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joao.sousa.andrade@ist.utl.pt

Abstract—The recent technological developments on mobile
technologies allied with the growing computational capabilities of
sensing enabled devices have given rise to mobile sensing systems
that can target community level problems. These systems are
capable of inferring intelligence from acquired raw sensed data,
through the use of data analysis techniques. However, due to
their recent advent, associated issues remain to be solved in a
systematized way. Various areas can benefit from these initiatives,
with public health systems having a major applicational gain.
There has been interest in the use of social networks as a mean
of epidemic prediction. Still, the integration between the mobile
infrastructure and these initiatives, required to achieve epidemic
prediction, is yet to be achieved. In this context, a system applied
to epidemic prediction is proposed and evaluated.
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I. INTRODUCTION

Distributed systems have been used as a platform to allow
the interaction between groups of individuals and a set of
devices. As technology advances in sensing, computation,
storage and communications become widespread, ubiquitous
sensing devices will become a part of global distributed sensing
systems [1] [2].

Recently, the predominance of mobile phones equipped with
sensors, the explosion in social networks and the deployment
of sensor networks have created an enormous digital footprint
that can be harnessed [3]. Furthermore, developments in sensor
technology, communications and semantic processing, allow
the coordination of a large network of devices and large dataset
processing with intelligent data analysis [1].

The sensing of people constitutes a new application domain
that broadens the traditional sensor network scope of envi-
ronmental and infrastructure monitoring. People become the
carriers of sensing devices and both producers and consumers
of events [4]. As a consequence, the recent interest by the
industry in open programming platforms and software distribu-
tion channels is accelerating the development of people-centric
sensing applications and systems [4] [1].

People-centric sensing enables a different approach to sens-
ing, learning, visualizing and data sharing, not only self-
centred, but focused on the surrounding world [2]. These
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sensors can reach into regions, static sensors cannot, proving to
be especially useful for applications that occasionally require
sensing [5].

These systems constitute an opportunity for intelligent anal-
ysis systems, as relevant information can be obtained from
large-scale sensory data and employed in statistical models [6]
[1]. With these developments it is now possible to distribute
and run experiments in a world-wide population rather than in
a small laboratory controlled study [1].

Real-time user contributed data is invaluable to address
community-level problems and provide an universal access
to information, contributing to the emergence of innovative
services [3] [2] [1]. For instance, the prediction and tracking of
epidemic outbreaks across populations [3]. Thus, technological
benefits are shifted from a restricted group of scientists to the
whole society [2].

Healthcare is a possible application, where these systems
can facilitate monitoring and sharing of automatically gathered
health data [2]. Epidemics are a major public health concern
and it has been shown impact can be reduced by early detection
of the disease activity [3].

As most people will, in the near future, possess sensing-
enabled phones, the main obstacle in this area is not the lack
of an infrastructure. Rather, the technical barriers are related
to performing privacy and resource respecting analysis, while
supplying users and communities with useful feedback [1].

II. RELATED WORK

A. Pervasive Computing
There is a tendency to augment devices with sensing, com-

puting and communication functionalities, connecting them
together to form a network, and make use of their collective
capabilities [3].

Users become a key system component, enabling a variety of
new application areas such as personal, social and community
sensing. Each of these scenarios has its own challenges on
how to understand, visualize and share data with others [2].
In community-level sensing, data is shared for the greater
good of the community. In this area, social network analysis
is a major source of information and relationships among
groups of individuals. Applications only become useful once
they have a large enough number of individuals participating.
An infrastructure capable of integrating heterogeneous data
sources is required, combining the resulting multimodal data
and extracting behavioural patterns from it, through data
analysis methods [3].



An individual’s role in these sensing systems may be
participatory or opportunistic [3]. In participatory sensing,
individuals decide which data to share, enjoying control over
data privacy issues. In this approach, the target is restricted to
a group of users willing to participate in the system [3]. In
opportunistic sensing, sampling only occurs if requirements
are met and it is fully automated, with individuals having no
involvement in the data collection process [2].

The heterogeneity in data producers and information con-
sumers leads to several challenges on data management [3].
The lack of correlation between data collected from distinct
viewpoints and resolutions leads to an ineffective data merge
and processing. To be able to integrate the system, data needs
to be mapped to a shared vocabulary, respecting the same
metrics [3].

These technologies are still in their beginning, leading to
a lack of normalized architectures [1]. The placement of
concerns on system components (e.g. remote servers, mobile
sensing devices) has to be further researched [1].

Information needed by an application may only be available
by integrating data from multiple sensing modalities [5]. Data
analysis techniques require a systemic view, considering the
sensing devices’ resource constraints, communication costs to
remote servers and the sampling rate required to detect and
characterize interesting phenomena [2].

Some authors [2] [1] propose a three stage Sense, Learn and
Share architecture.

In the Sense layer, sensing interaction-based mobility-
enabled data is acquired from the heterogeneous sensors that
are part of the system [2] [1]. Related applications may
be present on the mobile sensing devices or remote server,
communicating wirelessly [2].

In the Learn layer, information extracted from raw data is
analysed using statistical measures, data mining or machine-
learning techniques to infer higher-level meaning [2]. Data
analysis techniques and features to analyse are chosen to best
fit the availability and characteristics of the sensed data and
the target application [2] [1].

In the Share layer, learned information is visualized and
shared according to its application [2]. A personal application
will inform its user and a community application will share
aggregated information with its target group, while obfuscat-
ing their identity. Resulting information can also be used to
persuade users to make positive behavioural changes [1].

B. Computational Epidemiology and Social Network Analysis
Computational epidemiology consists on the development

and use of computer models to understand the diffusion of
disease through populations with regard to space and time [7].

In order to accurately predict and understand the propagation
of diseases, the data used in these models should be represen-
tative [8]. Nonetheless, decisions have to be made with limited
information [9].

An epidemic model is a mathematical abstraction that de-
scribes the evolution of a transmittable disease in a population.
Two of the most important notions in these models are those
of the effective contact rate β, which stands for the rate of

disease contraction, and the recovery rate δ, which is the rate
of disease recovery.

It is relevant to distinguish between epidemics and out-
breaks. An epidemic results from the spread of an infection
from its initial set of cases to a community level, resulting in
an incidence that has population-wide impact. An outbreak is
associated with cases, whose transmissibility is inherently low.
In this way, the infection dies out before reaching the general
population [10].

The end of an epidemic is caused by the decline in the
number of infected individuals rather than an absolute lack of
susceptible subjects. Thus, at the end of an epidemic, not all
individuals have recovered.

Social and biological systems can be described by complex
networks whose nodes represent the individuals and its links
the relationships between them [11]. Latest developments in
epidemic spreading emphasize the importance of network
topologies and social network analysis in epidemic modelling
[11]. It involves the characterization of social networks to infer
how network structures influence exposure risk.

Sampling matters in the creation of a credible mathematical
basis for statistical inference on a social network. In sampling,
the unit is the node, while the unit of analysis is most
commonly the dyad or relation. The set of sampled nodes
determines the set of sampled relations [12].

An important result in network models is the prediction of
a non-zero epidemic threshold (λc). The higher a node’s con-
nectivity, the smaller the epidemic threshold, and consequently,
the higher the probability of infection [11].

βa
δ
≤ 1

λ1,A
(1)

Equation (1) represents the bounding of the epidemic thresh-
old and defines a condition, that when not met implies the ex-
istence of an epidemic. λ1,A corresponds to the spectral radius,
i.e. the maximum of the absolute value of the eigenvalues of
the adjacency matrix associated with the contact network. βa
stands for the average rate of infection along a network edge
and δ is the recovery rate of an infected node [13].

One way to accommodate the variety of contact patterns
between individuals is by weighting the links of the contact
networks. The weighted links distribute the contact rate pa-
rameter βf over the network.

The weight value and its distribution can have a significant
effect on the epidemic resistance of the topology, offering the
possibility to alter a network without changing its topology.
This introduction gives rise to a new form of clustering, i.e.
weight clusters. Such clusters can boost infectious agent spread
through the network [13].

βa = βfω (2)

Equation (2) introduces a weighting parameter ω that ac-
counts for the average contact rate placed on the network
topology. βf stands for the full contact measure of the effective
contact rate β [13].

In these models, scale-free networks topologies are
favoured. Their inherent large fluctuations between the number
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of connections in each node makes them appropriate to model
real social networks [13] and computer virus epidemics [11]. In
these networks, the final size and persistence time of a given
epidemic are highly sensitive to the multi-scale hierarchical
structure of the considered population [14]. For instance, nodes
that are in contact with a large number of other nodes are easily
infected and constitute a bridge for the spreading of infections
[14] [15] [16].

C. Security
Respecting the privacy of its users is a relevant concern

in a mobile sensing system [1] [3]. People are sensitive
about how their data is captured and used. In the context of
community sensing, there is the risk of leaking personal and
community information. For instance, a connection between
mobile sensors and observed parties may be implicit in their
user’s relationships [5].

Revealing too much context can potentially compromise
anonymity and location privacy. Conversely, the inability to
associate data with its source can lead to the loss of context,
reducing the system’s ability to generate useful information
[5].

User control over data sharing allows users to define their
participation in the system, empowering the decision making
process [3]. One approach is keeping sensitive relations from
being exposed, either by local filtering or by providing users
with an interface to review data before it is released [5].

When mining social and community behaviours, anonymous
data is needed [3]. Some approaches can help with these prob-
lems (e.g. cryptography, data and privacy-preserving statistics)
[5] [1]. Nevertheless, they may be insufficient [1].

In opportunistic sensing schemes user trust may become
a barrier to wide-scale adoption [2]. These issues may be
addressed by providing sensing device users with a notion of
anonymity.

III. SOLUTION

In an infectious disease it is necessary to detect, monitor and
foresee the advent of an epidemic in a real-time environment.
To operate in such a scenario the system should know who
can get infected and which people have been in contact and
where. Contact location, time and relationship with the subject
are relevant metrics that affect the probability of disease
propagation. Sensors and social networks analysis allow the
integration of these concerns into personal devices, while de-
velopments in data analysis and modelling allow more accurate
results regarding this data, potentially indicating community-
level susceptibility to an epidemic.

This work comprises data gathering and management, in-
telligent analysis and privacy respecting sampling applied to
epidemiological disease prediction in a population. A commu-
nity is the target population of the analysis. It consists of the
set of sensing devices belonging to people that are users plus
their associated social contact network.

This solution considers performing robust data analysis in a
dynamic environment and system scaling from a personal to a
community-level, while providing useful feedback to its users.

The developed system is capable of exploiting large sets
of multimodal data. Information extraction from raw data is
done in a dynamic environment, by applying data analysis
methods to the large-scale network data sourced from users and
their sensed contacts. Intelligence is gathered in near real-time
from a sensing network, in which only a population sample is
considered.

These operations occur with some degree of distribution in
the mobile sensing device and data processing backend. The
criteria for this is based upon privacy, communication and
resource management concerns.

Similarities between computer and biological infectious
agents are exploited.

This work resulted in the papers: Social Web for Large-
Scale Biosensors [17], Internet of Intelligent Things: Bringing
Artificial Intelligence into Things and Communication Net-
works [18] and Epidemic Spreading Over Social Networks
Using Large-scale Biosensors: A Survey [19].

A. Architecture
The proposed solution is composed by the architectural

modules depicted in Figure 1.

Figure 1. Solution Architecture

Both the data sampling and data filtering modules constitute
the Sensing layer of the system. The aim of this layer is
to obtain input. Sampling respects user privacy requirements,
meaning that both a user’s network and contact data are not
disclosed to the system without explicit permission. Sensing,
only occurs if requirements are met.

The Learning layer is constituted by the data analysis and
epidemic prediction modules. In this layer obtained data is
transformed and integrated into a model, contributing to the
extraction of intelligence in the context of the applicational
problem.

Information dissemination comprises the Sharing layer,
where system output is returned to its users.

An analysis round constitutes a end-to-end system run, i.e.
the flow of data from through these modules. From when
it leaves the data source to the instant in which results are
returned to the users. An actor is an entity that is part of a social
contact network. All sourced actors have a corresponding
system mapping, but not all of them carry sensing devices,
i.e. they do not take part in the system directly. This means
that not all actors are users.
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An important distinction is the one between users and
clients. Users are the individuals that participate in the system.
Clients are the entities responsible for opportunistic data
sampling.

B. Modules
1) Data Sampling: The purpose of this module is the

acquisition of both network and contact data.
It is made possible through the use of mobile sensing device

applications that are coupled with each user. Due to their
limited coverage, the acquired data is inherently incomplete.
There are different strategies that may be employed to tackle
this. Network data sampling approaches, such as ego-centric
sampling and the family of link-tracing methods can be
attempted. Link-tracing methods can increase the network data
covered by the system significantly. Alas, they come with a
high computational cost [12]. Out of these methods, only ego-
centric and one-wave link tracing remain reasonable in this
aspect.

The information that is most relevant for the system and
the one that can impact infectious disease spreading is user
contact data. The acquisition of more network data nodes will
not result in more data of this kind, as the system is already
theoretically capable of obtaining the totality of the contact
data existent in the social network platform.

In the light of these points, ego-centric sampling was
considered to be the most adequate approach. While being
subject to the same validation challenges as other methods,
it yields objective friend connection results, it has a lower
computational cost O(n) per individual and all connections
can be gathered from a single sampling request.

Finally, issues with missing data are mitigated by the con-
nections observed in the acquired contact data. In this modality
node relations for which there was no prior knowledge are
sampled. These links also enable unobserved nodes to be
detected. For instance, if a meeting involving a known node
and a unknown node is detected, the system gains insight into
missing node data.

Nonetheless, contact with strangers, i.e. nodes for which
there is no connection in the data gathered for all modalities,
is not accounted for. This constitutes a inherent limitation with
the used sensing methods.

2) Data Filtering: This module has the goal of ensuring that
unsuitable data does not get into the subsequent modules of
the system. It functions as the safeguard before data analysis.

On the clients, it also functions as data anonymization
module, ensuring that Facebook client identification does not
reach the server. PBKDF2 is used to map this identification in
a irreversible transform.

One drawback of this process is due to the fact that
network and contact data, coming from different users, have
to possess matching anonymized user identification. As such,
it is necessary for different client applications to arrive at the
same hash for data aggregation to be possible. This results in
the need to have a common salt for all clients per analysis
round. If an identification hash is obtained and this salt is
discovered, an attacker will be able to compute the anonymized

identification. Under these conditions, the present solution
constitutes a compromise.

On the server, a part of this module’s task is made possible
through the use of programmatic checks. Due to the undirected
nature of contact relations acquired for every user, sampling
can result in duplicated contact data. The information to make
this assessment is only available at this point in the server.

In the final filtering stage, each actor is represented by
a network node that includes a unique identifier, reflecting
user anonymity. The same is verified for each of its social
connections. The data for perceived contacts is also included
in the resulting data.

3) Data Analysis: The goal of this module is to join the
data from different modalities (network and contact data) in a
meaningful way and to output an epidemic model that can be
used for the predictions of the next module in the chain.

A realistic network view, that can account for distinct
forms of contact, can be provided by weighting network
edges. Even if certain groups of individuals are topologically
poorly connected, if the links between them have the highest
weights, they become easily accessible by the infectious agent.
Infectious agent access to pre-existing topological network
clusters gets conditioned by edge weights, resulting in the
creation of weight clusters [13].

This module takes advantage of these notions and encodes
individual contacts in the weighting process applied to pre-
existing network data. Thus, the sampled network data is
extended with the notion of direct actor contact.

The operation process for this module is as follows. An actor
name is the internal identifier used in data merging.

On the first stage the network and contact data are extracted
for all actors that they reference, providing an universal
mapping between an actor name and a matrix index i. This
index refers to a given square matrix vector, where n is the
number of the vectors and i < n.

On the next stage the network and contact data are trans-
formed into adjacency matrices A and C. This is done using
the mapping created earlier. As a result, both have the same
dimension.

The next step introduces weights under the service of data
merging. Aij is a dichotomous variable from actor i to j, where
0 represents the absence of an edge and 1 its existence. As its
upper bound is the number of contacts between i and j, C is
restricted to Cij ∈ N0. The rationale behind this is as follows.
While contacts between two actors may increase over time, a
social connection between them may either exist or not.

Taking matrix A, every non-zero entry is replaced by ωij ,
subjected to a weight bound βf ≤ ωij ≤ 1, creating the joint
matrix W . W is the result of weighting matrix A with C.

ωij = β
Cn−Cij

Cn

f (3)

The parametrisation for ωij is shown in Equation (3). βa
is the infectious agent effective contact rate. Cn is the total
number of contacts for all nodes, while Cij the number of
contacts between nodes i and j and Cij ≤ Cn. Within the
weight bound, edges that reflect at least a contact have their
value scaled by a parameter that increases with the number
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of contacts that edge represents, forming a relative contact
measure. This is based on the assumption that more contacts
lead to a higher chance of contagion. Conversely, actors that
have zero contacts between them are attributed βa, as their
relative importance in infection propagation is considered
lower.

The final stage scales the joint matrix. As weighting directly
decreases the spectral value and epidemic threshold of A, W
has to be scaled. The scaling process consists in applying the
average network weight to the matrix, substituting every Wij

with Wij

ω , resulting in the matrix W ′.
This aggregate dataset is a social contact network, which

alongside with the infectious agent data, constitutes an epi-
demic model, where every sampled individual is explicitly
represented. Its properties are described hereafter.

It is assumed that all individuals that are part of the social
contact network are equally susceptible to infection. The
spread of the disease is uniform in this aspect.

Model rates are constant over time. This means that in the
execution of an analysis round they remain constant.

Vector and vertical transmission are not part of the model.
Only direct contagion (horizontal transmission) between indi-
viduals is possible. Vector transmission is related to indirect
contact, i.e. the transmission of Malaria with mosquito bites.
Vertical transmission occurs between mothers and their unborn
children.

The death and birth of individuals is not taken into account,
resulting in no explicit demography. This assumption holds for
fast diseases like influenza. For diseases that have a slower
personal rate of evolution, akin to HIV, tuberculosis and
hepatitis c, this is not valid, as during this length of time the
population demography does not remain unaltered [20].

An infected individual is immediately able to transfer the
infectious agent to others. Thus, there is no latent period of
infection.

This epidemic model is passed to the next module.
4) Epidemic Prediction: This module’s purpose is to apply

the intelligent analysis algorithm to the merged data.
An analytic network topology approach was selected. The

main idea behind the predictive power of this module is
the notion that the topological properties of a social contact
network can be used to assess epidemic persistence [13] and,
thus, its advent. While this approach provides a limited context,
it provides accurate results for the data family in analysis.

The prediction algorithm consists in identifying the spectral
radius of the social contact network.

λdom ≈ lim
n→+∞

(Tr(An))
1
n (4)

Equation (4) exposes the formulation of the spectral radius
identification method [21], where n stands for the iteration
number and Tr is the trace of the matrix A.

Its computational cost of this method can be lessened by
restricting the number of allowed iterations, provided that there
is an approximation error that is suitable enough for the area
of application [22].

The obtained spectral radius and the infectious agent param-
eters are inserted into equation (1), which relates the epidemic

threshold of the graph associated to the network and the rate
of infection transmission and recovery.

With this process it is verified if there is a subset of actors
that possess enough connections, of a relatively high weight, to
constitute a weight cluster, and thus form a network bridge. If
this subset is representative enough, the existence of network
weight bottlenecks will be high enough for the successful
spread of disease and the creation of an epidemic.

The equations yields a boolean value, which can be trans-
lated into network epidemic vulnerability, if false, or the lack
of risk if true.

5) Information Dissemination: Information dissemination
comprises the communication of the prediction results, pro-
viding users with information that is both interpretable and
useful.

Given that this work is targeted at epidemic prediction,
the useful information at stake is the susceptibility of the
community to a given epidemic, which is a binary decision, i.e.
either a risk exists or it does not. By leveraging this metric,
notifications that target the user community become viable,
as the information to spread is depersonalized and is, thus,
equally useful to all of the users.

C. Components
The system is composed by two distinct physical compo-

nents: the mobile sensing devices (i.e. its clients) and the
data processing backend (i.e. its server). The different logical
modules or system concerns are distributed among them,
according to Figure 2.

The communications inside the system are achieved with
resort to Socket.IO [23].

Figure 2. Module Distribution

The acquired raw data is originated in the sensing layer,
located the mobile sensing devices, and is coupled to a client.
Both network and contact data are sourced from the social
network platform, i.e. Facebook. For privacy reasons, data
sampling occurs entirely on the mobile sensing devices.

The data integrity component of the data filtering module
is achieved on the backend, as only during the aggregation
process it is possible to assess which data is likely to be
erroneous and thus dispensable. The data anonymization part
takes place on the mobile sensing devices, as they constitute
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a privileged position where is it possible to plug the leak of
user identity.

Due to their complexity, the computation associated to the
Learning layer takes place in a backend separated from the
sensing devices.

The Sharing layer takes place in the backend, as by placing
it there, relevant information can be easily acquired as output
of the Learning layer. It can be transmitted to all the concerned
individuals, as global knowledge required for client commu-
nication is already present in the system, while preserving
privacy.

A criteria of ensuring there would be a minimal load on
the mobile sensing devices was employed, by splitting the
computational requirements and placing the demand on the
backend.

A description of components ensues.
1) Mobile sensing devices: The mobile sensing devices are

responsible for sampling data from the data source and for
forwarding it to the data processing backend.

Figure 3. System client state machine

Figure 3 represents the state machine for the mobile client
applications.

The client starts in the initiated state after the mobile device
is ready.

A client may try to login to the social network platform and
while it is in the awaiting login state, it may receive an access
token, which represents a successful login. Any other reply or
the lack of it, represents a failed login.

After the client is logged in, it has to associate itself with
the data processing server. That is achieved with an associate
message sent to the server.

While the client is in the awaiting associate state, it may
succeed if it receives a message confirmation from the server
or timeout. There are two kinds of timeouts. If a heartbeat

timeout occurs, as the request is queued and the protocol will
attempt to re-establish the connection to resend the message,
the state is maintained. If a close timeout occurs, it implies that
the connection is lost and that its socket was closed. As such,
a new connection will have to be setup and a new message
sent.

Upon a successful association process, the client will be
associated. From here, it may receive a data request from the
server, which will lead to sampling. A client may only hold
data between server data requests. Upon this request the client
attempts to re-sample its data from the social network platform
and drops its previous state.

Now, the client will be awaiting data. The data may be either
successfully loaded or the request may fail. Any response or
absence of it that is not a message with the expected data
format is considered a failure and the client will have to wait
for the next data analysis round.

If the data is loaded with success the client will move to the
offloading data state. Request success is assured upon server
confirmation. Again both timeouts are possible. While a heart-
beat timeout will lead to connection re-establishment retrials,
a close timeout leads to the loss of the client connection socket
on the server side and consequently to its disassociation. As
no other server state is kept, the association process will have
to start again.

The client will be awaiting results, until these are forwarded
from the server. Heartbeat timeouts will lead to attempts to re-
establish the connection. If that is not possible and a close
timeout occurs, the association process will have to restart for
the reasons referred before.

Figure 4. System server state machine

2) Data processing backend: The data processing backend
is charged with filtering and analysing the data received from
the mobile sensing devices. The results obtained from this
process are sent back to the client devices. Its state machine
is represented in 4.

After the server is started, it will arrive at the initiated state.
From here, it may receive associate requests from clients. In

the same, clients may get disconnected leading to disassociate
transitions.
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Association requests are not verified by the server, implying
that clients for data analysis are not authenticated. This leads to
a trade-off between user anonymity and system security. While
the system might be vulnerable to external entities that might
offload fake data or attempt to overload the server, a given
client cannot be verified without having access to its creden-
tials. Furthermore, a user should not be asked to authenticate
more than once. To solve this issue an authentication process
between the clients and the server would have to be developed.
Such approach would be based on the authentication of the
mobile application, instead of the user itself. Finally, given
the requirement of user anonymity, authenticating a given user
is unfeasible, leaving room for abuse with non-authentic data.
Nonetheless, since data is sourced from a third-party, any alike
system is susceptible to such vulnerabilities.

After the analysis is triggered (either intentionally or within
some pre-defined periodicity), the server will broadcast a data
request message to all its associated clients. This set of clients
constitute the partition whose data will be used.

Afterwards, the server will arrive at the awaiting data state.
In this state client associations are no longer possible, as the
server will receive data messages from the client partition
established previously. If a given client does not offload its
data within a predefined time, it is excluded from the partition.

When this timeout occurs, the server will start the filtering
data state, resulting in the removal of erroneous values from
user data.

The analysing data state ensues, originating a merging
process of data with different modalities. Infectious agent data
is integrated in this state. This results, in the combination
of network and contact data with resort to graph weighting
techniques and its parametrisation with infectious agent data.

The predicting state follows. The merged data is inputted
to the epidemic prediction algorithm. After it is concluded,
results are generated.

The server will start the disseminating state, where it will
forward the prediction results to the client partition. Upon
heartbeat timeout, the connection will be re-established and the
results resent. On close timeout, since it results in the dismissal
of the only link that exists between the server and its client,
the results for the analysis round will not reach the client.
After this state is left, all sourced data present on the server
is dropped. Both these behaviours are a consequence of client
privacy requirements.

IV. RESULT ASSESSMENT

Results are gathered through the execution of a set of ex-
periments that were defined for each area of testing. Collected
results are subjected to statistical analysis, by placing the
gathered relevant summary statistics in a t-student distribution
confidence interval. Finally, results are presented in a chart
format.

The general assessment methodology focuses on testing, and
if possible validating, the different parts of the system individ-
ually and then progressively integrating more complexity.

Figure 5 illustrates the general result assessment plan.
The learning layer and system-wide testing aim to validate

the functionalities of the theoretical models.

Figure 5. Result Assessment plan

Practical coverage modalities assess applicability of the
system to a domain that is closer to the problematic. Deploy-
ment testing analyses the global architecture in a real mobile
scenario with randomly generated data. Data source testing
targets the system as a whole with real data for both local and
mobile scenarios. Setting up the system to cover real data has
the requirement of real users. Due to the sensitive nature of
the system, the cost of deploying the system on a significant
scale is high. Consequently, for validating the solution with
a realistic data source context, this testing is performed with
resort to Facebook’s Test User API [24].

The objective of the following tests is the assessment of
overall system end-to-end time. This metric accounts for both
communication and processing time. The detailed experiment
methodology is described under each test area subsection.

A. Deployment Testing
The network and contact data for this section were generated

with resort to R, following respectively scale-free network
generation methods and random sampling. These tests employ
the use of real mobile sensing devices.

Under the same network, two Android smartphones were
associated to the system. Their models are labelled in the
charts, where appropriate.

The communication to the data processing backend goes
through an access point.

A minimum of 50 timing samples were collected per com-
bination of number of devices and network and contact data
merges. The sample values were averaged and placed in a 95%
confidence interval (CI). The sampling period is of 1500ms.

A base network of 256 nodes was selected to be sampled
by the users in the experiments of this section.

It was found that the differences in device capabilities
affects the timing results. Moreover, device responsiveness was
affected by the periodic activity of other running background
applications.
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Figure 6. Real end-to-end time for network size and amount of users

1) Real end-to-end time for network and user base size: As
shown in Figure 6, time evolves polynomially for the number
of users in the system.

The major source of delay is the network size of the
perceived network.

These delays also present a high variability. These results are
according to what would be expected from a real communica-
tion environment, where packet loss and lack of connectivity
are likely to occur. Also, differences in device performance
affect the precision of the results.

2) Real end-to-end time and contacts: In this experiment
randomly generated contact data is associated to the network
data produced previously.

In Figure 7, it is visible that variable contact data impacts
system response time. However, an increase in contacts is
ultimately associated with an increase in network size.

The scalability of the system is constrained by the per-
formance of its analysis algorithm. This algorithm is mostly
constrained by network size, which is the factor that effectively
influences end-to-end time.

The number of users also influences the delay in communi-
cations and it brings an additional cost in nodes sampled per
user.

B. Data Source Testing

The aim of this section is to test the system with real data. To
acquire data from a realistic data source, network and contact
data were obtained from Facebook.

1) End-to-end time with a real data source: The purpose
of this experiment is to assess the impact of adding a social
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Figure 7. Real end-to-end time for contacts as a percentage of network size

network platform, as the system’s data source, to the end-to-
end time.

There are two scenarios to cover: local and mobile. For
the local case, Facebook data accesses are achieved through a
single machine, where the whole system runs. On the mobile
scenario, they are done with resort to mobile sensing devices.

A base network of 15 nodes was chosen to be sampled in
the experiment. 50 time samples were collected per each of
the scenarios. These sample values were averaged and placed
in a 95% CI. A single mobile device was used.

Figure 8 plots the end-to-end time for the two situations. It
is noticeable that the overall end-to-end time is both higher
and more prone to variation on mobile deployment. This is
inherently related to the lower computational power of the
mobile devices. Also the distributing of system clients over
external devices has an additional level of communication and
an associated delay.

The communication with the data source has a an associated
cost in time, which is visible in comparison with Figure 6.

Either caching the data requested from it or receiving
data updates in the form of events could contribute to the
minimization of this factor’s impact.

V. DISCUSSION AND CONCLUSIONS

This work presents an innovative system aimed at addressing
the technical challenges of the multidisciplinary area that
surrounds it.

The system considers the real-time processing of multi-
modal data, such as social network and location data from
mobile devices. User data is anonymized and it is only shared
after an initial consent, while subsequent sampling occurs

8



●

●

300

400

500

600

local mobile
Scenario

T
im

e 
[m

s]

Figure 8. End-to-end time with a real data source

opportunistically. Such data is integrated with user social
network data (originated from Facebook) and fed into a data
merge and analysis algorithm for epidemic prediction.

The system is hence fully automated on an end-to-end
perspective. Epidemic prediction is based on the analysis of the
epidemic threshold of the sensed network and the infectious
agent parameters, resulting in an aggregate metric for epidemic
prediction. This analysis is centred on the sampled data and,
as such, it is not generalisable to the whole population.
Nonetheless, it sets the ground for algorithmic extensions for
large-scale data merge and processing.

By delivering to users information, concerning outbreaks
that might conduce to an epidemic, this system can contribute
to the detection of communities that are vulnerable to a given
infectious disease.

Finally, by weighting the concerns pertaining to the wide
problematic spectrum of the area covered by this work, it was
possible to arrive at a proof of concept solution that effectively
implements these systems as a whole, targeting its problem
domain with accuracy.

The solution deals with privacy concerns within some limita-
tions. Nonetheless, complete data anonymization and analysis
are two areas which pose conflicting approaches. As such, the
techniques employed only go as far as feasible and should be
regarded as a proof of concept in the system architecture.

More sensing modalities could be integrated into the sensing
layer, providing a richer base of data to experiment with.
For instance, the biosignal acquisition systems engineered
during the Harvard-Portugal research could provide an extra
dimension of information, possibly enabling epidemic models
covering vertical disease transmission.

Contact data acquisition is focused on social network plat-
forms. In line with the ground set for pervasive sensing, the
perception of contacts through other means of lower location
granularity and with a real-time data acquisition should be
exploited. One example, would be the use of smartphone
sensor access to sample GPS data.

The sampling process offered by the system can be improved
in terms of the efficiency of communications. Client data can
be sensed in real-time and cached until an analysis round
is started. Presently, some social network platforms already
provide support for event-based data acquisition in a publish-
subscribe communication approach. If such a methodology
would be employed, the redundancy of sampled data would
be minimised.

The resulting system solves the issue of distributed resource
management distribution by placing most of the concerns on
a centralized entity, liberating the mobile sensing devices of
unnecessary computation. Other approaches that compromise
more may be superior, but their impact has to be properly
assessed and studied.

The bottleneck to system inference is in the size of the
sampled network. Through the path laid by this work, a more
systematic analysis in the field of network data sampling
should be raised, potentiating the impact of the currently
achieved results.

Furthermore, significant performance improvements and
system scalability can be unleashed by taping the potential
of divide-and-conquer matrix analysis techniques and by ex-
trapolating the validated analysis to the cloud.

Ultimately, the achieved architectural execution constitutes
a stepping stone for other solutions, which may be aimed at a
similar community problematic, but oriented towards distinct
application areas. One example of such an area is the spread
of computer viruses.

The principle underlying the executed systems approach is
that the whole may be different from the sum of its parts.
Consequently, it is legitimate that systems models outcomes
may contradict the results that are originated from other
reductionist approaches [25].

Predictive system results provides one level of inference,
which does not conflict with other views provided by looking
at the same data with different abstractions. Quoting Frederich
von Hayek, the father of complexity theory, in his Nobel
acceptance speech [26]:

“...as we penetrate from the realm in which relatively simple
laws prevail [the physical sciences] into the range of phenom-
ena where organized complexity rules...often all that we shall
be able to predict will be some abstract characteristic of the
pattern that will appear...yet...we will still achieve predictions
which can be falsified and which therefore are of empirical
significance”.
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