TECNICO
LISBOA

o

OpenSSL acceleration using Graphics Processing Units

Pedro Miguel Costa Saraiva

Thesis to obtain the Master of Science Degree in
Information Systems and Computer Engineering

Examination Committee

Chairperson: Doctor José Carlos Martins Delgado
Supervisor: Doctor Ricardo Jorge Fernandes Chaves
Member of the Committee: Doctor José Carlos Campos Costa

October 2013

Abstract

Cryptography: The study of techniques focused on security. Typically, an implementation of
cryptography is computationally heavy, leading to performance issues on general purpose sys-

tems. Adding the possibility of offloading cryptographic operations to a Graphics Processing Unit

(GPU) onto a widespread, open-source cryptographic library such as OpenSSL would be ex-
tremely useful in lightening the CPU load for application logic. GPUs, while originally designed
to accelerate graphics processing, have been recently gained usage for unrelated, general pur-
pose computing, due to their massive parallel computing power. As such, two main frameworks
designed to take advantage of a GPU for general purpose computing have been developed in the
last few years: NVIDIA’s proprietary CUDA and the Khronos Group’s open standard OpenCL. In
this paper we present high-performance acceleration of the OpenSSL library using both OpenCL
and CUDA, specifically for the RSA and AES algorithms. Our evaluation shows that AES decryp-
tion can be over forty times faster than the standard CPU implementation, and that RSA keys
can be generated over ten times faster than on a CPU. We also study the possibilities of CBC
encryption and RSA ciphering, and and conclude why those algorithms are unfeasible to run on
a GPU from within OpenSSL.

Resumo

Criptografia: O estudo de técnicas de seguranca. Tipicamente, uma implementacao crip-
tografica € computacionalmente pesada, o que leva a problemas de performance. Seria util
implementar a possibilidade de fazer o offloading de operagées criptograficas para uma placa
grafica (GPU - Graphics Processing Unit) numa biblioteca comum, espalhada e de codigo livre
como o OpenSSL de forma a poder libertar o uso do CPU para aplicagoes. Apesar das placas
graficas terem sido desenhadas com o intuito de processar graficos, recentemente tém ganho
uso para computacao geral, devido ao seu poder paralelo. Assim sendo, duas bibliotecas desen-
hadas com o intuito de aproveitar o GPU para computagao geral foram desenvolvidas: o CUDA
da NVIDIA e o OpenCL do Khronos Group. Nesta tese, apresentamos aceleragao de alta per-
formance de certos algoritmos do OpenSSL utilizando ambos — especificamente, os algoritmos
AES e 0 RSA. Os nossos testes demonstram que a decifra do AES pode ser até quarenta vezes
mais rapida do que uma implementacdo normal num CPU, e que chaves RSA podem ser ger-
adas até dez vezes mais rapidas do que num CPU. Também estudamos as possibilidades da
cifra CBC e RSA, e chegamos a conclusao de que estes algoritmos nao devem ser corridos no
GPU através do OpenSSL.

Keywords

OpenSSL GPU OpenCL CUDA AES RSA

Contents

1__Introduction| 1
Motivationl e 2

1.2 Objectives and Contributions| 2
[1.3 Requirements|. e 3
{4 DocumentStructurel 3
2 f the ar 5
2.1 OpenSSL 6
[2.1.1 Symmetric-key algorithms| o oL 6
2AT.A AES|. e 7

[2.1.2 Assymetric-key algorithms|. 9
212A RSAl. 9

[2.1.3 _Cryptographic hashing algorithms) 10

2.2 GPUl e e 10
[2.2.1 Programmingonthe GPU|. oo 11
.29.A History] 11

221.B CurrentGPUsl 12
...................................... 13
....................................... 13
penCLvs CUDA| 14

2.2.5 HowtoprograminOpenCL| 14
R25A Platformmodell. o 15

225B Execufionmodel 15

22.5.C Memorymodel 16

[2.2.5.D Programmingmodel| o0 17

[2.2.6 Main challenges in GPU programming| 17
[2.2.7 Existing implementations of cryptography onthe GPU| 18
2.2.7. pen -GPUl . 18

2.2.7. ryptoCL| 18

Contents

[2.2.7.C Fast Implementation of Two Hash Algorithms on NVIDIA CUDA GPU| 18

227D OCLCrypto]. . . . v v o e e e e e 19
............................... 19

2. nclusionl 19

3 Implementation| 21
1 Intr O] .« o o e e e e e e e 22
3.2 OpenSSL e 22
PUENginel 22

B.3 AES| . . 22
3.3.1 Parallelisml 22

B3.2 Execufionflow] 23

[8.4 RSAKey Generation| e 24
8.4.1 Parallelisml 24

B42 Executionflow] 24

IPNEeN . . o e e 25

851 Parallelism| 25

2 EX onflowl 25
4_Resulis| 27
[4.1 Infroductionl e e e 28
42 Besulfsl 28
421 AES| . . . e 28
4.2.1.A CBC Decryption| 28

4.2.1.B CBCEncryption| 29

421.C ECBl. 31

422 RSAl . . . 32
4.2.2.A Key Generation| oL 32

[F228B Cipherl 34

4.3 Conclusionl e 35
5 Conclusions! 37
B.1 Conclusionl e e 38
0.2 Futureworkl 38

List of Figures

[2.1Structure of the AES algorithm| 8
2.2 OpenCLmemorymodel 16
4.1 AES CBC Decryption Times|. 29
4.2 AES CBC Encryption Times|. 30
4.3 AES CBC Encryption Times - Heavy CPU Load|. 30
4.4 AES ECB Encryption Times| 31

5 ecryption Times|. 32

List of Figures

vi

Introduction

Contents
....................................... 2
[1.2 Objectives and Contributions| 2
1.3 Requirements| it e e 3
1.4 _Document Structurel. e 3

1. Introduction

Cryptography is the study of mathematical techniques focused on information security, in-
cluding confidentiality, data integrity, and authentication. An implementation of cryptography is
typically comprised of computationally intensive algorithms which are used by applications when
encrypting, decrypting, and hashing data. Some implementations also include authentication and
verification techniques.

One well-known application of cryptography is the Secure Sockets Layer (SSL) protocol. Orig-

inally developed by Netscape, SSL is a set of rules that govern authentication and encrypted
communication between clients and servers. As the growth of secure website deployment rose
rapidly, the SSL protocol became the de facto standard for secure electronic commerce. The SSL
protocol is built into all popular web browsers. However, due to the computationally intensive na-
ture of SSL technology, many of these sites struggle as demand rises, as large volumes of SSL
traffic can impact the performance of even the most powerful general purpose web server sys-
tems. Therein, this thesis proposes adding functionality to take advantage of a GPU for cryptog-
raphy onto an existing, widespread cryptographic framework (OpenSSL), leaving the CPU mostly
free for other tasks without requiring the use of specialised, expensive cryptographic accelerator

cards.

1.1 Motivation

Cryptographic operations are computationally intensive. Applications that perform frequent
cryptographic operations, such as web servers, either typically take a large amount of CPU cy-
cles from the system, or are deployed in systems incorporating cryptographic accelerator cards,
to offload cryptographic operations and save system CPU cycles for application logic. These
strategies typically result in complex deployment scenarios. The possibility of offloading crypto-
graphic operations to a common processor present in most modern desktop computers would
be extremely useful in lightening CPU load for other applications. Additionally, given the massive

parallel capabilities of current GPUs, a significant performance increase can be achieved.

1.2 Objectives and Contributions

The goal of this work is to efficiently offload cryptographic operations onto a Graphics Processing

Unit (GPU). The objective is to add functionality to take advantage of a GPU for cryptography onto
an existing, widespread cryptographic framework (OpenSSL), leaving the CPU mostly free for
other tasks without requiring the use of specialised, expensive cryptographic accelerator cards.
Our focus is on algorithms with a good chance to perform well on a GPU (see section [2.2.6] for
more details on this), in order to attempt a significant improvement in performance and lighten the
load on the CPU.

1.3 Requirements

1.3 Requirements

The requirements for this work are to achieve faster cryptographic operations from within
OpenSSL using a Graphics Processing Unit. The result must be implemented in such a way that it
can be effortlessly applied to any existing application that already uses OpenSSL for cryptographic
operations. In addition, the result must be faster than the original OpenSSL implementation, as

well as lighter on CPU load.

1.4 Document Structure

The paper is organised as follows. In section 2, we provide a background on the current state
of the art of OpenSSL and GPU programming. We explain the basic functionality of OpenSSL
and describe some of the algorithms it implements, and give a rundown on the history of GPU
programming and existing frameworks for taking advantage of them. Section 3 describes how the
work was implemented and how the GPU was taken advantage of for each individual algorithm

that we implemented. In section 4 we evaluate our results, and conclude in section 5.

1. Introduction

State of the art

Contents
D OPENSSL] - o o v e e e e e e e e 6
... 10
....................................... 19

2. State of the art

This chapter starts by describing the OpenSSL library. Following this, a description detailing
the GPU and how to write programs that take advantage of it is presented, including the two main
frameworks used for this purpose: OpenCL and CUDA. Afterwards, these two programming ap-
proaches are compared, followed by an in-depth description of the internal workings of OpenCL.
And finally, already existing cryptographic implementations that take advantage of the GPU are

analysed.

2.1 OpenSSL

OpenSSL is a robust, commercial-grade, full-featured and open source toolkit implementing
the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, as well as a full-
strength, general purpose cryptography library. It is managed by a worldwide community of vol-
unteers. Originally based on the SSLeay library developed by Eric A. Young and Tim J. Hudson, it
is licensed under an Apache-style license, meaning it is free to use for both commercial and non-

commercial purposes. It is divided into libssl, a library implementing the SSL and TLS protocols,

and libcrypto, a general purpose cryptography library, implementing a wide range of cryptographic

algorithms used in various Internet standards, including AES (Advanced Encryption Standard),

DES (Data Encryption Standard), RSA (a public-key cryptography algorithm) and many others
[3]-

The core library is written in the C programming language, and implements the basic crypto-

graphic functions as well as providing various utility functions. There are also wrappers allowing
the use of OpenSSL in other languages. In addition to implementing various cryptographic algo-
rithms, OpenSSL gives users the possibility to use specialised accelerator hardware. This is done
by using engines which communicate with said hardware to perform encryption and decryption

functions through them. A minimum set of functions that an engine must declare include:
e Function to create a new instance of the engine.
e Function to register an engine’s ID, name, initialisation and deletion functions.
e Function that returns a list of ciphers supported by the engine.

The cryptographic algorithms included in OpenSSL can generally be categorised into one of
three types.

2.1.1 Symmetric-key algorithms

Symmetric-key algorithms, also known as secret key algorithms, are a class of cryptography
algorithms that use the same cryptographic keys for both encryption of plaintext and decryption
of ciphertext. The keys thus represent a shared secret between two or more parties that can be

used to maintain a private information link.

2.1 OpenSSL

Symmetric-key encryption provides secrecy when two parties (for example, “Alice” and “Bob”)
communicate, ensuring that an attacker who intercepts a message cannot understand its con-
tents. To set up a secure communication channel, Alice and Bob first agree on a certain key
(let’s call it k), which they keep secret to all but each other. Before sending a certain message
to Bob, Alice encrypts m with the encryption algorithm E and key k to obtain the ciphertext c. By
using the decryption algorithm and the same key k, Bob can decode the ciphertext ¢ to obtain the

original message m. These algorithms can be further sub-divided into block ciphers and stream

ciphers. Whereas stream ciphers work on plaintext streams of any arbitrary length, block ciphers
operate on fixed-size blocks. If the plaintext exceeds the size of a block, then it must be divided
into multiple blocks (the inter-block dependency depends on the specific mode of operation). The

most commonly used symmetric-key algorithms is AES.

21.1.A AES

The Advanced Encryption Standard (AES) is a popular symmetric block cipher algorithm in
SSL. AES is a variant of the Rijndael algorithm — while Rijndael supports both block and key
sizes of 128, 160, 192, 224 and 256 bits, the AES standard states that the algorithm can only
accept 128-bit blocks, and a choice of three keys — 128, 192 and 256 bits. Depending on which
version is used, the name of the standard is AES-128, AES-192, or AES-256, respectively.

A number of AES parametres depend on the key length. For example, if the key size used is
128, then the number of rounds is 10, whereas it's 12 for 192 and 256 bits, respectively.

AES’s overall structure can be seen in figure[2.1] For both encryption and decryption, the input
is a single 128-bit block which is then modified during each stage of the algorithm and copied to
an output matrix. The key is then expanded into an array of key schedule words.

The four stages are as follows:

e Substitute bytes
e Shift rows
e Mix columns

e Add round key

The final round leaves out the ‘Mix columns’ stage. For a more detailed explanation of what
each stage incurrs, see [30].

Since AES only works on 128-bit blocks, to encrypt larger messages, the message needs
to be broken into blocks. For this, there are various block cipher modes, some of which will be
described in detail.

Electronic Codebook (ECB)

This first mode is the simplest of all five modes. Every block of plaintext is encrypted with the

2. State of the art

PLAINTEXT A PLAINTEXT
AddRoundKey : _ | AddRoundkey | :
e —— : 2 i
L E 2 InvSubBytes 3
% SubBytes 5 ¥ ;
! P 3 i :
3 : InvShiftRows :
e ShiftRows :
Z E cz) + § “E Z D *
O E F - E Z O -.‘- ------------------------------------- .
= 18 MixColumns ¢ =
L= : § T b % AddRoundKey
E iW | AddRoundKey E 3 1
O : ; O : £ | InvMixColumns
Z *tesmssssensnsnsnssssnshusannnnnnnnnnnnnn® LLI : g * :
L .._....................." () : = :
[InvSubBytes :
= SubBytes 5 ¥
= v 1T}) :
: 8 : 0 InvShiftRows ;
i ShiftRows :
: h .°" ------------------------------------ -“.
g — 3 s
: = | AddRoundKey | i AddRoundKey
\j CIPHERTEXT CIPHERTEXT

Figure 2.1: Structure of the AES algorithm

same key K. The term codebook is used because, for a given key, there is only one unique cipher-
text for every block of plaintext. If the message is longer than the block length, then the message
is broken into blocks of the required length, adding padding if necessary. Encryption and decryp-
tion are performed one block at a time, always using the same key. The ECB method is unsafe
for larger messages because if the same plaintext block appears more than once, then the same
ciphertext is produced, which may assist an attacker in breaking the cipher [30].

Cipher Block Chaining (CBC)

Ideally, the same plaintext block should produce a different ciphertext block within a message.
Cipher Block Chaining allows this by XORing each plaintext message with the ciphertext from the
previous round prior to encryption (with the first round using an initialisation vector). As with ECB,
the same key is used for each block. Obviously, the initialisation vector needs to be known by both

the sender and receiver. For maximum security, it should be kept secret along with the key[30].

X Nr-1

2.1 OpenSSL

Counter (CTR)

This is a newer mode that was not initially listed within the standard. A counter, equal to the
plaintext block size is used. The only requirement is that the counter value must be different for
each plaintext block that is encrypted. Typically, the counter is initialised to some value, then incre-
mented by 1 for each subsequent block. For encryption, the counter is encrypted and XORed with
the plaintext to produce the ciphertext block. For decryption, the same sequence of counter values
is used, with each encrypted counter XORed with a ciphertext block to recover the corresponding

plaintext block.

2.1.2 Assymetric-key algorithms

Assymetric-key algorithms, also known as public key algorithms, are based around the concept
of using two different keys for encryption and decryption. A person’s key is separated into two
parts: a public key (usually for encryption, but it can also be the other way around) available to
everyone, and a private key that is kept secret by the owner (typically used for decryption, but
again, it can also be the other way around). Let’s suppose Bob has a key pair (pub-k, pri-k) and
Alice wants to send Bob a message m. Like everyone else, Alice knows Bob’s public key pub-k.
She computes the ciphertext ¢ with an assymetric key algorithm E and Bob’s public key pub-k.
By using the decryption algorithm D and his private key pri-k, Bob can decode the ciphertext and
recover the original message. Of course, this is only secure if it is infeasible to compute the original
message with just the ciphertext and the public key. These algorithms typically use modular
arithmetic, prime numbers, factorisation and exponentials. They tend to use a small amount of
memory and are very computationally demanding, being based on mathematical calculations with

extremely large numbers. The most common assymetric-key algorithm in use is RSA.

21.2.A RSA

RSA is an asymmetric cipher algorithm widely used for signing and encryption. Each plaintext
block is an integer between 0 and n — 1 for some n, leading to a block size of log2(n). Typically n
ranges from 1024 to 4096 bits. Key generation

An RSA keypair is generated as follows:

e Pick two large prime numbers p and ¢. p must be different from ¢

Calculate n = p* q

Calculate o(n) = (p—1)(¢ — 1)

Pick e, so that ged(e,o(n)) =1, with 1 < e < o(n)

Calculate d, so that d*xe.mod(o(n)) = 1 (i.e. d is the multiplicative inverse of e in modulo o(n)

2. State of the art

Thus the public key PuK is composed of the large numbers e and n, and the private key PrK is
composed of the large numbers d and n [31]. RSA Cipher To encrypt, a plaintext message is first

transformed into a large integer M, then turned into ciphertext C with:

C=M° mod n (2.1)
with a public key (n, e). Decryption with a private key (n, d) can be done with:

M=C? mod n (2.2)

C, M, d and n are k-bit large integers, typically 1024, 2048 or even 4096 bits. Since ¢ is chosen
to be a small number (typically 3, 17 or 65537), public key encryption is 20 to 60 times faster than
private key decryption. [19]

2.1.3 Cryptographic hashing algorithms

A hashing function is an algorithm that takes an arbitrary block of data and returns a fixed-size
bit string, known as its hash value, in a way that any change to the data will change the hash
value. The data to be encoded is typically called a message, whereas the hash value is often

called a digest. A cryptographic hash function is one that (ideally) has four main properties:
e It's easy to compute the digest for a given message
¢ It's infeasible to generate a message that has a given digest
¢ It's infeasible to modify a message while preserving the digest
e It's infeasible to find two different messages with the same hash

Cryptographic hashing functions are extremely useful for, among other uses, digital signatures
and ensuring authenticity. Because they depend on the entire block of data being hashed, with
one change anywhere affecting the entire digest, they tend to use large amounts of memory.
They are also extremely light in terms of computational usage, using additions and shifts. The
most commonly used cryptographic hashing algorithms are MD5, SHA-1 and SHA-2 (also known
as SHA-256 and SHA-512, depending on the size of the digest).

2.2 GPU

In the past, the most common approach to increase a CPU’s processing power was to increase
its clock frequency. After some time, heat dissipation became a limiting factor for this approach,
leading CPU manufacturers to change their approach by adding computational cores to their
CPUs instead of changing the clock frequency. Nowadays, desktop computers tend to have 2

to 8 computational cores in their CPU. The next major step to increase computational power

10

2.2 GPU

is likely to be heterogeneous or hybrid computing. These terms are used to refer to systems

using different kinds of computational units to perform computations. These units can be CPUs,

hardware accelerators or Graphics Processing Units (GPUs), among others. When one or more

GPUs and CPUs are used together to perform general purpose calculations, it is called GPU

computing, also commonly called General Purpose computing for GPUs (GPGPU).

GPU computing has gained momentum during the past years due to the massive parallel pro-
cessing power that a single GPU contains when compared to a CPU. A high-end graphics card
has roughly ten times the single precision floating point processing capability of a high end CPU
at roughly the same price. A CPU’s processing power increases according to Moore’s law, but
the increase of GPU processing power is outpacing it. Another advantage GPUs have over CPUs
is their extremely low energy consumption compared to their processing power. For example, an
AMD Phenom Il X4 CPU operating at 2.8GHz has a ratio of 0.9 gigaflops per watt, whereas a
mid-class ATl Radeon 5670 GPU has a ratio of 9.4 gigaflops per watt [1]. GPUs deploy a hard-
ware architecture that NVIDIA calls Single Instruction Multiple Thread (SIMT). Unlike modern x86

processors’ Single Instruction Multiple Data (SIMD) architecture, which focuses on data vectors

and performing operations on them, the SIMT architecture focuses on the thread that executes an
operation. In the SIMT architecture, groups of lightweight threads execute a set of instructions on

scalar or vector datatypes. These groups of lightweight threads are called warps or wavefronts.

The term warp is used in reference to CUDA and consists of 32 threads, whereas a wavefront con-
sists of 64 threads and is used by the ATI Stream architecture. Every thread in the group has a
program counter and a set of private registers allowing them to branch independently. The SIMT
architecture also also allows fast thread context switching — the primary mechanism for hiding
GPU DRAM memory latencies. GPUs and CPUs differ in their design due to the different require-
ments imposed on them. GPUs are, first and foremost, designed for graphics objects and pixel
processing, which requires thousands of lightweight hardware threads, high memory bandwidth,
and little control flow. CPUs, on the other hand, are mostly designed with sequential processing
in mind. They have few hardware threads, large cache memories to keep memory latency to a
minimum, and advanced control flow logic. New CPUs sold on today’s market commonly have 4
to 12MB of cache memory in three levels, while the best graphics cards have less than 1MB of
cache in two levels [14]. The cache memory and the advanced control flow logic require a lot of

space on a silicon die, which in the GPU is used for additional arithmetic logic units (ALUs).

2.2.1 Programming on the GPU
2.2.1.A History

At the end of the 90s, graphics cards had fixed vertex shader and pixel shader pipelines
that couldn’t be programmed. This, however, changed in 2001 with the release of DirectX 8

and the OpenGL vertex shader extension. Pixel shader programming capabilities were added

11

2. State of the art

a year later with DirectX 9. Programmers were now capable of writing their own vertex shader,
pixel shader and geometry shader programs. Vertex shader programs mapped vertices into two-
dimensional or three-dimensional space, while geometry shader programs operated on geometric
objects defined by several vertices. Pixel shader programs calculate the color and shade of pixels.
At the time, programmers who wanted to use the massive parallel power of their graphics cards
had to express their general purpose computations in terms of textures, vertices, and shader
programs. This was not particularly easy or flexible, which in 2006 lead NVIDIA and ATl to release
their proprietary frameworks aimed at GPU computing. NVIDIA named their framework Compute

Unified Design Architecture (CUDA), a framework which is still under active development and used

in a large amount of GPU computation projects. ATI’'s framework was called Close-to-The-Metal

(CTM) and gave low-level access to the graphics card hardware. CTM later became known as
the Compute Abstract Layer (CAL). In 2007, ATI introduced a higher level C-based framework

called ATI Brook+, based upon the BrookGPU framework developed at Stanford University. This
framework was a layer built on top of graphics APIs such as OpenGL and DirectX, to provide the
programmers with high-level access to the graphics hardware. ATI Brook+, however, used CTM
to access the underlying hardware.

In 2008, both NVIDIA and ATI (which had then been bought by AMD) joined the Khronos
Group in order to participate in the development of an industry standard for hybrid computing. The

proposal for the free Open Computing Language (OpenCL) standard was made by Apple, and in

December 2008, version 1.0 of the standard was ratified, making it the first industry standard
for hybrid computing. OpenCL version 1.1 was released in August 2010, and version 1.2 was

released in November 2011.

2.2.1.B Current GPUs

Modern GPUs have hundreds of processing cores that can be used for general-purpose com-
puting. A GPU executes code in the SIMD fashion that shares the same code path working on
multiple sets of data at the same time. For this reason, a GPU is ideal for parallel applications
requiring high memory bandwidth to access different sets of data. The code executed on a GPU
device is called a kernel. To make full use of the massive number of processing cores within
a GPU, many threads are launched simultaneously and run concurrently to execute the kernel
code. This means more parallelism generally produces better usage of GPU resources. GPU

kernel execution takes four steps:

e The DMA controller transfers input data from host memory to device (GPU) memory

e A host program instructs the GPU to launch the kernel with a certain number of threads

e The DMA controller transfers the results back to host memory from device memory.

12

2.2 GPU

The fundamental difference between CPUs and GPUs comes from how transistors are composed
in the processor. A GPU devotes most of its die area to a large array of Arithmetic Logic Units.
In contrast, most CPU resources serve a large hierarchy of caches and a control plane for so-
phisticated acceleration of single threads (e.g. out of order execution, speculative loads, branch

prediction)[19].

2.2.2 OpenCL

OpenCL is an open, royalty-free standard for general purpose parallel programming across
CPUs, GPUs, and other types of processors, allowing software deelopers portable and effi-
cient access to the power of these heterogeneous processing platforms. It supports a wide

range of applications, ranging from embedded and consumer software to High Performance

Computing (HPC) solutions, due to a low-level portable abstraction. By creating an efficient
programming interface, OpenCL forms the foundation layer for a parallel computing system of
platform-independent tools. It is maintained by the non-profit technology consortium Khronos
Group, and has been adopted by Intel, AMD, NVIDIA, and ARM Holdings.

OpenCL consists of an API for coordinating parallel computation across heterogeneous pro-
cessors, and a cross-platform programming language. It supports data and task-based parallel
programming models, and uses a subset of ISO C99 with extensions designed for parallel pro-
gramming, but ommitting the use of function pointers, recursion, bit fields, variable-length arrays,
and standard C99 header files.

2.2.3 CUDA

CUDA is a proprietary hardware and software architecture designed by NVIDIA for issuing and
managing computations on the GPU as a data-parallel computing device without the need to map
them to a graphics API. The CUDA software stack is composed of several layers: a hardware

driver, an Application Programming Interface (API) with its runtime, and two high-level mathemat-

ical libraries (CUFFT and CUBLAS). The hardware was designed to support lightweight driver
and runtime layers, resulting in high performance. It is programmed with 'C for CUDA’ (C with
NVIDIA extensions and restrictions, as well as some C++ extensions), compiled through a Path-
Scale Open64 C compiler, to code algorithms for execution on a GPU. Third party wrappers are
also available for Python, Perl, Fortran, Java, Ruby, Lua, Haskell, MATLAB, IDL, and is supported
natively in Mathematica.

CUDA gives developers access to the virtual instruction set and the memory of the parallel
computational elements in CUDA GPUs. With CUDA, NVIDIA GPUs can become accessible for
computation like CPUs. CUDA has been used to accelerate both graphical and non-graphical
applications including computational biology, cryptography, and other fields by many orders of
magnitude. It provides both a low level and a higher level APl. CUDA works with all NVIDIA GPUs

13

2. State of the art

from the G8x series onwards (including the GeForce, Quadro and Tesla lines), and is compatible

with most standard operating systems.

2.2.4 OpenCL vs CUDA

Given the two existing frameworks available for GPU computing, we must compare them to

decide which one to use. The advantages and disadvantages of each are listed below:

e CUDA kernel code has full pointer support, whereas OpenCL code doesn’t support pointers

to functions.
e CUDA supports some C++ constructs such as templating.

e Fully GPU accelerated libraries are available for CUDA, including math libraries, random

number generators, Fast Fourier Transform (FFT) libraries, and others.

e CUDA is extremely well documented, whereas OpenCLs documentation is scarce.
e CUDA performs significantly more efficiently in NVIDIA graphics cards than OpenCL.
e OpenCL doesn’t have a generic address space for program-scope variables.

e OpenCL has a much wider platform support, as OpenCL supports AMD, NVIDIA and Intel

GPUs equally, as well as non-GPU platforms (such as the Cell processor).
e OpenCL is an open standard, unlike CUDA which is proprietary and locked to NVIDIA.

e OpenCL is easier to integrate into existing projects, as it does not require a separate com-

piler.
e OpenCL can fall back to the CPU if a compatible GPU is unavailable.

The first item is not very relevant to this work, as pointers to functions aren’t used often in
OpenSSL in the first place. C++ constructs are useful to avoid having to write redundant code
for variations of algorithms, but not essential. The built-in CUDA library for random numbers is
useful, but third-party random number generators for OpenCL also exist, such as Random123[28].
However, the inefficient performance of OpenCL on NVIDIA platforms is extremely problematic.
As such, to avoid this issue, we opted to create two implementations of these cryptographic

algorithms: one with OpenCL, and one with CUDA.

2.2.5 How to program in OpenCL

In this section, the OpenCL architecture is presented via the abstract models defined in its
specification [2]. It defines four different models: the platform model, the memory model, the

execution model and the programming model.

14

2.2 GPU

2.2.5.A Platform model

An OpenCL platform consists of a host and a number of compute devices. An OpenCL appli-

cation consists of two different parts: the host code and the kernel. The host code runs on a host
device (generally the main CPU), and it manages the compute devices and the resources nec-
essary to execute the kernels. The host itself can also function as a compute device. A function
written for a compute device (i.e. a GPU, CPU or accelerator) is called a kernel. The OpenCL
application must define the number and type of compute devices to be used - GPUs, for instance,
are better suited for data parallelisation problems than the CPU, which is better suited for task
parallelisation. Each compute device is comprised of several compute units and each OpenCL
compute unit contains a collection of processing elements. The OpenCL standard has different
versions, which have to be taken into consideration when writing portable code. The runtime and
hardware may provide support for multiple versions of the standard, and as such the programmer
has to ensure that the OpenCL platform version, compute device version and compute device lan-
guage version are correct. The platform version is the version supported by the OpenCL runtime
on the host system. The compute device version describes the capabilities of the hardware, and
the compute device language version describes what version of the APl can be used. The com-
pute device language can never be lower than the compute device version, but it can be higher
if the newer version’s language features are supported on older hardware. The compute device
language version cannot be queried in OpenCL version 1.0. Every version of the OpenCL API
has two profiles, a full profile and an embedded one, which is a subset of the full profile intended

for portable devices.

2.2.5.B Execution model

Every OpenCL application must define a context containing one or more command queues
for every compute device being used [2]. A command queue is used to enqueue memory oper-
ations, kernel execution commands and synchronisation commands to a compute device. The
commands in question can be performed in order or out of order. If more than one command
queue is tied to a compute device, then the commands will be multiplexed between the queues. A
thread executing a kernel function is called a work-item. All work-items belong in an index space
called NDRange, and they are identified by their point in said space, providing a global ID for
every item. Each work-item executes the same code, but the specific execution pathways through
the code and the data they operate on can vary between each one. Work-items are organised
into work-groups, which provide a decomposition of the index space. Work-groups are assigned
unique work-group IDs with the same dimensionality as the index space used for the work-items.
Work-items are assigned a unique local ID within their work-group, which means that a work-item
can be identified both by its global ID as well as a combination of its work-group ID and its local ID.

Work-items in a given work-group execute concurrently on a compute unit’s processing elements.

15

2. State of the art

2.2.5.C Memory model

The memory model has a hierarchical structure, where memory is defined as either global,
local, constant or private [2]. Global memory can be written to or read by both the host device and
compute device, and memory objects can be allocated in both the host or the compute devices’
memory space. On the other hand, memory objects allocated in local memory (which is typically
located on-chip) are only accessible by work-items belonging to the same work-group. The private
memory space consists of registers that are only available to the work-item that allocated them.
Private memory is used by default for scalar objects defined within a kernel. Non-scalar objects
are by default stored in global memory space. Constant memory is similar to global memory
except that it cannot be written to by the compute device. Local and private memory cannot
be accessed by the host device, but local memory can be statically allocated through kernel
arguments. All memory used by the kernels must be explicity managed in OpenCL. Transferring
data between host and device memory can be done either explicitly, or implicitly by mapping a
compute device memory buffer in the host’s address-space. Memory operations can be blocking
or non-blocking. OpenCL has relaxed memory consistency, meaning that it's the programmer’s job
to ensure that all necessary memory operations have completed in order to avoid data hazards.
These can be avoided by explicitly defining synchronisation points within kernels and queues,

however, no built-in mechanism exists to synchronise work-groups with each other.

Private Private Private Private
Memory Memory Memory Memory

Warkltemn 1 Workltem M Warkltem 1 Warkltem M

Compute Unit 1 Compute Unit N

Local Memory | Local Memory

Global/ Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memory

Figure 2.2: OpenCL memory model

16

2.2 GPU

2.2.,5.D Programming model

OpenCL supports two different programming models: the data parallel model, and the task
parallel model [2]. Data parallel programming uses the OpenCL index spaces to map a work-
item to a set of data. It does not, however, require a strict one-to-one mapping. In task-parallel
programming, the NDRange consists of a single work-item, like when executing sequential code.
This model draws its benefits from being able to execute multiple kernels simultaneously, given

the tasks have no inter-dependencies. This model is not recommended for use with GPUs.

2.2.6 Main challenges in GPU programming

The GPU is well-suited for solving extremely parallel problems due to its SIMT architecture.
These are problems that can be divided into independent tasks that don’t require interaction be-
tween each other. Data can be shared to a limited extent between GPU threads, but they should
have as little dependencies to each other as possible. The most important aspect in terms of
performance is high usage of the arithmetic logic units. The most significant factor impacting
GPU usage is diverging execution paths, that is to say, “if-else” statements. When GPU threads
diverge, the different execution paths are serialised. Therefore, an algorithm with many diverg-
ing execution paths will perform badly on a GPU. Another factor affecting the ALU usage is the
access patterns to the graphics card’s DRAM. A scattered data access pattern will lead to many
fetch operations, decreasing the performance as the memory in the graphics cards has little to no
cache. ltis also beneficial if the algorithm is computationally intensive, seeing as this will hide the
latency from DRAM access.

Memory in graphics cards is limited. When an application allocates all of the graphics card’s
DRAM, the data isn’t swapped to central memory or the HDD in the same way as with regular ap-
plications — while regular applications swap memory pages, the GPU swaps entire buffers, leading
to extreme performance penalties. Furthermore, when data is transferred from central memory

to dedicated graphics cards, it has to go through the PCle (Peripheral Component Interconnect

Express) bus, which has a theoretical transfer rate of 8 GB/s [1]. This therefore becomes a
performance-limiting factor, meaning transfers over the PCle bus should be kept to a minimum.
Therefore, it follows that I/O intensive operations are unsuited for GPU computation as they would
cause intensive data transfers over the PCle bus. Other unfavourable operations involve file and
standard I/O operations, as these cannot be performed by code running on the GPU.

When developing code for both frameworks, several complications also arise deriving from
differences between OpenCL and CUDA. For example, while functions in CUDA only need types
passed on their arguments, in OpenCL, the address spaces need to be explicitly mentioned. This
is simple enough, however, if an argument is passed with the wrong address space, instead of just
giving a normal compilation error, it just crashes with a generic segmentation fault. This is made

worse by the fact that debugging tools for OpenCL simply do not exist, forcing any debugging

17

2. State of the art

to be performed by commenting pieces of code and adding early return statements just to find
out where the application is crashing. Furthermore, while most CUDA device-side calls have
OpenCL equivalents, the host-side interface is significantly different (and significantly less intuitive

in OpenCL), requiring a complete rewrite of the host code.

2.2.7 Existing implementations of cryptography on the GPU

Some implementations of cryptographic algorithms on the GPU already exist. In this section,

some of them shall be briefly described.

2.2.7.A OpenSSL-GPU

OpenSSL-GPU[6] was a project implementing AES-128 encryption in OpenSSL. This project
was created by Urmas Rosenberg as part of his master’s thesis [7], which studied the possibility of
using the GPU on block ciphers. It includes two different implementations: One using a (now out-
dated) version of CUDA, and one written purely with OpenGL primitives. This implementation is
especially notable because it was written before GPU computing became widespread. However,
since it was done purely for study purposes, it only implemented AES encryption (without decryp-
tion) with 128-bit keys in ECB mode (as ECB mode, which encrypts each block independently, can
be parallelised, whereas other modes where blocks depend on previous blocks’ ciphers cannot).

It showed comparable performance between the CPU and GPU with large buffer sizes.

2.2.7.B CryptoCL

CryptoCL[9] is a library developed by James Sweet designed to implement various crypto-
graphic algorithms via OpenCL. At the time of this writing, only the AES algorithm in CBC mode
has been implemented, and the project appears to be stalled. The host code is written in C++.
Unlike the OpenSSL-GPU implementation, this library supports decryption as well as encryption,

and is not limited to 128-bit keys. No results were made available for this implementation.

2.2.7.C Fast Implementation of Two Hash Algorithms on NVIDIA CUDA GPU

Right now, SHA-2 is the most trustworthy hashing algorithm being used online. However, there
have been fears that the algorithm may soon be broken, which would risk the integrity of secure

communications. As such, the National Institute of Standards and Technology (NIST) created the

SHA-3 hash competition, to devise a new standard for secure hashing. Clearly, the most important

feature in the winning algorithm will be its strength, and how difficult it is to break. However, speed
and performance are also relevant factors.

As part of a thesis, Gorka Lerchundi Osa from the Norwegian University of Science and Tech-
nology implemented the Blue Midnight Wish algorithm in CUDA. At the time of its writing, the Blue
Midnight Wish algorithm was a candidate in the SHA-3 hash competition. On November 2011,

18

2.3 Conclusion

however, it didn’t pass to the final round of the competition [11]. Furthermore, the thesis revealed
that the algorithm was actually slower when running on the GPU than it was on a normal CPU, as
the communication costs between the cores far outweighed the computational costs when running

it on a single CPU.

2.2.7.0 OCLCrypto

The OCLCrypto library [12] is an OpenCL-accelerated cryptographic library developed by
Kazuki Oikawa implementing GPU-accelerated versions of several cryptographic algorithms. As
of this writing, these include standard AES, bitsliced AES, the Camellia cipher[13], 256-bit elliptic
curves, as well as the hashing algorithms SHA-256 and Luffa. The host code is written in the C#
language. However, this library is still not in a functional state and its development seems to have

stalled.

2.2.7.E SSLShader

The SSLShader library [19] is a CUDA-accelerated cryptographic library featuring implemen-
tations of AES (128-bit keys only), RSA (with two different implementations - one based on RNS
and one on Montgomery division), and SHA-1. It's written in C++. It shows a significant perfor-
mance gain on 128-bit AES CBC decryption. The results presented by it are mostly focused on
parallelising as many operations as possible, for use in extremely loaded servers, and achieve

positive results when encrypting large sets of data (e.g. 1024 simultaneous messages for RSA).

2.3 Conclusion

OpenSSL is a robust toolkit implementing a wide amount of cryptographic operations, and it's
used by an extremely large amount of applications. During the past years, GPU computing gained
momentum due to its massive parallel processing power in comparison to a normal CPU, with the
frameworks CUDA and OpenCL making the use of GPUs for general-purpose computing viable. A
high-end graphics card could be a valid way to offset computational costs of the cryptographic op-
erations implemented within OpenSSL and severely accelerate some of those algorithms. While
there are several implementations of cryptographic algorithms available that take advantage of
the GPU in some form, they are either either extremely incomplete or require applications to be
programmed specifically towards it. With OpenSSLs engine module, it's possible to allow the GPU
to be used from within OpenSSL itself, avoiding having to program applications to use a specific
GPU-oriented library.

19

2. State of the art

20

Implementation

Contents
3.1 _Introductionl @ i i i e e e e e e e e e e e 22
B0 OPENSOL] - « - o e e e e e 22
3.3 AES| e 22
B4 RSAKeyGeneration]c.0cuiiiiiinmeneneennnnn. 24
BE RSA CIPRE it e e e e e e e e e e e 25

21

3. Implementation

3.1 Introduction

We start this section by explaining how an ENGINE object integrates with OpenSSL and its
existing implementations. Following that, for each of the implemented algorithms, we start by
briefly explaining how the algorithm can be parallelised, followed by a detailed description of how

said algorithm was implemented within our work.

3.2 OpenSSL

Starting with OpenSSL 0.9.6, a component was included to support alternative cryptography
implementations, most commonly used for interfacing with accelerator cards. This component
is called ENGINE. It also provides dynamic binding to external engine implementations with a
special engine called 'dynamic’. Using the dynamic engine, it'’s possible to load a separate shared
library containing alternative implementations of cryptographic protocols and have OpenSSL use

them instead of the default ones. This is how the GPU engine operates.

3.2.1 GPU Engine

The GPU engine implements three different operations: AES, RSA Key Generation, and RSA
Cipher. A bind_helper function lets OpenSSL know what algorithms are supported by the engine.

First, the ID name and description of the engine (in this case, "gpu” and "GPU-accelerated en-
gine”) are set. Following that, the engine must inform OpenSSL of what algorithms it implements,
with pointers to the functions that implement said algorithms. Finally, the engine must also inform
the OpenSSL library of what cipher modes it supports. An engine object can be either built into
OpenSSL or called from within it as a dynamic library — we opted for the latter, as it means users
would be able to use the engine with a standard, unmodified system installation of OpenSSL. For
an application to use the engine, it only needs to load the engine library and define that it should

be used by default for a specific type of operation.

3.3 AES
3.3.1 Parallelism

Some cipher modes can have independent parts of the plaintext operated on independently.
For those cases, there’s a potential for parallelisation. The most commonly used cipher mode with
AES is CBC. With it, encryption can’t be parallelised because the ciphertext for a block is needed
to create the ciphertext for the next block — so they can’t be computed out of order. However, for
decryption, things are different. Since decryption of a ciphertext block only requires the previous

block’s ciphertext, all blocks can be decrypted in parallel. Additionally, with the ECB cipher mode,

22

3.3 AES

all blocks in the plaintext are encrypted and decrypted independently, so they can all be encrypted

or decrypted in parallel.

3.3.2 Execution flow

Application-side An engine that implements AES must provide an initialisation function and
a cipher function. We opted to use a modified version of the AES GPU implementation in

SSLShader, as we felt it was well done. Initialisation function

This function receives a pointer to an OpenSSL context, a key, an IV, and a boolean informing
whether this is an encryption or decryption operation. We opted to perform the key expansion on
the CPU, as this operation is extremely fast, simple, and being unparallelisable, would have no
discernable gain on the GPU. The context pointer is used as a key for a hashtable, on which the
expanded key is stored.

Cipher function
The cipher function receives the same OpenSSL context, a pointer to the input and output buffers,
and the number of bytes to proceed. Thus, the function must initialise the GPU, allocate host
device memory for the input data, key and IV, and call a modified library of SSLShader’s libgpu-
crypto. After the operation is completed, the last block of ciphertext is stored, as the function may
be called again to continue the operation, should the buffer size be smaller than the complete
message.

Libgpucrypto operation

When libgpucrypto is called, it must allocate memory on the GPU, transfer all the input data

into it, call the GPU kernel, and wait for the result. This is done with the following steps:

e Memory on the GPU is allocated for the data (input buffer, pre-expanded key, initial 1V)
e The input data is transferred to the GPU

e The GPU kernel is called with the pointer to the input, and the offset values.

Worth noting that all data is transferred into the GPU memory within a single transfer, i.e. the
input buffer, pre-expanded key and IV are all transferred as a single 'blob’ of data. This strongly
reduces the overhead of host-to-device data transfer, as initialising a transfer of data to the GPU
is a slow process.

The GPU kernel being called behaves differently depending on whether it's a CBC Encryption
operation, a CBC Decryption operation, or an ECB operation.

CBC Encryption

23

3. Implementation

During a CBC encryption operation, one thread on the GPU is called that goes through every
block individually and encrypts it. The previous block is then used as an IV for the next block. This
is all done serially (no parallelisation is possible with CBC Encryption). Control is given back to
the CPU afterwards.

CBC Decryption (or ECB operation)

During a CBC decryption operation, one thread on the GPU is called for every individual block
which are then processed in parallel. Once all operations are completed, control is given back to
the CPU.

Once the GPU threads are complete, the output data is transferred from the GPU memory to

the host. This is then returned to the OpenSSL engine, which returns the data.

3.4 RSA Key Generation
3.4.1 Parallelism

RSA Key Generation involves generating a large number of random large numbers (type
BIGNUM in OpenSSL) and testing if they're prime before repeating the process again and again
until a suitable prime number is found. This process can be executed in parallel — i.e. a large
amount of BIGNUMs is generated at the same time and tested each in its own threads, all simul-

taneously.

3.4.2 Execution flow

CPU side
The RSA Key Generation code in eng_gpu.so is similar to the normal, non-GPU based code in
OpenSSL, with only two major differences: At the start of the process, the gpu_genprimes is called
which calls the GPU to generate a large number of large numbers (80 by default). Afterwards, in

any point of the code where the standard OpenSSL BN_generate_prime_ex would be called, an

alternative function (dubbed BN_generate_prime_ex_gpu for simplicity, although it doesn’t do any

actual generation) is called instead, which merely picks the next generated prime from the list of
previously-generated primes and uses it, deleting it afterwards to ensure it won’t be reused again.
GPU side

Unlike the AES and RSA ciphers, RSA key generation was not implemented in libgpucrypto and
had to be instead implemented completely from scratch. Initially, when gpu_genprimes is called,
a GPU random number generator is initialised with the current time in milliseconds as the seed
(Random123 in OpenCL, curand in CUDA). Afterwards, device memory is allocated for the defined

number of BIGNUMSs to generate, followed by a call to the GPU kernel, generatePrimes_kernel.

This kernel, which runs in parallel for a number of threads identical to the desired number of

24

3.5 RSA Cipher

BIGNUMs to generate, follows the following flow:
e The thread ID is calculated, and the output pointer is appended to the appropriate location.
e Arandom BIGNUM is generated.

e The BIGNUM p is tested for primality with BN_is_prime_fasttest_ex. This function, ported to
the GPU from OpenSSL, performs a Miller-Rabin probabilistic primality test with nchecks
iterations. A number of iterations is used that yields a false positive rate of at most 2-3° for

random input.[23]

o If the returned BIGNUM is determined to be prime, then it’s written into global memory. If

not, then the bytes '"NOTP’ are written into global memory instead.

After all threads are done executing the kernel, the output data is copied from the GPU to the host.
Notably, implementing this kernel required adapting the entirety of OpenSSLs BIGNUM library to
CUDA and OpenCL code, which required retooling it to work around the limitations imposed on

GPU code, particularly the inability to allocate memory from within device code.

3.5 RSA Cipher
3.5.1 Parallelism

Since the word size of most computers tends to be 32 or 64-bit, the large integers used in RSA
operations must be broken down into small multiple words. Multiple threads can be executed,
each of which processes a word. However, some serial processing is required to coordinate
the outcome of per-word operation between threads, due to carrying bits and base extension.
In addition, when using the private key where the p and ¢ values are available, the Chinese
Remainder Theorem can be used to split the operation from one k-bit modular exponentiation into
two k/2-bit modular exponentiations, each requiring roughly eight times less computation power

than the original calculation.

3.5.2 Execution flow

The standard Multi-Precision algorithm is the most convenient way to represent large integers
in a computer[29]. A k-bit integer A is broken into s = k/64 words. In Montgomery multiplication,
the multiplication of two s-word integers is performed three times. A serial multiplication algorithm
has a complexity of O(s?). This implementation is instead an O(s) parallel algorithm with linear
scalability, running in s threads working in two phases. The first phase accumulates s partial
products in 2s steps (one step for each high bit and one for one low bit), with carries being
accumulated in a separate array. Each step translates into a small number of GPU instructions

without involving any cascading carry propagation. The second phase repeatedly adds the carries

25

3. Implementation

to the intermediate result and renews the carries, and stops when all carries become 0. The
number of iterations is s — 1 in the worst case, but it usually only takes one or two iterations, since

small carries rarely produce additional ones.

26

Results

Contents
BA INTOUCTION] - - - « - « o v e e e e e e e e e e e e 28
B2 RESUMS| - - -« v o v e e e e e e e e e e 28
....................................... 35

27

4. Results

4.1 Introduction

In this chapter, we present experimental results of our work. First we test the decryption and
encryption of CBC mode, as it is currently the most commonly used cipher mode for AES. After-
wards we test RSA key generation and finally we test the RSA cipher. For each algorithm, we
first present the results as a table, and afterwards we present an analysis of the results and their
performance. All tests in this section were performed on an Intel Core i7 950 CPU clocked at
3.07GHz, with an NVIDIA GeForce GTX 580 GPU. AES tests were performed with PAPI (Perfor-
mance Application Programming Interface), whereas RSA tests were performed with the UNIX
time tool by taking ten results and averaging the result (this was necessary to ensure that the
same key was used on both the GPU and CPU, and therefore have accurate results). For results

with a heavy CPU load, the stress tool was executed running 300 threads, 100 looping on sqrt,

100 on malloc/free, and 100 on sync.

4.2 Results

421 AES

The most widely used cipher mode for AES is the Cipher Block Chaining mode, or CBC. This
mode works by XORing every plaintext block with the previous block’s ciphertext. This means that
when encrypting with CBC, the blocks need to be encrypted sequentially, as encrypted block n is
required before encryption of block n — 1 can begin, and as such, CBC encryption cannot be par-
allelised. However, decryption is a different story — as the XOR is performed before encryption,
decryption of a block can be performed in parallel. As such, CBC encryption and decryption need

to be tested separately.

4.2.1.A CBC Decryption

Given how the implementation of AES CBC Decryption is parallelised at the block level, we
felt it important to test how much data needs to be decrypted at once to net a performance
increase, as well as how much data can be decrypted at one time before the GPU memory limit
and/or thread limit is exceeded. These tests were executed using PAPI and the time results are
measured in its internal unit (PAPI_TOT_INS).

28

4.2 Results

AES CBC Decryption

1E+9
1E+8

1E+7
1E+5 /—//
=— GP U decryplion

1E+4
= CPU decryption

1E+3
1E+2

Time (PAP| Units)

1E+1
1EHD

D £ £
&P & .-569 ,S§§§) (§§§5 -S§§§p f:@é?) (ggp‘a‘
Buffer size (bytes)

Figure 4.1: AES CBC Decryption Times

The results presented in figure 4.1 clearly show that while CPU-based decryption of AES is
linear, GPU-based decryption is logarithmic. Whereas with 100 bytes (only six blocks), the GPU
is around ten times slower than the CPU, when the amount of data to be decrypted reaches 3KB
(18750 blocks), decryption becomes faster. With the maximum buffer size of 3.7MB (a higher size
results in too many threads for this particular GPU to handle), CBC decryption on a GPU can be

up to 43 times faster than on the CPU.

4.2.1.B CBC Encryption

Given that CBC Encryption cannot be parallelised at all as encrypting a block requires the
ciphertext for the previous block, it’s an operation that’s extremely unfriendly to running on a GPU.
As such, we opted to run two sets of tests — one where the operation is executed normally, and
one where the operation is executed while the CPU is under heavy load. This heavy load was
achieved by running the stress tool spawning 100 threads looping on sqrt, 100 threads looping on

sync, and 100 threads looping on malloc and free.

29

4. Results

AES CBC Encryption

1E+10
1E+9
1E+B
1E+7
1E+G
1E+5 —— GPU encryption
1E+H4 = CPU encryption
1E+3
1E+2
1E+1
1E+0

& & ,,55*"% N@Q @ﬁ@ -\éﬁp Sl ﬁ

‘_9'13

Time (PAPI Units)

Buffer size (bytes)

Figure 4.2: AES CBC Encryption Times

AES CBC Encryption- Heavy CPU Load

1E+10
1E+9
1E+B
1E+7
1E+6
1E+5 —— GPU encryption
1E+4 = CPU encryption
1E+3
1E+2
1E+1
1E+0

& F & ng:@ @.‘Pﬁ @ﬁ@ .\éﬁj @QQ@) ég§§§)

Buffer size (bytes)

Time (PAPI Units)

Figure 4.3: AES CBC Encryption Times - Heavy CPU Load

Unsurprisingly, figure 4.2 shows that the GPU is significantly slower at executing CBC encryp-
tion than the CPU, given its non-parallelisable nature. However, the difference between execution
times on the CPU is significantly higher when under heavy CPU load, suggesting that using the

GPU as a co-processor is a viable option for situations where encryption is lower priority and the

30

4.2 Results

CPU is necessary for other, more prioritary operations. Figure 4.3 shows that executing CBC en-

cryption on the GPU in the background only has a 2.7% impact on the CPU load, allowing higher

priority applications to use the CPU to its fullest extent.

4.21.C ECB

Unlike in CBC mode, in ECB mode blocks are encrypted individually, with no inter-dependencies.

This means that both encryption and decryption can be parallelised. Additionally, since this lack

of inter-dependencies also means that there will be less memory access clashes.

Time (PAP| Units)

1E+9
1E+8
1E+7
1E+G
1E+5
1E+4
1E+3
1E+2
1E+1
1E+D

AES ECB Encryption

—

£ £ £
& § ,§§§} _\@9 @QQ Néﬁp %ﬁeﬁ?) @3@“

Buffer size (bytes)

Figure 4.4: AES ECB Encryption Times

= 5P U encryption
= CPU encrypticn

31

4. Results

AES ECB Decryption

1E+9
1E+8
1E+7
1E+6

1E+5
— GP U decryption

= CPU decrypticn

1E+4
F 4E+3

me

1E+2
1E+1
1E+D

SRS

Buffer size (bytes)

Figure 4.5: AES ECB Decryption Times

The results presented in figures 4.4 and 4.5 show that similarly to CBC decryption, ECB oper-
ations, while being slower than the CPU for very small block sizes (15 times slower for 100 bytes),
gain an extremely large advantage when executed on the GPU in parallel when the buffer is 2KB
or larger. Since with ECB, the blocks are encrypted (or decrypted) individually with no dependen-
cies on other blocks, the GPU threads don’t have to compete with each other for access to the
blocks, resulting in an operation running in roughly 77% the time it takes to run CBC decryption.
Likewise, at its peak, AES ECB encryption is 31 times faster than on the GPU than on the CPU,
and ECB decryption is over 50 times faster than on the CPU.

4.2.2 RSA

4.2.2.A Key Generation

For RSA key generation, we must test the generation of keys with different bit lengths. Ad-
ditionally, given how the GPU key generation code was programmed to cache generated prime
numbers in order to avoid having redundant, unnecessary calls to the GPU, we felt it important
to also test generating multiple keys in a row, as to show how our implementation would perform
on an application that generates multiple keys on a regular basis, such as a Certificate Authority.
We start with testing 1024-bit keys, followed by 2048-bit keys and finally 4096-bit keys. Since key
generation is largely dependent on a random factor (how many random BIGNUMSs the generator
must go through before finding a prime number), we decided to run the key generation 10 times

(with individual executions of OpenSSL, as to avoid prime numbers being cached before the first

32

4.2 Results

execution and ‘cheating’ the result) and average the results. We also averaged the CPU usage of
each execution, to ascertain how much the CPU might be lightened by moving this operation to
the GPU.

- GPU time | CPUtime | GPU— CPU cycle time | CPU — CPU cycle time
1024 bits, 1 key 0.107s 0.038s 0.009s 0.027s
1024 bits, 2 keys 0.109s 0.084s 0.009s 0.066s
1024 bits, 5 keys 0.111s 0.181s 0.010s 0.108s
1024 bits, 10 keys 0.117s 0.360s 0.012s 0.288s
1024 bits, 100 keys 0.816s 4.347s 0.092s 2.889s
2048 bits, 1 key 0.131s 0.192s 0.009s 0.119s
2048 bits, 2 keys 0.133s 0.393s 0.009s 0.370s
2048 bits, 5 keys 0.135s 1.064s 0.010s 1.016s
2048 bits, 10 keys 0.137s 1.908s 0.011s 1.815s
2048 bits, 100 keys 0.997s 16.098s 0.154s 14.564s
4096 bits, 1 key 0.225s 2.180s 0.009s 2.078s
4096 bits, 2 keys 0.228s 4.119s 0.009s 4.085s
4096 bits, 5 keys 0.232s 10.592s 0.011s 10.516s
4096 bits, 10 keys 0.233s 18.782s 0.012s 18.648s
4096 bits, 100 keys || 11.594s | 2m38.819s 6.824s 2m36.880s

Table 4.1: RSA key generation times

- GPU time | CPU time | GPU — CPU cycle time | CPU — CPU cycle time
1024 bits, 1 key 0.108s 0.065s 0.009s 0.026s
1024 bits, 2 keys 0.109s 0.159s 0.009s 0.092s
1024 bits, 5 keys 0.110s 0.206s 0.010s 0.108s
1024 bits, 10 keys 0.119s 0.539s 0.012s 0.285s
1024 bits, 100 keys 0.856s 6.145s 0.012s 2.889s

Table 4.2: RSA key generation times with a heavy CPU load

When generating 1024-bit keys, a prime number is found relatively quickly. As such, the CPU
performs better than the GPU when generating a single, or even two 1024-bit keys, as seen in
table 4.1. However, even when generating 1024-bit keys, the GPU gains ground as the number of
generated keys is increased, due to the aforementioned prime caching system. When the number
of bits in the key is increased, the more attempts have to be made to generate prime numbers.
As such, even when generating a single key, the GPU is slightly faster than the CPU for 2048-bit
keys, and significantly faster for 4096-bit keys. For the generation of a single 1024-bit key, usage
of the CPU would be recommended, whereas for generating 2048-bit or higher keys, the GPU is
a better option. Additionally, the GPU is especially useful for applications that need to generate
a large number of keys 'en masse’, such as Certificate Authorities. The results also show that
in every circumstance, CPU usage is significantly lighter when the GPU is used than when the
CPU is used, which means that even for low-bit key generation, the GPU is a worthwhile option

for generating keys when the CPU is otherwise loaded, as seen in table 4.2.

33

4. Results

4.2.2.B Cipher

Since encryption and decryption are exactly the same operation when dealing with RSA, we
opted to only test encryption. As RSA is generally used to encrypt or decrypt single messages
(typically a hash for a signature or a symmetric key as part of key negotiation), we encrypted
a single message with a 1024-bit, 2048-bit and a 4096-bit key. Additionally, we also tested the
possibility of encrypting multiple messages in parallel with a 4096-bit key, with separate calls to

OpenSSL. These results are the average of 10 executions.

Key size (bits) || GPU time | CPU time
1024 1.654s 0.074s
2048 6.634s 0.448s
4096 12.2833s 2.902s

Table 4.3: RSA cipher execution - single message

Key size (bits) || GPU time | CPU time
1024 1.742s 0.142s
2048 6.682s 0.543s
4096 12.395s 3.645s

Table 4.4: RSA cipher execution - Heavy CPU Load

Number of Messages || GPUtime | CPU time
1 12.283s 2.900s
5 1m02.673s 3.727s
10 2m17.780s 5.777s
15 2m36.600s | 5.841s

Table 4.5: RSA cipher execution - multiple messages (4096-bit key)

The results in table 4.3 show that RSA performs significantly poorly on the GPU. When using
a 1024 or 2048-bit key, using the GPU shouldn’t even be considered — the performance penalty
is tremendous. For 4096-bit keys, the gap is narrower, but still significant. However, the results
under heavy CPU load (table 4.4) show that for 4096-bit keys, it's worth using the GPU when RSA
execution is lower priority and the CPU needs to be free for other, more important tasks. Even
running multiple threads does not net a gain (table 4.5), since setting up the GPU actually takes
longer than a standard execution of RSA on a CPU, leading the performance to actually get worse
as the number of threads is increased. While a more optimised implementation of RSA on the
GPU could be created that would process multiple messages at once (by loading them all into the
GPU at once and executing them within a single kernel, for instance), any code that used it would
have to be tailored specifically to such an implementation, and would not work within a general
purpose library such as OpenSSL, where every message is its own independent call, which in
turn requires the CPU to call the GPU separately for each message. In addition, the GPU is not

designed to have a large number of different host threads calling it individually (as opposed to

34

4.3 Conclusion

having multiple device threads invoked simultaneously from the same host thread), as it leads to

memory fragmentation, which causes the GPU’s memory to run out extremely quickly.

4.3 Conclusion

The results show a significant gain for AES ECB operations and CBC decryption, for any
amount of data greater than 2KB, achieving performance improvements up to fifty times faster.
RSA key generation also gains a performance improvement — a smaller improvement when gen-
erating a single key, and a large improvement when generating multiple keys. However, the RSA
cipher and AES CBC encryption seem to perform worse. AES CBC encryption can still be worth-
while in situations where it needs to run in the background while more important processes need
to use the CPU. A similar situation applies to RSA when using high-bit keys, though for 1024-bit

keys, the execution on a CPU is so minimal that it wouldn’t be of any use.

35

4. Results

36

Conclusions

Contents
B CONCIUSION] - - « « « « v e e e e e e e e e e e e e e e e e e e 38
...................................... 38

37

5. Conclusions

5.1 Conclusion

OpenSSL is a widely-used library used by a large number of applications around the world.
Rewriting them all to use a different library in order to take advantage of the GPU would be an un-
feasible, monumental task. With this work, we present an engine that allows existing applications
to skip that complex stage and take advantage of the GPU to increase performance and lighten
CPU load on the most commonly used encryption algorithms, implemented with both OpenCL
and CUDA. Our evaluation shows that significant performance gains are obtained on RSA key
generation (especially when generating a large number of keys), AES ECB operations, and AES
CBC decryption, and these gains can be applied right now to existing applications with minimal ef-
fort. Unfortunately, the RSA cipher did not gain any performance, given the way OpenSSL works,
the GPU has to be called individually for each operation which results in too large a performance
loss. However, even in such a situation, the GPU can be used as a co-processor to lighten CPU
load for other, more important tasks. The same can be applied for AES CBC Encryption, which
while performing over ten times slower on the GPU, only requires 2.7% of the CPU processing
power (chapter 4.2.1.B). CBC Decryption can be up to 43 times faster (chapter 4.2.1A), whereas
ECB encryption can be 31 times faster, and ECB decryption can be over 50 times faster (chapter
4.2.1.C).

5.2 Future work

As stated in the previous section, given the way OpenSSL works, the GPU has to be called
individually for each operation, resulting in too large a performance hit. However, it may be feasible
to create a manager that caches RSA requests and sends them all at once to the GPU. Another
possibility that was not implemented was AES’s CTR cipher mode, which similarly to ECB, can
be parallelised in both encryption and decryption — this was due to the fact that CTR mode in
OpenSSL is still not considered stable (and is in fact disabled by default), however, it seems to be

gaining more usage lately. We leave these issues to future work.

38

Bibliography

(1]

(2]

(3]

(4]

ATI Stream Computing, Programming Guide

http://developer.amd.com/gpu_assets/ATI_Stream_

SDK_OpenCL_Programming_-Guide.pdf
Fetched on May 15th, 2012.

The OpenCL Specification, version 1.2

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

Fetched on May 19th, 2012.

About the OpenSSL Project
http://www.openssl.org/about/
Fetched on May 21st, 2012.

Porting CUDA Applications to OpenCL

http://developer.amd.com/zones/OpenCLZone
/programming/pages/portingcudatoopencl.aspx
Fetched on May 21st, 2012.

[5] OpenSSL

http://openssl.org
Fetched on May 22nd, 2012.

[6] OpenSSL-GPU

(7]

(8]

http://labs.sasslantis.ee/openssl-gpu/
Fetched on May 23rd, 2012.

Using Graphic Processing Unit in Block Cipher Calculations

http://labs.sasslantis.ee/wp-content/uploads/2011/03/mastersthesis.pdf

Fetched on May 23rd, 2012.

SHA1 Hash Algorithm OpenCL implementation

http://royger.org/opencl/?p=12
Fetched on May 23rd, 2012.

39

Bibliography

[9] Omegaice (James Sweet) GitHub

https://bitbucket.org/Omegaice/
Fetched on May 23rd, 2012

[10] Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

http://upcommons.upc.edu/pfc/bitstream/2099.1/7933/1/Masteoppgave.pdf
Fetched on May 23rd, 2012.

[11] THIRD (FINAL) ROUND CANDIDATES
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
Fetched on May 23rd, 2012.

[12] OCLCrypto
https://github.com/kazuki/oclcrypto

Fetched on May 23rd, 2012.

[13] Camellia algorithm

http://info.isl.ntt.co.jp/crypt/eng/camellia/index.html
Fetched on May 23rd, 2012.

[14] NVIDIA’s Next Generation CUDA Compute Architecture

http://www.nvidia.com/content/PDF/fermi_white_papers
/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
Fetched on May 18th, 2012.

[15] OpenSSL: Documents, engine(3)

http://www.openssl.org/docs/crypto/engine.html
Fetched on June 1st, 2012.

[16] Introduction to Cryptography: Principles and Applications

By Hans Delfs and Helmut Knebl

[17] OpenSSH
http://www.openssh.org/

Fetched on June 3rd, 2012.

[18] Using the Cryptographic Accelerators in the UltraSPARC T1 and T2 processors

http://www.oracle.com/technetwork/server-storage/archive/al1-014-crypto-accelerators-
439765.pdf
Fetched on June 4th, 2012.

[19] SSLShader: Cheap SSL Acceleration with Commodity Processors

http://shader.kaist.edu/sslshader/sslshader.pdf
Fetched on July 10th, 2013.

40

Bibliography

[20] Porting CUDA Applications to OpenCL

http://developer.amd.com/resources/heterogeneous-computing/opencl-zone/programming-in-
opencl/porting-cuda-applications-to-opencl/
Fetched on July 12th, 2013.

[21] CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-Core Architectures
http://scholar.lib.vt.edu/theses/available/etd-07282011-122302/unrestricted/Martinez_GE _T_2011.pdf
Fetched on July 12th, 2013.

[22] OpenSSL: engine(3)
http://www.openssl.org/docs/crypto/engine.html
Fetched on July 14th, 2013.

[23] OpenSSL: BN_generate_prime(3) https://www.openssl.org/docs/crypto/BN_generate_prime.html
Fetched on Sep 2nd, 2013.

[24] PAPI: Performance Application Programming Interface

http://icl.cs.utk.edu/papi/
Fetched on Sep 10th, 2013.

[25] OpenCL Reference Pages

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
Fetched on Sep 10th, 2013.

[26] CUDA Documents
http://docs.nvidia.com/cuda
Fetched on Sep 14th, 2013.

[27] cuRAND
https://developer.nvidia.com/curand
Fetched on Sep 14th, 2013.

[28] Random123: a Library of Counter-Based Random Number Generators

http://www.thesalmons.org/john/random123/releases/1.08/docs/index.html
Fetched on Sep 14th, 2013.

[29] D. E. Knuth. The Art of Computer Programming, volume 2
Addison-Wesley, 3rd edition, 1997.

[30] The Advanced Encryption Standard (AES) http://www.facweb.iitkgp.ernet.in/ sourav/AES.pdf
Fetched on Oct 7th, 2013.

[31] The RSA Algorithm
https://tao.truststc.org/Members/yuanxue/cyptography_new/PublicFetched on Oct 7th, 2013.

41

Bibliography

42

Bibliography

43

	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Index
	Contents
	List of Figures

	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 Requirements
	1.4 Document Structure

	2 State of the art
	2.1 OpenSSL
	2.1.1 Symmetric-key algorithms
	2.1.1.A AES

	2.1.2 Assymetric-key algorithms
	2.1.2.A RSA

	2.1.3 Cryptographic hashing algorithms

	2.2 GPU
	2.2.1 Programming on the GPU
	2.2.1.A History
	2.2.1.B Current GPUs

	2.2.2 OpenCL
	2.2.3 CUDA
	2.2.4 OpenCL vs CUDA
	2.2.5 How to program in OpenCL
	2.2.5.A Platform model
	2.2.5.B Execution model
	2.2.5.C Memory model
	2.2.5.D Programming model

	2.2.6 Main challenges in GPU programming
	2.2.7 Existing implementations of cryptography on the GPU
	2.2.7.A OpenSSL-GPU
	2.2.7.B CryptoCL
	2.2.7.C Fast Implementation of Two Hash Algorithms on NVIDIA CUDA GPU
	2.2.7.D OCLCrypto
	2.2.7.E SSLShader

	2.3 Conclusion

	3 Implementation
	3.1 Introduction
	3.2 OpenSSL
	3.2.1 GPU Engine

	3.3 AES
	3.3.1 Parallelism
	3.3.2 Execution flow

	3.4 RSA Key Generation
	3.4.1 Parallelism
	3.4.2 Execution flow

	3.5 RSA Cipher
	3.5.1 Parallelism
	3.5.2 Execution flow

	4 Results
	4.1 Introduction
	4.2 Results
	4.2.1 AES
	4.2.1.A CBC Decryption
	4.2.1.B CBC Encryption
	4.2.1.C ECB

	4.2.2 RSA
	4.2.2.A Key Generation
	4.2.2.B Cipher

	4.3 Conclusion

	5 Conclusions
	5.1 Conclusion
	5.2 Future work

	Bibliography

