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Abstract

The aim of the present work is to develop efficient feature selection approaches. The
problem regarding the increasingly larger accumulation of data is presented, where feature
selection emerges as a promising solution. Despite the variety of feature selection methods, few
of them are able to guarantee a good performance, especially in high dimensional databases.

A novel wrapper methodology applied to feature selection is formulated based on the
Fish School Search (FSS) optimization algorithm, intended to cope with premature convergnce.
The FSS was originally designed with a real encoding scheme for searching highdimensional
spaces based in fish schools behaviour. In order to use this population based optimization
algorithm in feature selection problems, the use of binary encoding for the internal mechanisms
of the fish school search is proposed, emerging the binary fish school search (BFSS).

The proposed algorithm, as well as other state of the art feature selection methods such
as Sequential Forward Selection(SFS) and Binary Particle Swarm Optimization (BPSO), were
combined with fuzzy modelling in a wrapper approach and tested over two databases, a
benchmark and an ICU (intensive care unit) database. The purpose of using this last database
was to predict the readmission of ICU patients 24 to 72 hours after being discharged. Several
statistical measures were considered to characterise the patient stay, including the Shannon
entropy and the weighted mean.

The results obtained by comparing the performance measures and the number of

features selected of the used algorithms, show promising results for the novel algorithm BFSS
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Resumo

O presente trabalho visa o desenvolvimento de abordagens eficientes para o problema
de selecdo de variaveis A questdo da crescente quantidade de informacdo acumulada é
debatida, para o qual a nocdo de selecdo de variaveis se estabelece como uma solucéo
promissora. Apesar da grande variedade disponivel, poucos sao os métodos capazes de garantir
alta preciséo, schretudo em bases de dados de grande dimensé&o.

Neste sentido, uma nova metodologia foi aqui formulada com base no algoritmo de
otimizacdo Fish School Searchidestinado a lidar com a convergéncia prematura das solucdes.
Este método, originalmente desenvolvido com um esquema de codificacdo em nimeros reais,
pesquisa espacos de alta dimensdo baseandese no comportamento de cardumes. De forma a
utilizar este algoritmo de otimizacdo em problemas de selecéo de varidveis foi proposto o uso
de um esquema de codificacdo binaria para 0s seus mecanismos internos, surgindo o Binary
Fish School SearcABFSS)

O algoritmo aqui proposto, bem como outros métodos, Sequential Forward Selectione
Binary Particle Swarm Optimization foram conciliados com modelagéo fuzzy numa abordagem
wrapper e testados em duas bases de dados, uma debenchmark e outra de uma unidade de
cuidados intensivos (UCI) Esta Ultimafoi utilizada de modo a prever a readmissao de pacientes
apos alta. Foram consideradas varias medidas estatisticas para caracterizar a sua estadia,
incluindo a entropia de Shannon e a média ponderada.

Os resultados obtidos, através da comparacéo da precisdo e do nimero de variaveis
selecionadas dos varios algoritmos usados, mostram resultados promissores para 0 novo

algoritmo BFSS

Palavras-chave: Selecéo de Variaveis, Codificacéo binaria, UCI,Readmissdes
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Notation

Symbols

g Number of features selected
grotal number of features

g Number of data samples

- System output

g Data sample

- Database

- Model output

g Set of possible labels or classes
g Class

g Number of existing labels

g Decision region

g Threshold

g Weight factor

g Activation function

g Fuzzy set of the antecedent
d Fuzzy set of the consequent
g Fuzzy rule

g Number of rules

U A (X), uB () g Menmbership functions

UR(XY)

g Fuzzy relation

g Mapping function of the i th rule
g Degree of fulfullment of rule i

g Cluster center

g Objective function

g Fuzzy partition matrix

g Matrix of cluster prototypes

XIX



i g Constant that controls volume of cluster i

T g Parameter vector for the i t h rule
d g Matrix of model parameters

Y g Weighted vector of inputs

q g Matrix of vector inputs

P, y) g Probability distribution function
R[] d Risk or expected/oss of f

F g Features space

a g Non-linear mapping function

x0 g Subset of features

0/x) g Relevance index

p g Parameter value

gi g Value of bit i

u g Number of bits used

a g Disturbance associated with real data
o g Objective

ci( g Constraint function

Ne g Number of missclassy cations
Ns g Total number of tested samples
$xi) g Cumulative relativey tness

p tour g Tournament selection probability
o g Crossover probability

Pu g Uniform crossover probability

P mut s I mut g Mutation probability

S g Particle swarm

Vi g Visibility sphere of particle i
v g Particle velocity

X; g Particle position

a g Particle acceleration

o g Time step

0; g Particle cohesion

h g Particle alignment

S g Particle separation

C,, C/, Cs gAcceleration weighting factors
Swif) g Logistic function of the velocity

V max g Farticle velocity threshold

XX



W up g Upper bound weight

W lpy g Lower bound weight
Stepind gstep individual parameter
Stepvol -Step volative parameter
t -lteration
gactual -atual iteration
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Chapter 1

Introduction

Over the past 30 years, the continuing development and application of systems engineering
methods has enabled an unprecedented growth in the manufacturing, logistics, distribution, and
transportation sectors of our economy [35]. Vast business organizations (e.g. airline companies, chains
of department stores, large manufacturing companies), could not properly operate in the current
business environment without the extensive use of various engineering tools for design, analysis and
control of complex production and distribution systems [36]. However, even with the emergence and
development of new engineering techniques over the past years, some industries have barely begun
to take advantage of systems engineering tools, which means that there is a great number of potential
unexplored applications for them.

A good example is the health care delivery system, one of the most technologically intense
and data-rich industries [32]. According to a report from the National Academy of Engineering (NAE)
and the Institute of Medicine (IOM), the application of systems engineering tools could play a crucial
role in solving the current crisis in the very complex health care system §7].

With the computerization of many sectors and with the advances in data collection tools, our
capabilities of both generating and collecting data have been increasing rapidly in the last several
decades. This explosive growth in stored data has generated an umgent need for new techniques and
automated tools that can intelligently assist us in transforming the vast amounts of data into useful
information and knowledge [26].

This chapter begins with a brief overview of methods currently used in knowledge discovery in
databases. Further, the case of study will be introduced,the prediction of readmissions in an intensive

care unit (ICU). In the end of the chapter, the contributions and outline of this work are presented.

1.1-Knowledge Discovery

The information age is very hard to grasp. In an averagep e r s o nripwadalys, we get more

information in a day than someone who lived 100 years ago would get in a lifetime. The speed at



which information is increasing means that finding accurate data is becoming more important than the
data itself [42].

The traditional method of turning data into knowledge relies on manual analysis and
interpretation. In the health care industry, this form of manual probing of a data set is slow, expensive
and highly subjective. With the urgent need for a new generation of computation techniques and tool s
to assist humans in extracting useful information (knowledge) from a fast growing volume of data, a
methodology was created, the Knowledge Data Discovery (KDD), first introduced by Fayyadin 1996
[14].

The KDD process can be formally defined as anon-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in large amounts of data.
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Figure 11: Knowledge discoveryprocess.

The KDD processcan be decomposed into five main steps, as illustratedin Fig. 1.1

1. Data acquisition § The process of acquiring and storing data.

2. Data Preprocessing § Consists of applying proper techniques that allow the improvement of the
overall quality of the data. Includes processing of noise/outliers, correction of missing values,
and/or alignment of data sampled at different frequencies.

3. Feature Slection § Consists of finding useful features (variables) to represent the data and
discarding the non-relevant ones, containing redundant information.

4. Modeling § Refers to the process of combining methods from computational intelligence and/or
statistics to extract patterns in data sets. In this work it was used classification models, which
identifying to which of a set of categories (classes) a newobservation belongs, on the basis of
atraining set of data containing observations whose category membership is known

5. Interpretation - The process of evaluating the discovered knowledge with respect to its validity,

usefulness, novelty, and simplicity. External expertise may be required in this step.

All of the five steps described are equally crucial, and the process is iterative,.e. multiple loops
can occur between any steps of the KDD method.

In real-world systems, the selection of a low number of features that consistently describe the
problem is usually time consuming and, in many cases impossible to achieve with a greedy approach.

In this work, the focus is turned to the feature selection stage of the KDD method. A novel approach is
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proposed for the optimization algorithm Hsh School Search (FSS), in order to use this population

based algorithm in problems of feature selection.

1.1.1-Principles of Feature Selection

The addition of more features (variables) is expected to increase the accuracy of the model
(classifier). However, for some classifiers an increase in input dimensionality decreases the reliability of
statistical parameter estimations and may, consequently, result in a decrease in the classification
accuracy [43]. This is known as the Hugheseffect [29], the so-called curse of dimensionality, which
postulates that the classification accuracy will decrease after a ertain feature-set size is reached unless
the number of training samples is proportionally increased [43]. The Hughes effect is therefore more
likely to be encountered when small training sets are used and the input dimensionality is increased.

The field of feature selection has been object of extensive research in recent years 41]. This is
explained due to the potential benefits introduced when reducing data dimensionality. It can greatly
improve data visualization and understanding, facilitating knowledge discovery. Furthermore, one
needs to measure and store less information leading to a reduction in equipment, and consequently
cutting unnecessary costs. From the clinical point of view, this process may bring to light new variables
that had not been previously considered as relevant for a given medical problem.

Feature selection algorithms can be grouped into four categories: filters, wrappers, hybrids and
embedded [52, 23]. Filter methods rely on general characteristics of the data to evaluate and select
feature subsets without involving any mining algorithm. Some examples include using measurements
of entropy, variance, correlation or mutual informatio n of single and multiple variables [63]. Wrappers
require one predetermined mining algorithm and use its performance as the evaluation criterion. T hey
search for the features best suit to improve the performance of the mining algorithms, but they also
tend to be more computationally expensive than filters [56]. Some of the most commonly used
wrapper methods include best-first, branch-and-bound, simulated annealing, genetic algorithms,
forward selection or backward elimination, but the list is considerably longer and continuously
growing. The present thesis introduces a new wrapper method, the Binary Fish School ®arch (BFSS)
algorithm.

Hybrid models attempt to take advantage of the two previous types of models by exploiting
their advantages in different stages [22]. First, a filter decreases the dimensionality of data by
eliminating features according to the specified criteria. Then, wrappers select relevant features
according to the mining objective.

Finally, embedded methods differ from the previous feature selection methods in the way

feature selection and learning interact. In contrast to filter and wrapper approaches, the learning and



feature selection parts cannot be separated in embedded methods [23]. Examples of embedded
method s for feature selection include decision trees and random multinomial.

Many problems related to Feature Selection (FS) have been shown to be NPhard and finding
the optimal set of features is usually intractable [6,30].Thus, the search of the most predictive feature
subsets can be seen as @ optimization problem. Metaheuristics are general upper level (meta)
algorithmic techniques, that can be used as guiding strategies in the design of heuristics to solve
specific optimization problems. These techniques are capable of finding acceptable solutions, within
reasonable time, by using experiencebased techniques or through guided search, but do not
guarantee that the optimum will be found. Popular metaheuristics for combinatorial problems
include simulated annealing (SA)by Kirkpatrick [34] genetic algorithms (GA) [27] Scatter Search
[19], Tabu Search [20], and Particle Swarmoptimization (PSO).

The present thesis resorted to: 1) a new FS wrapper method based on the new-found
metaheuristic Fish school Sarch optimisation , based on fish school behaviour [17], 2) a PSO algorithm
modified to be used in FS problems [15] and 3) a wrapper method based on Tree search feature
selection: the Sequential Forward Selection (SFS)The three algorithms were tested in a benchmark

database before being applied to a problem in the health care system.

1.1.2- Modeling

Classification modeling, used in the data mining process, can be defined as the application of
discovery algorithms that produce a particular enumeration of patterns/models over the data.

The usefulness of a model isto mimic how a particular object or phenomenon will behave in a
particular condition. It can be used for testing, analysis or training, in conditions where real-world
systems or concepts can be represented by a model p4].

Machine learning refers to a group of mathematical modeling techniques that are capable of
automatically acquiring and integrati ng knowledge based on empirical data, such as data from sensors
or databases. This area has been extensively studied with numerous successful applications across a
wide range of fields (a very broad description of application areas and examples can be found in [33]).

The purpose of using machine learning techniques (or learning machines) is to reproduce the
human learning capabilities, namely the ability to recognize complex patterns and make intelligent
decisions based on data.

Learning machines are widely used in classification, regression, recognition and prediction
problems. There are many possible applications for these modeling techniques, that range from
engineering applications in robotics, fault tolerant control, pattern recognition (e.g. speech

recognition, handwriting recognition), to medical applications (e.g. diagnosis, prognosis) [33].
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Nonetheless, in this work, the main interest is the machine learning capability of discovering and
classifying patterns in high dimension databases.

Pattern recognition [11, 44, 46] addresses the problem of assigning labels (classes)to objects
(or samples), being each sample composed by aset of features (or attributes). In order to better
understand pattern recognition , this subject has beendivided into two major types of problems [37]:
unsupervised and supervisedlearning.

In the unsupervised category, the problem is to understand whether there are groups in the
data, and what characteristics make the objects similar within the group and different across the
groups. Contrarily, in supervised learning, each data sample already has a preassigned label, and the
task consistsof training a classifier in order to differentiate between labels.

In this work, it was decided to use a non-linear machine learning technique, Fuzzy Modelling
(FM). This methodis considered suitable for the demanding problem of pattern recognition, since it
can, theoretically, approximate any multivariate nonlinear function [37]. The main advantages of this
method are the following :

Efficient tool for embedding human (structured) knowledge into useful algorithms multivariate;
Applicable when mathematical model is unknown or impossible to obtain;

Operates successfully under a lak of precise sensor information;

1

1

1

1 Useful at the higher levels of hierarchical control systems;

1 Appropriate tool in gener ic decision-making process;

1 Transparent, non-crisp model;

1 Interpretation in the form of rules and logical connectedness. From the medical point of view,
these rules provide additional means of validating the f uzzy «c¢I| as s i f knewledgb

regarding the system.

The main disadvantages are:

1 Expets may have problems in structuring the knowledge with respect to the structure of the
model;

1 Experts sway between extreme poles: too much aware in field of expertise, ortending to hide
their knowledge;

1 model complexity increases exponentially with the increase of the number of features;

1 Learning is highly constrained; typically more complex than other models, like neural networks

(NN).



1.2 Prediction of readmissions

Patients readmitted to an intensive care unit during the same hospitalization have an increased
length of stay, higher costs and increased risk of death. Previous studies have demonstratedoverall
readmission rates of 4-14% [3, 48], of which nearly a third can be attributed to premature dis charge
from the critical care setting [3, 12]. It is also documented that the length of stay for readmitted
patients is at least twice as long as that for patients discharged from the ICU but not readmitted and
that hospital death rates are 1.5 to almost 10 times higher among ICU readmission [49].

Increasing pressures on managing care and resources in ICUs is one explanation for strategies
seeking to rapidly free ICU beds. Faced with this scenario, a clinician may elect to discharge a patient
currently in the ICU, who has already had the benefits of stabilization and intensive monitoring, to
make room for more acute patients allocated in the emergency department, exposing the outwardly
transferring patients to the risk of readmission in the short term. Moreover, despite the existence of
morbidity and mortality issues around readmission, the Centresfor Medicare & Medicaid Services have
already reduced funding for specified avoidable conditions, and it is quite possible that avoidable
readmission to an ICU will receive attention in the future as well.

Previous studies [7] have examined different variables that are assessed at dischargd, but
these predictive models performed only slightly better than mode Is based upon the gold standard
method - APACHE II.

Thus, this work has encountered the problem of readmission to an ICU, being its goal to
predict the readmission of patients in an ICU within 24-72 hours after the discharge. A data mining
approach was usedto a real world database, the MIMIC II, combined with fuzzy modelling and three
different Feature Selection algorithms, the Sequential Forward Selection, the Binary Particle Svarm
optimization and the novel Binary Fish School Search, here formulated. In this context, 22 physiologic
variables acquired during the stay of real patient in an ICU were selected Statistical measures were
utilized to describe each patient stay: the mean, the standard deviation, the maximum, the minimum,

the Shannon entropy and the weighted mean, which was tested for different weights.

1.3 Contributions

In this work, the problem of Feature Selection in real-world databases is addressed. Themain
contributions of this work are :

1 Introduction and formulation of Binary Fish School algorithm, the novel algorithm for Feature

Selection derived from the optimization algorithm Fish Shool Search Originally this algorithm

was presented as a multidimensional real system encoded algorithm [17], and is here modified in



order to solve problems with binary inputs . The algorithm was then applied to feature selection
problems;

1 Use of new types of features (weighted mean and Shannon entropy) to predict the readmissions
of patients in the ICU during the 24 to 72h period that follows the discharge;

1 Comparison of the FSresults applied to two real databases using the three feature selection
algorithms: squential forward selection, particle swarm optimization and binary fish school

algorithm.

1.4 Outline

In chapter 2, an overview of the knowledge data discovery stages, studied in this work, is
presented. It begins with the definition of the two addressed databases and the necessary
preprocessing of the data. Then, the fuzzy modelling technique is presented, together with the
performance measures considered in this work. Finally a broad description of wrapper methods is
presented along with description of the state of the art feature selection algorithms used in this work.

In chapter 3, the original fish school search algorithm is presented in detail. The internal
mechanisms are featured and an illustrative example is given to consolidate the description. Finally the
first approach to transform the FSS algorithm in order to solve feature selection problems is presented,
the decimal to binary fish school search.

Chapter 4 will introduce the goals and detailed formulation of the binary fish school search.

Chapter 5 presents the results of the wrapper methods that combine the studied machine
learning techniques with the introduced search algorithms. The chapter begins with the presentation
of the outline of the approach, and the definition of the parameters used to evaluate the functioning
of the formulated algorithms . Next, the tests to select the parameters for the optimization algorithms
are presented. Finally, the methods are tested and compared over the two databases.

At last, in Chapter 6 the results of this work are summarized and conclusons are drawn.

Furthermore, promising areas for future research are presented






Chapter 2

Knowledge Data Discovery

2.1-DATA

In this work, two databases were used: a benchmark database and a health care database the
MIMIC II. The benchmark databases are employed to ascertain the quality of the developed FS
algorithms, i.e., to verify if the FS algorithms are capable of selecting alow number of features subset
with good informative potential. After validation with the benchmark databases, the FS algorithms
were applied to a health care database, the MIMIC ll,as a prediction of readmission problem.

In this chapter, the selected benchmark database is initially exposed and then the health care

database is presented as well as thenecessaryprocessing for this database.

2.1.1-Benchmark databaseg Sonar

The choice of a proper group of benchmark databases is very important to adequately validate
the implementation of an algorithm. These databases should allow the algorithm designer to test the
algorithms according to the predefined performance measures and allow the comparison between
these results with those from state of the art methods.

The sonar database iscomprised of 208 real samples of rocksthat are divided in two labels. A
data sample is a set of 60 features with values ranging from 0.0 to 1 Each of these features represents
the energy within a particular frequency band, integrated over a certain period of time. The label
associated with each record containsthe indication if the rock sonar signals bounced off a metal
cylinder (97 samples) or bounced off a roughly cylindrical rock (111 samples) Thetask at hand was to
discriminate between these two classes[21].

This database was developed by Sejnowski and Gorman on their study in the classification of

sonar signals using artificial neural neworks [21].



2.1.2- MIMIC Il database

The MIMIC |l database [51] is a large database of ICU patients admitted to the Beth Israel
Deaconess MedicalCentre, collected from 2001 to 2006. The MIMIC Il database is currently formed by
25,549 patients, of which 19,075 are adults (> 15 years old at time of admission). For each patient,
several samplesof physiological variables were stored throughout their stay.

In this work, a previously developed dataset (first presented in [15]) was used,including only
adult patients (>15 years) that were ICU inpatients for at least 24 h and readmited back to any ICU of
the same medical centre between 24 and 72 h. This interval is often refered to as an early readmission
[43]. The reason for choosing 24h as the lower bound for the readmission time window is related to
how MIMIC Il is structured. Also, patients readmitted to the ICU less than 24 h after their discharge are
considered to belong to t he same ICU stay. The choice of72 h as the upper bound for the readmission
time window was based on previous works [50], and local clinical intensivist suggestions. All included
patients were also required to have at least one measurement of the 22 variables shownin Table 2.1
These variableswere selected based on the hypothesis that a good predictive value could be achieved

using a few physiological variables and taking into account the following directives:

i. Thevariableshad to be easily and/or routinely assessed in the 24 h before dischargeA balance had
to exist in the number of selected variables given that it will affect the number of patients that will
form the dataset, i.e. the more variables defined, the fewer the patients that were likely to have all
of them collected at the same time;

ii. Selecting a high number of variables may bias the dataset towards selecting patients having similar
conditions that required their specific measurement/testing;

iii. The variables chosen should be independent with minimal correlation.

Exclusion criteria included patients who died during the ICU stay.

As with other real-world databases, a few preprocessing steps were necessary to improve the
quality of the raw data of the MIMIC II. In order to deal with variables collected within different
sampling periods, similarly to [15], a template variable was used. This process aligned all samples to
the same point in time as a designated template variable. Heart rate was chosen as the template
variable on the basis since it was one of the most frequently measured variables and thus, introduced
fewer artifacts in the data. With regards to missing data, in general, ICU data can be missing either
because they are perceived to be irrelevant for the current clinical problems (thus, not recorded), or

because exogenous interventions or endogenous activities have rendered the data useless [58].
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Table 21: List of physiological variables considered from MIMIC I, @ccording to [15]).

Type of variables Variable name (units)
Heart rate (beats/min)

Respiratory rate(breaths/min)
Temperature(°C)
SpO2(%)
Non-invasive arterial Blood pressure(systolic)(mmHg)

Monitoring signlas

Blood pressure (mean)(mmHG)
Red blood cell count (cellsx103/IL)
White blood cell count (cells x 103/IL)
Platelets (cells x 103/IL)
Hematocrit (%)
BUN (mg/dL)
Sodium (mg/dL)
Potassium (mg/dL)
Laboratory tests Calcium (mg/dL)
Chloride (mg/dL)
Creatinine (mg/dL)
Magnesium (mg/dL)
Albumin (g/dL)
Arterial pH
Arterial base excess (mEq/L)
Lactic acid (mg/dL)
Other Urine output (mL/h)

Data missing for an intentional reason (e.g. patient is transported out of the ICU for an
imaging scan) was considered nonrecoverable and thus deleted. On the other hand, data missing for
some unintentional reason (e . g . sensor goes osfcdnsideradiréceverdblg andthde st ) wi
last available value was used toimpute values to these segments.

The Interquartile Range (IQR)method was used in order to deal with the outliers. This method
measures the statistical dispersion of the data, and dividesit into quartiles. IQR is a trimmed estimator
that identifies the most robust measure of scale [58]. The patient selection process is summarized in
Fig.2.1.

It is important to point out that the number of samples for each patient is not constant. A
sample contains measures of the 22 physiologic variables. The number of these samples acquired for
each patient during his stay can vary between 1 and 26 samples and it can have different sampling
periods. The total number of samples considered was 13675.

It was detected that some samples of the 1028 selected patients contained outliers, so some
preprocessing was necessary.

In order to use a constant dimension for the inputs of the models (necessary condition) a
transformation to the data was performed. Statistical measures were used in order to seize the
information of the time series for the physiologic variables of each patient.

The next section exposes the preprocessing used on this dataset.
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Temperature °C

MIMICII
(n=25,549) Patients> 15yr
\|/ ICUstay > 24h
n=19,075
w/ all variables
fromTable2.1
n=3,034
datapreprocessingremovalof
\|/ missingdata and outliers)
n=1,267
Survived NotSurvived
n=1,028 n=239
NotReadmitted Readmitted
n=893 n=135

Figure 21: Patient selection flowchart [15].

Data preprocessing

Outliers

After analysing all the 13675 samples of the 1028 patients, and although the IQR method was
applied to the raw database of MIMIC II, there were still some samples that contained values out of the
physiologic limits. As an example, Fig. 2.2shows the plot of the physiologic variable temperature (°C)
for all samples considered. The corporal temperature of 5 °C seen in Fig. 2.2is not possible, even if the

patient is in a severe condition.

1 1 L 1 L 1
0 2000 4000 6000 8000 10000 12000
Sample

Figure 2.2: Graphical representation of the physiological variable temperature °C for all samples.
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The outliers were eliminated using the maximum and minimum limits for the 22 physiologic al
variables of Table 2.2 These physiologic limits were obtained through the Decreased Variable Analysis

(MEDAN).

Table2.2: Physiologial limitsconsidered for the exclusion of outliers.

No. Variable name (units) Min Max
1 Heart rate (beats/min) 0 250
2 Respiratory rate(breaths/min) 0 200
3 Temperature(°C) 25 42
4 SpO2(%) 60 100
5 Non-invasive arterial Blood pressure(systolic)(mmHg) 30 300
6 Blood pressure (mean)(mmHG) 10 187
7 Red blood cell count (cellsx103/IL) 2 8
8 White blood cell count (cells x 103/IL) 0.4 50
9 Platelets (cells x 103/IL) 3 1000
10 Hematocrit (%) 19 60
11 BUN (mg/dL) 4 500
12 Sodium (mg/dL) 120 160
13 Potassium (mg/dL) 2.2 8
14 Calcium (mg/dL) 7.2 12
15 Chloride (mg/dL) 80 130
16 Creatinine (mg/dL) 0.1 9
17 Magnesium (mg/dL) 0 10
18 Albumin (g/dL) 0.5 18
19 Arterial pH 4.8 7.8
20 Arterial base excess (mEq/L) -30 20
21 Lactic acid (mg/dL) 0 10
22 Urine output (mL/h) 0 1000

All of the samples that contain one or more physiologic variables with values out of the limits
of Table 22 were considered samples with outliers. The total nhumber of measures considered as
outliers was 517. However, only 473 samples contain one or more variables with values out of the

limits. According to [ 8] the missing samples considered outliers, can be treated in various ways:

1. Ignore the tuple.

2. Fill in the missing value manually.

3. Use aglobal constant to fill in the missing value.

4. Use the attribute mean to fill in the missing value.

5. Use the attribute mean for all samples belonging to the same class as thegiven tuple.

6. Use the most probable value to fill in the missing value.

Methods 3 to 6 bias the data.

Since the number of samples, as well as the temporal spacing of each sample for each patient
are very irregular, models created later must have the ability to handle these irregularities. Thus, the
approach 1 was chosen in which a sample containing one or more measures outside of the limits in

Fig. 22 is removed, being a process that does not bias data.
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In this process,some patients had all there samples removed,resulting in a total of 1010

patients. Table 23, summarizesthe preprocessing of the outliers.

Table 23: Summary of the number of samples and patients, resulting from preprocessing.

No. of samples| No. of patients
Before the preprocessing 13675 1028
Removed during the preprocessing 473 18
After the preprocessing 13202 1010

The number of samples of the 22 physiologic variables per patient after treatment of outliers
was analysed, Fig.2.2 shows the variation of the number of patients per number of samples after the

outlie s featment. It is worth noticing that the number of patients with only one sample is quite

considerable.
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Figure 2.2: Graphical representation of the number of patients per number of measurements of the 22
physiological variables considered.

In order to evaluate if the percentage of readmitted patients remained in the 4-14%, referred
in the literature, an analysis of the percertage of patients readmitted was made, varying the patients
with a minimal number of measurements for the 22 physiologic variables. Table 2.4 shows the results

of this analysis for the variation of a minimum number of samplesof 1 up to 10.

Table 24: Analysis of the number of patients readmitted and not readmitted for the subset of patients
with a minimum number of samples. The percentage of readmitted patients remain in 4-14% as referred
in the literature .

Minimum number of samples: 1 2 3 4 5 6 7 8 9 10
No. of patients not readmited: 879 655 637 631 617 604 588 578 567 551
No. of patients readmited: 131 94 89 89 88 87 86 82 80 78
% readmited: 13.0 12.6 12.3 12.4 125 12.6 12.8 12.4 12.4 12.4

Data transformation

Knowing that there was a great variability in the number of samples per patient and very
irregular sample periods, some descriptive statistics measures wereused to describe the stay of each
patient. By doing this, all patients would have the same number of features that described the time

series of the physiologic variables throughout their ICU hospitalization. These features with constant

dimension, could then be used as inputs for the classification models.
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Previous studies [15], used the arithmetic mean, the maximum, the minimum and the standard
deviation of each physiologic variables in order to absorb the information of the time series of the
considered physiologic variables for each patient. In the present work, in addition to these statistical
measures the Shannon entropy and the weighted average were also used giving the possibility to
withdraw more information.

Shannon entropy is the average unpredictability in a random variable, which is equivalent to
its information content. It provides an absolute limit on the best possible losslessencoding
or compression of any communication, assuming that the communication may be represented as a
sequence ofindependent and identically distributed random variables . There are already studies that
use entropy as feature extraction measure [45, 10].

In relation to the weights o f the weighted mean, a linear distribution along the stay of the
patient was considered, giving more relevance to the last measurements before the discharge. Four

gradients were considered for these weights, as presented in Fig. 23.

1 T T = e =
2 - e o & ol -
=) P gradient:0.1
§ B (TR s & gradient:0.4 | -
e gradient:0.6
R gradient:0.9 | 7
D 1 1 1 1
-25 -20 -15 -10 -5 0

Hours befare the discharge

Figure 23: Graphical representation of the four different gradients for the weights to be used in the
weighted mean. The measures of the 22variables vary between 0 and 24 hours before the discharge

In order to use the descriptive statistics measures announced before, it was decided to use
only patients with a minimum of 3 measurements available, considering 725 patients (647 not
readmitted and 89 readmited, see Table 2.4) Thus, after the treatment of outliers and transformation
of the dataset, 4 datasetsemerged, one for each gradient of the weighted mean.

The only features that differ in each dataset are the 22 features that correspond to the
weighted mean. Eachdataset was formed by 726 patients (123% readmitted) and 132 features. The
four datasets considered will be referred as readmition datasets.

Each patient will be considered as a sample for inputs of the classification models, Fig. 2.4

illustrates a sample.

For each patient y — mean |maximum | minimum |standard deviation |Shannon entropy | weighted mean
[1x132] . 6x[1x22]

Figure 24: lllustrative diagram of the formation of the inputs for the classification models: each patient
represents a sample ([1x132] array). Associat@ with each patient there is also a notification that indicates
whether he is or not in readmitted class.
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2.2-Modeling

In the present work, we used the machine learning technique of fuzzy modelling. These
models were used as classification models.Briefly, for a given sample the model, created based on the
train set of the data, is supposed to correctly assign this sample to one of the labels considered in the

problem. An overview of the fuzzy modelling is given in the next topics.

2.21 Fuzzy modeing

Fuzzy modeling is a tool that allows approximation of nonlinear systems when there is little or
no previous knowledge of the problem to be modeled [ 55, 13]. This tool supports the development of
models around human reasoning (also referred to as approximate reasoning), and allows an element
to belong to a set to a degree, indicating the certainty (or uncertainty) of its membership.

Within medical-related classification problems, several fuzzybased models have shown
comparable performances to other nonlinear modeling techniques [ 18, 16, 28]. Fuzzy modelling is
particularly appealing as it provides not only a transparent, non-crisp model, but also a linguistic
interpretation in the form of rules and logical connectives. These are used to establish relations
between the defined features in order to derive a model. A fuzzy classifier contains a rule base
consisting of a set of fuzzy if-then rules together with a fuzzy inference mechanism. These systems
ultimately classify each instance of a dataset as pertaining to one of the possible classes defined for
the specific problem being modeled [ 55].

For both databases used in this work (Sonarand readmission), the goal was to classify the
samples in one of two labels. In the case of sonar database: rock sonar signals bounced off a metal
cylinder or bounced off a roughly cylindrical rock, and in t he readmission problem, patient would be
readmitted or patient would not be readmitted to the ICU after 24 -72 hours of discharge.

First order TakagiSugeno (TS) fuzzy models $5] were applied, which consist of fuzzy rules
where each rule describes a local inputoutput relation. When first order TS fuzzy systems are used,
each discriminant function consists of rules of the type:

YE BEO ATHRAT B ED
i A @ A

where, E phgdt corresponds to the rule number, @ @pheE® . is the input vector, . is
the total number of inputs (features), ! is the fuzzy set for rule2 Bnd1 feature, andU is the
consequent function for rule 2 E

The degree of activation of the E" rule is given by:

I B 7 ® 2.1)
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where* @ DYO mip.

The overall output is determined through the weighted average of the individual rule outputs.
The number of rules, and the antecedent fuzzy sets0 are determined using fuzzy clustering in the
product space of the input and output variables [55]. The consequent parameters for each ruleQare
obtained as a weighted ordinary least-square estimate.

Given a dassification problem, and being a linear consequent, athreshold 0is required to turn
the continuous output N Tifp into the binary output o~ T#p . In this way, Q@ o6M&
andif@ odM&n p.

The number of rules j and the antecedent fuzzy setsd were determined by means of fuzzy
clustering in the product space of the input and output variables.

For each database, he data was divided into training and test sets, while the model
parameters were calculated using the training set, the feature subset quality was assessed using the
test samples. Such approachwas necessay due to the risk of overfitting, which means that the model
could describe random error or noise instead of the underlying informat ion. Thus, the test set provided

a fair comparison over the generalization capabilities of the evaluated models [47].

2.2.2 Clustering

Clustering is an unsupervised learning method that organizes and categorizes data based on
the similarity of data objects [2]. It is used in various fields, such as patternrecognition, machine
learning and bioinformatics [33]. It is useful for knowledge discovery from empirical data and model
construction.

A cluster can be seen as a group of objects more similar to one another than to other data
points, being similarity usually defined as a distance norm. Furthemore, a cluster (an also be seen as
the area of influence of rule Y. Therefore, a cluster center, also called prototype, coincides with the
corresponding rule centre. The closera data point is to a cluster center, the higher the fulfilment
degree will be.

There is a great number of clustering algorithms, however, most of the analytical clustering
algorithms are based on the minimization of the fuzzy c-means objective functional [5]. This objective

function can be written as (2.2).

oYy B B 70 (2.2)
where the positive constant & N phtb determines fuzziness of the resulting clusters. The vector® is
one of the U data samples,0 is the Q cluster center and'O is a distance norm between data

points and cluster centers. The fuzzy partition matrix Y contains all the normalized membership values

, @is the matrix containing all the data samples, and wis the matrix of the cluster prototypes.
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In this work, the fuzzy Gmeans (FCM)clustering algorithm was used, requiring the definition
of the number of cluster (w hich translates into the number of fuzzy rules). The number of clusters to be
used was determined based on the minimization of the partition index [4]. This index accounts for
both properties of the fuzzy memberships and structure of the data by measuring the compactness

and separation of the clusters. This index is defined as:

o~ B 7
Youv B - (2.3)

where & corresponds to the weighting exponent of the FCM algorithm,  corresponds to the
cardinality of fuzzy cluster Q@ & 0 corresponds to the distance between a data point & and its
cluster centerv , and B 0 0 (named as the separationi of a fuzzy cluster 'Q corresponds to
the sum of the distances from the cluster center U to the centers of all other 0 p clusters. The lower
the value of "YU t he more compacted and separated are the clusters.

For the sonar databasesand the four datasets of the MIMIC Il considered, the values of "Y &0
were calculated by varying J from 2 to 5. The final number of clusters corresponded to a local
minimum where the difference between the values of the criterion was minor.

In the present work, the maximum limit of variation for the search of the final number of
clusters was chosen, with the thought that a smaller number of clusters means a lower number of rules
and hence a lower degree of model complexity. For the two databases considered (sonar and

readmission datasets)the chosen numbers of cluster were 2.

2.2.3 Performance Measures

Traditionally, accuracy has been used to evaluate classifier performance. This measure is
defined as the total number of correct classifications over the total nhumber of available samples
Usually, most of the classification problems have two classes, positive and negativecases B8]. Thus,

the classified test points can be divided into four categories:

Hi t rue posi-tcorrectlysclagsifie® positive cases,
Hi t rue neg a-tcorrectlysclagsifletinegative cases,
H f al se p o s-iincdrrectylas§iflfedPnegative cases,

H f al s e n e g-dncdrrectylas§iflfed\ppsitive cases.

Given these categories, theaccuracycan be written as (2.4).

DODO T erer— (2.4)

This criterion is limited, especially in medical applications, for various reasons. If one of the
classes is more underrepresented than the others, misclassifications in this class will not have a great

impact in the accuracy value. Also, a good classification of a class might be more importaat than
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classifying other classesand this cannot be assessed with accuracy. Tdake this matter into account,

two performance measures were introduced: the sensitivity (2.5) and specificity (2.6):
i Qe i Q0 Q100 w (2.5)
i QOO0 O (2.6)

The sensitivity and Pecificity varies between 1ip 8

Thereceiver operating characteristic (ROC), or simplyROC curve, is araphical plot which
illustrates the performance of a binary classifier system as its discrimination threshold is varied. It is
created by plotting the fraction of true positives out of the positives (sensitivity) vs. the fraction of false
positives out of the negatives (one minus the specificity ), at various threshold settings. An example of
ROC curvesis shown in Fig. 2.5

1.0

0.8

0.6

0.4+

0.2

True-positive rate (sensitivity)

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1.0
False-postive rate (1 — specificity)

Figure2.5: Example of three BC curvs.

When using normalized units, the area under the curve (AUC) is equal to the probabilty of a
classifier ranking a randomly chosen positive instance being higher than a randomly chosen negative
one (assuming 'positive’ ranks higher than 'negative’). The AUC measure ranges from 0.5(random
classifier)to 1 (perfect classifier).

In the present work, the Sensitivity and Specificity were used as performance measures for the
models using the sonar database and readmission datasets, introduced in section 2.1. However, in the
models using sonar database accuracy was used as the main performance measure, and, inthe
readmission datasetsthe AUC. This choice was made because of the fact that the two classes of the
sonar database had similar numbers of samples (89 samples 45%vs 111 samples 55% and for the
readmission problem the percentage of the class readmitted was only 12.3% against 87.7% ofnot
readmitted. In this case one of the classes is underrepresented and if the accuracy had been used the
results would not be realistic, i.e. if a model classified all patients as not readmitted, the accuracy
would be ~87.7%, but the AUC measure would be 0.5corresponding to a random classifier.

For the computation of the measure AUC, only one threshold was used, the one through which

the best performance of the model was achievedwith the train set. With the resultant sensitivity and

19


http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/False_positive
http://en.wikipedia.org/wiki/False_positive
http://en.wikipedia.org/wiki/Specificity_(tests)

specificity of the test set using that threshold, a point was marked in the ROC. The AUC was computed
as the area under the two segments that link the points it and plp to the point marked with the
sensitivity and specificity. By doing this, we ensure a good approximation of the performance of the

model.
2.3 Feature Selection

The main characteristic of wrapper methodologies is the involvement of the predictor as pa rt
of the selection procedure. In this work, a learning machine was usedas a | bl ack boxDZ to
subsets according to their predictive performance [23]. Wrappers are constituted by three main
components:

1) Search method;

2) Learning machine;

3) Feature evaluation criteria.

Wrapper approaches were aimed to improve the results of the specific predictors they work
with. During the search, subsets wereevaluated without incorporating knowledge about the specific
structure of the classification [23].

In section 2.2 the fuzzy modeling technique (learning machine) was introduced. It is
considered to have universal function approximation prop erties, i.e., h theory they could approximate
the behaviour of any function. However, as referred in section 1.1.1, in real problems this is rather
difficult for a number of reasons, being one of them the high dimensionality of the available data.

Feature selection is generally used to identify which of the available variables are closely
related to the prediction of the outcome and to discard those unrelated to it, reducing the
dimensionality of the dataset [25, 41, 39]. From the clinical point of view, this process may bring to
light new variables that had not been previously considered as relevant to a given outcome.

In the present work, three FS algorithms were applied, the sequential forward selection (SFS),
Binary Particle Swarm Optimization (BPSO)and two formulated algorithms: decimal to binary Fish
School Search (D2BFSS) anBinary Fish school search algorithms (BFSS).

The following sections, present an overview of the well-known SFSalgorithm and the BPSO

methods.

2.3.1- Sequential Forward Selection

A detailed description of the sequential forward selection search algorithm used is reported in
[39]. Briefly, a model is built for each of the features in consideration, and evaluated using a

performance criterion upon the test set. The feature that returns the best value of the performance
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criterion is the one selected. Then, other feature candidatesare added to the previous best model, one
at a time, and evaluated. Again, the combination of features that maximizes the performance criterion
is selected. When this second stage finishes, the model has two features. This procedure is repeated
until the stop criterion is achieved. In the end, all the relevant features for the considered process
should be obtained.

The main advantages of this method relate to its simplicity, possibility of graphical
representation of the performance of the added feature and transparent interpretation of the results
which, for clinicians, is particular attractive. The main disadvantage is related to the greedy and thus
susceptible approach of finding local optima [ 39].

In this work, unlike the traditional stop criteria of witeration without improving the
performance of the models, the maximum number of features selected was used as the stopping
criteria. After the maximum number of features had been achieved, the model with the set of features
that achieved best performance was considered asthe selected best features.

The overall process of the SFS algorithm can be describedas:

For each feature in the feature vector X that does not belong to the features of the model:
repeat

Build model using previous features of the model combined with each feature in the feature
vector X that does not belong to the features of the model

Compute performance measure;

Select the combination of features with the highest value of AUC as the new features of the

model;

until number of selected features reaches defined limit
Select the final features.

The accuracy for SONAR database and the AUC, for the MIMIC Il derived datasets, were used
as performance measures to maximize.For each combination of features selected by the SFS, e

process of generating the performance measure of the model can be described by the following steps:

1. The modelis trained with the train set and the selected features.

2. With the simulated output of the training set, a threshold is iteratively evaluated in order to find
the one who maximise the performance (ACC or AUC, depending on the database)

3. With the threshold found, the test set is then simulated.

4. The final performance of the model is generated with the test set output.
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2.3.2 Binary Particle Swarm Optimization

Particle swarm optimization is a stochastic population-based metaheuristic, inspired in
swarming behaviour of some biological species (e.g. bird flocks).

There are variousways of encoding a problem solution, the most common and more generic
are real, integer and binary encoding. The use of each of them depends on the problem in hand.
Normally, in feature selection, the search space organization is madesuch that each state represents a
feature subset [16]. In aproblem with G variables, a state is encoded by a sequence ofj bits, each bit
indicating whether a feature is present or absent. An example of a possible state is represented by the
sequence:

eQ o ho phresp 2.7)

The variable x corresponds to input F/, where 0 phs) . If feature "Ois to be selected then

w pifnot w T. This process isllustrated in Fig. 2.6

F=|F |F|F|F |« |F.lF.lF.|F,

1 2 i 4

Figure 2.6: Decoding process in feature selection, according to [16].

Esentially, in BPSO, each particleis a candidate solution of the opti mization problem. A
particle is associated to a position and a velocity in the search space, where the method for
determining the changes in velocity depends on the particle itself and the other particles.

The iterative process in search of the optimum is [16]:

Step 1: Evaluate each particle in the swarm;

Step 2: Find the swarm and patrticle best values;

Step 3: Update velocities;

Step 4: Update positions of the particles;

Step 5: Go to Step 1 if not finished/stop criteria.

There are two crucial steps in the way the algorithm operates, the update of velocities and

update of particle positions.
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1) Update velocities. Velocity directs the movement in the search spae taking into account the

performance of the own particle and of the swarm, and it is update with the following equati on:

~

0 00 O ® ® Wi 0w (2.8)
Q pB ARQ pMB ho

The term involving constant ® is called the cognitive component and the term involving o is
the social component. g and r are uniform random numbers ¥ Tfp . Once velocities have been
update, the restriction 0 '@ Q 0 & @ié applied; this is a crucial step for the swarm to maintain
coherence.
2) Update particle position: The logistic function of the velocity is used as the probability distribution
for the position, [59]:

. U _— (2.9)

Thus the particle position is calculated for each variable by:

N T[F] "Q’iQ ” 0 (9 ot L % e Lo
w ohé DI 0 Qi 8 pB M hQ phB ho (2.10)

Objective Function

Recaling that the two main objectives in the FS problem are: maximizing the model accuracy
and minimizing the size of the feature subset. The objective function [16] will be defined as a fithess

function, being the goal its maximization:
M| p O ol p — (2.11)

where . is the size of the feature subsetand . the total number of features to be selected . The term
on the left side of the equation accounts for the overall accuracy or AUC and the term on the right for
the percentage of used features. Constant| N 1ifp is the weight of the related goal: accuracyor AUC

and subset size.
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CHAPTER 3

Fish school search

The novel Binary Fish school search algorithm, formulated and presented in this work, was
created based on the optimization search algorithm: Fish school search (FSS)jnvented by C. Bastos
Filho and F. Lima Netoin 2007, [17]. In this topic, the original Fish school searchoptimization algorithm
is presented, based on [17], as well asthe formulation of the decimal to binary system fish school

search algorithm (D2BFSS).

3.1- Original Fish school search

Severl oceanic fish species, as well asother animals, present social behaviaur. This
phenomenonds main purpose is to increase mutual sur vi
mutual protection and (ii) for synergistic achievement of other co llective tasks. Here, protection means
reducing the chances of being caught by predators; and synergy, refers to an active mean of achieving
collective goals such as finding food.

Apart from debating whether the emergent behaviour of a fish school is due to learning or
genetic reasons, it is important to note that some fish species live their entire lives in schools. This
reduces individual freedom in terms of swimming movements and increases competition in regions
with scarce food. However, fish aggregation is a fact and the benefits largely outweigh the drawbacks.

Along with the develop ment of this technigque the authors have taken great care not to depart
from the original inspiration source, but FSS contains a few abstractions and simplifications that have
been introduced to afford efficiency and usability to the algorithm. The main cha racteristics derived
from real fish schools and incorporated into the core of the approach are sound. They are grouped
into two observable categories of behaviours as follows:

w Feeding: inspired by the natural instinct of individuals (fish) to find food in order to grow strong
and to be able to breed. Notice that food here is a metaphor for the evaluation of candidate
solutions in the search process. An individual fish is considered to be able to lose as well asto

obtain weight, depending on the regions it swims in;
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w Swimming: the most elaborate observable behaviour utilized in this approach. It aims at mimicking
the coordinated and the only apparent collective movement produced b y all the fish in the school.
Swimming is primarily driven by feeding needs and, in the algorithm, it is a metaphor for the search

process itself.

3.1.1-Search Problems and Algorithms

Although there are several approaches for searching, there is,unfortunately, no general
optimal search strategy [40]. Thus, solving search problems is sometimes more of an art form than an
engineering practice. Although custom-made algorithms are valuable options for specific problems, a
more generalized automatic search engine would be a great bonus for tackling problems of high
dimensionality. Search problems can be highly varied. For example, they can be classified into two
groups with regard to the structure of their search-space: structured or unstructured. Forthe former,
there are many traditional techniques that are, on average, quite efficient. The same observation does
not apply to the latter, that is, there is no overall good approach for search spaces on which there is no
prior information.

The FSS can be valuable option for searching in high dimensional and unstructured spaces.

3.1.2-FSS Computational Principles

The search process in FSS is carried out by a population of limitedmemory individuals § - the
fishes. Each fish represents a possiblesolution to the problem. Similar to PSO or GA, search guidance
in FSS is driven by the success of some individual members of the population.

The main feature of the FSS paradigm is that all fish contain an innate memory of their
successesg their weights. In comparison to PSO, this information is highly relevant because it can
obviate the need to keep a log of the best positions visited by all individuals, their velocities and other
competitive global variables. Another major feature of FSS is the idea of evolution through a
combination of some collective swimming, i . e.
operation during the search process, on the basis of instantaneous results.

As for dealing with the high dimensionality and lack of structure of the search space, the
authors of the algorithm [17], believed that FSS should at least incorporate principles such as the
following:

(i) Simple computation in all individuals;

(i) Various means of storing distributed memory of past computation;

(iii) Local computation (preferably within small radiuses);

(iv) Low communication between neighbouring individuals;
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(v) Minimum centralized control (preferably none); and

(vi) Some diversity among individuals.

A brief rationale for the above -mentioned principl es is given, respectively: (i) this reduces the
overall computation cost of the search; (ii) this allows for adaptive learning; (iii), (iv) and (v) these keep
computation costs low as well as allowing some local knowledge to be shared, thereby speeding up
convergence; and finally, (vi) this might also speed up the search due to the
differentiation/specialization of individuals. These principles, incorporated in FSS led the authors to

believe that FSS coulddeal with multimodal problems.

3.1.3-Overview of the algorithm

The inspiration mentioned, together with the principles just stated above, were incorporated in
the approach in the form of two operators that comprise the main routines of the FSS algorithm. To
understand the operators, a number of concepts must be defined.

The concept of food was considered as related to the function to be optimized in the process.
For example, in a minimization problem the amount of food in a region would be inversely
proportional to the function evaluation i n this region. Th e ] a g u adefined fyD#ei delimited
region in the search space where the fish can be positioned. The operators were grouped in the same
manner in which they were observed when drawn from the fish school, defined as follows:

1 Feeding: food is a metaphor for indicating to the fish the regions of the aquarium that are likely
to be good spots for the search process;

1 Swimming: a collection of operators that are responsible for guiding the search effort globally
towards subspaces of the aquarium that were collectively sensed by all individual fish as more

promising with regard to the search process.

3.1.4-The Feeding Operator

As in real situations, the fish of FSS are attracted to food scattered in the aquarium in various
concentrations. In order to find greater amounts of food, the fish in the school can move
independently (see individual movements in the next section).

As a result, each fishis allowed to grow in weight, depending on its success or failure in
obtaining food. The authors proposedt hat fi shgs weight variation be proc
difference between the evaluation of fithess function of previous and current fish position with regard
to food concentration of these spots. The assessment d Qf oodd concent algptoblemn consi

dimensions, asshown in (3.1):
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wo p wo s s (3.1
where @ 0 was the weight of the fish "Qw 0 the position of th e fish"™Gand "Qw 0 evaluated the
fitness function (i.e. amount of food) in @ 0.

A few additional measures were included to ensure rapid convergence toward rich areas of the
aquarium, namely:
o Fish weight variation is evaluated once at every FSS cycle;

0 An additional parameter, named weight scale (7 ) was created to limit the weight of a fish. The

fish weight may vary between 1 and 7

0 All the fish are born with weight equal to .
3.1.5-The Swimming Operators

A basic animal instinct is to react to environmental stimulation (or sometimes, the lack of it). In
this approach, swimming is considered to be an elaborate form of reaction regarding survivability. In
FSS, the swimming patterns of the fish school are the result of a combination of three different causes
(i.e. movements).

For fish, swimming is directly related to all the important individual and collective behaviours
such as feeding, breeding, escaping from predators, moving to more liveable regions of the aquarium
or, simply being gregarious. This panoply of motivations to swim away inspired the authors [17] to
group causes of swimming into three classes: (i) individual, (ii) collectiveinstinct and (iii) collective
volition. Below further explanations on how computations are performed on each of them are

provided.

3.1.6-Individual Movement

Individual movement occurs for each fish in the aquarium at every cycle of the FSS algorithm.
The swim direction is randomly chosen. Provided the candidate destination point lies within the
aguarium boundaries, the fish assesswhether the food density there seems to be better than at its
current location. If not, or if the step-size would be considered not possible (i.e. lying outside the
aquarium or blocked by, say, reefs), the indvidual movement of the fish would not occur. Soon after
each individual movement, feeding would occur, as detailed above.

For this movement, a parameter was defined to determine the fish displacement in the
aquarium called individual step (i 0 Q) Each fish moves stepq if the new position has more food
than the previous position. Actually, to include more randomness in the search process the individual

step is multiplied by a random number generated by a uniform distributi on in the interval  pip ,
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represented as u in 3.1). In this simulation, the individual step was decreased linearly in order to
provide exploitatio n abilities in later iterations:
@0 p @O0 O ppY 0oh (3.1)
0
v 0 {i00Qg i 0QR i 0QR o
where "Q is the number of the actual iteration and "Q s the total number of iterations.

Fig. 3.1 shows an illustrative example of this swimming operator. One can note that just the

fish that found spots with more food have moved.
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Figure 3.1: Individual movement is illustrated here before and after its occurrence; red dots are fish
positions after and black dots are the same fish before individual movement. Fish with unsuccessful
individual movement are overlaid, showing only the position after the usage of this operator.

3.1.7-Collective-Instinctive Movement

After the individual movement, a weighted average of individual movement based on the
instantaneous success of all fish of the school is computed. This means that fish that had successful
individual movements influence the resulting direction of movement more than the unsuccessful ones.
When the overall direction is computed, each fish is repositioned. This movement is based on the

fitness evaluation enhancement achieved, as shown in(3.3).

B V¥
B

Do p o OOh O (3.3)

where Y@ s the displacement of the fish "Que to the individual movement in the FSS cycle. Fig. 3.2
shows the influence of the collective-instinctive movement in the example presented in Fig. 3.1. One

can note that in this case all the fish had their positions adjusted.
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Figure 32: Collective-instinctive movement is illustrated here before and after its occurrence; green dots
are fish positions after and red dots are the same fish before collective-instinctive movement.

3.1.8-Collective- Volitive Movement

After individual and collective -instinctive movements are performed, one additional positional
adjustment is still necessary for all fish in the school: the collective-volitive movement. This movement
is devised as an overall success/failure evaluation based on the incremental weight variation of the
whole fish school. In other words, this last movement will be based on the overall performance of the
fish school in the iteration .

The rationale is as follows: if the fish school is putting on weight (meaning the search has been
successful), the radius of the school should contract; if not, it should dilate. This operator is deemed to
help greatly in enhancing the exploration abili ties in FSS. This phenomenon might also occur in real
swarms, but the reasons are as yet unknown.

The fish-school dilation or contraction is applied as a small step drift to every fish position with
regard to the school-sHcsh obbarydgaterin obained byTdorsiderfing allhfish
positions and their weights, as shown in (3.4).

Collective-volitve mo v e me n't wi || be inwards or out wards (i
barycenter), according to whether the previously recorded overall weight of the school has increased

or decreased in relation to the new overall weight observed at the end of the current FSS cycle.

w w s e~ B
6 0ioQ —/—— (3.9)

For this movement, a parameter called volitive step (i 0 QJwas defined as well The new
position is evaluated as in (3.5) if the overall weight of the school increases in the FSS cycle; if the
overall weight decreases,(3.6) should be used.

DO p GO [ 0OQH HBOO 6 OioQ (3.5)
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DO p ®O [ 0OQF OBQO 6OIOQ (3.6)
wherei & &i€a random number uniformly generated in the interval T1ip . We also decreased the
linear step,o along the iterations.

Fig. 3.3 shows the influence of the collective-volitive movement in the example presented in
Fig. 3.1 after individual and collective-instinctive movements. In this case, as the overall weight of the

school had increased, the radius of the school diminished.
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Figure 33: Collective-volitive movement is illustrated here before and after its occurrence; pink dots are
fish positions after and green dots are the same fish before collective-volitive movement. The position of
the barycentre is represented by the blue dot.

3.1.9-FSS Cycle and Stop Conditions

The FSS algorithm starts by randomly generating afish school according to parameters that
control fish sizes and their initial positions.

Regarding dynamic, the central idea of FSS is that all bieinspired operators perform
independently from each other. The FSS search process enclosed in a loop, where invocations of the
previously presented operators will occur until at least one stop condition is met. Stop conditions
conceived for FSS are as follows: limitation of the number of cycles, tme limit, maximum school radius
and maximum school weight.

Below, the pseudo-code for the Fish School Search Algorithmis presented. In the initialization

step, each fish in the swarm has its weight initialized with the value

and its position in each dimension initialized randomly in the search space.
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Algorithm Fish School Search

1. Initialize fish in the swarm
While maximum iterations or stop criteria is not attained do
3. for each fish | in the swarmdo
a. update position applying the individual operator
Yoo p [ 00QnR0 XA 0EXNQ QOO Q¢
O0QER®O Yoo p

S

calculate fish fitness™Qo Q&
if 'Q0 Q&1 "Qw o
Wo p 0QBEN
Q "Qo QB N
else

b. apply feeding operator
update fish weight according to (3.1)

c. apply collective -instinctive movement
update fish position according to (3.3)

d. apply collective -volitive movement
if overall weight of the school decreases in the cycle
update fish position using (3.5)
elseif overall wight of the school decreases in the cycle
update fish position using (3.6)

end for decrease the individual and volitive steps linearly

end while

3.1.10-lllustrative Example

This section presents an illustrative example(presented in [17]) aimed at better understanding
of how FSS can be used and, ultimately, how it works. The selected example considers a small school
and a very simple problem that is three fish are set to find the global optimum of the sphere function
in two dimensions. The sphere function is presented in (3.7) and its parameters are: (i) feasible space{
10,10], (ii) number of iterations equal to 10, (i) 7 = 10, (iv) initial steping = 1, (v) final step;,g = 0.1,
(vi) initial step,q = 0.5, (vii) final step,, = 0.05. Table 3.1includes initial values associated with the
experimental fish school; Fig.3.4a presents start-up loci of all fish.

O w B W (3.7)
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Table 31.: Initial conditions for the three fish in the sphere exemple,[17].

Initial conditions

Fish wight position fithess
#1 5 9,7) 130
#2 5 (5,6) 61
#3 5 (8,4) 80

After initialization, all fish are free to check for new candidate positions that are generated by
the individual movement operator. Assuming that these positions were x; = (9.6,6.2), % = (4.6,4.4) and
X3 = (6.2,4.2), and theassociated fitnesses f (x;) = 130.6, f (X;) = 40.52 and f (x) = 56.08, one should
notice that fish #2 and fish #3 found best positions, whereas fish #1 did not move. The positions after
the individual movement were then x; = (9,7), % = (4.6,4.4) and % = (6.2,4.2).Fig. 3.4b illustrates the
individual movement of the three fish in search space for the sphere problem.

According to this model, the next operator to be computed should be feeding. As fish #1
remained in the same position, it would not change its weight. The weight of fish #2 and fish #3 would
change according to (3.1). The weight variation depends on the maximum fitness change. The
maximum fitness variation in this case was achieved by fish #3 and is eqal to 23.92. As a result, fish #3
increased its weight by 1 unit and its new weight became 6. The fitness variation of fish #2 was 20.48.
Dividing the fitness variation of fish #2 by maximum fithess change, concluding that the weight
variation of fish #2 is 0.86. The new weight of fish #2 is then 5.86. Fobbwing the model, the third
operator to be computed would be the collective instinctive one. This operator evaluates the collective
displacement of the fish school considering the individual fithess variations and the individual
movement according to (3.3). As fish #1 stayed in the same position, it would not influence the overall
calculation. Considering the values obtained in this iteration, the displacement was (-1.2-0.6). This
vector applies to all the fish (including fish #1), so the new positions, after third operator
computations, were x; = (8.4,5.6), % = (3.4,3.8) and % = (5,3.6).

Thenthe fitnesses, regarding new positions recalculations, were 101.8, 26 and 37.96for fish #1,
#2 and #3, respectively. The individual displacement of all fish due to collective-instinctive operator is
presented in Fig. 3.4c. The interested reader may find it interesting to compare Fig. 3.4b and Fig. 3.4c.

The last operator to be considered in this example is the collective-volitive one. For that, one
has to obtain the instantaneous value of the barycenter of the fish school according to (3.4) In this
case, the barycenter was(4.96,4.25). Notice that the weight of whole school has increased, therefore a
contraction instead of a dilatation was the implicit decision of the school (i.e. collective-volitive). By
means of using (3.5), the new positions were x; =(5.81,4.89), % =(4.02,3.98) and % =(4.98,3.92). The
barycentre and the collective-volitive movement for this step are presented in Fig. 3.4d.

At this point, the algorithm tests if valid stop-conditions are met. Obviously it was not the case

yet, thus a new cycle began as explained above. If one compares the initial and final positions
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illustrated in Fig. 3.4, after this first iteration, the reader can observe that all fish are closer to the
optimum point (0,0).

Of course the optimum point is unknow n to the algorithm. However, in a very peculiar manner
the FSS model assures fast convergence towards ifi.e. the goal for the search process) because of the

above mentioned natural principles instantiated in the FSS algorithm
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Figure 34: Example with three fish in the sphere example: (a) Initial position,(b) individual
movement, (c) instinctive collective movement and (d) collective-volitive movement
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Figure 35: Fish school evolution after iteration (a) 1, (b) 5, (c) 10, (d) 20, (e) 30, (f) 40, (g) 50, ()00
and (i) 200 for sphere function with 30 fish

In order to illustrate the convergence behaviour of the fish school along the iterations, the
simulation results for the sphere function are presented. Forthese simulations were used 30 fish, F
100,100] in the two dimensions, initialization range [0,100] in the two dimensions, wg.e= 500, initial
steping = 1, final step;g = 0.1, initial step,o = 0.5, final step,o = 0.05. Fig. 3.5 shows the fish positions
after iteration (a) 1, (b) 5, (c) 10, (d) 20, (e) 30, (f) 40, (g) 50, (h) 108 (i) 200, respectively. One can note

that the school was attracted to the optimum point (0,0).
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3.2- Decimal to binary Fish school search

The FSS algorithm described in section 3.1, is a high dimension search optimization process in
continuous space. The firstintuitive and logical approach was to use the FSS continuous algorithm to
search a one dimension integer number that would then be transform ed, in the objective function, in a
vector of binary input with the dimension equal of the number of the features to be selected. To do so,
the decimal to binary system representation was chosen.

This vector of binary input would be then be used as the encoding of the BPSO algorithm,
presented in section 2.3.2.

This relatively simple representation allows the original algorithm, to select features without
major changes in the original algorithm. All the operators were used as described in section 3.1. The
only modification needed was to round the position of each fish to its nearest integer. Thus, it was only
necessary to use one dimension on the search spaceo search the decimal system representation of

the solution . Thisapproach was calledthe D2BFSS algorithm.

3.2.1-Objective function

In order to evaluate the fithess of the decimal system sdution (position of the fish), the integer
solution was transformed to its binary representation, which was a vector of 0 or 1 bits with dimension
equal to the maximum number of features to be select ed.

Inspired by the objective function used on [16], presented in section 2.3.2,the following fitness

function was usedto describe the performance of the selected features during the FS process:
Q| p Vv pI| p — (3.7)

where 0 represents the number of features selected and 0 the total number of features while the
value 0 accounts for the performance measure of the test set. The| value varies between 1 and 0.If

the right side of (3.7) was not used (  p), there would not be a restriction to the number of features

selected by the algorithm.
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CHAPTER 4

Binary Fish School Search

It is important t o note that the D2BFSSapproach, section 3.2,does not manipulate the vector
of bits (feature selected) in its internal mechanisms (the FSSmovement operators). Thereby, the
decimal to binary system approach may have problems with convergence, low performance or even be
a random search.

With this concern in mind, it was decided to modify the internal mechanisms of the FSS
algorithm to manipulate binary inputs himself. The following sections describe the modifications to the

fish school search algorithm, emerging the binary fish school search
4.1- Encoding

There are various ways of encoding a problem solutio n, the encoding presented here was
inspired in [16], similar to section 2.3.2. An example of a possible state (position of a fish) is
represented by the sequence:

o M fBED phrfesdp (4.1)

Where § is the total number of features to be selected. Each bit indicates whether or not a
feature is selected. This binary scheme, offers a straightforward representation of a feature subset,
allowing the algorithm to search through the workspace, adding or removing features, simple by
flipping bits in the sequence.

While the FSS algorithm was not originally developed in the context of binary encoding, it

appeared to be possible to modify the real to a binary encoding, keeping the following principles:

1 to follow the internal mechanisms of the original algorithm , without losing the meaning of
each operator;

I to add few additional parameters;

1 to ensure the convergence of the algorithm ;

1 to keep simplicity and understanding to the modifications.
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In the next sections, the modifications made to each of FSS internal mechanisms are

presented.
4.2-nitialization

For each fish"Qthe initial position was initialized randomly by doing:

ph QIQ T .. o) v oy o
T £ wDi UQ§|2 'ﬁhB hh'Q pMB ho (4.2)

where 1 is a random number uniformly generated in the interval Tip , i the number of fishes and 0
the total number of features to be selected .

By doing this, the algorithm starts with completely random position s, being the number of
features selected at the start around 0 @c. If the initial number wastoo small, the algorithm might not

converge freely along iterations.

4.3-Individual Movement

The Individual movement occurs once in every cycle of the BFSSFor eachfish "Qand for each
bit "Qif a random number "Q(uniform distribution in the interval [0,1] ), is smaller than Si4(t) the bit will

flip, otherwise it will not change:

‘ OhQQ Y o o
W wh E®Di 0Ol

.ﬁFB hQ phB M) (4.3)
Parameter S,q, in the same way as the FSS, will decrease linearly along the iterations
depending on the first value and the last value of step;,y. This allows a soft convergence through the
iterations.
A fish will move if the new position has more food than the previous position, i.e. if the fithess
function of new set of features selected (new position) has a better performance than the previous

one. By doing this, the random exploration of each individ ual fish is preserved
4.4-Collective-Instinctive Movement

After the individual movement, the weighted average of the individual movements , based on
fishes that had moved, is calculated. This process wasexecuted in the same way as the FSSequation
(3.1).

In order to make all fishes head to the direction of the successful individual movement

position some changes had to be made to the original FSS algorithm
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When dealing with positions with bits (values 0 or 1), equation (3.3) loses its meaning. The
displacement of the fish, Y@ in equation (3.3), can no longer be quantified correctly using the
discrete flipping of a bit.

For that reason, equation (4.4) was used to describe the resultant position of the overall

successfulof the individual movement:
o (4.4)

In (4.4), Y@ in (3.3)was replacedwith @ . In this approach, the use of the actual position
of the fishes that had success in the individual movement is seen as being more descriptive than the
flipping of bits.

The resulting vector Phas the same dimension as the positions of the fishes, but with values
varying between 0 and 1. As an illustrative example (4.5) represents a possible configuration ofp:

O ™M™ T 8 T (4.5)

The goal of the Collective-Instinctive Movement operator is to attract each fish to the resultant
direction of the indivi dual movement operator. In the Binary Fish Shool Search each fish approaches¥
To do so, it is necessary for itto have bit format, two options were here considered to transform ¥Pin a
bit vector:

a) Using a constant threshold in all iterationsg if the values of the bits of PO were below the
parameter §Q '‘Qd) they would be considered 0, otherwise 1.

For example, if the value of @ ©Q & was usedin the example (4.5), the resultant vector would
be:

O mpnnmn8 p (4.6)
The problem of using a constant threshold in all iterations is that, depending on the evolution of
the FS process® O could be formed of only Os, i.e. all the values of® O lower than Q@ Q@6 . In
addition, if in any iteration the algorithm favoured a certain feature, it could happen that the
algorithm loses the exploration abilities in later iterations. If this occurred, it would introduce trends
and convergence to local maxima.

b) Using an adaptive threshold for each iteration: multiplying the parameter §Q@ ‘Qdoby the max value
of  O. The resultant value of this multiplication would then be used as threshold in the current
iteration for this operator.

For the example (4.5),if the parameter 6 D owas 0.4 the threshold used in this iteration would be

me zy T U considering 0.7 the max value of P(4.5), resulting in:
O mpnp8 p 4.7)
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Therefore in b), for each iteration o, the threshold to compute 0 binary vector was calculated
using the max value of ®0. This allowed the algorithm to select at least 1 feature, less likely to

incurring the problem described in the option a).

The study to these two options is presented in chapter 5.

After the computation of P O in bit format, all fish position could now tend to @0 . To do so,
the position of each fish was compared with P O. One bit (randomly chosen) of the fish that did not
have the same value as® O was flipped. This process approaches the position of each fishto  O. In
comparison with the original algorithm, » O no longer represents the direction but the position
resultant of the successfully individual movements.

By only flipping one bit per fish, a soft and steady convergence of the algorithm is expected. An
illustrative example can be represented
WO mpmpp © 0 mpnnn (4.8)
wo p TP TITIP

In (4.8) the fish@O moved in the direction of P O. The bits with the same valuesof O are
represented in red. The resultant position, @O p , is achieved by flipping one random bit that has
different values, represented in green. The total number of bits in red in the new position is greater
than the one in the position before the collective -instinctive movement, making the new position of

the fish to be closer to » O.

4.5-Collective-volitive Movement

Similarly to the Collective-Instinctive Movement operator, the Collective-volitive operator
underwent some changes. The main goal of this operator is, depending of the success of the individual
movement, to contract or dilate the fish position to or from the barycentre.

The barycentre was computed in the same way as in the FSS algorithm (3.4). Analogously to
the computation of the vector ® O, after (3.4) the barycentre was not obtained in a bit format. Thereby,

two options were also consideredto transform the barycentre to a bit format:

a) Using a constant threshold through iterations: 0 i "Qu
b) Using the adaptive threshold for each iteration: multiplying 0 i "Q0 with the max value of

barycentre.

If the overall individual movement was a success (overall weightsimproved in the iteration)
each fish would approximate to the barycentre. Similarly to the process in the Collective-Instinctive
Movement operator, section 4.4, every bit per fish were compared to the barycentre. One bit (chosen
randomly) that was not the same value as the barycentre was then flipped. By making only one flip per

fish, the algorithm enables a sdt directing from the previous position to the new one, closer to the
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barycentre. An illustrative example to the case of the improvement of the overall weights (contraction)
is shown:
wo TpTpp O OOI Qupmnm (4.9)
wo p TP TITIP

In (4.9), fish@ O changed randomly one of its bits that were different (green) from barycentre
(& ). This allowed the fish to approximate to the baricenter.

If the overall weights had not improved, each fish hasto move to the opposite direction of the
barycentre. To do this, the concept of anti-barycenter is introduced, consisting of a vector with the
same dimensions as the barycentre but with flipped bits. In this situation, the process is the same as
described above for the case of contraction to the barycentre but using the anti-barycentre. In (4.10)
the representation of the case of not improvement of the overall weights of the example (4.9) is
presented:

WO TIpTIpP O W& O QO I p (4.10)
@O p  PPTIPP

In (4.10),the fish new position @O p is obtained comparing each bit with the anti -baricenter
of the barycentre presented in (4.9). One of the bits with different values (green), was flipped, making
the new position of the fish to be closer to the ¢ & 6 "Qand toisequently further to A A & E.9).

With the one bit flip mechanism , the barycentre could no longer be seenas a possible solution
(as is FSS algorithm)but as a point of reference to guide the fishes in the contraction or dilation
process. The best solution per iteration would now be selected by the fish with the best performance
after the collective-volatile movement.

After the collective-volitive movement, a new cycle begins.
4.5-Objective function

Although some of the parameters of the BFSS algorithm influence the final number of features
selected (use of thresholds), the process of developing an objective function is critical, since it serves as
guidance in search of the optimum.

The fitness function was defined as in [16], being the goal its maximization. The most suitable

representation to the proposed task is shown
Qlip o6 pl o p — (4.11)

where 0 is the classifier performance measure (ACC or AUC, depending on the database) , the
number of features selected and . is the total number of features to be selected. The term on the left
side of the equation accounts for the overall accuracy of the model while the term on the right for the

percentage of used features. Note that both terms in the objective function are normalized. Constant
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| N 1ip defines the weight of the related goal, performance and subset size. The constant Uis a
parameter of the algorithm and varies depending the total number features to be selected ( 0 0) and

the desired number of features selected.
4. 7/-Parameters

The choice of the set of parameters is a crucial step in wrapper search methods.If the set is
not the most suitable, the predictor will underperform, which might mislead the search algorithm.
When performing the modifications presented above , some parameters were introduced. Fig.

4.1 summarises the set of parameters usedin the FSS, D2BFS8nd BFSS algorithns.

FSS D2BFSS BFSS

uNo. of fishes uNo. of fishes uiNo.of fishes
wNo. of iterations oNo. of iterations uNo. of iterations
(*Wscale (*Wscale ("‘Vvscale
ustep,q [inital and final] ustep,q [initial and final] ustep,q [initial and final]
ustep,,, [inital and final] ustep,, [initial and final] uihres_c
o uthres_v
o

Figure 41: Parameters for the original FSS, the decimal to binary FSS and the binary FSS

It is known that the more parameters an algorithm uses, the more time is taken for parameters
estimation and the greater the complexity in the process. The approach taken, as well as theresultant
set of parameters selected, is expected to be able to achieve convergence, and although in a more

subjective way, maintaining the meaning of each operator in the original FSS algorithm.
4.8- BFSS cycle and stop condition.

In the same way as the FSS algorithm, the BFFStarts by randomly generating a fish school
(features selected). In general, the cycle is similar to the FSS being the main differences the
modifications to each internal mechanism (operators).In addition, instead of using the position of the
barycentre as the best solution in the iteration, the BFFS uses the fish withthe maximum fitness
function.

Regading the stopping criterion, the followings could be used: time limit, maximum school

weight and maximum number of iteration reached (used in all the experiments here presented)
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Chapter 5

Results

The main objective of this chapter is to evaluate the applicability of the proposed search
optimization algorithms. These methods combine the machine learning algorithm, introduced in
section 2.2, with the state of the art search algorithms presented in section 2.3 and the formulated in
chapters 3 and 4, using the approach described inthe section 5.1. They will be compared with each
other and with the results obtained without FS, based on the predictive performance and the number
of selected features.

For each of the two databases considered in this work, a study was made, so as to asagain
the parameters of the optimization algorithms to the feature selection problem.

The implementation of the algorithms and the obtainment of the results were made with

Matlab ® R2010a.

5.1-Description of the approach

The use of a learning machine in wrapper methods, so as to evaluate subset suitability,
involves a correct feature subset assessmentThe process described in this section, was preformed for
each of the databases considered in this work.

The data was firstly divided in two groups, the feature selection (FS) subset and the model
assessment (MA) subsetThis division was random but with the same percentage of each class in each
subset, i.e. 50% of the samplesbelong to the FS and the other 50% to the MA subset, and both groups
had the same percentage of samples for each classconsidered.

The FS subset was divided in 70% of the samples for trainingset and 30% for testing set. This
division was also performed randomly and with the same percentage of each class in each set.The
feature selection was then accomplished and, dter the stop criterion was reached, the model with the
best performance was selected The features selected as well asits threshold, were then recorded and

a 10-fold cross validation was performed to the MA subset.
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The k-fold cross validation consists of dividing data into k subsets, using at each time ki 1 for
training and the other set for testing. Each subset had ben divided to have the same percentage of
samples for each class.For k times, models were trained and tested using the recorded features and
threshold, until all possible combinations of training and testing sets were covered. The results are the
average of the performance measure, introduced in section 2.2.3,0n all splits. The mean and the
standard deviation of the AUC, sensitivity and specificity and accuracyare then reported. The k-fold
cross validation allows the evaluation of the validity and robustness of the discovered model by
assessing how the resulting model from feature selection would generalize to an independent data set
(MA subset).

To reduce variability, introduced by the division of the data not only in the FS/MA subset but
also in the division of train/test subsets, 10 rounds of the 10-fold cross validation process were
performed always using different partitions. The round with the best performance was selected, and
the performance measures of that round described the model created with the selected set of features.

Fig. 5.1 summarizesthe process.

FS subset > FS algorithm
/’ [363x132 features]
-set of features selected
-threshold selected

MA subset e Final performance
e — -with the features — measures
[363x eatures] selected and threshold

Figure 5.1: Diagram of the whole process: 1) selecting features with the FS subset 2) validation of the
models created with the features selected with the MA subset.

All samples

[726 patients x 132
features]

5.2-Optimization Parameters

In order to choose an appropriated set of parameters to the optimization algorithm, it was
important to do a study of the parameters to be used. Recalling that D2BFSS and BFSS were never
tested before, several measureswere chosen to select a fair set of parameters and to evaluate the
internal dynamic of the proposed algorithms. These measures, that will be called indicators, used the
results of the best solution in the FS process and also the MA results:

1 FS bestfitness: encompassing the performance of the best model and the number of features
selected in all iterations of the FS process It ranged from 0 to 1, the higher the better. Calculated
with (2.11), (3.7) or (4.11) depending on the FS algorithm

1 Number of feature selected.: the lower the better.
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1 Performance of the best model in the FS.the performance of the best model in the FS process,
the ACCin the case of the sonar baseand the AUC in the readmission databases. The higher the
better.

1 Performance of the MA.the 10-fold cross validation result using the MA subset with the features
selected using the FS algorithm. The mean ACC for the sonar database and mean AUC for the
readmission databases.The higher the better.

1 lteration of the optimization algorithm with the best solution: Although it can occur, the
optimization algorithm is not supposed to find the best solution in the first§ $terations. The
algorithm should evolve and converge to a better solution. Can vary between 1 and the max
iterations used in the FS process.Low values for this indicator are considered lower quality
solutions.

1 Percentage of contraction in all iterations: the percentage of all iterations in which, in the
collective-volitive operator, the algorithm contract. This allows the analysis of the internal
behaviour of the algorithm. If the percentage is 0%, the algorithm only expanded and with 100%
the algorithm contract in all iterations. Neither 0% nor 100% are favourable to the correct
execution of the algorithm , to the general level of convergence (0%) and convergence to local
maxima (100%).

1 Number of repetitions of the same position of the barycentre: this measure allows the verification
of correct function of the internal mechanisms of the algorithm. Varies between 0 and the
maximum number of it erations. The limits are considered as lower quality solutions.

1 The plot: the result of the visual analysis of the graphical evolution of the best solution per
iteration in the FS process This graph is supposed to show the convergence of the algorithm
along its iterations, as well the oscillation near the local maxima. Classified asg (bad conjugation),

+ (good) and ++ (very good).

The optimization algorithm should search the space for the solution (exploration) and, in the
same time, converge to a good solution (exploitation). The three last measureshelp the algorithm
developer to understand what is happening in the internal dynamics of the algorithm, and to achieve a
good ration of exploration and exploitation.

The D2BFSS and BFSSIgarithms, here formulated, do not guarantee in advance a
convergence evolution or a good performance of the model created so, it is crucial to consider as

many factors as possible to ensure the correct function of the algorithm.
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5.3-Sonar database

As described in section 2.1, the sonar databaseconsists of 208 samples with 60 features and
two classes.As the number of samples for each class wasnearly the same, the main performance
measure to be maximised wasthe accuracy. Due to the number of features to be selected and the
number of samples it was decided that, after the study of the optimization parameters, 100 rounds of
the whole process (FS+MA) would be simulated with different partitions of FS/MA. The mean, the
standard deviation and the best model created, in the 100 rounds, would then be used to compare the
different feature selection algorithms. The same partitions of the data were used for the 100 rounds

between the different algorithms, so that the comparison of the results would be fair.

5.3.1-Sequential Forward Selection

After consulting [16,21], it was verified that previous studies that used the SFSapplied to the
sonar database did not select more than 15 features. The SFSstop criteria was chosen as15 features
selected.

Since the SFSdoes not have parameters a study of the parameters was not necessary, and 100
rounds of the process described in section 5.1 were computed. Table 5.1shows the results of the mean
and standard deviation results of the 10-fold cross validation of the 100 rounds and also the model

with better performance. The selected threshold and number of features in each round were also

recorded.
Table 51: Model assessment results- SFS method using sonar database.
10-fold cross validation
mean standard deviation

100 rounds| AUC ACC % | sensitivity | specificity | AUC | ACC %| sensitivity | specificity | threshold | features selected

mean 0.73 73.19 0.77 0.69 0.12 12.05 0.18 0.21 0.48 8

std 0.04 4.14 0.07 0.08 0.03 2.59 0.05 0.05 0.05 4
best round 0.81 81.51 0.87 0.75 0.15 15.13 0.13 0.24 0.45 9

The SFS algorithmallows the visualization of the quality of each feature subset selected by the
algorithm, Fig. 5.2 summarizes graphically the process of FSfor the best model of the 100 rounds.
After the addition of the ninth feature (marked in green in Fig. 5.2), the performance of the models

created with the additional feature didngt i mprove.
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Figure 52: Evolution of ACC with the step-wise inclusion of each individual feature.
5.3.2 Decimal to Binary Fish School Search

As described in section 4.3.2, the D2BFSS algorithm had the same parameters as the Fish
School Search genetic algorithm, with the addition of the parameters U (see Fig.4.). The selected stop
criterion was the number of iterations : 300 iterations.

To maintain consistency in the comparison of the results between different FS algorithms, the
same number of fish/ particles (30) and the same partition of the data (FSMA and train/test) was used,
as well as the same stop condition for the search process.

In every study of the parameters the same initial position of the fishes/particles was utilized.
This reduced the variability of the results and ensured a coherent analysis of the parameters of the
optimization algorithm.

According to the examples in [17], the most sensitive parameters of the FSS algorithm are the
steping (initial and final) and the step,q (initial and final), these were the first two parameters to be
selected in this study. The values of the variation of the parameters stepi,q (initial and final) and step,
(initial and final), are presented in Table 5.2. These valueswere extrapolated from the ones used in the
examples presented in [L7]. The initial values for these two parameters were considered the total
number of possible solutions for the feature selection problem (27260 ~=1e18), similar to [17], and the
final values were varied.

The combination of the parameters Stepi,q and Step,, ([1e18 1e3] and [1el8 1le5],respectively
) were chosen mainly because of the low number of features selected and the better values for the
mean ACC of crossvalidation.

It is important to note that, for all combinations presented in Table 5.2, the percentage of
contraction, the number of equal barycentre and the plot accounted a low performance of the internal

function of the algorithm .
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Table 52: Results of the study the parameters: stepind and stepvol ([initial final]), selected set at bold

Study of the parameter: stepind e stepvol [initial and final value]

o No. of same
Stepind Stepvol Wscale V] Fitness F$Features selectefl ACC FS| Mean ACC % . postition of Plot
crossvalidation | contraction .
baricenter
5000 0.1 0.78 12 0.63 0.77 1.00 0 -
5000 0.3 0.8 14 0.88 0.76 1.00 0 -
[1e18 1e3]| [1e18 1e5]] 5000 0.5 0.81 21 0.97 0.77 1.00 0 -
5000 0.7 0.85 22 0.94 0.71 1.00 0 -
5000 0.9 0.94 22 0.97 0.73 1.00 0 -
5000 0.1 0.77 14 0.75 0.68 1.00 0 -
5000 0.3 0.8 15 0.91 0.73 1.00 0 -
[1e18 1e8]|[1e18 1el2| 5000 0.5 0.81 13 0.84 0.72 1.00 0 -
5000 0.7 0.85 21 0.94 0.75 1.00 0 -
5000 0.9 0.93 26 0.97 0.74 1.00 0 -
5000 0.1 0.76 14 0.72 0.73 1.00 0 -
5000 0.3 0.82 13 0.91 0.74 1.00 0 -
[1e18 1e12][1el8 1el6| 5000 0.5 0.8 16 0.88 0.82 1.00 0 -
5000 0.7 0.85 16 0.91 0.74 1.00 0 -
5000 0.9 0.91 19 0.94 0.71 1.00 0 -

The combination of the parameters Step;,q and Step,, ([1e18 1e3] and [1el8 1le5],respectively
) were chosen mainly because of the low number of features selected and the better values for the
mean ACC of crossvalidation.

It is important to note that , for all combinations presented in Table 5.2 the percentage of
contraction, the number of equal barycentre and the plot accounted a low performance of the internal
function of the algorithm .

It was then proceeded the selection of the parameters Ws.e and U Table 5.3 The selected
parameters (Ws.ae=50 and U= 0 wére chosen mainly because of the indicators: percentages of
contraction, number of features selected and mean ACC of the crossvalitation values presented in
Table 5.3 The tests using Wscale=50 were the only ones that the contraction to the barycenter did not
occurred in all iterations.

Table 53: Results of the study the parameters: Wcae and 1. Selected set as in bold.

{U0dzRe 2F GKS LINFYSGSNY 230rtS § n

o No. of same
Stepind Stepvol Wscale U Fitness F$Features selected ACC FS| Mean ACC % . postition of Plot
crossvalidation | contraction .
baricenter

50 0.1 0.76 13 0.62 0.71 0.41 0 -

50 0.3 0.79 14 0.87 0.72 0.44 0 -

[1e18 1e3]| [1e18 1e5] 50 0.5 0.79 17 0.87 0.82 0.4 0 -
50 0.7 0.83 19 0.9 0.75 0.4 0 -

50 0.9 0.9 23 0.93 0.73 0.41 0 -

500 0.1 0.78 12 0.68 0.79 1.00 0 -

500 0.3 0.79 15 0.9 0.75 1.00 0 -

[1e18 1e3]| [1e18 1e5] 500 0.5 0.81 15 0.87 0.8 1.00 0 -
500 0.7 0.84 22 0.93 0.73 1.00 0 -

500 0.9 0.92 27 0.96 0.69 1.00 0 -

5000 0.1 0.78 12 0.62 0.77 1.00 0 -

5000 0.3 0.79 14 0.87 0.75 1.00 0 -

[1e18 1e3]| [1e18 1e5][ 5000 0.5 0.8 21 0.96 0.76 1.00 0 -
5000 0.7 0.84 22 0.93 0.71 1.00 0 -

5000 0.9 0.93 22 0.96 0.72 1.00 0 -

50000 0.1 0.75 15 0.78 0.74 1.00 0 -

50000 0.3 0.77 15 0.84 0.76 1.00 0 -

[1e18 1e3]| [1el8 1e5]| 50000 0.5 0.81 18 0.93 0.75 1.00 0 -
50000 0.7 0.84 22 0.93 0.76 1.00 0 -

50000 0.9 0.91 18 0.93 0.74 1.00 0 -
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With the set of parameters selected, 100 roundswere simulated, being the results presented in

Table 5.4
Table 54:Model assessment resultsg D2BFSS method using sonar database.
10-fold cross validation
mean standard deviation
100 rounds| AUC ACC % | sensitivity | specificity [ AUC | ACC %| sensitivity | specificity [ threshold | features selected
mean 0.74 74.59 0.78 0.71 013 | 1267 0.18 0.2 0.48 13
std 0.04 3.74 0.07 0.08 0.02 2.25 0.04 0.04 0.05 1
bestround| 0.84 83.8 0.88 0.8 011 | 1161 0.16 0.19 0.45 15
All tests using D2BFSS presentedlow convergence (indicator: plot) during its graphical

evolution in the FS optimization algorithm. This random dynamic can be visualized in Fig5.3, which

shows the evolution of the best fish per iteration, of the best model of Table 5.4.
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Figure 5.3: Graphical evolution of the B2DFSS process of feature selection. Evolution of the fish with bes
performance per iteration (above) and evolution of the number of features selected of the fish with the
best performance per iteration (below)

It can be seen that the number of selected features is always around 20 along the 300
iterations. Convergence is not evident in the graphical evolution of the fithess, ACCand the number of

features selected.

5.3.3 Binary Fish SchoolSearch

Unlike the D2BFSS algorithm,there were no guidelines to test the parameters range of the
BFSS algorithmso, a wider approximation was taken. The tables with the results of the study of
parameters are presented in appendix A. Analogously to D2BFSShe first parameters selected were the
parameters 6Q ‘Qdand the §Q@ ‘CXP0 values. The two structural options were also tested, the use or

not of the adaptive threshold in the collective and volitive operators, presented in sections 4.4 and 4.5.
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In appendix A, the detailed results of the initial 18 tests are presented, each test corresponding
to a different set of the parameters §Q ‘Qdoand the @ CX0 . These tests used the same partition of
samples for FS/MA and train/test sets. Thefirst 9 tests used the non-adaptive approach and others use
the adaptive threshold. The variation of parameters for each test is presented inTable 5.5

Table5.5: Configuration of the parameters thres_c and treslioveach of the 18 tests.

Test: | 1 2 3[4 )5 |6|7[8[9(10]11]|12]13]|14]15]16|17]|18
Thres ¢/ 0.9 0.7)05(0.3]0.1/0.9/0.7[/0.1{0.3[/0.9/0.7/0.5{0.3]0.1]0.9]0.7]0.1] 0.3
Thres v 0.9 0.7 05(0.3]0.1/0.1/0.3/0.9(0.7{0.9/0.7/0.5{0.3]0.1]0.1] 0.3] 0.9/ 0.7

Non-adaptative threshold Adaptative threshold

Eachtest considered the variation of the Wy, parameter (5, 50, 500, 5000and 2000), as well
asthe variation of the parameters U(0.1, 0.3, 0.50.7and 0.9).

In order to help the visualization of the selection process, Hg. 5.4-5.8 outlines the results for
the 18 tests, each colour representing the different combinations of W e and U to the associated
parameters thres _cand thres_vof each test.

The most discriminate indicators (introduced in section 5.2) that were used to select the best
test were: the FS best fithess(Fig. 5.4) the number of features selected (Fig. 5.5) the percentage of
contraction of the volitive operator (Fig. 5.6), the number of equal positions of the barycenters (Fig.

5.7),iteration of the opt imization algorithm with the best solution (Fig. 5.8) and the plot which can be

analysed in the detailed tables in appendix A.
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Figure 54: Graphical representation of the results of tests 1-18 for the indicator: FS best fithess. This

indicator indicates the fitness performance of the best model in the FS process, higher the best. The overall
best performance for the tests 10-18 is evident.
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Figure 55: Graphical representation of the results of tests 1-18 for the indicator: number of features
selected. This indicator indicates the number of features selected in the FS process, lower the best. Test
10-18 achieved slightly better results for this operator.
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Percentage of contraction in all iterations
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Figure 56: Graphical representation of the results of tests 1-18 for the indicator: percentage of
contraction in all iterations. This indicator indicates the percentage of contraction in the collective -
volitive operator, neither O nor 1 are favourable. Tests 1618 achieved better results for this operator.
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Figure 5.7: Graphical representation of the results of tests 1-18 for the indicator: number of
repetitions of the same position of the barycentre. This indicator indicates the repetition of the
position of the barycentre which represents the position where the fishes are going to contract or
expand in the collective-volitive operator, the limits are considered as lower quality solutions.
Tests 1216 achieved better results for this operator.

Figure 58: Graphical representation of the results of tests 1-18 for the indicator: iteration with the
best solution in the FS algorithm. Results close to 0 are considered as low convergence configuration
Tests 1018 achieved better results for this operator.

After analysing the results from Fig. 5.4-5.8, it was decided that the tests 12 to 16 were the
ones with the best configuration. The overall best performance of the tests with the adaptive threshold
(12-18) over the ones without it (1 -9) was obvious. All the indicators were taken into consideration to
these conclusions however, the most incriminating one was the number of repetition s of the same
position of the barycentre. Only the test 12-16 performed well from the point of view of this indicator.
Recalling that the high number of repeated position s of the barycentre leads to local maxima and,
therefore, to a weaker overall performance of the algorithm. In the tables of detailed data in appendix
A, it also proved that the indicator plot achieved better performances for the tests 12-16.

After selecting the tests 12§16, it was decided to vary the value of the parameter W4 to 5, 50,
500,5000,20000, 100000 and 1000000in order to perform a wider analysis of the parameters W,z

The same strategy here taken to choose the best test. After looking at the detailed data the
decisive indicators for selecting the best test and respective set of parameters was the number of

repetitions of the same position of the barycentre ( Fig. 5.9).
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