one of the primary functions respon-
sible for the computation of the MCMC algo-
rithm. The LogLike function then calls two other
very important functions: CondLikeDown_NUC4
and the CondLikeScaler NUC4. The relevance
of these functions is due to the fact that they
are called more frequently during the execution
and represent most of the computational burden
of he algorithm. In fact, CondLikeDown_NUC4
is the most time consuming function of the
entire program. However, for each tree’ node

2. The tree referred is the phylogenetic tree which is repre-
sented as a tree (an acyclic graph) in the program.

(iteration), either the CondLikeDown_NUC4 or
the CondLikeScaler NUC4 function is called and
never both. It makes no sense to parallelize
the CondLikeDown_NUC4 function without the
CondLikeRoot_NUC4 function because the per-
centage of times the CondLike Root_NUC4 function
is chosen over the CondLikeDown_NUC4 function
varies from input file to input file. Both these
functions serve to calculate node likelihoods and
are composed of a for loop nested in another for
loop. These loops read data from the ti Probs matrix
and store the results in the condLikes matrix.

It is worth noting that the
CondLikeDown_NUC4 and the
CondLikeRoot. NUC4 functions are also
the same functions that were parallelized

in [Frederico Pratas, 2009]. By doing this, this study
follows the same strategy as the aforementioned
state-of-the-art which ensures that there is a fair
comparison between these two frameworks later
in this document.

Other than the two functions mentioned
there is also the CondLikeScaler_NUC4
function. = This function = comes second
to the CondLikeDown_NUC4 and the
CondLikeRoot NUC4 functions in terms of
execution time consumption but it is important to
achieve a better result later in this study.

5 CoNDLIKEDOWN AND CoNDLIKEROOT
5.1

Since CPU and GPU have physically and logically
separated memory spaces, the first concern when
trying to parallelize code using GPUs should be
to transfer the necessary data to the GPU so that
it can perform the necessary computations. Logi-
cally the first step will be to create a data region
for each function surrounding parallel computa-
tion part of the code (the outermost for loops).
However, MrBayes uses dynamic allocated memory
to meet the needs of each input file. This means
that the data length is only known at runtime and
the compiler is unable to know its length before-
hand. While this may seem a simple issue, that
could be solved by using explicit data allocations
and transfers to/from the GPU at runtime, it is
not because handling this type of information in
OpenACC is done in an implicit way. Therefore,
to solve this issue, it is necessary to associate a
variable, containing the size of the data arrays, to
the data regions, such that the compiler is able to

Implementation

automatically extract this information. With this in
mind, the correct OpenACC directives to be used
in this case are “copyin” for the data that must
be passed to the GPU memory and “copyout” for
the results produced on the GPU and that must be
copied back to the CPU.

Once the data region is set up, the next step
needed in order to run the program on the GPU is
to tell the compiler how the parallelization is going
to be done. Since there are nested loops in both
functions, the correct pragma to use is “kernels”.
These loops use pointer arithmetic and this issue is
critical because not only this is not a good practice
with the GPU but also it is harder for the compiler
to comprehend and parallelize pointer arithmetic.
This is related for example with the fact that it
is much more difficult to automatically identify
and follow dependencies within the code. Logically
follows that pointer arithmetic cannot appear any-
where in the code that needs to be parallelized with
OpenACC which in turn means that the absolute
index for each variable must be manually calculated
and inserted in the code.

Even after removing the pointer arithmetic from
the code the compiler still had some problems
parallelizing these functions. The parallelization it
was doing was not very effective because it was
trying to distribute each loop iteration through the
available CUDA cores and the inner loop’s work
can be further split into smaller work units for
a better workload balancing. What this means in
practice is that an extra for loop was added so that
the compiler could understand that it was possible
to distribute the inner loop’s work as well.

5.2 Optimization
accesses on GPU

considering memory

The parallelization strategy described above had
some problems. These problems can be summarised
as:

o Excessive memory allocations on the GPU side.

« Lack of optimization of the kernel itself.

o Excessive memory transfers between CPU and
GPU.

The first two points of the list have greater im-
pact on the performance of the parallelized func-
tions known as CondLikeDown_NUC4_OpenACC
and CondLikeRoot_ NUC4_OpenACC and the last
point impacts mostly on the overall performance.
Since reducing the amount of data transferred be-
tween the CPU and GPU is a greater problem that

affects a large portion of the MrBayes program, this
section only focuses in tackling the first two points.

In order to prevent the excessive memory alloca-
tion on the GPU, one must only allocate the mem-
ory once and instruct the GPU to reuse that same
space. As mentioned before this is not a simple
task due to the nature of OpenACC and how it
implicitly tries to capture the information provided
by the programmer. The memory required for this
case are two matrices which are used to store the
conditional likelihoods and the transitional proba-
bilities.

Allocating a large enough space to accommodate
the entirety of the data in the application has its
own problems. The biggest problem that could
be faced with this approach would be the GPU
not having enough memory to accommodate the
required data. In this particular case, this does not
represent a significant issue since the maximum
size these matrices can have for the input test cases
considered represent a total of 236825344 floats,
i.e., about 900 MiB. The available memory on the
GPU used in this thesis is 1536 MiB. However,
should there be a larger input file that would exceed
the available memory then a different memory
management strategy would be needed since the
matrices would not be able to fit in. This would
require to transfer part of the memory to the GPU
and rotate the part of the memory that is in the
GPU according to the program needs. The matrices
mentioned above are: the tiProbs matrix and the
condLikes matrix.

6 OVERALL ACCELERATION AND MEMORY
TRANSFERS OPTIMIZATION

6.1 CondLikeScaler

This function is composed of a main for loop witch
contains two separated inner loops and some calcu-
lations. It is used to prevent underflow and requires
for the for loop to be modified substantially. The the
two inner loops and the work done by the outer
loop are fairly independent, this large loop is thus
be subdivided into 3 smaller loops:
o A first double for loop containing the first inner
loop.
o A second double for loop containing the sec-
ond inner loop.
o A third for loop containing the work done by
the outer loop.
This simplifies the loops for the compiler, allow-
ing it to be able to fully understand and success-

tully parallelize the loops. However, to perform this
simplification for the compiler, several intermediate
transformations require the use of extra memory:
the intermediate results need to be stored in an
array so that the next loop can continue where the
previous one left off.

Due to the fact that only the first two smaller
loops need and transform data from the condLikes
matrix it is a good strategy to only parallelize the
tirst two smaller loops for this specific objective.

For this particular case it was necessary to guar-
antee that the compiler is able to understand that
the condLikes matrix is already on the GPU mem-
ory and that it is necessary to allocate auxiliary
variables to accommodate the intermediate results.
This is done by creating a data region surrounding
both loops with the array for the intermediate
results. Once this was done, it was simply a matter
of using a kernels pragma to attempt to parallelize
the loops.

Still, these for loops required one last modifica-
tion to run smoothly. The inner loop of the first
smaller loop was manually unrolled to prevent
the compiler from assuming that a variable should
be shared among the threads when it should be
private. This misunderstanding was ruining the
results.

6.2 Memory Output Reduction

In order to truly avoid data transfers related to
the condLikes matrix, it is necessary to paral-
lelize the Likelihood_NUC4 function in addition to
the CondLikeScaler_NUC4 function. This function
consists of a for loop that calculates the final likeli-
hood of the tree which is stored in the InL variable.

There are two main challenges when parallelizing
this function:

o The compiler assumes that the like variable
should be shared among the threads when it
should be a local variable for each thread.

o There is need of a reduction clause to sum all
of InL.

The first point is tackled in a similar manner
to the one used in the previous section. As for
the second point, a counterintuitive approach much
be followed, namely: the InL variable must only
appear in the reduction clause and never appear in
a copyout clause. If a data clause (such as copyout)
is used in conjunction with a reduction clause,
the data clause will overwrite the result from the

reduction clause and cause the loss of data that was
previously stored in that variable.

By applying this last technique it was possible to
remove every single memory transfer related to the
condLikes matrix. However the scaler function also
requires its own memory transfers which in turn in-
troduced a non neglectable overhead. Resorting to
KCachegrind and inspecting the original MrBayes
code reveals three other functions that use the same
data as in the CondLikeScaler_NUC4_OpenACC
function:

e RemoveNodeScalers.
o CopySiteScalers.
o ResetSiteScalers.

These functions will be tackled in the next sec-
tion.

6.3 Memory Transfers Optimization

As already stated before, in order to remove the
memory transfers between CPU and GPU associ-
ated with the CondLikeScaler_NUC4_OpenACC
function it is necessary to parallelize 3 other func-
tions: RemoveNodeScalers, CopySiteScalers and
ResetSiteScalers. To parallelize these functions a
data region associated with a kernels pragma is
needed. Each of the three functions mentioned is
composed of one for loop. These for loops are
simple enough for the compiler to fully understand
them and for both the data region and the kernels
pragma be joined in the same pragma.

In addition to these functions it was
also necessary to parallelize the remainder
of the already partially parallelized
CondLikeScaler_NUC4_OpenACC function
that was not parallelized in Section 6.1. Again,
data region and a kernels pragma are enough to
parallelize this particular for loop.

Before removing the data transfers, however, it
was necessary to merge every array allocated on
the GPU into one single contiguous memory ar-
ray to prevent contiguous memory shortages on
the GPU side. As the GPU is already executing
a considerable portion of the program, there were
some GPU memory issues to be attended. The
program was having a runtime error that informed
that some of the arrays used in the GPU could
not be stored on the GPU memory. Applying the
techniques mentioned throughout this document
requires additional memory space on the GPU. This
variation is due to several intermediate results that
are now kept on the GPU side. For example, for

the largest input test used in this study, the memory
used has grown up to 942 MiB. Although this value
is still far away from the maximum 1536 MiB avail-
able on the GTX 580 graphics card used, there is not
enough continuous memory space to accommodate
the largest arrays. This issue can be overcome by
allocating a single larger array containing all of the
needed space on the CPU and then making the
pointers point to specific parts of this larger array
so that all of the necessary arrays are contained in
the larger array. Then, when allocating space on the
GPU with OpenACC, only the larger array needs
to be allocated. This strategy allows to retain all of
the previous indexes since the individual pointers
to the GPU memory continue to exist.

After doing this, all of the memory trans-
fers associated with the condLikes matrix and
the CondLikeScaler_NUC4_OpenACC function
were removed. The only memory transfer left
is the initial values needed but this only oc-
curs once per program execution. Finally there
were some final optimizations to be done to the
code. There was a buggy present clause in the
CondLikeScaler_NUC4_OpenACC function that
was preventing the correct parallelization of that
same function. There were also some excessive
memory allocations of smaller arrays on the GPU
side that were removed.

7 COMPARISON BETWEEN CUDA AND OPE-
NACC

With the level of development of Section 5.2, this
document is able to compare it with a very sim-
ilar CUDA implementation. The parallel imple-
mentation of MrBayes discussed in Section 2.1 is
indeed very resemblant of this implementation.
Both implementations focused on parallelizing the
CondLikeDown_NUC4 and CondLikeRoot_ NUC4
functions.

Since the implementation of Section 2.1 restricted
its parallelization to these two functions, it is a good
choice to make the comparison between CUDA and
OpenACC. The other implementations of Section 2
usually modify much more than just these two
functions.

The comparison chart between CUDA and Ope-
nACC can be seen in Figure 1. This chart shows
both the speed-up of the functions as well as the
speed-up of the whole program for both CUDA and
OpenACC. “Full OpenACC Speed-up” (dark blue)
refers to the speed-up of the whole program using

B
3
2

f
=cuato

i Al al

an.

Fig. 1. Comparison between CUDA and OpenACC.

OpenACC. “Full CUDA Speed-up” (purple) refers
to the speed-up of the whole program using CUDA.
“Down/Root OpenACC Speed-up” (green) refers
to the speed-up of the CondLikeDown NUC4
and CondLikeRoot_NUC4 functions parallelized
with OpenACC. “Down/Root CUDA Speed-
up” (light blue) refers to the speed-up of the
CondLikeDown_NUC4 and CondLikeRoot NUC4
functions parallelized with CUDA.

As it is possible to see through the functions’
speed-up, OpenACC has nearly half the perfor-
mance of CUDA and in some cases it is even worse.
The reason behind this involves some fine tuning
that it is only possible to do when the kernel is
coded with CUDA, but mostly it is due to the
differences between the two frameworks and the
automatism that OpenACC introduces when gen-
erating the kernels. Thus some loss of performance
was to be expected.

8 RESULTS

All of the memory transfers between CPU and
GPU were greatly reduced. This means that it is
expected that the overall performance is greatly
improved. The execution time for the final imple-
mentation can be seen in Figure 2. A more de-
tailed version can be seen in Figure 3. “Down/Root
Total/Kernel”, “Scaler Total/Kernel”, “Likelihood
Kernel”, “RemoveNode”, “CopySite” and “Reset-
Site” refer to the execution time of their respective
functions without memory transfers. “Down/Root
Update” and “Likelihood Data” refer to the mem-
ory transfers associated with their respective func-
tions. “memc total” and “memc update” refer to the
initial memory allocation and transfer of the initial
data. “OpenACC init” refers to the initialization of

“
o

Fig. 2. The execution time of the final version.

I
>

“
o % i

Sy,
o, v

3

%,

o,
Lo

%,

%,

o m——
o % E——

Fig. 3. A detailed version of the final execution time.

OpenACC and “Serial Part” refers to the serial part
of the program.

The speed-up for the final version can be seen in
Figure 4. “MrBayes GPU” refers to the speed-up of
the whole application as considered in this thesis.
“Down/Root”, “Scaler” and “Likelihood” refer to
the speed-up of their respective functions. “Total
functions” refers to the speed-up of “Down/Root”,
“Scaler” and “Likelihood” when their accumulated
time is compared to the accumulated time of the
original functions. From this Figure it is possible to
see that the overall maximum speed-up has now
increased to 4.1, thus providing the program with
a decent overall performance.

9 CONCLUSIONS

This document presented a performance compari-
son between OpenACC and CUDA.

P—

Fig. 4. The detailed speed-up for the final version of
this thesis.

The development process for this document en-
countered some obstacles with OpenACC, namely:

1) The compiler cannot parallelize complex or
data dependent for loops.

2) The compiler generates kernels with poor
workload balancing.

3) The compiler does not recognise a closed data
region.

4) OpenACC cannot access a regular dynami-
cally allocated matrix of data.

5) The application returns wrong results when
using both the copyout and the reduction
clause.

6) OpenACC reports that a certain array is only
partially present on the GPU when it should
be in its full extent.

And the solutions found for these problems are

as follows:

1) Simplify the
independent
array indexes.

2) Adjust the values of gang, workers or vector
clauses and create extra inner for loops as
necessary, thus providing finer-grained paral-
lelization possibilities.

3) Include all possible exit points in the data
region or include the whole function call in
the data region.

4) Transform non-contiguous into contiguous
memory regions.

5) If a variable appears both in a copyout and a
reduction clause, the copyout clause overrides
the result from the reduction clause. Remov-
ing the variable from the copyout clause solves
this issue.

6) It is necessary to: make sure the data region is
correct, either join all of the GPU arrays into

for

clause.

loops and wuse the
Manually calculate

one or transfer only part of the array at a time.

The implementation performed in this thesis
achieved an overall speed-up of 4.1x over the orig-
inal serial MrBayes 3.2.1.

REFERENCES

[Ali Bakhoda and Aamodt, 2009] Ali Bakhoda, George
L. Yuan, W. W. L. F. H. W. and Aamodt, T. M. (2009).
Analyzing CUDA Workloads Using a Detailed GPU
Simulator.

[Bob Kuhn, 2010] Bob Kuhn, Paul Petersen Kuck & Asso-
ciates, I. E. O. C. C. C. (2010). OpenMP versus Threading
in C/C++.

[Felsenstein, 1978] Felsenstein, J. (1978). The Number of Evo-
lutionary Trees. Systematic Zoology, 27(1):27-33.

[Frederico Pratas, 2009] Frederico Pratas, Pedro Trancoso, A.
S. L. S. (2009). Fine-grain Parallelism using Multi-core,
Cell/BE, and GPU Systems: Accelerating the Phylogenetic
Likelihood Function. IEEE Computer Society, pages 9-17.

[Hadi Esmaeilzadeh, 2011] Hadi Esmaeilzadeh, Emily Blem,
R. S. A. K. S. D. B. (2011). Dark Silicon and the End
of Multicore Scaling. Proceedings of the 38th International
Symposium on Computer Architecture.

[Jianfu Zhou and Wang, 2011] Jianfu Zhou, Xiaoguang Liu, D.
S.S. Q. X. and Wang, G. (2011). MrBayes on a Graphics
Processing Unit. Bioinformatics, 27(9):1255-1261.

[John P. Huelsenbeck, 2001] John P. Huelsenbeck, F. R. (2001).
MRBAYES: Bayesian inference of phylogenetic trees. Bioin-
formatics Applications Note, 17(8):754-755.

[Jun Chai, 2013] Jun Chai, Huayou Su, M. W. X. C. N. W. C. Z.
(2013). Resource-efficient utilization of CPU/GPU-based
heterogeneous supercomputers for Bayesian phylogenetic
inference. Springer.

[Ling et al., 2013] Ling, C., Hamada, T, Bai, J., Li, X,
Chesters, D., Zheng, W., and Shi, W. (2013). Mrbayes
tgmcejsup,3j/sup;: A tight gpu implementation of mrbayes.
PLoS ONE, 8(4):e60667.

[Mack, 2011] Mack, C. A. (2011). Fifty Years of Moores
Law. IEEE TRANSACTIONS ON SEMICONDUCTOR MAN-
UFACTURING, 24(2):202-207.

[MOORE, 1998] MOORE, G. E. (1998). Cramming More Com-
ponents onto Integrated Circuits. PROCEEDINGS OF THE
IEEE, 86(1):82-85.

[nVidia, 2013] nVidia (2013). http:/ /www.nvidia.com/object/cuda_home_

[OpenACC, 2013] OpenACC (2013). http://openacc.org/.

[OpenACC-Standard.org, 2011] OpenACC-Standard.org
(2011). The OpenACC™ Application Programming
Interface.

[OpenMP Architecture Review Board, 2013] OpenMP Archi-
tecture Review Board (2013). http://openmp.org/wp/.
[Robert H. Dennard, 1974] Robert H. Dennard, Fritz
H. Gaensslen, H-N. Y. V. L. R. E. B. A. R. L. (1974).
Design of Ion-Implanted MOSFETS with Very Small
Physical Dimensions. IEEE JOURNAL OF SOLID-STATE

CIRCUITS, sc-9(5):256-268.

[S. Huang, 2009] S. Huang, S. Xiao, W. F. (2009). On the
Energy Efficiency of Graphics Processing Units for Scientific
Computing.

[Zhou et al., 2010] Zhou, J., Wang, G., and Liu, X. (2010). A
new hybrid parallel algorithm for mrbayes. In Proceedings of
the 10th international conference on Algorithms and Architectures
for Parallel Processing - Volume Part I, ICA3PP’10, pages 102—
112, Berlin, Heidelberg. Springer-Verlag.

