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Abstract

The free fall of two-dimensional cards immersed in a fluid was studied using a deterministic and
stochastic numerical approach. The motion is characterized by the fluid-body interaction described
by coupling the Navier-Stokes and rigid body dynamic equations. The model’s predictions have been
validated using both the experimental and numerical data available in literature.
In the stochastic simulations, the fillet radius of the plate was considered a random variable characterized
by a uniform Probability Density Function (PDF) introducing, in this way, some uncertainties in the
plate’s trajectory. To take into account the uncertainties we employed the Non-Intrusive Spectral
Projection (NISP) method based on polynomial chaos expansion. The analysis was focused on finding
the ensemble mean trajectory and error bar for a confidence interval of 95% for both tumbling and
fluttering regimes.
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1 Introduction

We all know that a falling leaf does not reach
the ground with a straight vertical trajectory but a
graceful and elegant path is drawn in the air. Simi-
larly, tree seeds, business cards, or common sheets
of paper, fall down swinging from side to side reg-
ularly (fluttering), moving sidewise and spinning
on an axis (tumbling), or they can also have more
complicated three dimensional motions [1].
The study of falling strips of paper started with
Maxwell in 1854 [2], even before the development
of the aerodynamic theory, with a qualitative de-
scription of the tumbling phenomena. Dupleich
[3] analysed the characteristics of motion of sev-
eral body shapes dropped in different conditions.
He noticed that in some specific geometrical con-
ditions, periodic-oscillating motion (fluttering) ap-
pears. Lugt [4, 5] conducted both experimental and
numerical research recognizing the big role played
by the plate vortex shedding.
In 1998, Belmonte et al. [6] studied the transi-
tion from fluttering to tumbling in a quasi-two-
dimensional experiment in which flat strips were
dropped in a narrow container filled with fluid
whereby the mechanical constraints ensured the
two-dimensional plate motion. Further improve-
ments were done by Andersen et al. [7] who elimi-
nated the mechanical constrains and used a release
mechanism for dropping the aluminium plates. By
using a high-speed digital video they determined
the instantaneous acceleration and thus the instan-
taneous forces acting on the plate.
In the last decade, free falling phenomena has been

investigated using CFD. In general, numerical simu-
lation of freely falling body is not a simple problem:
it requires models with unsteady aerodynamics and
moving solid boundaries that need large computa-
tional capacities. In addition, a fluid-body inter-
action study is required: the plate is considered
perfectly rigid but the trajectory is the results of the
combined action of both the fluid forces and the
gravitational ones. In this direction Mittal et al [8]
solved directly the 2D Navier-Stokes equations for
both fixed and free axes plate. In his analysis he
found that the plate has an increase tendency to
tumble when the Reynolds number increases and
the thickness ratio decreases. Pesavento & Wang
[9] solved the 2D Navier-Stokes equations for the
flow around tumbling plate in the vorticity stream
function formulation using an elliptical body in
order to avoid the singularities caused by the con-
formal mapping technique. Andersen et al. [7],
using the same mathematical formulation, qualita-
tively compared the numerical solution, for both
tumbling and fluttering cases, with the experimen-
tal one measured in the same paper and ascribed
the discrepancies to the the geometrical body differ-
ences (in the experiments, rectangular cross section
was used). Later, in 2008, Jin & Xu [10] tried to
overcome the inconsistency between experimental
and numerical solution encountered in the work of
Andersen et al. ([7]). Using a gas-kinetic scheme,
the 2D Navier-Stokes equations were solved on a
moving grid finding a good agreement with the ex-
perimental results.
Several authors have concentrated their attention
on the understanding and prediction of the various
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Figure 1: Computational domain and mesh refinement regions (in different colours). For the validation analysis the
random variable r is considered equal to zero.

regimes [11, 12]. In this context the body shape is
considered ideal, and no uncertainties in the input
parameters are taken into account. In this work,
we introduce a geometrical uncertainty: the fillet
radius is treated as a random variable and, as a
consequence, the fluid flow Navier-Stokes equa-
tions become stochastic. The Non-Intrusive Spec-
tral Projection (NISP) method [13–15] computes the
stochastic solution starting from the results of a se-
ries of deterministic solutions computed, in this
case, using the commercial software STAR-CCM+.
This paper is organized as follows. In the next sec-
tion the governing equation are shown while in
section 3 the validation study will be carried out.
Afterwards, in section 4, the NISP method will be
introduced and the stochastic results will be dis-
cussed in section 5. Finally, in section 6 we give our
summary conclusions.

2 Problem Formulation and Geo-
metrical Model

Our scope is to study the motion of a plate im-
mersed in a fluid. Such a motion is evidently char-
acterized by a fluid-body interaction. This implies
that the motion of the plate is governed by both
the fluid equations and the rigid body dynamic
equations. Regarding the fluid, continuity and
Navier-Sockes equations for incompressible flow

are solved:

∇ · u = 0
∂u
∂t

+(u · ∇) u = −1
ρ
∇p+ ν∇2u

(1)
where u is the velocity, t is the time, p is the pressure,
ρ is the density and ν is the kinematic viscosity. The
real motion of the body is governed by the cardinal
equations of dynamics:

F = m
dv
dt

M = Iω̇ + ω ∧ Iω (2)

where m is the mass (considered constant), v is the
velocity of the centre of mass and F is the resul-
tant force acting on the body (that is, the sum of
the buoyancy force and the aerodynamics forces),
ω is the angular velocity of the rigid body, M is the
resultant moment acting on the body (due to fluid
forces) and I is the tensor of the moments of inertia.
Due to the 2D nature of this analysis, if a reference
frame with its axes parallel to the body’s principal
axes of inertia is considered, the second cardinal
equation simply becomes Mz = Izzω̇.

In order to simulate the free fall of plates we
resorted to the sliding mesh model. It consists of a
plate fixed on a disk with radius R that can rotate
with respect to the rest of the mesh (see Figure 1).
To construct a universal domain for different plates
size, all dimensions are proportional to the plate
length l. In the same figure the various mesh refine-
ment regions are represented by different colours.
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Table 1: Comparison between experimental data form Andersen et al. [7] and numerical simulations.

〈vx〉[cm s−1] 〈vy〉[cm s−1] 〈ω〉[rad s−1] Descent angle [◦]

Experiment [7] 15.9 −11.5 14.5 −35.8
Numerical [10] 15.1 −11.8 15.0 −38.0
Our model 15.6 −11.0 15.3 −35.2
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Figure 2: Fluid force and torque acting on the body. The results are compared with the experimental ones found
by Andersen et al. [7] (on the top). On the bottom, the numerical work of Jin & Xu [10] is considered as
reference.

In addition, on the plate surface the mesh is pris-
matic with a grid of 34× 260 control volumes.

3 Validation

For the validation we took as reference the
tumbling plate studied experimentally by Ander-
sen et al. [7] which is the same plate Jin & Xu
[10] used in their numerical analysis. The plate,
which freely falls in water (ρ f = 1000 kg m−3 and
ν = 8.8871 × 10−7 Pa m), is an aluminium one
(ρb = 2700 kg m−3) of thickness (h) 0.81 mm and
with an aspect ratio AR = l/h of 8. The value of
the acceleration due to gravity is 9.81 m s−2. Just
as in [10], we assume that the body has an ini-
tial inclination of ϑ0 = 45.3◦ with the horizon
(counterclockwise rotations are considered positive)
and an initial velocity (parallel to the major plate
axis) of 12.615 cm s−1. In addition, a time step of
∆t = 2.5 × 10−4 s is used in order to minimize
numerical errors in correspondence to the sliding
mesh interface. For the validation, the fillet radius
r of Figure 1 is assumed equal to zero.
In line with [7, 10], most of the results are repre-

sented in function of dimensionless parameters.
The definition of these numbers is reported below:

Ut =

√
2hg

(
ρb
ρ f
− 1
)

T∗ = t
Ut

l

m′ = (ρb − ρ f )lh X∗ =
x
l

(3)

Y∗ =
y
l

F∗i =
Fi

m′g
M∗i =

Mi
m′gl

where Ut is the average descent speed, obtained by
balancing the buoyancy-corrected gravity, m′g =
(ρb− ρ f )hlg, with the quadratic drag, ρ f lU2

t /2. The
other variables, namely T∗, X∗, Y∗, F∗ and M∗, are
respectively the dimensionless time, x coordinate,
y coordinate, force and torque.
Simulations were carried out with STAR-CCM+
and the average results are shown in Table 1. Some
discrepancies between numerical and experimen-
tal results still exist but the errors are in agree-
ment with [10]. The independence of the mesh
was checked by the use of two coarser meshes; this
revealed how the velocities, as well as the descent
angle, increase according to a typical exponential
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law as the mesh becomes finer whereas the angular
velocity decreases. Figure 3 illustrates the trajec-
tory comparison of the numerical results with the
experimental results as reported in [7]. The pat-
tern found numerically is qualitatively equivalent
to that found experimentally and the superimposi-
tion is quite good. Note how the trajectories do not
start in the origin of the coordinate system: this is
due to the fact that we are only interested in the pe-
riodic condition and in the first instants the motion
of the plate is not well established.
The next step is to compare the dimensionless fluid
forces and torque trends with the ones found in lit-
erature. Figure 2 shows the curve trend of F∗x (on
the top), F∗y (on the bottom) in function of the plate
angle ϑ (on the left) and of the dimensionless time
T∗ (on the tight). Our results fit quite well with the
experimental points and, regarding F∗x , the model
finds correctly the oscillation of the minimum val-
ues. In the Fy plot there is a small discrepancy in the
region of 3.5 π, where a little bit stronger force acts
on the Andersen’s plate. Regarding the comparison
with the numerical results, the shapes of the curve
are similar especially for the Fy. A small phase error
exists but it is due to the small angular velocities
difference that exists between the two numerical
models: 15.0 rad s−1 found by the numerical analy-
sis of Jin & Xu against our 15.3 rad s−1. The torque
Figure ?? is characterized by very small values and
it has qualitatively the same trend as the references.
A high frequency oscillation exists and according to
[8] and [10] this is because the moment is produced
principally by the low pressure zones caused by the
vortex shedding phenomena which characterized
the wake.
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Figure 3: Trajectories comparison. The numerical re-
sults are compared with the experimental ones
found by Andersen et al. [7]. As we can see, the
two trajectories are quite similar.

4 Uncertainty Analysis

4.1 Geometries

The edge of an infinite rectangular body (the
equivalent of the corner of a 2D shape) is consid-
ered as an uncertainty variable. Precisely, we as-
sume that all corners are rounded by an arc of circle
with a random radius r, sweeping from r = 0, corre-
sponding to the rectangular shape, to r = h/2, that
correspond to a perfectly semi-circular head. In ad-
dition, we assume that the four corners have the
same radius value, therefore two axis of symmetry
exist on the body. With these conditions, we have
just one stochastic variable, r, and we assume all
values inside the interval with the same probability.

4.2 Mathematical Formulation

Non-Intrusive Spectral Projection (NISP) me-
thod uses deterministic results for calculating the
stochastic solutions. The specific mathematical mo-
del applied in this analysis will be described here.
Let us consider r as the uncertain parameter of the
model that is associated with the random variable
ξ. Using a Polynomial Chaos expansion, is possible
to express r in function of ξ:

r(ξ) =
q

∑
n=0

r̂n ϕn(ξ) (4)

where r̂n are the expansion mode coefficients and
ϕn are orthogonal polynomials of order n. As ref-
ereed in [16], depending on the PDF of r, there
exists an optimal set of orthogonal polynomials ϕn
associated with the random variable ξ that mini-
mizes the required number of terms in the previous
expansion. In this analysis, we considered a uni-
form distribution for r, therefore, the optimal set
of orthogonal polynomials in (4) is given by the
Legendre polynomials, defined by:

ϕ0(ξ) = 1
ϕ1(ξ) = x
· · ·

ϕn(ξ) =
(2n− 1)

n
ξϕn−1(ξ)−

(n− 1)
n

ϕn−2(ξ)

ϕn+1(ξ) =
(2n + 1)

n + 1
ξϕn−1(ξ)−

(n)
n + 1

ϕn−1(ξ)

(5)
In the previous definition, the random variable ξ is
assumed to have a uniform distribution with zero
mean and 1/

√
3 standard deviation. Considering

the Legendre polynomials, they have an important
propriety which is the bedrock of the present formu-
lation. They have the peculiarity to be orthogonal
to each other with respect to the inner product in
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Table 2: Comparison between the five different plates with different fillet radius.

〈vx〉[cm s−1] 〈vy〉[cm s−1] 〈ω〉[rad s−1] Descent angle [◦]

r1 15.2 −9.4 15.8 −31.7
r2 15.0 −8.4 16.0 −29.2
r3 13.8 −4.9 20.7 −19.6
r4 12.5 −3.4 25.1 −15.2
r5 12.0 −3.0 26.9 −14.0

the interval [−1, 1]:〈
ϕi, ϕj

〉
=
∫ 1

−1
ϕi ϕjW(ξ) dξ =

1
2j + 1

δij (6)

where δij is the Kronecker delta function and W(ξ)
is the weighting function of the probabilistic case
which is equal to 1/2.
Let us introduce a new variable, the solution of the
system f , which in conformity with the previous
considerations, is a function of ξ, f (ξ). We can ex-
press it by using the Polynomials Chaos expansion
(4) leading to:

f (ξ) =
Q

∑
j=0

f̂ j ϕj(ξ) (7)

where the f̂ j are the unknown expansion mode co-
efficients and – because we are just considering one
uncertain variable (mono-dimensional case)– the
total Q is equal to the highest Legendre polynomial
considered.
If we multiply both sides of equation (7) by ϕk,
calculate the inner product (6) and reorganize the
terms, we get:

f̂k =
∫ 1

−1
f ϕk dξ (2k + 1) (8)

The previous integral will be estimated using the
Gauss-Legendre quadrature:

∫ 1

−1
f ϕk dξ ≈

Np

∑
i=1

f (ξi)wi ϕk(ξi) (9)

where ξi are the considered points which are found
imposing the highest polynomials ϕNp equal to
zero, wi the weights and f (ξi) are the determin-
istic solutions found carrying out the simulations
with the commercial software. Once the expansion
coefficients f̂k are known we can find the solution
f (ξ) from equation (7) and the correspondent PDF
which, in this analysis, has been constructed using
the kernel density estimation method [17].

5 Results

The uncertain quantification analysis is first per-
formed on the tumbling plate and then the study

is extended to the fluttering case. The objective is
the same for the two different regimes. We are in-
terested in plotting the ensemble average trajectory
and in providing an estimation of the results for
a confidence interval of 95%. In addition, we are
looking for the PDF that describes the X∗ solution
when a specified Y∗ is imposed, or in other words,
the horizontal position after a fall from a specific
height.

5.1 Tumbling Plate

The simulations were performed for a physical
time of 5 s which correspond, in our condition, to
a dimensionless time of 126.8 (see (3)). Figure 4
shows the five trajectories indicating that as the ra-
dius increases, the trajectories become more and
more horizontal and the glides get smaller and
smaller. This is as expected because the edges are
less sharp and, as a consequence, less flow separa-
tion exists: the plate gains not only more lift but also
it acts in a more constant manner which permits it
to have a smoother and less inclined trajectory.
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Figure 4: Trajectories for the tumbling plate when five
different radii are considered. As beforehand,
the falling angle decreases as the corners be-
come less sharp.

Vortex shedding process still exists but it is not so
strong (see Figure 5). As the radius become bigger,
both the velocity along the x and y axis decrease
while the average angular velocity increases. Ta-
ble 2 lists the average results that are completely
in accordance with those found during the code
validation reported in Table 1.
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Figure 6: X∗ and Y∗ position in function of the time. The grey areas represents the uncertainty at which the plate is
subjected while the black lines plots the median of PDF. In addition, PDFs are represented at three different
instant. Note how in the shape exist two peaks which are getting smoother and smoother as the time
increases. On the right, are shown the five coefficients of the solutions at which PDFs are drawn.

Figure 5: Vorticity field comparison around two tum-
bling plates. On the left the body has a small
value of fillet radius while on the right the cor-
ner is more rounded.

Until now we have just described the determin-
istic results and no stochastic analysis has been
done. Performing the uncertainty analysis, we get
the results shown in Figure 6. Here, the stochastic
solution is a function of the time and the grey area
represents the uncertainty (with 95% confidence
interval) of the X∗ value. In correspondence to
T∗ = 40, T∗ = 80 and T∗ = 120, three PDFs of the
solution at that instant are drawn. As we expected,
they are characterized by a peak at each interval
extremity: it is quite strong for low time values get-
ting smoother and smoother as the time goes by
until they almost become constant for high fillet
radius value (the lower part). On a bar diagram

the five coefficients of the solution at which previ-
ous PDFs are calculated are plotted. We can see
how the stochastic mean, f̂0, is the main term and
the coefficient of the linear polynomial, f̂1, plays
an important role. The two-peaks shape, bimodal
distribution, is given by the joint action of cubic
and linear term contributions while the second and
fourth order polynomials do not seem to enter in
the polynomial chaos expansion. Since the higher
order coefficients are quite small, we can assume
that the convergence is reached and therefore fur-
ther improvements would not modify significantly
the PDFs shape.
Regarding the Y∗ variable, the results obtained with
the five points approximation are shown in Figure 6.
The PDFs shape are equal to X∗ solution, becoming
almost constant for high time values. We can see
how, in this case, the uncertainties are much big-
ger than the previous one. In correspondence to
T∗ = 120, the uncertainties enclose an interval of
more than 60 l in contrast with 35 l of the X∗ solu-
tion. The bar diagram shows how the modulus of
the five coefficients is getting smaller and smaller
as the polynomial grade increases. As beforehand,
we can assume that the convergence is reached.
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Figure 7: X∗ position after a fall of 17.5 l (top) and 35 l (bottom). On the left, the PDFs trend and the respective
confidence intervals (grey areas). Deterministic solutions are also plotted. On the right, we find the various
expansion coefficients.

One of the objectives of this study is to find the PDF
that describes the X∗ solution when a prescribed
fall is imposed. A fall of Y∗ = −17.5 l and another
of Y∗ = −35 l are considered. From Figure 4 it is
possible to note how the r4 and r5 plate do not reach
the lower Y∗ coordinate, so an extension of the phys-
ical time until 7 s (T∗ = 177.6) and 8 s (T∗ = 202.9)
was needed.
Figure 7 shows the results for the two different falls.
On the top, is reported the PDF for the small fall,
i.e. after a vertical distance of 17.5 l while on the
bottom the solution for Y∗ = −35 l. The two PDFs
are quite similar, both are bimodal and their values
decrease in the centre. The particular shape is in
accordance with the deterministic solutions, also
shown in the same plot with black points. Besides
the PDFs, the plots reports the confidential interval
of 95%, represented with the shadowed areas. On
the right are plotted the expansion coefficients in
a bar diagram showing how the importance of the
high order polynomials is getting less and less im-
portant and almost vanished in correspondence to
the fourth order. Hence, we supposed that the con-
vergence is reached and we can conclude that the
system does not follow a linear law, but a concen-
tration of events exist with respect to the interval’s

extremes.

5.2 Fluttering Plate

According to [7], fluttering motion is observed
if the length of the plate l is increased in such a way
that the aspect ratio AR is equal to 14 and all the
other dimensional parameters are kept constant.
The simulation were carried out using a fixed time
step of ∆t = 5× 10−4 s.

The objectives of the analysis of the plate under
flutter are to find the ensemble average trajectory,
the associated confidential interval and the plate
position after a fall of specific height.
Figure 9 shows the 5 deterministic trajectories of
the plate. Before analysing the results through a
stochastic point of view and conducting the con-
vergence study, we notice that the centre of mass
elevation points, after the first glide, appear sequen-
tially and in an almost linear manner as the fillet
radius increases. However, after the second glide,
the path relative to the plate with fillet radius r4
stays between the r1 and r2 trajectories and not,
as we would have expected, between r3 and r5.
In order to understand this anomaly, the interval
between r3 and r4 was subdivided in four equally
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spaced parts, calling the nodes in between r334, r34
and r344 while we introduce just one point, r45, in
the interval [r4, r5] which coincides with the inter-
val’s middle point (see Figure 8). Simulations were
performed with these new values of fillet radius
and the results confirm the anomaly, highlighting
how the locus of the peak points initially increases
its ordinate value in an almost linear manner. After-
wards, the curve inverts the trend going backwards
and reaching its minimum X∗ value with r344 be-
fore taking one more time the right direction and,
after r4, an apparently linear behaviour appears.
The previous consideration can be well appreciated
in Figure 10: a black line helps to follow the curve
peaks of the various trajectories.

In order to find a physical explication of this
behaviour, the vorticity field around the plates was
observed. We took as reference models the plates
with fillet radius equal to r3, r344 and r45. To com-
plete the study, three different time instants were
considered: the first, t1 is when the plate stays in
the horizontal position, i.e. the local and the global
reference frames are superimposed; in the second
instant, t2, the plate is at the maximum centre of
mass elevation point and, the third one t3 is consid-
ered equal to t3 = t2 + (t2 − t1). Results are shown
in Figure 11. Observing the pictures we notice how
the interaction between vortexes and body exists
especially when the body starts to descend. Let us
analyse the images placed in the first row: the vor-
ticity field appear very similar, but small differences
in the wake structure can be be observed between
the three pictures. Regarding the second row, these
differences become more accentuated and the vor-
ticity field assume another pattern: the r3 plate has
the vortex which is shedding on the upper part of
the trailing edge, in the centre plates it is on the
lower side and in r45 plate the vortex placed on the
lower side has just detached. Since the vorticity is
directly bound to the velocity’s field, it means that
the pressure field is different, therefore the forces
acting on the body will have some variations.
Coming back to the stochastic analysis, five or more
deterministic solutions are few to ensure conver-
gence. We noticed that as the polynomial grade in-
creases, the coefficients become higher and higher,
therefore, we are very far from the convergence. As
a consequence, we would need much more points
in order to properly analyse the flattering plate. An
alternative is to restrict the interval of the radius
random variable r.
The initial interval [0, h/2] was subdivided into four
equal parts and the analysis was performed with 9
points in [0.75 h

2 , h
2 ] to avoid the interval in which

peaks inversion phenomena occurs. The number
of sample suggests that 36 points are not enough
to ensure convergence and a very large number of

samples (hundreds) is required. This is due the fact
that a small perturbation causes a large variability
of the trajectory path requiring a large number of
degrees of freedom in order to stochastically anal-
yse the problem.
The computing time for 155× 103 control volumes
and 104 time steps is around 75 CPU hours for each
unsteady deterministic calculation, consequently
the problem can only be treated with high perform-
ing computing. Previous investigation [7, 9, 11]
have reported that the regimes of 2D free fall plate
can be tumbling, fluttering, steady fall and chaotic
regime with a mixture of tumbling and fluttering.
The present case of perturbation of the fluttering
regime undergoes a chaotic path trajectory preserv-
ing the fluttering motion.
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Figure 9: Fluttering case. Path obtained with five differ-
ent fillet radius values.

In order to understand the importance of the
vortex shedding in the fluttering regime, three
plates were considered at rest and simulations were
carried out. The bodies are aligned with the flow
that has a velocity magnitude of 0.35 m s−1, that is
a typical velocity in the fluttering regime. In this
case the Reynold’s number is equal to Re = 4466
while, during the fall, it can vary between 200 and
5800. The considered plates present a fillet radius
that are, in percentage of h

2 , r1 = 1.59% (it is the
first of the 9 Gauss points, chosen to avoid the 90
degree corner), r2 = 50% and r3 = 100%. Figure 12
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rr3 r334 r34 r344 r4 r45 r5

Figure 8: In order to investigate the anomaly of the trajectories, the interval between r3 and r4 is divided in four
equal intervals while the one between r4 and r5 has just one point in the middle, r45.

shows that as the corners become less sharp, the
force amplitude decreases while the frequency in-
creases by a non-linear law. The forces developed
by the sheds of the vortices represent a percentage
that can reach up to 23% of the total fluid force for
small fillet radius while the value reduces to 10% for
a completely round head. However the frequency
is always higher than the characteristic frequency of
the motion of about 20 times. For higher velocities,
the phenomena become stronger and both the am-
plitude and the frequency increase. In any case, the
variability of the vortex shedding is added to the
variability of both the mass and the moment of in-
ertia, that all contribute to the dynamic of the plate.
The critical zone is in the nearby to the peak points,
in which small perturbations can slightly modify
the plate inclination, causing macro differences in
the trajectory path.

1 2 3 4 5 6

−6

−5

−4

−3

X∗ [l]

Y
∗

[l
]

r1 r2 r3

r334 r34 r344

r4 r45 r5

Figure 10: The solution for intermediate cases shows the
peaks anomaly and a black line marks the its
locus of points.
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r1 = 1.59% r2 = 50% r3 = 100%

Figure 12: Dimensionless forces developed by vortex
shedding in function of dimensionless time on
three fluttering plates immersed in a frontal
flow with magnitude 0.35 m s−1. As the fillet
radius increases, the amplitude decreases and
the frequency increases.

6 Conclusions

Through the results obtained in this work, sev-
eral conclusions can be drawn.
The adopted numerical methodology provided re-
alistic results for two-dimensional tumbling plate
and the model can correctly predict the trajectory,
the forces and the torque acting on the body. The
predictions are in good agreement with experimen-
tal data; results confirm and give details on how the
wake is governed by a vortex shedding process.
In the tumbling case, the fillet corner highly modi-
fies the trajectory mean angle and angular rotation
modulus. We ascribe this fact to the different wake
structure caused by the different corner sharpness,
which originate different flow separation processes.
In fluttering, the locus of the second glide peaks
displays an unexpected behaviour for r included
in the interval [0.50 h

2 0.77 h
2 ]. The wake examina-

tion reveals that the vorticity field around the plate
is characterized by a wake-body interaction which
perturbed the trajectories.
In tumbling motion five points are sufficient to find
correctly the solution with the NISP approach, and
results show the bimodal trajectory and the increas-
ing error bar.
In the fluttering regime, a much higher number of
deterministic solutions is required. The system is
characterized by a great variability and small per-
turbations in the geometry shape (input) cause large
variations in the trajectory (output) underlying how
the system is strongly non-linear. After the second
glide, an apparently chaotic behaviour is observed
that can be clarified with stochastic calculations but
require a prohibit number of simulations.
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