
Agnostic Application Development Middleware for
VANETs

Rui Miguel Correia Costa

Dissertation submitted to obtain the Master Degree in

Communications Networks Engineering

Examination Committee
Chairperson: Prof. Paulo Jorge Pires Ferreira

Supervisor: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Members of the Committee: Prof. Luı́s Filipe Lourenço Bernardo

May 2013

Acknowledgements

I would like to thank the Academy. . . ok, now seriously. I would like to start by mentioning the

incredible support that my advisor, Teresa Vazão gave me, not only during this thesis but since my

freshman year in the University with valuable advices and guidance that ended up helping me achiev-

ing success on my academic journey.

Also there is a need to mention the important role that some professors and mentors posed during

my studies, not only during university. One should recognize the courage and strength of will that they

had by striving in every class to inspire students to be different, enthusiastic and have the excitement

and greed to make a positive difference.

To all my friends, that during my life and specially my university years supported me not only with

words but with funny, unforgettable and legendary moments that one would never forget. Due to

the page limit imposed to this thesis and also to save some trees, and therefore preserving planet

Earth, it is impossible to name and state here all the friends i keep in my heart. I am privileged to

have met interesting people in so many different scenarios such as the academic life, judo, surf and

skim, music and so many others situations that my life have made me experience so far. Also, i need

to thank David Dias, Fábio Domingos, André Filipe Gonçalves, Ricardo Câncio Silva and Ana Rita

Guilherme for dedicating time and patience to help me in the field-tests. To my friend Dario Marques,

whose life was taken way to early.

Last but not least, to my family. To my parents for the endless support and comprehension through-

out my life, always being there for me and always making every thing to support my decisions. To my

uncles, aunts and cousins and to the ones that are not with us anymore, you all were mentors to me

and helped me being who i am today.

Let’s make this count, ”Every accomplishment starts with the decision to try”.

Lisbon, May 2013
Rui Costa

i

For my parents.
Everything I have and will accomplish in life is because of you.

Abstract

The development of vehicular communication technologies and networks allowed the fostering of

Intelligent Transportation Systems (ITS). Such systems are heavily based in the creation of applica-

tions and services that will be designed to serve multiple purposes, either for delivering more pleasant

driving experience to users and also for enhancing the safety and security of road users. This thesis

proposes a platform for facilitating the agnostic development of vehicular-environment oriented ap-

plications by offering a common API for both safety and comfort-oriented applications. Our solution

features application and service’s flow control in order to give priority to most relevant applications

in every moment, supporting scenarios where the need of safety application’s priority is critical. A

protocol for epidemically disseminating vehicle safety status is proposed in order to determine the

current execution context. Results from field-tests performed in a controlled environment, shown a re-

duction in non-relevant traffic volume in emergency situations while enhancing the safety application’s

performance for critical situations.

Keywords

• Vehicular Ad-hoc Networks

• Intelligent Transportation Systems

• Vehicular Applications Development

• Agnostic Vehicular Applications

• API

v

Resumo

O desenvolvimento de tecnologias de comunicação para redes veiculares permitiu o desenvolvi-

mento de Sistemas Inteligentes de Transporte (ITS). Tais sistemas são fortemente baseados na

criação e uso de aplicações e serviços com diversos objetivos, tais como a criação de uma ex-

periência de condução mais agradável e o aumento da segurança dos utilizadores da estrada, sejam

eles condutores, passageiros ou peões. Esta tese propõe uma plataforma para facilitar o desenvolvi-

mento agnóstico de aplicações para ambiente veiculares através da criação de uma API generalizada

para aplicações tanto de segurança como de conforto. A nossa solução apresenta um controlo do

fluxo das aplicações e serviços de forma a garantir a prioridade daqueles que sejam mais relevantes

em qualquer momento, tendo em conta possı́veis cenários em que as aplicações de segurança ten-

ham um papel preponderante. É proposto um protocolo para disseminar de forma epidémica o estado

de cada veı́culo que permite determinar o contexto no qual o veı́culo está no momento. Os resulta-

dos obtidos num cenário real, em ambiente controlado, mostram a redução significativa de tráfego

não relevante em situações de emergência, garantindo ainda a redução do tempo de resposta dos

serviços e aplicações de segurança, mostrando melhoramentos no desempenho de tais aplicações

em situações crı́ticas.

Palavras Chave

• Redes Ad-hoc Veiculares

• Sistemas Inteligentes de Transporte

• Desenvolvimento de Applications para Ambientes Veiculares

• Desenvolvimento Agnóstico de Aplicações

• API

vii

Contents

1 Introduction 1

1.1 Goals and Contributions . 2

1.2 Existing Solutions . 2

1.3 Thesis Structure . 3

2 Context and Related Work 5

2.1 Intelligent Transportation Systems . 5

2.1.1 Related Projects, Consolidation and Standardisation 6

2.1.2 ITS Components . 7

2.1.3 Network architecture . 8

2.1.4 ITS Communication Technologies . 9

2.1.5 ITS Facilities Layer . 10

2.1.6 ITS Management and Security Layers . 11

2.1.7 ITS Applications and Services . 12

2.1.8 Standards for Vehicular-Network Application’s Messaging 15

2.2 Chapter Summary . 16

3 Architecture 17

3.1 Requirements . 17

3.2 Proposed Solution Description . 19

3.2.1 Support platform integration and functionalities 19

3.3 System Architecture Description . 21

3.3.1 Architecture Interactions and Description . 21

3.4 Vehicular-Application Development Middleware . 22

3.4.1 Application Request Manager . 25

3.4.2 Call Manager . 26

3.4.3 Communication Manager . 26

3.4.4 Application Registry Bank . 27

3.4.5 Services . 27

3.5 System Analyzer . 29

3.5.1 Analytical Heuristics . 29

3.5.2 User-Input . 30

ix

3.5.3 Epidemic Status Dissemination . 30

3.6 Applications and Services Priorities . 33

3.7 Rescheduling and Discard Policy . 35

3.7.1 Application’s Policies . 36

3.7.2 Services’s Policies . 37

3.8 Applications . 37

3.8.1 Application’s Lifecycle and functioning . 38

3.8.2 Application’s Messaging . 39

3.9 Chapter Summary . 40

4 Implementation 43

4.1 Adopted Technologies . 43

4.1.1 Programming Languages . 43

4.1.2 Implementation Options . 44

4.2 Support Platform . 45

4.2.1 Acquisition Module . 46

4.2.2 Interface Manager . 48

4.3 SAE J2735 DSRC Standard . 50

4.3.1 J2735 Encoder and Decoder . 52

4.4 Vehicular-Application Development Middleware . 53

4.4.1 Application Request Manager . 53

4.4.2 Platform Status . 56

4.4.3 Call Manager . 56

4.4.4 Communication Manager . 57

4.4.5 Application Registry Bank . 59

4.4.6 Services . 60

4.4.7 Message Plausibility Scheduling . 61

4.5 System Analyzer . 61

4.5.1 Analytical Heuristics . 61

4.5.2 User-Input . 62

4.5.3 Epidemic Status Dissemination . 62

4.6 Applications . 65

4.6.1 Application Example: RequestAssistance . 65

4.7 Chapter Summary . 68

5 Evaluation 69

5.1 Developed Applications . 69

5.2 Tests Description . 70

5.3 Used Software and Equipment . 71

5.4 Test Scenarios . 72

x

5.5 Test Results Presentation and Discussion . 74

5.5.1 Traffic Volume . 74

5.5.2 RequestAssistance Response-Time . 76

5.6 Chapter Summary . 79

6 Conclusions and Future Work 83

Bibliography 87

Appendix A 1

.1 Technologies and Applications Characterizations . 1

.2 J2735 Pyasn.1 Implementation and ASN.1 defition . 2

.3 Implementation Pseudo-code . 5

.4 Evaluation and Tests Partial Results . 7

xi

List of Figures

2.1 Layer representation of the ITS communications architecture standard 7

2.2 Facilities functionalities of the ITS reference architecture 12

3.1 Proposed solution architecture diagram and integration within the standardized ITS

platform . 23

3.2 Vehicular-Application Development Middleware module components 25

3.3 Shortest Safety Distance range scenario illustration for vehicle traveling at 50 km/h and

80 km/h . 31

3.4 Highway scenario illustration for Region of Plausibility with a vehicle broadcasting ”Ac-

cident” status . 32

3.5 ESPD protocol, for handling and advertising network status alteration messages. 32

3.6 Policies applied to application’s messages for both Emergency and Accident situations

by the Communication Manager and ARM schedulers 36

3.7 Policies applied to services for both Normal or Emergency and Accident situations,

executed at the publishing frequency . 37

3.8 Interaction between applications and the proposed platform 38

3.9 VADM application’s lifecycle and interaction process with the developed platform. 39

4.1 European Channel allocation for the IEEE 802.11p standard side-by-side with the adap-

tation implemented . 46

4.2 Support platform modules diagram . 47

4.3 VADM platform user interface for changing manually the vehicle status and get vehicle

information . 63

5.1 Test-bed location and overall position of the communication nodes 71

5.2 Equipment used in both RSU and Vehicle nodes . 72

5.3 Average traffic volume generated and received for tests using applications RequestAs-

sistance, VehicleStream and Chat . 77

5.4 Average traffic volume generated and received for tests using applications RequestAs-

sistance, RSUStream and POI . 78

5.5 RequestAssistance average response-time comparison with several application’s sets . 79

xiii

List of Tables

2.1 Safety and User-Comfort Applications Requirements . 14

2.2 SAE J2735 standard message sets and carried information 16

3.1 ITS Facilities Layer features addressed in the proposed solution and offered by the

support platform. 20

3.2 Average ShSD values for typical vehicle+s traveling velocity 31

3.3 Applications priority analysis for different environment situations 34

4.1 Implemented functionalities for the support platform . 45

4.2 Application’s Priority Table according to application type and class depending upon the

current VADM status . 58

4.3 Platform status 4-byte representation . 63

5.1 Developed Application’s classification . 70

5.2 Platform services used by the developed applications 71

5.3 Test-scenarios architecture configuration variations . 74

5.4 Traffic volume reduction of the several application’s sets by using VADM application

level scheduling . 76

1 Wireless Communication Technologies characteristics and features 1

2 Traffic volume generated and received by the several applications reduction by using

VADM application level scheduling . 7

xv

Abbreviations

UMTS Universal Mobile Telecommunications System

WLAN Wireless Local Area Network

XML Extensible Markup Language

VANET Vehicular Ad-hoc Network

ITS Intelligent Transportation System

COMeSafety Communications for eSafety

NoW Network On Wheels

ETSI European Telecommunications Standards Institute

ISO International Organization for Standards

C2C-CC Car-to-Car Communications Consortium

VMS Variable Message Signs

RSU Road side unit

VANET Vehicular Ad-hoc network

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

GSM Global System for Mobile Communications

GPRS General packet radio service

WiMAX Worldwide Interoperability for Microwave Access

LTE 3GPP Long Term Evolution

SeVeCom Secure Vehicular Communication

PReVENT PReVENTive and Active Safety Applications

ISO International Organization for Standardization

xvii

ETSI European Telecomunications Standards Institute

IETF Internet Engineering Task Force

simTD Safe Intelligent Mobility

MMWAVE Millimeter-wave

DSRC Dedicated Short-Range Communications

WAVE Wireless Access in the Vehicular Environment

API Application Programming Interface

ADM Application Development Middleware

ARM Application Request Manager

ARB Application Registry Bank

SOA Service-Oriented Architecture

EDA Event-Driven Architecture

LDM Local Dynamic Map

HMI Human-Machine Interface

CAN Controller Area Network

GNSS Global Navigation Satellite System

OBD On-Board Diagnostic System

GLS Grid Location Service

RLS Reactive Location Service

HLS Hierarchical Location Service

CBQ Class-based Queueing

ShSD Shortest Safety Distance

ROP Region of Plausibility

VADM Vehicular-Application Development Middleware

ESPD Epidemic Status Plausibility Dissemination

BSM J2735 Basic Safety Message

ASN.1 Abstract Syntax Notation One

DER Distinguished Encoding Rules

xviii

API Application Programming Interface

VADM Vehicular-Applications Development Middleware

ESPD Epidemic Status Plausibility Dissemination

MANETs Mobile Ad-hoc Networks

VANETs Vehicular Ad-hoc Networks

ITS Intelligent Transportation Systems

SeVeCom Secure Vehicular Communication

ETSI European Telecommunications Standards Institute (ETSI)

IETF Internet Engineering Task Force

ISO International Standards Organization

RSU Roadside Unit

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

WAVE Wireless Access in Vehicular Environments

ROP Region of Plausibility

BSM Basic Safety Message

POI Points of Interest

xix

1
Introduction

Vehicular networks are a new class of networks that have emerged thanks to advances in wireless

technologies and high investment from both automotive industry and research entities. Particularly,

Vehicular Ad-hoc network (VANET)s are a subset of the general class of mobile ad-hoc networks,

with several characteristics, presenting different challenges when developing both services and archi-

tectures for that type of network. VANETs are a area of interest of road operations, manufacturers,

telecommunication operators and academia, that are investing a lot of resources researching on those

networks.

Several wireless technologies, standards and architectures were created to cope with the specific

requirements of vehicular networks, enabling the development and deployment of a wide variety of

vehicular-specific applications and services[1]. The communication among vehicles and between

those same vehicles and a roadside infrastructure have allowed the inception and development of

Intelligent Transportation System (ITS).

ITS enable the creation of an enhanced driving experience, by delivering both applications whose

goal is to deliver a more pleasant driving experience to users and applications that have the objective

of enhancing the overall security and safety of road users. All groups of interest researching and in-

vesting in vehicular networks, have as priority the development and deployment of safety applications,

due to the contribution that those can have in saving peoples lives and making driving more safe.

However, developing applications and services to be executed in vehicular networks pose several

challenges. Applications need to be aware of both the architecture in which they are executing and

also take into account the numerous situations that can happen in the various different scenarios

where the vehicle can be at a point of time.

There is a large number of vehicular applications and services that can developed for ITS. This

work will focus in contributing with a solution that allows a quick development of those applications,

1

absenting the developers from some underlying implementation choices, while bearing in mind the

importance and need of applications and services that can contribute to improve the safety involved

in transportation for everyone.

1.1 Goals and Contributions

Taking into account all that was mention, the primary goal of this thesis is to design and develop

a platform that facilitates the process of application development for vehicular-communication net-

works. By analyzing the available solutions and also the application’s requirements, this thesis aims

to develop a API that mitigates most of the hurdles in application development for this scenarios while

keeping in mind the overall goal of using vehicular-networks to create safer and more secure roads

and transportation environments.

Therefore the contributions of this work are:

1. Development of well-defined API for vehicular-networks oriented applications to be used widely

and as open-source by the developers.

2. Creation of a unified integration between applications and the several available communication

technologies and systems for vehicular networks.

3. Design and implementation of a architecture and platform that can adapt itself to cope with

application’s requirements while having in mind the need of granting priority on network access

and usage for safety-related applications.

4. Extension of the available standard and widely-accepted solutions for vehicular-oriented appli-

cation’s development.

1.2 Existing Solutions

This thesis will be based on the several work developed by standardization entities and consortia

between academia and industry that have addressed some grass-root challenges of vehicular net-

works and Intelligent Transportation Systems. From the various contributions, one should highlight

and take into account the existence of a middleware solution that offers relevant functionalities for

application’s development, the Facilities Layer. This new approach, suggested by a standardized

architecture for ITS, aims to facilitate the rapid development, standardized access to information, data

and functionalities. Facilities Layer, despite coping with some the peculiar characteristics of vehicular

networks and also allowing the rapid development of applications and services for such environments,

some issues were yet to be solved:

1. In case of emergency or accident situation, no behavior change is performed, leaving that to be

solved by applications.

2. Different accessibility to services for different types of applications

2

3. Lack of control over applications executing above Facilities Layer

4. No adaptation of underlying network and access layers in order to improve the system’s perfor-

mance in different situations

The thesis will address this issues and proposed a solution for solving them.

1.3 Thesis Structure

This document describes the research and work developed and it is organized as follows:

Chapter 1 presents the motivation, background on vehicular ad-hoc networks and the charac-

teristics that differentiate them from traditional mobile ad-hoc networks. Also presents the proposed

solution to solve the open issues in middleware architectures for such kind of networks.

Chapter 2 describes the previous work in the field by defining what is a Intelligent Transportation

System, highlighting the most contributive projects a thorough description of reference architecture

and technologies widely adopted for such systems.

Chapter 3 describes the system requirements and the architecture of the proposed solution.

Chapter 4 describes the implementation details and the technologies chosen in the proposed so-

lution. To enhance the readability, all the pseudo-code is deliberately detailed in the Appendix section.

Chapter 5 describes the evaluation tests performed and the corresponding results.

Chapter 6 summarizes the work developed and future work.

Appendix section contains several additional information to the thesis writing such as, classes

pseudo-code and definitions, detailed analysis tables and partial test-results.

3

4

2
Context and Related Work

This section will address the State of the Art technologies and architecture developed specifically

for the creation and proliferation of Intelligent Transportation Systems (ITS). We will describe the

several contributions made towards the enhancement of such systems and how that work served as

a starting point to our work. We will start by stating the projects and initiatives that worked in both

VANETs and ITS towards getting to the standardization entities that produces the widely adopted

standards for vehicular-communications used nowadays. After that we will detail the types of compo-

nents that take part on ITS and the communication technologies used to integrate this systems. We

will then focus on explaining the new set of functionalities that the adopted ITS standard made avail-

able through the creation go the Facilities Layer. At the end of the chapter we will classify applications

and services that can be executed in ITS and detail briefly the standards used for inter-application

and inter-platform messaging.

2.1 Intelligent Transportation Systems

ITS had its inception and expansion based on the development of several communication tech-

nologies and protocols of vehicular networks, in particular of VANETS. As a subset of traditional

Mobile Ad-hoc Networks (MANETs), Vehicular Ad-hoc Networks (VANETs) have specific properties

that distinguish those from the traditional MANETs[2], for instance the deployment scenario the mobil-

ity pattern, properties of the communication nodes as well as some other challenging characteristics

as the network scale, network topology variation or even the degree of connectivity [3]. But with the

work performed in enhancing VANETs the development and further expansion of ITS architectures,

technologies and protocols was finally possible [4].

ITS have as main goal the automation of interaction among vehicles and roadside infrastructure to

5

create new degrees of safety, comfort and transportation efficiency in all kinds of roads. We will now

address the several steps made so far towards creating the State of the Art ITS.

2.1.1 Related Projects, Consolidation and Standardisation

A vast number of research projects all over the world have been focusing on inter-vehicle com-

munication systems and related problematics. Those projects, financed and supported by industry,

governments and academia are currently developing solutions and services in order to establish new

standards to VANET environments. Most of them are result of a joint-venture between auto-makers

and mobile or roadway operators in order to enhance their equipments and infrastructures with means

to deploy and support ITS.

Some projects have done important contributions to the collaborative elaboration of a standardized

European ITS framework:

• Network On Wheels (NoW)[5]1 - Solve technical key questions on the communication proto-

cols and data security for car-to-car communications to support active safety applications and

infotainment applications.

• WiSafeCar2 and Safe Intelligent Mobility (simTD)3 - Consolidate V2X (either V2I or V2V)

functions to supply several types of applications and services.

• Secure Vehicular Communication (SeVeCom)4 - Full definition and implementation of security

requirements for vehicular networks.

• PReVENTive and Active Safety Applications (PReVENT)5 - Developing safety applications

and technologies to mitigate accidents, through direct control on vehicles action .

In order to grant that ITS communication technologies and systems are disseminated throughout

all the road infrastructure, standardization became a mandatory path to unveil. Several initiatives from

both academia and industry started developing work in order to conglomerate technologies, applica-

tions, protocols and security and management mechanisms into one widely accepted architecture. A

European project, named Communications for eSafety (COMeSafety)6, was responsible for consoli-

dating, gathering and fostering the several contributions from the several initiatives [6]. The Car-to-Car

Communications Consortium (C2C-CC)7 harmonized all the work made by COMeSafety for later pro-

posal to relevant standardization bodies such as European Telecommunications Standards Institute

(ETSI) (ETSI), Internet Engineering Task Force (IETF), International Standards Organization (ISO)

and IEEE.

A important standard is nowadays considered as a base stone of the development and further ex-

pansion of ITS, the ETSI EN 302 666, ITS Standard Communications Architecture [7]. This standard
1http://www.network-on-wheels.de/
2http://www.wisafecar.com/
3http://www.simtd.org/
4www.sevecom.org
5www.prevent-ip.org/
6http://www.comesafety.org/
7www.car-to-car.org

6

made several innovations in several communication layers, also creating new layers that brought new

features and functionalities to this communication system. Figure 2.1 depicts the layer representation

of the ITS comunications architecture standard.

Figure 2.1: Layer representation of the ITS communications architecture standard

2.1.2 ITS Components

Four main components are needed to form a cooperative ITS: the vehicle station, the personal

station, the roadside station and the central station.

Vehicle Station

A vehicle, or mobile node, is equipped with wireless communication capabilities for communica-

tion with other vehicles or roadside infrastructure. The on-board hardware can be connected to the

vehicles built-in network to collect data within the vehicle, using the built-in sensors, and then send

that information to the remaining ITS intervinients or process that same collected data to enhance the

vehicles environment perception.

The OBUs in order to enhance communication capabilities, can be integrated with the access

technologies such as Global System for Mobile Communications (GSM), General packet radio ser-

vice (GPRS), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for

Microwave Access (WiMAX), 4G 3GPP Long Term Evolution (LTE), Wireless LAN IEEE 802.11 tech-

nologies and Infrared. Also, many vehicular communications specific access technologies such as

DSRC/WAVE and CALM have been developed, and will be further analyzed in section 2.1.4.

Personal Station

Typically a mobile consumer device, such as a smart phone, PDA, tablet or laptop that can provide

numerous ITS applications or represent the interface to the driver of the embedded vehicle’ systems.

This device is typically assigned to a person and can also store several profiles or preferences of

that person, allowing a ITS system to be portable and independent of the vehicle in which the user

is traveling. The Personal Station can communicate with the AU in a wired or wireless configuration,

being that configuration dependent of the technologies present on such device. It can be integrated or

7

connected, e.g. via Bluetooth, to a vehicle. It can also be considered as part of the vehicle equipment,

and therefore generate or receive additional information data. Furthermore, the vehicle may directly

use the communication capabilities of a connected personal device and may also make use of its

output devices to present information within a vehicle to the driver. Also a personal station could be

used as an independent component of an ITS, communicating with roadside infrastructure or with

legacy systems, through cellular networks.

Road Side Unit

The Roadside Unit (RSU) or Roadside Station, is a fixed installation along the road, responsible

for the communication with the Vehicle Station or other RSUs. This roadside equipment may be linked

via a roadside gateway to road sensors or traffic control units, as traffic lights and Variable Message

Signs (VMS) enabling the realization of in-vehicle applications that are aware of the road conditions as

well as dynamically adapting and updating the road information based on the information transmitted

by the vehicles. Optionally, a border router can connect the ITS Roadside Station to a backbone

network, which can be an ITS Roadside infrastructure network or the Internet Domain. A RSU can

also make use of existing or upcoming wireless infrastructures such as cellular networks, with UMTS,

WiMAX and LTE [8].

Central Station

The Central Station may supply some value-added applications and services that may be ac-

cessed and used by the Roadside Unit (RSU)’s via a roadside gateway. This way some processing

capabilities could be delegated only to the central station that also can store and process information

from all the RSUs connected by the gateway.

2.1.3 Network architecture

Different communication scenarios can be envisaged for ITS and different technologies can be

used to support the interactions between the components.

Communication scenarios

In a vehicular network several communication scenarios may be considered [9][10]. Vehicles can

make use and communicate with wireless hot-spots along the road, either operated by Internet service

providers or by an integrated operator. Legacy and existing cellular communication systems, can

also be used. Vehicles can even communicate with other vehicles directly without a communication

infrastructure, and therefore cooperatively forward information on behalf of each other. Hence, one

may conclude two different communication scenarios in vehicular networks:

• Vehicle-to-Vehicle (V2V): Vehicles communicate among them, forming an ad-hoc network

• Vehicle-to-Infrastructure (V2I): Vehicles communicate directly with the roadside infrastructure

to exchange information.

8

It is even possible to make an hybrid approach, where are explored both V2V and V2I communi-

cation scenarios.

A hybrid vehicular communication system tends to be the most adopted solution since it extends

the range of V2I systems. Vehicles can communicate with the Roadside Stations, even when they are

not within the wireless range, by using other vehicles as mobile routers, extending the transmission

range of the vehicles enabling new services and applications to be developed and installed. However,

a hybrid solution presents one disadvantage, since the network connectivity may not be guaranteed

in scenarios with low vehicle density[3][11].

2.1.4 ITS Communication Technologies

In order to supply communication capabilities to vehicles and RSUs several technologies can be

used. Several general-purpose and traditional communications technologies can be used, such as

Cellular Networks as GSM, GPRS, UMTS and LTE. Also, new approaches on using technologies as

Millimeter-wave (MMWAVE)[12] and [13] WiMAX have been done.

The most common approach is to use the traditional Wireless Local Area Network (WLAN) tech-

nologies such as the IEEE 802.11 a/b/g/n. These technologies are designed for high data rates and

reliability and, with some modifications, they could be used in V2V direct communication but not for

time-critical applications since it does not yield good results for frequent handover between differ-

ent communicating nodes [14]. Also this technologies are based in Carrier Sense Multiple Access

(CSMA), therefore not providing good support for parallel medium access.

Vehicular-communication oriented technologies have been a interesting research topic for the past

years. Several technologies have been developed to cope with the peculiarities of vehicular-networks,

in particular VANETs. Dedicated Short-Range Communications (DSRC) standards were developed

to allow high-speed communications between vehicles and the roadside, or amoung vehicles, for

ITS. DSRC systems are able to work in a peer-to-peer fashion (vehicle-to-vehicle) without any help

from masters (e.g. RSUs). Some DSRC systems, commonly used for toll collection purposes, exist,

operating in the 915 MHz unlicensed band with less than 30 meters range only provide a 0.5 Mbps

data rate, not enough for ITS applications.

Therefore, IEEE developed and approved an amendment to IEEE 802.11 standard for DSRC

systems, the IEEE 802.11p, with improvements of the IEEE 802.11a PHY and MAC layer and some

additional changes to cope with the characteristics of a vehicular networking environment.

Most of vehicular communications are based on the frequent exchange of short status messages

also known as beacons that carry information about the vehicle, such as its position, velocity and

acceleration. In IEEE 802.11p, beacons are broadcast periodically by each vehicle. Communication

range is normally in the order of several hundred meters and, therefore, beaconing provides aware-

ness about the vehicles within the vicinity. One of the important characteristics of the IEEE 802.11p

standard is the separate channel division for applications and services that have different objectives,

such as safety or user comfort.

Using the IEEE 802.11p and also the IEEE 1609.x standards, a system architecture for the next-

9

generation DSRC technology, which provides high-speed V2V and V2I data transmission was devel-

oped, the Wireless Access in Vehicular Environments (WAVE)[15].

Appendix 1 details the several characteristics of the available communication technologies, both

traditional and vehicular-oriented.

Most of the wireless access technologies, such as DSRC and WAVE are characterized by their de-

centralized topology while cellular networks, for instance, UMTS or LTE, imply a centralized topology.

Some frameworks, based on the LTE, have been developed [16][17], showing that LTE has better per-

formances than decentralized solutions and also showing that as the number of vehicles increases,

more efficient the framework becomes. The authors have also shown that in terms of overhead, band-

width usage and packet loss LTE remains more efficient. Moreover, the velocity does not impact on

the efficiency, whereas decentralized efficiency decreases when the vehicles velocity increases.

The authors in [18], have done a performance evaluation of the 802.11p/WAVE communication

standard, concluding that the technology can not ensure time-critical message dissemination. Some

previous work, on how to solve this problem has been proposed by [19], that suggest the use of

a relevance-based, altruistic communication scheme that optimizes the application benefit and the

bandwidth usage.

A survey on the performance performance of the WAVE and 802.11p standards for vehicular

communications have be done in [20]. The authors studied both the overall capacity and delay perfor-

mance of vehicular networks utilizing those standards. The results showed that the traffic prioritization

schemes for the used standards work well, and even in the presence of multi-channel operation im-

plemented by the IEEE 1609.4 the delay of control messages of highest priority remains on the order

of tens of milliseconds. Only when the total offered traffic within the radio range approached 1000

packets per second the delay values became excessive.

The authors suggested that, despite WAVE and 802.11p appear to perform well for vehicular

networks, some work should be done in higher layers to guarantee the overall network load remains

under control. This statement gave us a first direction towards solving the problems that we propose

to address in this thesis.

2.1.5 ITS Facilities Layer

In order to provide functionality for rapid application development and also to ensure that each

application running on the same station is using the same data and information a middleware was

created, the facilities layer. Facilities layer will provide standardized access do information, data and

common functionalities. The facilities layer is integrated between the ITS applications layer and the

network and transport layer.

To avoid having different data retrieved to different applications, the facilities layer offers consoli-

dated, up-to-date, and consistent information, for example, for position, time, speed, and acceleration.

This layer will be responsible for offering an abstraction between the developed applications and

vehicle’s brand and model. Facilities layer can obtain vehicle’s information through a Controller Area

Network (CAN) bus or through the processing and analysis of information retrieved from networking

10

and transport layer.

The information is encapsulated and stored in the facilities and can be accessed by applications

in a standardized way. In order to provide consolidated information about the environment of an ITS

station, a Local Dynamic Map (LDM) is used. The Application Development Middleware (ADM)

provides data models to represent both dynamic information , e.g. the geometry of an intersection

or landmarks for referencing, and static information ,e.g. the status of a traffic light or the position of

a vehicle, and according to standards is mandatory for all vehicle stations. LDM can be constructed

based on messages broadcasted regularly from every vehicle, containing information about position,

speed, direction, etc. also known as beacons [6].

In order to assure LDM correct functionality, position messages need to be time stamped with a

global clock, which could be provided through a Global Navigation Satellite System (GNSS). If there

are time discrepancies between the vehicle’s position messages due to different local clocks, some

erroneous behavior can happen, affecting applications that depend on accurate position in order to

function correctly. Such as been described in more detail by the authors in chapter 2 of [21].

The system is developed continuously and can have different configurations as well as different

applications being possible to update or install applications into the station. That process must be

performed without producing an unstable system or causing any risks for the driver, by affecting

running applications.

Adding to the already mentioned characteristics of the facilities layer, the ETSI standard [7] re-

sponsible for the proposed standardization architecture - depicted in figure 2.2 - refers the general

application, services and communications functionalities that the facilities layer should offer:

• Application Facilities - LDM suport, generic Human-Machine Interface (HMI) support , sup-

port for data presentation, support ITS application’s maintenance,Service-Oriented Architec-

ture (SOA) application support and position and time support.

• Information Facilities - Relevance checking, location referencing and time stamping of data,

station capabilities management and combining, fusing and provisioning of updated data from

different sources.

• Communication Facilities - Addressing support, common message management for data

exchange between ITS applications, repetitive transmission of messages support and DSRC

legacy applications support.

By having a facilities layer, the ITS provides transparent APIs containing frequently used informa-

tion and functionality while it accelerates the development of applications by also providing the desired

information quality, independent of different station types.

2.1.6 ITS Management and Security Layers

The standardized ITS communication architecture present two additional layers to extend the and

facilitate applications and service’s management and security. The ITS Management layer offers

functionalities such as:

11

Figure 2.2: Facilities functionalities of the ITS reference architecture

• Management of policies and profile settings of the several layers of the standard.

• Management access to the communication technologies based on criteria such as application’s

policies and requirements.

• Manage software updates, data logging and system diagnosis.

• Interact with the security layer for security and privacy functions.

The standard addresses as one of the main challenges of the management layer the need of

combination of requirements of both safety applications and other application types.

The ITS Security layer is responsible for coordinating the use of secure generic message format

in order to grant a security degree on all the layers of the ITS communication architecture. Also the

Security Layer is responsible for any other interactions and management tasks related to setting up,

key generation and configuration of the overall security system of the platform.

2.1.7 ITS Applications and Services

Within ITS, several applications and services can be developed. Traditional applications may

be used, but generally vehicular oriented applications tend to be the option taken by developers

working with ITS applications and services, therefore, one will only consider the classification and

characterization of vehicular-oriented applications and services.

Applications can be classified in several ways, and many authors have done different approaches

on that subject. While in [10] the authors divide applications in safety applications and comfort ap-

plications, [22] divides them in safety and user-related applications. Both of the approaches then

subdivide applications in several categories taking into account the objective and priority of each ap-

12

plication, as well as the technical requirements like, for instance the need of Internet connectivity,

presence of OBUs and others.

As far as vehicular applications are concerned, several addressing schemes are considered in

wireless ad-hoc networks, and applications are directly correlated with this addressing schemes [13].

Some approaches have been done using topological and attribute based schemes [2], but most of

the developed work uses the following schemes:

• Fixed Addressing: IP-Based location where each node has a fixed address assigned to it as

soon as it joins the network. This is the most common addressing scheme used in the Internet,

being mobile IP an exception.

• Geographical Addressing: Location-Based addressing, where each node is characterized by

its geographical position, changing its address while it moves. Also, the direction of the move-

ment, road identifiers, type of vehicles and other characteristics may be used in this addressing

scheme.

Some authors also classify and divide applications in Safety-Related in Transportation Safety and

Transportation Efficiency. On this work services and applications will be classified as Safety-Related

Applications and Services and User Comfort Applications and Services that will now be de-

scribed. A summary and discussion on the application requirements and characteristics will also be

presented.

Safety-Related Applications and Services

Safety applications are intended to prevent accidents by warning the drivers about traffic or road

conditions. The driver can be assisted, while driving, to prevent or avoid accidents, and many studies

shown that a large percentage of those could be avoided if the driver is provided with some kind

of warning, half a second before the collision. Safety applications and services can be divided into

information, assistance and warning categories [23]:

• Information: Applications that provide some kind of information to the driver, such as, road

conditions and weather information, traffic lights scheduling and speed limits. Also traffic coor-

dination and monitoring can be achieved, were the traffic can be analyzed and vehicles can

be rerouted in order to prevent roads congestion.

• Assistance: Applications that provide navigation assistance information to the driver. Some

examples are navigation and local information, that present information about local points

of interest and travel information, cooperative collision avoidance, that allows vehicles to

interact with each others and cooperatively avoid accidents, for instance, when changing lane,

by detecting nearby vehicles.

• Warning: Applications that provide collisions notification or support for emergency manage-

ment purposes. The notifications can either be used for traffic efficiency, where drivers are

warned to avoid the accident, suggesting alternative routes, or for emergency management,

13

where emergency procedures, such as, calling an ambulance or road assistance, can be trig-

gered.

User-Comfort Applications and Services

The main objective of comfort applications is to give user a more pleasant travel. Nowadays,

people are used to alway be communicating, either with people or accessing to services available

in the Internet. As stated in [23], all kinds of applications that may run on top of TCP/IP stack may

be applied in this category. User-Comfort applications and services can be divided into information,

entertainment and business categories:

• Information: Applications that provide information about points of interest such as restaurants,

museums and other local information. This type of application demands some type of data

archiving and information gathering. Information can also be gathered from vehicles in order

to collect data for a number of applications, such as transportation planning, safety analysis or

research.

• Entertainment: Mainly Internet-based applications such as audio and video streaming, web

browsing and E-mail access. Voice and Instant Messaging applications may also be developed,

allowing users to communicate either with other vehicles or with other users on the Web, making

use of their smartphones or vehicle-embedded interfaces.

• Business: Applications that provide support for e-commerce and commercial information like

advertises or electronic payments and pricing. Also, companies can make use of vehicular

communications in order to track their commercial vehicles and improve the efficiency of freight

terminal processes and drayage operation, as well as the exchange of inspection data with

regulating agencies and also improve fleet security.

Summary and Discussion

In order to deploy the aforementioned applications and services in a VANETs, several require-

ments have to be fulfilled. Providing safety applications are the major concern when taking into ac-

count the network architecture, since they consist mainly of time-critical applications. Also providing

delay sensitive services such as multimedia data transfer or instant messaging, must be taken into

account. Therefore a list of requirements, arises and the following will be compared with safety and

user-comfort applications in table 2.1

Table 2.1: Safety and User-Comfort Applications Requirements

Application Type Interaction Type Time Critical Addressing Scheme QoS Bootstrapping
Safety V2V , V2I Yes Location-Based Yes Dependent

User-Comfort V2V, V2I , X 2 Legacy No IP-Based Optional Not Dependent

All ITS Applications and Services are heavily dependent on what communication scheme was

adopted, the chosen addressing mode, system penetration and real-time requirements. Most of the

projects mentioned in 2.1.1 are developing their own applications and services while taking into the

14

account the network architecture decisions and the requirements of the given applications. Some re-

search is being done in specific aspects of vehicular applications and services, as in, [24, 25], where

the authors propose solutions to predict drivers intents and destinations fetching the possibility of

creating traffic efficiency enhancer services. In [26] the authors proposed a publish/subscriber com-

munication infrastructure for efficient information dissemination along RSUs. Wireless technologies

options have been related with specific applications in the work developed by Dat et.al. in [12]. Also,

a survey and solution proposal on streaming media distribution along VANETs have been done in

[27].

Security concerns within vehicular applications arise, since several new attacks can be done, and

the usage of those attacks can have significant impact on peoples lives. One type of attack has

been presented in [28], where the author presents why traditional security mechanisms do not work

in vehicular networks. In [9] it is proposed a framework designed for vehicular environments that

cope with some security issues of this specific network type. In general, most of the security designs

increase the amount of requirements of each application. Despite the fact that this work will not

address security, having the requirements and developments of such subject in mind is important to

define the proposed architecture.

2.1.8 Standards for Vehicular-Network Application’s Messaging

On the previous sections we described the several intervinients of a vehicular network, the stan-

dards and technologies involved. All this technologies and developments aim to serve applications

and services that offer a number of functionalities to the end-users of this systems either for their

comfort or their safety.

There is no defined structure for the applications in this environments due to the notion that there

is a sub-layer that offer services to the applications, that then can use one or more service or form

a hierarchy with other applications. In order to guarantee a certain degree of compatibility with both

the below-layer functionalities, inter-vehicle communications and also other applications, the need for

defining a inter-application messaging standard arose.

The SAE J2735 (SAE J2735 2009) [29] standard defines the messages format and structure to

be used in DSRC. A set of Message Types is defined and its called the Message Set. Each Message

Type is defined by:

1. Data Elements - The most basic structure type, existing approximately 150 standard Data Ele-

ments.

2. Data Frame - Constituted by one or more Data Elements or other Data Frames, existed approx-

imately 70 standardized Data Frames.

The Message Sets, Data Elements and Data Frames are defined in the formal language Abstract

Syntax Notation One (ASN.1) [30]. The over-the-air translation into bits and bytes is done by using

the Distinguished Encoding Rules (DER), that encodes each data item intro a Tag, Length and Value

structure.

15

Table 2.2: SAE J2735 standard message sets and carried information

Message Set Purpose Information Carried
A La Carte Message Generic message with flexible content General data chosen by applications

Basic Safety Message Carry vehicle-state information to support V2V
safety-related applications

Coordinates, Current Speed and
Transmission, Brake System Status,
Vehicle Size

Common Safety Request Request specific state information from other
vehicles

Same as Basic Safety Message

Emergency Vehicle Alert
Message

Alert drivers about the proximity of an emer-
gency vehicle

Emergency Type, Vehicle Mass and
Type

Intersection Collision Avoid-
ance

Vehicle location information relative to specific
intersection

Intersection ID, Lane Number, Event
Flags

Map Data RSU informs about geographic description of
an intersection.

Roadway and intersection data,
Road and Curve segments
information

Traveler Information RSU informs about advisory and road sign
types of information to passing vehicles

Lane width, Common Directionality,
Speed Limit, Generic Sign

Several types of Message Sets are available, suiting different purposes. Table 2.2 depicts some

of the available message sets described in the J2735 standard and also the most relevant information

transported in each one of them.

2.2 Chapter Summary

Several design decisions are to be made when defining a ITS vehicular network architecture.

Although some standardization is available, it is not specified the technologies and equipment to be

used, leaving that aspect to be decided by the projects teams. Design decisions have to be done

always considering the predefined requirements for the ITS that is being developed, the application

requirements and degree of market penetration needed. Most of the aforementioned technologies and

applications have been developed having in mind the VANETs characteristics, however the integration

and deployment in a real scenario has been shown a challenge to both operators, developers and

academia.

Most of the tests and results presented previously are developed for a big scale networks with

high degree of ITS penetration. Therefore it is necessary the development of a solution that allows a

incremental deployment of ITS applications and technologies. This implies that both the framework

and applications are the most agnostic possible from the underlying implementation.

16

3
Architecture

The following chapter explains the architecture design developed to cope with the objectives of

this work. The main goal is to facilitate the development of vehicular applications by creating an

abstraction layer to be used by the developers which provides a set of services to be used. That

abstraction layer also controls the applications used, being able to adapt application’s performance

and functioning according to the context in which applications are being used.

3.1 Requirements

The objective for this work is to facilitate the fast development of applications to be deployed

in vehicular environments. Also, the work presented in [31] stated a set of desirable architectural

features for vehicular-application systems. The goals include:

• Future-proof - The system must be both backward compatible as well as future-proof regarding

newly divided or upgraded applications

• Flexibility - The system must be flexible in order to cope with the heterogeneous marketplace

of vehicles running different subsets of applications

• Extensible - The system must offer extendibility for non-standardized applications and data

elements (e.g. proprietary to one or more manufacturers)

• Unified Interface - The system must offer policy and self-policing between various applications

within a single vehicle to be managed in a single entity. Also support authentication and other

security primitives managed across all applications by the same single entity.

17

• Layered Architecture - The system must be developed by following a layered architecture that

abstracts message sending and all lower-layer details from the application development and

design

• Low bandwidth usage - The system must be designed in order to use the less bandwidth

possible

• Information Rate - The system must support different data rates from different applications

• Recognize vehicle capabilities - The system must cope with different amounts of information

that different vehicles may supply

• Enable product differentiation - The system must support applications and service’s differen-

tiation from different vendors and developers.

Bearing this characteristics in mind, the authors based most of the decisions in order to cope with

the above while creating a dynamic, yet agnostic platform for vehicular-applications development. We

also defined a set of basic-step requirements, that guided the work presented in this thesis:

1. Low cost platform;

2. Application Programming Interface (API) to facilitate the development of vehicular applications

with common functionalities;

3. context aware configurable platform.

To cope with a low-cost and modular platform, the authors developed a general architecture for

both roadside units and vehicles, that can be used with of-the-self embedded systems and communi-

cation technologies. Also, all the developed work makes use of open source technologies and code.

The developed API, extends and uses the ITS communication standard, through combination of

a set of functionalities of the Facilities Layer. Also, in order to grant compatibility with other solu-

tions for vehicular environments, the proposed solution makes use of the SAE J2735 messaging

standard[29]. This standard defines message’s format and structure to be used in the IEEE 802.11p

wireless vehicular-communication standard.

The developed architecture has the possibility to adapt itself to the scenario in which the vehicle

is at the moment, and therefore adapt the applications and service’s flow to give priority to the most

relevant in such situations. The developed platform has an internal state that mirrors the above men-

tioned scenarios, representing the vehicle status at a given time. We considered three (3) possible

states:

• Normal - Vehicle is traveling normally;

• Emergency - Vehicle declared an emergency, for instance, caused by a flat tyre, engine dam-

age, emergency driving, etc.;

• Accident - Vehicle detected an accident or eminent accident;

18

Platform status mirrors both the vehicle situation as well as a local region situation, since one

vehicle if it is in a Accident or Emergency situation ends up affecting all the circulating vehicles around.

Therefore, status can be altered by the VADM through some based on data analysis, by request from

nearby vehicles or by human interaction.

Having all the above in mind, our driving-thought along the way was that the final architecture must

contemplate the easy development of applications, allowing programmers to select easily what kind

of information they need in a common and easy to use API, abstracting them from the underlying

technologies and specifications.

3.2 Proposed Solution Description

The authors propose in this work an architecture that makes use of the expected functionalities

of the ITS Facilities Layer in order to facilitate the rapid development of applications to be used in

vehicular-networks environments. A new interaction mechanism between modules of the Facilities

Layer and applications is proposed in order to get efficiency improvements.

A new technique for application’s run-time relevance checking is also proposed. The platform has

the possibility to adapt itself and the deployed applications to the current execution context, taking

into account the possible external events that may or may not affect applications relevance in such

situations.

The proposed solution blends functionalities of the Management Layer within Facilities Layer mod-

ules in order to create a self-adaptable yet modular platform, that analyses the execution environment

and makes changes in order to be more efficient and offer adaptable capabilities to applications. This

work assumes the existence of a support platform that addresses and offers functionalities of the Net-

work, Transport and Physical Layer, and also connectivity to sensing capabilities of the node, whose

scope stands out of the present work. The functionalities required and used from a underlying support

platform are further explained in section 3.2.1.

Taking into account the desired properties of the Facilities Layer for a standard ITS platform, as

stated in [7] and already mentioned in section 2.1.5 some functionalities were implemented while

others, whose scope stood out of the goal of this work, were considered supplementary services to

be offered by a support platform. Table 3.1 depicts the functionalities addressed by our architecture

and the functionalities that are assumed to be part of a support platform.

3.2.1 Support platform integration and functionalities

By following a layered paradigm of a standardized communication development, the goal of this

work assumes only developments made at the level of the Facilities and Application Layers. Therefore,

a support platform, that addresses functionalities of the remaining layers is needed. Such functionali-

ties are now enlisted and briefly described:

• Routing - Implementation of vehicular networks-oriented routing protocols to forward informa-

tion among all the ITS components. Routing protocols can be of several types, such as Topology

19

Table 3.1: ITS Facilities Layer features addressed in the proposed solution and offered by the support platform.

Property Support Platform Our Work
Addressing support X -
Position and time support X -
Location referencing and time stamping of data X -
Station capabilities management X -
Common message management for data exchange between ITS applications X -
Repetitive transmission of messages support X -
LDM suport X -
Support for maintenance of ITS applications - X
SOA application support - X
Relevance checking - X
Combining and fusing updated data from different sources - X
Station data provision - X
DSRC legacy applications support - X
Generic HMI support - X
Support for data presentation - X

based, Position based, Cluster based, Geocast based and Broadcast based. No specific type

of routing is required on the proposed solution.

• Communication Technologies - Access and management of communications technologies,

either traditional or vehicular network-oriented.

• Location - Implementation of location protocols or mechanisms to determine and share vehi-

cle’s position. Such mechanisms can be based on information sharing between the participants

of the network or based in GPS device, whose management and access must also be available.

Examples of location services, based in geographic routing protocols, are the Grid Location

Service (GLS) [32], Reactive Location Service (RLS) [33] and the Hierarchical Location Ser-

vice (HLS) [34].

• In-vehicle sensing - Access to vehicle sensors and information in order to get more accu-

rate information about its status, speed, and detect possible malfunctions. In order to get that

information from the vehicle a On-Board Diagnostic System (OBD) interface can be used.

• Beaconing - Beaconing system to broadcast or geocast several vehicle’s information such as

the unique ID, number of propagation hops, position and other management data.

• Management Information - Module that aggregates information from vehicle’s sensors and

data as well as information retrieved from the beacons received from the surrounding inter-

vinients of the vehicular network.

Although not all functionalities are used and required for the proposed work feasibility, the avail-

ability of the above can enhance and extend this solution efficiency and performance.

20

3.3 System Architecture Description

Taking into account the already defined requirements, the authors developed an architecture that

aims to be modular to facilitate both implementation and update or the several internal modules, open-

ing the possibility to extend its functionalities if needed. Also, the proposed architecture is designed

to be used in both vehicle stations and RSUs.

The Vehicular-Application Development Middleware (VADM), is the core module of the pro-

posed solution. It gathers and supplies, from the underlying modules, parsed data to applications,

taking into account applications characteristics and requirements.

VADM has the following functionalities:

1. Coordination of all the interactions with the underlying layers and architectures.

2. Coordination of application’s flow.

3. Coordination of the inner-modules flow and functioning.

4. Getting information about the surrounding execution scenario from the underlying modules of

the support platform.

5. If supported, Vehicular-Applications Development Middleware (VADM) may also act directly on

that support platform affecting and adjusting its behavior, e.g. adjust beaconing frequency,

packet size, etc.

VADM coordination behavior takes into account the context in which the platform is being executed

and also external events, for instance, accidents, speed increase, emergency situation, vehicle state,

among others. The way the proposed platform interacts with both applications and support platform,

as well an overview of the overall functioning of our architecture will now be briefly presented.

3.3.1 Architecture Interactions and Description

Applications interaction with the VADM is based on a Publish-Subscribe messaging pattern 1.

Applications interact with the platform, in a decoupled fashion, by sending information through API

primitive, and retrieving all the information, from the own platform or from other vehicles or nodes

using the Publish/Subscribe messaging pattern. Applications can subscribe to services installed in

the platform or deploy, run and subscribe their specific services. Those services can be developed

by the composition of other services or simple updates to the existing ones. Applications are default

listeners of a service that publishes all the information received from other nodes of the network using

the same application. Therefore it is assured the communication of the same application in different

nodes, while keeping the decoupled event-driven paradigm of the indirection between applications

and the platform.
1A Publish-Subscribe pattern is a model where some entities, called senders, can publish information that will only be

viewed by entities, called subscribers, that have chosen to receive that specific information. Information is gathered in topics,
from which the subscribers choose what ones to subscribe

21

Application’s flow and adaptation is coordinated by the VADM that, by taking into account the

current environment status, will make changes and give priority to both services and applications

whose execution should be triggered or shutdown in such situations.

There are two levels of priorities within the platform, one for the applications and other for the

services. Priorities are defined based in both applications and services classes and types, according

to their functionality. Such classification and priority analysis is thoroughly detailed in section 3.6.

VADM retrieves the available parsed information from the support platform. Depending on the

support platform and also on the node type, that information can be for instance the current Road ID,

Direction of Movement, Vehicle Type, Current Location and Speed and Neighbors information. Note

that some information is exclusive of vehicles, while other may be part of a RSU node.

Besides taking into account the aforementioned information in order to infer possible external

events and execution environment, VADM can make use of sensors that might be available. Those

sensors can be directly connected to the platform, or embedded on the Vehicle/RSU and accessed

by CAN bus or any OBD interface (if node is a vehicle).

VADM will also interact with the support platform in order to access the several communication

means available, specifying also the messaging type to be used (Broadcast, Geocast or Multicast) as

well as other possible characteristics, such as number of hops and radius of message propagation.

Alternative communication methods can be used as for instance cellular networks, LTE or WIMAX.

By having all this communication options, VADM is able to choose which ones to use in the several

different situations.

By having only two abstract dependencies of the underlying platform, the Communications Pipe

and Informations Pipe, the proposed architecture can be widely used in any platforms as long as

those offer access to communication and parsed information facilities.

The proposed solution, besides delivering an easy to use application development environment

for vehicular applications, acts as a coordinator entity for scheduling and adapting applications-flow

within vehicular environments, depending on the context in which the platform is being executed.

This thesis proposed architecture is inspired in several distributed computing concepts applied

to a single architecture in order to cope with requirements such as the creation of a modular sys-

tem whose parts can be decoupled and redesigned without compromising the rest of the parts of

the same architecture. Therefore, the proposed solution mirrors some resemblance to concepts as

SOA and Event-Driven Architecture (EDA), already mentioned by the authors in [35], as some of the

architecture building blocks for vehicular networks architectures.

Figure 3.1 depicts a diagram of the proposed solution and its integration in the standardized ITS

platform.

3.4 Vehicular-Application Development Middleware

The VADM, is the core module of the proposed solution. Therein lies the main abstraction layer

of the solution that offers a set of API primitives that can be used by applications regardless of their

22

Figure 3.1: Proposed solution architecture diagram and integration within the standardized ITS platform

types or requirements:

1. Register Application - Register the application within the platform in order to use its function-

alities.

2. Retrieve Node Information - Get information regarding the current node characteristics, such

as node type (Vehicle/RSU), license plate, current IP, platform version.

3. Request Service List - Get list of available services currently active in the platform.

4. Subscribe to Platform Services - Subscribe to the services available at the platform that will

be needed by the application.

5. Deploy and Run Application-Service - Deploy and run a service specific of the application.

This service can be a new implementation or a composition of other services.

6. Publish Information - Publish information and data to the platform that will send it through the

available communication resources using TCP or UDP transport protocols with the available

communication technologies.

7. Unregister Application - Unregister application from the platform, remove all application de-

ployed services and unsubscribe to all subscribed platform services.

A set of decoupled modules was developed in order to offer several functionalities within the VADM

platform to applications. Modules can be updated separately in order to enhance their functionality,

while keeping the overall functionality of the VADM. Bellow follows a brief description of each module:

• Application Request Module (ARM)- Management of all the underlying modules by orches-

trating interactions among them and also acting as a coordinator of the overall inner-VADM

architecture. All communication is made through the ARM that contains a scheduler to define

the relative priority of each message being sent based on the application type and the current

23

state of the platform. Case an application does not have priority to access the platform, the

scheduler blocks the request. Several policies can be configured, e.g. discard or queuing of the

request.

• Service - Several system services were identified as common requirements for applications that

execute in vehicular environments and therefore are made available as default. Services such as

retrieving the current coordinates, speed or any other available vehicle information (GetNode-

Information), as well as getting the current platform status (Normal, Emergency or Accident)

(GetPlatformStatus) or getting the current type of node (RSU or vehicle) (GetNodeType). Also

there is a service that provides the current neighbors list and retrieves information of those, such

as the address or last known position (GetNeighboursInfo). Some system support services, that

can only be accessed by the platform and its protocols, were also developed. With this already

available services it is possible to grant basic functionalities for applications, that then can com-

pose several services or create and install their owns in order to cope with the application’s

needs.

• Application Registry Bank (ARB)- Storage of registered application’s information.

• System Analyzer - Alter the current execution state of the VADM platform (Normal, Emergency,

Accident). VADM platform state can be altered in three (3) different fashions: through analytical

methods[36], that determine the need of altering the state based on data analysis gathered

from several sources such as in-vehicle sensors, navigation data, modules malfunctioning or

any other relevant information. Also the state of the platform can be altered through user-

input within a human-machine interface. Besides the aforementioned methods for changing the

platform state, state can be also altered by proximity to vehicles in accident situation using the

protocol described in 3.5.3, the Epidemic Status Plausibility Dissemination (ESPD).

In order to maximize compatibility to whatever support platform or architecture supplies the com-

munications technologies and sensors, while keeping the platform overall functionality, only two mod-

ules have access to the underlying facilities support platform:

• Call Manager - Storage of parsed and updated information retrieved from several sources such

as sensors, navigation and data analysis.

• Communication Manager - Establish connection with all the available communication facilities

to send and receive information and act as scheduler between several of the communication

technologies. In case several communication technologies are available, Communication Man-

ager can use its scheduler to decide upon sending or retrieving information from one or several

communication technologies based on several possible policies. One example of a policy, is in

case of accident situation, information can be send through both Wi-Fi and cellular technologies.

Figure 3.2 depicts the components of the VADM and the following sections will thoroughly detail

each module architecture and functionality.

24

Figure 3.2: Vehicular-Application Development Middleware module components

3.4.1 Application Request Manager

The Application Request Manager (ARM) is the module responsible for coordinating all the re-

maining modules of the VADM. Every time the platform is launched, the ARM will start and setup all

the VADM modules and impose default configurations, loaded from a configuration file. Such config-

urations include for instance:

• Services Publishing Frequency - Frequency in which services publish information to the

Publish-Subscribe system to be later retrieved by applications that subscribed to those services.

• CallManager Retrieving Frequency - Frequency of getting parsed data and information from

the Information Facilities functions of the support platform.

or the frequency in which services publish information to the Publish-Subscribe system.

In case of a VADM status change, ARM will impose some adjustments in the remaining modules

functionality. ARM will be responsible for tweaking each module in order to adjust the overall platform

performance to the current execution situation, ARM acting as a coordinator inside the VADM.

ARM module is also responsible for applying the policies and priorities to all data sent by appli-

cations. A scheduler is triggered every time a application wants to send data in order to determine if

such information is relevant according to the current platform state and other applications also sending

information, that might have higher priorities.

25

3.4.2 Call Manager

Call Manager module is responsible for gathering all the information about the context in which the

platform is being executed. It retrieves information from the node where the platform is installed, from

the current and past neighbors or participants of the network and all the possible information that can

be obtained either by data collection and sharing and by sensors reading.

Since the presence of vehicle or RSU sensors is not mandatory, the Call Manager has the possibil-

ity of disabling and enabling the functionality of sensors reading. The module manages itself in order

to perceive which sources of information are available and then parse that data to be put available to

services and applications through a ARM request.

Call Manager will gather data with a frequency specified and controlled by the ARM, and loaded

from platform’s configuration file.

Since the Call Manager is an isolated module inside of the ARM, if one needs to change the un-

derlying support platform or sensors technology, only the Call Manager module needs to be changed,

leaving the rest of the features and functionalities intact, not rising the need of any change within the

VADM nor in the remaining modules.

Data retrieved by Call Manager module can be accessed only by ARM and System Analyzer. The

later will lookup into the retrieved data and information to infer system decisions, for example, a status

change. More details on how System Analyzer uses that information are described in 3.5.

3.4.3 Communication Manager

Communication Manager is the module responsible for creating and managing all the connections

with the communication technologies supplied by the underlying support platform. This module is

responsible for all the sending of data as well as management of all the data received. In order to

guarantee the full decoupling of applications and remaining modules of the proposed solution, when

data is received on any of the communication technologies in use, the communication manager,

publishes that information to a default class of the Publish-Subscribe pattern, listened by default in all

the applications.

When applications what to send data, VADM publish API primitive is invoked and the module

retransmits that data to the Communication Manager through the ARM. Applications may define the

messaging scheme to use (Broadcast, Geocast and Unicast) and the communications manager will

send the message accordingly, through the support platform, using the available communications

technologies.

Information generated by safety-related applications are encoded with the J2375 standard, and de-

spite the fact that Communication Manager module receives the encoded messages and only needs

to relay them to the proper communication technologies of the support platform, a J2375 decoder

is also available in order to interpret the received safety messages and deliver those to the proper

destinations within the VADM platform.

User-comfort application’s messages are sent through traditional Internet Protocols, with no en-

26

coding.

Case several communication technologies are available to be used by the platform, communication

manager can opt to send information through one or more of those technologies.

Communication Manager is responsible prioritizing messages to be sent, because depending

on the VADM platform status those priorities might change. Those priorities will be used by the

Communications Facilities of the underlying support platform to help in message re-ordering, proper

communication channel choose and other decisions that can be done based on a message’s priority.

Also, Communication Manager has a scheduler responsible for applying the policies and actions,

dependent of certain situations and platform status, to applications. Those policies are further de-

scribed in section 3.7.1.

The Communication Manager, by allowing the installation of different implementations to connect

and use several communication technologies, allows a full abstraction and independence of the plat-

form in which the proposed solution is being used, while at the same time assures the possibility of

using several resources to expand the guarantees of delivery and diversity of information exchange.

3.4.4 Application Registry Bank

All the registered application’s information is stored in a common registry, the Application Registry

Bank (ARB). Every time a application registers in the platform, a entry is created in the ARB so that it

can be queried by any module or function that demands it. Each application has its own information

contained in a configuration file that stores the following data:

• Name - Unique ID for the application;

• Type and Class - Types and classes of applications according to the analysis already described

in section 2.1.7;

• Version - Application version in order to determine the implemented functionalities and also the

application’s compatibilities;

• Functions - Functions to be used and loaded case the platform is being executed on a Vehicle

station or RSU;

The ARB, besides supplying the functions to register and unregister applications, also offers a

series of functions to retrieve the above mentioned information by any other applications or services.

3.4.5 Services

One of the main and most important functionalities of the platform are the Services. Services

will guarantee a large percentage of the abstraction to applications development as well as play an

important role in the platform’s overall performance. Therefore some important characteristics of the

services are:

• Services are available to all the applications of the platform.

27

• Applications can implement and deploy their own services onto the platform, in order to enhance

the existing or create new ones, either from scratch of by composition of the available services.

• All the information produced by services is delivered to applications by the Publish-Subscribe

system.

• Services can only access information retrieved from the support platform through ARM interac-

tions;

• Services have versions in order to determine the implemented functionalities and also the overall

compatibility;

• Services have priorities;

All services are executed at a given frequency, determined by the VADM platform configuration

file. By fixing the publish frequency of the services, it is possible to guarantee the platform stability

and control of resources usage. Also it is possible to control the publishing frequency, increasing or

decreasing it, and therefore adapt the resource’s usage by the services to cope with safety situations

or system overload. As mentioned, that frequency is controlled by the ARM module.

Services are divided in 2 queues, one for user-contort services and other for safety-related ser-

vices. At the given publishing frequency, safety-related service’s queue is executed first followed

by the user-contort service’s queue. By dividing in 2 different queues, service’s execution can be

controlled based on the service’s functionality.

As in applications, services also have meta-information, stored in a given configuration file, stating

the following:

• Name - Unique ID for the service;

• Version - Documented version in order to determine the implemented functionalities;

• Type and Class - Service type and class according to the classification adopted in section 2.1.7;

• Service Attributes - Expected input and output value types so that application know what to

supply and expect from the services;

Applications can retrieve service’s information, through a VADM API primitive, and then decide

either to use the available services, install new ones or implement improvements to the ones available

in the platform. Applications may decide upon updating or not the available services by basing in the

specified versions, whose features will be stated and defined in the available documentation. Also,

by versioning services it is possible to determine its compatibility with other services, applications or

support platform.

The proposed solution remains configurable and customizable due to the possibility of installing

or upgrading services by the applications. For abstraction and security purposes application service’s

implementation are not persistently installed in the platform. Instead, when needed, the application

service’s implementation is sent and deployed in the Service’s module and executed, publishing the

28

results at the next publishing period. Also, this allows that applications only execute services when in

need. The publishing frequency of the application service’s is limited by the already mentioned VADM

Services Publishing Frequency, that may change based on several factors.

The services available and persistently installed in the platform can be extended or reimplemented

if needed.

3.5 System Analyzer

The System Analyzer module is responsible for determining both platform and vehicle status in

order to decide upon the need of taking actions based on the later. This module can change the

VADM status in 3 different fashions:

1. Analytical - Determines the need of altering the state based on the analysis of the data gath-

ered from several sources such as, in-vehicle sensors, GPS data, modules malfunctioning and

support platform information.

2. User Input - Change the status based on the user-input through a human-machine interface,

by declaring one of several possible situations.

3. Epidemic Status Dissemination - The status change is driven by information received from

the surrounding nodes alerting to the fact that one or more vehicle’s status is altered from the

normal situation.

As previously mentioned, VADM’s status can be Normal, Emergency or Accident. The following

sections will detail, the analytical and user-input methodologies for status altering, as well as the pro-

tocol followed for determining the plausibility of a epidemic status change driven by network-received

information.

3.5.1 Analytical Heuristics

System Analyzer module fetches the information retrieved by the Call Manager from the support

platform and runs several analytical heuristics in order to determine the need of a VADM platform

status change. Several criteria and heuristics can be used, based on the amount of information

supplied, in order to determine the current context and situation of the vehicle.

For this work, the authors propose two analytical heuristics to be used:

1. GPS Data Analysis - Take into account information gathered by the GPS device and infer

based on details such as, position and position variation, current and past speed and altitude.

2. Vehicle Sensors - Gather information from the in-vehicle sensors that give details such as,

current speed, current engine load, airbag sensors, car-systems malfunction, among others.

All of the information about is retrieved from CallManager through the ARM module. The heuristics

used to determine the status alteration can be further improved and can subject of several research

work. The enhancement of the heuristics used, based on several sources of information

29

3.5.2 User-Input

In order to allow the driver or any occupant of the vehicle to declare the status alteration based on

the context a interface was created with the following options:

• Request Assistance - User can request for assistance for both mechanical or medical situa-

tions. System Analyzer declares status as Emergency

• Declare Emergency Situation - Choose an emergency situation such as Emergency Driving

or severe medical assistance. System Analyzer declares status as Emergency

• Declare Accident - Declare accident and trigger emergency services call. System Analyzer

declares status as Accident

This option lacks the control of the truthfulness of the user declaration. Analytical options should

be the base of all the status alteration on the proposed platform. In order to enhance the reliability of

the user-input method, every time a emergency or accident status is declared, some comparison with

the information retrieved by both vehicle’s sensors and network can be performed.

3.5.3 Epidemic Status Dissemination

In order to disseminate the status of a vehicle to a region where that status affects the surround-

ing intervinients of the network, a Epidemic Status Plausibility Dissemination Protocol was defined,

henceforth described as ESPD.

First, we defined a metric called the Shortest Safety Distance (ShSD) that defines the minimum

security distance between 1 moving vehicle and 1 stopped vehicle, in order for the moving vehicle to

stop before crashing without suffering more than 1G deceleration. ShSD takes into account both the

minimum distance for a vehicle to break and also the driver’s reaction time. ShSD is determined by

the following formula:

ShSD = (2.treact.v) + (1
2

v2

deceleration)

treact = 2.5s = average driver′s reaction time in road traveling situation[37]

v = vehicle′s instant speed in m/s

deceleration = 9.8m/s2 = gravitational constant of Earth

For example, a vehicle traveling at 80 km/h would take 136,1449 meters to stop between driver

noticing the vehicle, applying brakes and traveling vehicle stops completely. Table 3.2 depicts some

ShSD values, but note that this formula assumes some simplifications, not taking into account vehi-

cle’s weight and friction applied to the road.

To calculate the distance between 2 vehicles GPS coordinates, we used the haversine formula:

30

Table 3.2: Average ShSD values for typical vehicle+s traveling velocity

Velocity (km/h) Velocity (m/s) ShSD (m)
30 8,333 45,2078
50 13,889 76,286
80 22,2 136,1449
120 33,333 223,353

a = sin 2(∆ϕ/2) + cos(ϕ1).cos(ϕ2). sin 2(∆λ/2)

c = 2.atan2(
√
a,
√

1− a)

Distance = R.c

ϕ = latitude ; λ = longitude ; R = 6, 371km, Earth′s radius

Figure 3.3 depicts an illustration on how ShSD can vary with the vehicle’s speed and how the

plausibility range can affect other circulating roads.

Figure 3.3: Shortest Safety Distance range scenario illustration for vehicle traveling at 50 km/h and 80 km/h

With this metrics we can define a region where the alteration of one vehicle’s status also imposes

the alteration of the neighbor’s status. That region is described henceforth as Region of Plausibility

(ROP), and poses that all vehicles inside ROP must activate their scheduling mechanisms giving

priority only to relevant applications to be used in the current scenario of the region. Figure 3.4

illustrates a highway scenario for the ROP, representing vehicle’s status inside and outside ROP in a

situation where one vehicle had an accident and changed its status to Accident. Every time a vehicle

gets outside the ROP, changes its status back to Normal. Note that vehicles traveling on the opposite

direction of the highway, if inside the ROP also must alter their status to the broadcaster status in order

to only use safety applications and therefore minimize network congestion with non-priority traffic.

The ESPD is split in two different procedures:

31

Figure 3.4: Highway scenario illustration for Region of Plausibility with a vehicle broadcasting ”Accident” status

1. ESPD Receive - ESPD receives and parses information contained in the received Basic Safety

Message (BSM) at the Communications Manager module and determines plausibility of the

status alteration.

2. ESPD Advertise - Whenever a status change is triggered, the ESPD Advertise service beacons

a BSM through the Communications Manager module, issuing the need of a status change to

the vehicles nearby.

Note that, despite the literature states that BSM should be transmitted at 10Hz, due to the different

purpose of the BSM used in the ESPD, the later is only transmitted when a status change is detected.

Figure 3.5 shows the ESPD protocol for both receive and advertise procedures.

Figure 3.5: ESPD protocol, for handling and advertising network status alteration messages.

32

1. ESPD Receive - Distance between the broadcaster and current vehicle is calculated in order

to compare it with the ShSD, also computed at that moment. If the distance between both

vehicles is smaller than the ShSD means that the circulating vehicle is within collision range

with the broadcaster, therefore inside the ROP. If inside the ROP, the procedure checks if it

is the first time the message is received. In case it is the first time this message is received,

the platform changes its status to the status of the broadcaster, and resends the BSM to the

network without altering it. If the system message was already received, it compares the status

in order to comprehend if there was a change on the ROP status and updates if needed. In

order to determine if a vehicle is getting inside or further the ROP, the procedure computes the

distance comparison with ShSD several times.

2. ESPD Advertise - Checks the new platform status. If is either Accident or Emergency, tests

if the procedure was already executed. If it was not executed before, creates a BSM with the

platform and vehicle information and sends to Communications Manager module. In case it is

not the first time it is executed, the protocol checks if the status alteration was caused in the local

platform, and if it was not, requests the last BSM message received from the Communications

Manager Module to determine if there is an update on the ROP status, and executes the ESPD

Advertise procedure.

The ESPD helps determining a region where the VADM platform status alteration poses a valuable

role in making the network available only for safety-related applications, minimizing the bandwidth

usage by applications whose objective does not relate with guaranteeing safety of both vehicles and

their drivers. The protocol is designed to adopt future changes in the criteria for establishing the region

boundaries for status alteration, posing some flexibility for future implementations and improvements

of the platform.

3.6 Applications and Services Priorities

Applications can be diverse and pose different requirements from both the platform and the net-

work based on its functionalities. The right to detain a certain share of access to those resources

is measured by the application objective, and in the case of vehicular-networks, if the application is

directly related with safety goals or only to deliver a more pleasant driving experience to the user.

Therefore, and in order to classify which applications should detain the right to use the functional-

ities provided by the platform in several situations, priorities were established.

As stated in [7], the architecture of communications in ITS standards should be designed to sup-

port multiple classes of ITS applications. Applications may require more or less stringer requirements

depending on how much the later rely on the communication services with respect of reliability, secu-

rity, latency and other performance parameters.

Also, for applications used in emergency situations, for example, during a car crash, several mech-

anisms for the Access Layer to send time-critical traffic were proposed. Those proposals can be

divided upon two different strategies:

33

Table 3.3: Applications priority analysis for different environment situations

Class Normal Emergency Accident

S
af

et
y-

R
el

at
ed Information Medium Medium Low

Assistance Medium High High

Warning Medium High High
U

se
r-

C
om

fo
rt Information Medium Medium Low

Entertainment Medium Low Low

Business Medium Low Low

• Change intelligently the number of vehicles transmitting the emergency messages and the rate

at which they are transmitting, [38]

• Change the transmission range of the emergency messages as the number of affected vehicles

increase, [39]

Despite the fact that prioritization of transmission is being handled on the Access layer of the

underlying support platform, some prioritization scheme is addressed in the proposed architecture in

order to cope with the several possible execution environments that pose several different situations

and that affect how applications behave and what applications and services are more relevant in such

situations.

In order to define application’s priority, an analysis was performed, for each possible environment

status, Normal, Emergency and Accidents, based on the following guidelines:

• Relevance for drivers safety

• Communications services reliability

• Impact on platforms performance

• Time-Critical

Such analysis is presented on table 3.3, where three levels (Low, Medium and High), based on

the above mentioned guidelines, were used to determine applications priority for all the considered

execution scenarios.

From the performed analysis, one may conclude that application’s priority depends on both type

and situation. We will now detail on the next section the policies adopted for both applications and

services based upon their priorities and class.

34

3.7 Rescheduling and Discard Policy

Different policies are applied to services and applications since those use different functionalities

of both the support platform and network. Several different policies are used, based on the VADM

status:

• When the status is Normal, all application types have the same priority having equal access to

resources;

• In case of Emergency status, all safety-related applications have higher priority but with more

relevance for Assistance and Warning types. Overall user-comfort applications have less pri-

ority, exception made for the Information type, whose functions of delivering information about

local hospital or automobile workshop might be relevant.

• If the Accident status is declared, all user-comfort applications have lower priority, meaning

no access to platform resources, while safety-related applications, in particular of the Warning

and Assistance type have higher priority for accessing and using platform resources due to its

relevance in drivers safety.

Based on this, all the application priority schemes embedded in the platform will take into account

the application’s class and type.

A similar analysis can be performed for services, but with the particularity that the priority schemes

for services can be used both in the platform and within applications, for instance to choose what

services to subscribe.

In sum, several different procedures are done in different modules depending on the platform

status and application/services priority:

• Status: Normal

– All applications and services execute normally

– No priority check is performed

– All applications and service have similar access permission to resources

• Status: Emergency or Accident

– Every time an application wants do send information, the ARM decides wether or not the

message should be sent, discarded or stored for later retrieval.

– Every time an application wants to send a message, depending on application priority and

messaging scheme, several communication technologies can be used. That decision is

made on the ARM.

– The ARM may shutdown all the non-relevant services and applications based on their

priority (determined through the class and type of the later), hardware load or any other

relevant criteria.

35

– When CommManager receives data, determines the application or service that originated

the data and decides wether or not that message should proceed to the applications, dis-

carded or stored for later retrieval.

Taking the above into account, the following sections with detail the policies followed for both

applications and services, depending on the platform status.

3.7.1 Application’s Policies

Applications are subjected to classification and conditioning based on the VADM status and their

class and type, as defined in the previous section. Whenever the VADM status is set to Normal, all

applications have equal right on the access to the available resources. If the status is Emergency or

Accident policies are applied. Figure 3.6 depicts the policies applied to all application’s messages in

Emergency and Accident situations.

Figure 3.6: Policies applied to application’s messages for both Emergency and Accident situations by the Com-
munication Manager and ARM schedulers

Case the VADM status is Emergency, all messages originated from user-comfort applications are

discarded. If the message is generated by a safety application of any time, it has normal access to

platform resources. If the VADM status is Accident, user-comfort applications are discarded. Then,

safety-related messages are evaluated based on its type (Information, Assistance or Warning), and

all Information-type messages are put into a buffer, while Assistance and Warning-type have normal

access to the platform resources. If no Assistance or Warning messages are to be sent and the

resource is available, then the Information messages have access to the underlying support platform

communication facilities.

Application policies are applied in the ARM and Communication Manager modules whenever a

application is trying to send messages to the network, or a message is received from the network, by

a functionality named Message Plausibility Scheduling.

36

Different policies can be developed and applied in the platform in order to give more just access to

all kinds of applications in all situations. For instance, instead of discarding application’s messages,

buffers with timeout or buffers with reorganization based on the application priority can be used. Also,

as other policy that can be further taken into account is applications being shutdown by the system

manager module, whenever they are consuming to much computational resources.

3.7.2 Services’s Policies

Services policies are applied also based on the class and type of those. However, more simple

approach is taken regarding the policies for systems whenever the platform is in a Emergency or

Accident situation.

Case the platform status is defined as Emergency or Accident, only the queue with safety-related

services is executed, in order to spare the available resources. Figure 3.7 depicts the policies applied

to service’s at the platform publish frequency.

Figure 3.7: Policies applied to services for both Normal or Emergency and Accident situations, executed at the
publishing frequency

Regarding the application’ services, no action is needed, because when in Emergency or Accident

situation, only safety-related applications are executed and therefore only the services to serve those

purposes are installed and executed in the platform.

Service policies are applied by the Services modules that control all the running and deployed

services.

As in applications, several other policies can be applied to services in the various situations in

which the platform can be executing, posing one possible improvement point for future enhancements

of the proposed solution.

3.8 Applications

Applications can interact with the developed architecture in order to exchange information, both

with other vehicles and participants of the network and also with the several services and functionali-

ties offered by the platform.

Applications to be used with the VADM interact with the platform in two different ways:

37

1. API functions - Direct usage of a set of API functions made available by the platform

2. Publish-Subscribe - Subscribing to one or more services made available by the platform

Figure 3.8 depicts an illustration on how an application interacts with the platform.

Figure 3.8: Interaction between applications and the proposed platform

Applications should create functions and functionalities for all the several node types in which they

might be installed, e.g. Vehicle and RSUs. Also, applications may develop services to be deployed

within the platform in order to extend its functionality while using the available resources of the later.

There is a set of system services that are subscribed by default:

• InterNodeCommunication - Obtain all the messages sent by the same application, installed in

other vehicles. Communication Manager module, publishes this information based on Applica-

tion unique ID.

• SystemMessages - Receive informative messages, generated by the System Analyzer Mod-

ule regarding system status or system changes.

Note that the remaining available services in the platform can be subscribed optionality by appli-

cations.

3.8.1 Application’s Lifecycle and functioning

Figure 3.9 depicts application’s lifecycle and process since the early startup and initialization up

until the terminating process.

Applications start by loading their configuration and default values from the application configu-

ration file and then register themselves in the VADM platform. After that a request for the current

node information is performed in order to define the application behavior, functions and functionalities

38

Figure 3.9: VADM application’s lifecycle and interaction process with the developed platform.

to execute, based on node type. A request for the available and active services on the platform is

performed in order to determine the need to subscribing to some of those services or deploy some

application services later in the execution.

After the setup process the application starts its normal functioning and interacts with the platform

using the VADM API primitives and obtains information from the platform through the subscribed

services with the publish-subscribe mechanism. If some service need to be deployed or updated in

the platform, that is performed during the execution loop.

In case of Emergency situation or platform shutdown, VADM triggers a shutdown function in the

application that will start by unregister its serves and application from the platform and exit seamlessly.

3.8.2 Application’s Messaging

Safety applications messaging is J2375 compliant. Therefore all the safety messages created by

those applications are sent to the platform encoded with that standard. Also, if the VADM platform

wants to deliver a message to a specific application, the service responsible for publishing that in-

formation, does it without altering the J2375 message received from the Communications Manager

module. By following this standard, our platform supports both product innovation and differentiation,

while maintaining interoperability among other vehicular-applications developed.

User-comfort applications use the traditional Internet Protocols, made available by the platform,

like TCP and UDP, with no encoding.

39

More protocols can be made available as long the underlying support platform made those avail-

able.

3.9 Chapter Summary

In this chapter we have presented the overall description of the proposed architecture in order to

cope with the imposed requirements. Based on the later, we have presented the design options of the

architecture and its modules and out it interacts with the support platform as well as the integration

with the applications that will make use of our solution.

Taking into account the desirable architectural features already stated in section 3.1 and defined

by the authors in [31], the following list explains how those features were addressed:

• Future-proof - By providing versioning systems for both applications, services and platforms it

is possible to guarantee the retro-compatibility between old and newly defined applications.

• Flexibility - By having only 2 points of contact with the support platform, through Communi-

cations Manager and Call Manager, the developed platform can cope with different underlying

implementations, offering a considerable amount of compatibility.

• Extensible - By offering no constrains regarding application’s requirements and data sets, the

proposed platform supports multiple application’s implementations.

• Unified Interface - Since all the applications interact with both vehicle and the network through-

out the VADM, centralized systems for management and security are guaranteed.

• Layered Architecture - By following the standardized ITS platform requirements and design ori-

entations, the architecture is developed in a layered paradigm, while guaranteeing compatibility

with other research work that follows the same standardized ITS platform.

• Low bandwidth usage - By managing what applications and services are executing and have

access to communication resources, the proposed architecture can guarantee that only appli-

cations whose functioning is valuable for the situation in which the platform is being executing,

are running. Therefore, the bandwidth is only occupied with plausible and relevant traffic. Also,

in case of multichannel or diverse communication technologies are available, the platform also

support scheduling to the later.

• Information Rate - By allowing the applications to set their information data-rate, the proposed

architecture lets applications choose the frequency in which information should be sent. In case

of emergency situations the data-rates may change depending on the application’s priority.

• Recognize vehicle capabilities - By changing part of the Call Manager implementation it is

possible to adapt the proposed architecture to the vehicle-available information.

• Enable product differentiation - By supplying a uniform set of API functions and use J2375

compliant messaging the proposed architecture lets application developers work with the same

40

basis while opening the possibility to create differentiating functionalities in their applications,

granting a certain degree of interoperability.

In chapter 4 we will describe the implementation details and decisions made in order to create a

prototype for the architecture proposed in this thesis.

41

42

4
Implementation

This chapter will address the main decisions adopted regarding the implementation of the present

work platform. A description and brief analysis on the available solutions for programming language

and technologies is presented. In section 4.1 the authors present the analysis and decisions regard-

ing the programming languages and technologies adopted. The following sections will describe the

implementation options of the proposed solution modules, already presented in the previous chapter.

Section 4.7 presents the conclusions obtained from the implementation process of the present work.

4.1 Adopted Technologies

In order to develop the proposed work, several options regarding the technologies were evaluated

and opted. Such evaluation was made taking into account the requirements posed in the problem def-

inition and other requirements such as performance, extendibility and readability of code, demand for

extensive documentation and easiness of functionalities extendibility by others. The following sections

will illustrate the decisions made regarding the programming languages and other implementation op-

tions adopted.

4.1.1 Programming Languages

A set of programming languages were available to implement the solution proposed in this work.

Those languages had as requirements the availability of free compilers/cross compilers, provide easy

to read/write code and supply easy access to shell scripting and system commands. Also, a object-

oriented language was required in order to facilitate code reuse as well as extensibility and modularity.

Having that in mind, both Java and Python posed as possible solutions.

43

Python was adopted as chosen programming language because it offered the following advan-

tages when compared with Java:

• Readable Code - Since the proposed solution aims to be developed in a open source fashion,

the ability of having short-sintaxed and easy-to-read code posed an enormous advantage be-

cause it facilitates further and future improvements on the platform code without having to follow

deeply intense amount of documentation. Such readability is deepened with the availability of

simple to use Callbacks and Factory methods functionalities.

• Compact code - By using a object-oriented programming language, classes definition is used

often. In Java each top-level class is traditionaly defined in its own file, while Python allows

multiple classes to be defined in a single file. Therefore, the amount of files coded is substan-

tially decreased permuting for instance using only one file per module while containing the full

features of those.

• Performance - Despite the fact that Python can be slower than Java in some situations such

as object allocation, interpreter speed and native methods usage, Python offers better results in

I/O handling, standard output and interpreter initialization that may be of relevance when used

in embedded systems for the functionalities required in this platform.

Both languages are subjective to discussion in several latitudes since there are several different

implementations of both Python (CPython, IronPython, Jython, and PyPy) and Java (HotSpot VM,

OpenJRE, Mac OS X Java VM, etc.) that pose different performance results. Since vehicles nowadays

start offering powerful embedded processors due to the expansion of several in-vehicle services,

hardware will not create performance limitations, therefore posing Python as a reasonable option to

be used in the presented work.

4.1.2 Implementation Options

All the configuration files were developed in Extensible Markup Language (XML) due to the high

readability delivered for being a very descriptive language. Despite the fact that other languages,

for instance JSON, offer less overhead than XML, such characteristic would only affect solution’s

performance if configuration files where exchanged between modules, for messaging for instance,

not being the case in the proposed work.

For inter-module communication an adaptation of JSON scripting language was used, due to the

less overhead when comparing to XML.

In order to create the Publish-Subscribe mechanism PyPubSub 3.1.2 1 was used. This packaged

was chosen for being developed in a community-driven fashion and also due to its simple implemen-

tation and usage.
1https://pypi.python.org/pypi/PyPubSub

44

Table 4.1: Implemented functionalities for the support platform

Functionality Not Addressed Addressed
Routing Protocol X -
Communication Technologies

802.11p X -
WLAN - X
Wimax X -
Cellular Networks X -

Location
GPS - X

In-Vehicle Sensing
OBD - X

Beaconing - X
Management Information - X

4.2 Support Platform

As stated in section 3.2.1, our work assumes the existence of a support platform that addresses

functionalities of the underlying Transport, Network and Access Layer. Also, by following the standard-

ized ITS platform, functionalities regarding the management and security should also be addressed

by such support platform.

Since no platform was available for testing, the authors developed a prototype for a support plat-

form with some functionalities. Table 4.1 states the expected functionalities of a support platform and

the functionalities implemented in the prototype developed:

No routing protocols were implemented due to simplicity of the test scenarios to be performed in

the evaluation of the proposed solution. When adding more complexity, meaning more vehicles and

intervinients, to the test scenarios, the need of routing protocols arises. Also, since no geographic

routing protocols were used, location services as HLS, RLS and GLS are not addressed as well.

Regarding the Communication Technologies, no vehicular networks oriented technologies were

available to perform the tests. In particular equipments that use the IEEE 802.11p standard, specifi-

cally designed to address problems of vehicular communications, would pose a important role in the

test scenarios. Therefore, an adaptation to simulate some of the improvements on that standard was

performed by using off-the-shelf wireless LAN technologies.

The standard IEEE 802.11p in Europe uses the 5.9 GHz band with 10 MHz channels, as approved

by ETSI in 2008. There are 7 channels, starting at the 5,850 GHz, where 4 of them are allocated

for both Safety and User-Comfort traffic, 1 control channel and 2 channels dedicated for special

applications, Critical Safety of Life and High Power Public Safety [40].

In order to simulate the specific channel allocation in the 802.11p standard, the support platform is

able to support 3 (two) 802.11n interfaces, allocated in different channels. 802.11n standard uses the

5GHz band, a maximum of 150 Mbit/s data rate and has 250 meters outdoor range. Channels 100

(5,500 Ghz) and 108 (5,540GHz) will be used in order to minimize the interference between those

channels. One channel will be used to transmit all the data generated from both User-Comfort and

Safety applications, while other will be reserved for safety control information only. Figure 4.1 illus-

45

trates the channel allocation for the IEEE 802.11p in Europe, and the adopted channels to simulate

its functionality in this thesis implementation.

Figure 4.1: European Channel allocation for the IEEE 802.11p standard side-by-side with the adaptation imple-
mented

The multiplexing of the messages to the control and standard channel is done by gathering infor-

mation from the J2375 compliant messages. Messages will include an overhead that defines which

technology should be used. That choice is done by the VADM platform, that is aware of application’s

types and requirements.

The implementation of the above mentioned adaptation is done in the Interface Manager module,

further explained in section 4.2.2.

To supply location information to the vehicles a GPS receiver was used. A OBD interface was

used in order to retrieve information from the in-vehicle sensors. Details about the implementation of

this sensing functionalities is further described in section 4.2.1

Beacons make use of both GPS and sensors data to enrich the information sent to other vehicles.

Beacon generation as well as the information sent in each beacon is detailed in section 4.2.2.

Table Manager, gathers information from all the above mentioned sensors as well as parsed in-

formation from the beacons received from the other intervinients, neighbors of the vehicle within the

network.

Figure 4.2 depicts the Support Platform developed and all the modules that will be described in

detail on the following sections.

4.2.1 Acquisition Module

The Acquisition module is responsible for getting information from both in-vehicle sensors and

GPS receiver, parse that information and make it available to be accessed by other modules from the

upper layers, and it is divided in two parts, the Setup phase and the Listen phase.

During the Setup phase, the Acquisition module creates 2 threads. The first one, responsible

for obtaining GPS data from the serial port and parse values for latitude, longitude, speed in km/h,

number of satellites and altitude into sea level. The second, responsible for gathering information from

the in-vehicle sensors through a OBD interface. Information to be retrieved from the OBD may vary

since the amount of sensors in each vehicle depends on the manufacturers. However most vehicles

have a number of standard sensors embedded to retrieve information such as vehicle instant speed,

engine RPM and fuel level.

46

Figure 4.2: Support platform modules diagram

Each thread stores the values above mentioned and keep updating them at a given frequency, that

can be adjusted by the Acquisition module, but never higher than the acquisition frequency supported

by the equipments.

Handlers are created for each thread with functions to access asynchronously to the in-memory

values kept by the later.

On the Listen phase, a bidirectional socket is created in order to give access to the information

gathered to other modules from the layers above. A set of different requests is made available in

order for those modules to choose which information they need. Requests, can be done by sending

the following 3 byte length messages:

• GPS - Location information gathered from the GPS receiver

• OBD - Information retrieved from the In-Vehicle Sensors through the OBD interface

• NEI - Neighbors information gathered from received beacons and stored in the Table Manager

• ALL - All the above information.

GPS and OBD requests will trigger a thread access through their specific handlers while a NEI

request will trigger a request to the Table Manager to get information regarding the current neighbors

of the vehicle.

Both requests and replies are done using JSON messaging and are depicted in Listings 4.1 and

4.2. With requests it is possible to define what values are being requested, by changing the values in

the JSON message.

Listing 4.1: Acquisition module JSON request messages format

{REQ: {
values: <GPS,OBD,NEI,ALL>

}}

47

Listing 4.2: Acquisition module JSON reply messages format

{GPS: {
latitude: <latitude>,
longitude: <longitude>,
GPSspeed: <speed in km/h>
altitude: <altitude in meters>

}}

{OBD: {
speed: <speed in m/s>,
RPM: <Engine Rotations per Minute>,
fuel: <Fuel Level>

}}

{NEI: {
id:<License plate number>,
ip:<IP Address>,
information:{

speed:<speed in m/s>,
},

position: {
latitude: <latitude>,
longitude: <longitude>,
GPSspeed: <speed in km/h>
altitude: <altitude in meters>
},

ts:<Timestamp>
}}

Acquisition module pseudo-code is detailed Appendix 2.

4.2.2 Interface Manager

The Interface Manager module is responsible for managing the available communication technolo-

gies in the support platform since several, and maybe diverse, communication technologies can be

connected to it.

To connect with the VADM platform, the Interface Manager offers syncronous inter-process socket

connections. Therefore 3 connections are established:

1. Receive all information sent by the Communication Manager that is going to be sent to the

network

2. Deliver all the inbound safety-related traffic to the Communication Manager module

3. Deliver all the inbound comfort-application’s traffic to the Communication Manager module

The reason why 2 different sockets are established to deliver inbound traffic to the Communication

Manager is so that additional multiplexing and scheduling can be done by the VADM platform. For

the traffic that is to be sent to the network only one socket is created because, messages are already

stamped with priorities and scheduled in the VADM platform. No prioritization of messages being sent

to the network is done, but stamping is kept to support future inclusion of communication technologies

as IEEE 802.11p.

In our implementation, the basic transport protocol used for messaging between the nodes was

UDP to follow the decoupled mind set adopted in the rest of the architecture and also spare the

network of the traffic overhead that TCP protocol imposes.

Interface Manager module is divided in two (2) classes:

48

1. Broadcast Class - Responsible for receiving the information sent by the Communication Man-

ager, and choose the adequate communication technologies based on the overhead attached

by the module. The overhead states both the expected communication technology/channel to be

used (comfort or safety) and also the relative priority of the messages. Messages prioritization

is not adopted in our work for simplification purposes.

2. Listeners Class - Two (2) different listeners are created, one for receiving all the inbound traffic

from the safety-related channel and other for the inbound traffic from the comfort channel.

Interface Manager is also responsible for managing and storing information about the current

network topology regarding the neighbor nodes. For that two (2) sub modules were created, the

Beaconing Module and the Table Manager.

Beaconing Module

Beaconing Module is responsible for gathering information from the connected sensors in order to

compose simple, yet relevant beacons to be sent to the network at a given frequency. The adopted

beaconing frequency of our solution is of 10 Hz.

Beacons contain the following information:

1. Beacon ID - Random number generated every time a beacon is created.

2. Vehicle Unique ID - Unique vehicle identifier based on its license plate.

3. Number of Hops - Number of hops that the beacon should be routed.

4. Vehicle IP - Source vehicle IP address.

5. Vehicle Location - GPS coordinates of the source vehicle.

In our solution we used 0 as the number of hops to spare network resources and due to the

simplicity of the network topology that is going to be used. More information could be added to

beacons in order to enrich future features of both the support platform or VADM platform.

Beacon module uses the Broadcast class of the Interface Manager module, sending the beacons

through the channel reserved for safety applications.

Table Manager

Whenever a beacon is received in by the safety-related Interface Manager module listener it is

sent to the Table Manager module. Table Manager module is responsible for storing and updating

beacons in a way that the table mirrors the current network topology on the vicinity of the vehicle.

Beacons are kept in the table using the Vehicle Unique ID as identifier and store all the information

received in the beacon, already defined. Every time a beacon with the same Vehicle Unique ID is

received, Table Manager updates its entry.

Each entry of the table as also a timeout value that corresponds to the time period where that

entry is still valid. If a beacon is not received that updates the information regarding one vehicle in the

49

vicity until the timeout is reached, Table Manager will delete its entry assuming that the vehicle is no

longer in the vicinity. The standard timeout used in our implementation is of 1 second.

Table Manager module makes available the following functions, depicted in Listing 4.3, that can

be used by other modules of the support platform for accessing its data.

Listing 4.3: Functions made available by the Table Manager module

getCurrentNeighbors()
insertBeacon(beacon)
getNeighbor(vehicleID)

The getCurrentNeighbors() returns the list of current vehicles in the vicity with their information,

retrieved from the received beacons. Also a function to insert a new beacon to the Table Manager

but no function to remove since Table Manager will take care of removing entries whose timeout has

been reached. Also it is possible to retrieve information from a specific neighbor through its unique

vehicle ID.

4.3 SAE J2735 DSRC Standard

In order to implement the coding and decoding of messages to the J2735 standard ASN.1 Python

library was used, the Pyasn12.

The library offers the definition of the standard data structures and serialization protocols. No

translation from the J2735 was available to any platform (C nor Python), therefore the transcription

from the standard was done.

Listings 4.4 and 4.5 depicts the implementation of the J2735 Basic Safety Message to be used in

the Pyasn1 and equivalent ASN.1 notation.

Listing 4.4: J2735 BSM ASN.1 Notation

BasicSafetyMessage ::= SEQUENCE {
msgID DSRCmsgID, -- App ID value, 1 byte
msgCnt MsgCount, -- 1 byte
id TemporaryID, -- 4 bytes
secMark DSecond, -- 2 bytes
lat Latitude, -- 4 bytes
long Longitude, -- 4 bytes
elev Elevation, -- 2 bytes
accuracy PositionalAccuracy, -- 4 bytes
speed TransmissionAndSpeed, -- 2 bytes
heading Heading, -- 2 bytes
angle SteeringWheelAngle, -- 1 bytes
accelSet AccelerationSet4Way, -- 7 bytes
brakes BrakeSystemStatus, -- 2 bytes
size VehicleSize, -- 3 bytes
}

2http://sourceforge.net/projects/pyasn1/

50

Listing 4.5: J2735 BSM Pyasn1 implementation

class BasicSafetyMessage(univ.Sequence):
componentType = namedtype.NamedTypes(

namedtype.NamedType(’msgID’,DSRCmsgID()),
namedtype.NamedType(’msgCnt’,MsgCount()),
namedtype.NamedType(’id’,TemporaryID()),
namedtype.NamedType(’secMark’,DSecond()),
namedtype.NamedType(’lat’,Latitude()),
namedtype.NamedType(’long’,Longitude()),
namedtype.NamedType(’elev’,Elevation()),
namedtype.NamedType(’accuracy’,PositionalAccuracy()),
namedtype.NamedType(’speed’,TransmissionAndSpeed()),
namedtype.NamedType(’heading’,Heading()),
namedtype.NamedType(’angle’,SteeringWheelAngle()),
namedtype.NamedType(’accelSet’,AccelerationSet4Way()),
namedtype.NamedType(’brakes’,BrakeSystemStatus()),
namedtype.NamedType(’size’,VehicleSize())
)

Other Message Sets, such as the A La Carte Message and the Traveler Information were also

developed. More Message Sets can be developed in further extensions of the J2735 implementation

for the Pyasn1.

Besides implementing the Message Sets, both the Data Elements and Data Frames needed were

also developed. The most used Data Elements are the Integer, the Octet String, Enumerated and

Sequence. Data Frames are mere compositions of those elements that can later be combined in

Sequences or with other Data Frames.

Listings 4.6 and 4.7 illustrate the Pyasn1 implementation of 3 Data Elements, part of the BSM, the

DSecond, the TemporaryID and TransmissionState together with the ASN.1 notation of the later.

Listing 4.6: J2735ASN.1 Notation for the DSecond, TemporaryID and TransmissionState Data Elements

DSecond ::= INTEGER (0..65535)

TemporaryID ::= OCTET STRING (SIZE(4))

TransmissionState ::= ENUMERATED {
neutral (0), -- Neutral, speed relative to the vehicle alignment
park (1), -- Park, speed relative the to vehicle alignment
forwardGears (2), -- Forward gears, speed relative the to vehicle alignment
reverseGears (3), -- Reverse gears, speed relative the to vehicle alignment
unavailable (7), -- not-equipped or unavailable value,
}

Listing 4.7: J2735ASN.1 Notation for the DSecond, TemporaryID and TransmissionState Data Elements

class DSecond(univ.Integer):
subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,65535)

class TemporaryID(univ.OctetString):
subtypeSpec = constraint.ValueSizeConstraint(4,4)

class TransmissionState(univ.Enumerated):
namedValues = namedval.NamedValues(

(’neutral’,0),
(’park’,1),
(’forwardGears’,2),
(’reverseGears’,3),
(’unavailable’,7)
)

subtypeSpec = univ.Enumerated.subtypeSpec + constraint.SingleValueConstraint
(0,1,2,3,4,5,6,7)

51

For inter-module and inter-application messaging the authors opted for encoding all the messages

that are developed for the VADM platform with a modified version of ALC message set. By adopting

this message standard it is possible to standardize procedures between modules and applications

and open ways for future security and message integrity mechanisms. Listing 4.8 depicts the ASN.1

notation of the modified version of the ALC message adopted in our work.

Listing 4.8: J2735 modified ALC ASN.1 Notation

ALaCarte ::= SEQUENCE {
msgID DSRCmsgID, -- App ID value, 1 byte
source IPAddress, -- 4 bytes
destination IPAddress, -- 4 bytes
port AppPort -- 2 bytes
appData VADMApplicationData, -- 1000 bytes
}

VADMApplicationData ::= OCTET STRING (MAXSIZE(1..1000))

The remaining implementation of both Message Sets and Data Elements/Frames can be found in

Appendix 1. In order to transform application’s messages to J2735 compliant messages encoding and

decoding is needed, therefore Encoder and Decoder classes were developed and are used in several

parts of the platform. The following sections will detail both the Encoder and Decoder implementation

for the aforementioned developed Message Sets.

4.3.1 J2735 Encoder and Decoder

In order to use the J2735 standard message sets adopted in our work we developed functions to

encode and decode such messages as well as some other utility functions.

As mentioned in the previous section, we developed some the J2735 standard messages with

Python based on the library Pyasn.1 that are now available on open source for further reuse by

developers that want to follow the J2735 message sets and use Python as base coding language3.

Listing 4.9 depicts the encoding functions made available to create the adopted J2735 messages

of our work

Listing 4.9: Pyasn.1 J2735 encoding functions

createBSM(status, nmealatitude,nmealongitude, altitude, speed, vehicleWidth, vehicleLength)
createALaCarte(appID, sourceIP, destinationIP, destPort ,content)

Regarding the decoding of J2735 message, additional functions were created in order to offer the

possibility to decode the full message and also the possibility of getting specific fields of the message

for fast access. The available main decoding functions are depicted in listing 4.10.

Listing 4.10: Pyasn.1 J2735 decoding functions

decodeBSM(encodedJ2735)
decodeALC(encodedALC)
getMessageType(encodedJ2735)

The decoding functions return a Python dictionary with the values of the encoded J2735 mes-

sage and the getMessageType returns the type of J2735 message. Future extensions of the J2735

message-sets based in Pyasn.1 can be implemented the future and the above mentioned functions

can be later extended, offering the VADM platform the possibility to keep compliant with the standard.
3The repository with the Pyasn.1 implementation is available at https://github.com/tallis/SAE-J2735-Python

52

4.4 Vehicular-Application Development Middleware

VADM supplies an API for applications to use all the functionalities developed in the proposed

solution. Having in mind that the developed applications must be decoupled and abstracted from the

surrounding environment and platform implementation details, the functions stated in 4.11 were made

available. For simplification purposes and also to guarantee future features like data integrity and

security in the inner modules of the VADM platform, all messages sent by applications are encoded,

by the applications, with a modified version of the J2735 ALC already explained in section 4.3.

Listing 4.11: Vehicular-Application Development Middleware API

1 registerApplication(applicationName, XMLPath)
2 getNodeType()
3 requestServicesList()
4 subscribeService(serviceName)
5 deployandRunApplicationService(serviceName,serviceImplementation)
6 publishInformation(messageJ2735ALC,protocol)
7 unregisterApplication(applicationID)

1. Register application within the platform by supplying application’s name and path to the config-

uration XML file to be then transferred and stored by the ARB module.

2. Get information regarding the type of node where the platform is currently being used. Nodes

can be Vehicles or RSUs.

3. Retrieves information about the available and active services within the platform

4. Subscribe to a given service by the service name (unique identifier). Information about what

services have applications subscribes is stored in the ARB.

5. Transfers a service implementation to the Service module in order for it to be deployed and

executed.

6. Sends information through the platform to the network. The message destination is defined

within the encoded message and will later be interpreted by the Communications Manager

module. The transport protocol to be used, e.g. UDP or TCP, can be defined.

7. Unregister application from the platform, removing all the deployed services and remaining in-

formation.

VADM poses an abstraction to all the modules contained inside itself configuring a black-box

paradigm towards the applications. Implementation of all the modules contained inside the VADM will

be detailed on the following sections.

4.4.1 Application Request Manager

ARM module plays a coordinator role inside the VADM. To coordinate all the interactions, ARM

is responsible for instantiating all the remaining modules by creating threads for the Call Manager,

Communication Manager and Services modules and accessing them through the respective handlers.

53

Each handler supplies a API to access either their functions or stored values so that ARM multiplex

those functions and information while being able to answer to requests from other modules of the

platform.

Listings 4.12, 4.13 and 4.14 present the handlers API for Call Manager, Communication Manager

and Services modules respectively.

Listing 4.12: Call Manager handler functions

changeUpdateFrequency(newFrequency)
getCurrentCoordinates()
getCurrentSpeed()
getVehiclesInformation()
getCurrentNeighbors()

1. Change the update frequency of informations to be retrieved from the underlying support plat-

form.

2. Get current coordinates by giving Latitude, Longitude and altitude.

3. Get current vehicle’s speed in meters per second.

4. Retrieve vehicle’s information obtained from in-vehicle sensors and other static information sup-

plied to the platform.

5. Get list of current neighbors with information regarding their license plates (unique ID), IP ad-

dress, position and other relevant information.

Listing 4.13: Communication Manager handler functions

sendMessage(messageJ2735ALC)
sendMessageControlBroadcast(messageJ2735BSM)
sendMessageComfort(message, protocol)

1. Sends message through the communication technologies for the network. Received the relayed

information sent by the VADM originated from the applications.

2. Sends safety message through the control channel4. Can be used by inner services of func-

tionalities of the VADM that need to broadcast J2735 messages to the network, e.g. ESPD

protocol.

3. Sends message through the traditional communication technologies using the usual transport

protocols as UDP or TCP.

Note that all every time these functionalities are used a Message Plausibility Scheduling function

is executed in order to determine if the messages should proceed to the Communications Manager

module or have the policies applied. The Message Plausibility Scheduling will be further explained in

section 4.4.7
4Channel reserved exclusively for safety-related applications and services

54

Listing 4.14: Services module handler functions

changeFrequency(newFrequency)
deployandRunApplicationService(serviceName,serviceImplementation)
addService(serviceName)
removeService(serviceName)
getServiceList()

1. Change services publish frequency.

2. Run service defined by the application by passing its implementation as an argument.

3. Add service to the list of active services to execute. The new service must be already defined

in the services module.

4. Remove service from the list of active services being executed.

5. Get list of current active services.

ARM module, besides accessing and managing the remaining modules of the VADM also is aware

of the current status of the platform. In case of status change, ARM will adjust all the other modules

behavior according to the current status of the platform. That behavior is controlled by changing the

frequency values, adding or removing services or any other adaptations that can be implemented

later.

When started, the ARM loads the platform configuration file where several startup values and

informations are stored, such as:

1. Name - Descriptive name of the platform

2. Type - Node type [Vehicle, RSU]

3. Publish Frequency - Frequency in which services should publish their information

4. Sensing Frequency - Frequency in which the Call Manager should retrieve information from

the underlying support platform

5. ID - Unique ID for the vehicle based on its license plate

6. Version - Platform implementation version, can be used to have different configurations based

on a versioning system for the solution

7. Description - Additional comments regarding the platform implementation or configuration

8. Default Services - Services to be loaded and active during platform startup

Additional fields can be added to the configuration file in order to supply more information to

platform implementation or default values to be loaded for other devices or by the support platform in

use.

Note that the policy adopted in our implementation is of discarding the message case it is not

plausible. If some other policies as storing or queuing the messages want to be used, they should be

implemented here in the ARM module.

55

4.4.2 Platform Status

The VADM platform status was a value that needed to be accessible from all the several modules

of our platform while allowing more that 1 process to change its value. To do so, a Python memory-

mapped file was used. A memory-mapped file allows processes to access data on the filesystem

through the operative system virtual memory, without using the common I/O functions that tend to be

slow. With this approach, we managed to have a quick access to the platform status, while giving the

ability of changing it by several other processes, therefore making that change visible to the rest of

the VADM platform.

The memory-mapped file was also used to store other variables from some modules and proce-

dures of the VADM platform for faster access, e.g. Node Type, ESPD protocol variables and flags,

etc.

Functions to access for both read and write procedures the memory-mapped file were built and

made available to all the inner modules of the VADM platform.

4.4.3 Call Manager

Call Manager module is instantiated as a thread by the ARM module during the setup period, that

keeps a handler to access asynchronously to the values retrieved by the module and kept in memory.

Call Manager establishes a bidirectional socket connection with the underlying support platform and

sends request messages depending on the type of information that wants to obtain, as detailed in

section 4.2.1.

When the Call Manager thread is started by the ARM module, and after initializing the thread vari-

ables, the Call Manager starts requesting information from the support platform Acquisition Module at

the frequency stated by the VADM platform configuration file. Bear in mind that the frequency can be

changed by the ARM in order to adapt the VADM platform functioning in emergency situations.

Requests are sent and received using well defined JSON messages. Every time a request is

performed, a connection to the bidirectional socket between the VADM platform and the Acquisition

module of the support platform is used. These requests make a synchronous calls to the support

platform.

Call Manager has therefore, updated information regarding the vehicle sensors information stored

in its thread variables, ready to be quickly accessed by the ARM handler functions to the Call Manager

module.

Appendix 3 depicts Call Manager module pseudo-code and Listing 4.15 shows the function made

available by the Call Manager module for requesting the several types of information needed and

available.

Listing 4.15: Call Manager module request data function

requestToPlatform(request)

56

4.4.4 Communication Manager

Communication Manager module is instantiated as a thread by the ARM module during its setup

period, that keeps a handler to access asynchronously to its send message functionality. Communica-

tion Manager abstracts the remaining modules and applications from the communication details and

is also responsible for prioritizing applications messaging and calculate plausibility of all the received

messages, using the Message Plausibility Scheduling already explained in 4.4.7.

Communication Manager is divided in two different threads:

1. CommManagerSender - Responsible for sending the information to the support platform which

as the direct relation with the ARM handler.

2. CommManagerListener - Responsible for receiving all the inbound traffic from the support

platform.

CommManagerSender

Every time a message is to be sent by the Communications Manager, a priority check is performed.

All messages receive a overhead based on the adopted priority for such kind of applications. The

priority check uses the application ID and current VADM platform status, that is going to check the

Application’s Priority Table, depicted in Table 4.2, also stored in the Communication Manager module,

what is the relative priority of the message. The priority check function returns a overhead, with the

channel that should be used (Safety or Comfort) and priority class, that should be attached to the

message before it is sent to the support platform InterfaceManager module.

The overhead tags the message with the priority so that the supporting platform communications

facilities can determine the adequate means to use, regarding both communication technologies and

channel access priority. A classification similar to the one used in Class-based Queueing (CBQ)

scheduling algorithm has been adopted.

Note that in our implementation, the interaction with the support platform is made using bidirec-

tional sockets. Case a new support platform is used, the send functions should be updated to comply

with the new interaction mechanisms.

Listing 4.16 depicts the relevant Communications Manager module functions to send messages

to the network while Appendix 4 details the pseudo-code of the CommManagerSender thread class.

Listing 4.16: Communication Manager send functions

sendMessage(messageJ2735ALC):
sendMessageControlBroadcast(messageJ2735BSM)
sendMessageComfort(message, protocol)

Three (3) send functions are available:

1. Send message encoded with J2735 ALC. The message will be sent to the communication tech-

nologies and with the priority dependent upon the application type and class that generated

it.

57

Table 4.2: Application’s Priority Table according to application type and class depending upon the current VADM
status

VADM Status
Normal Emergency Accident

Channel Class Channel Class Channel Class

Safety-Related
Information Safety B Safety B Safety C
Assistance Safety B Safety A Safety B
Warning Safety B Safety A Safety A

User-Comfort
Information Comfort B Discard Discard
Entertainment Comfort B Discard Discard
Business Comfort B Discard Discard

2. Send message encoded with J2735 BSM through the available control channel. This function is

used to communicate safety messages within network intervinients and therefore are not subject

of prioritization.

3. Send message through the traditional communication technologies available. A specific trans-

port protocol to be used, can be defined.

Application’s Priority Table

Since different channels can be assigned for user-comfort and safety-related applications, the

Application Priority Table defines which should in used in all the considered situations, according to

the application type and class. Case several different communication technologies are available, this

table can be upgraded with a new entry that determines what technology should be used in the several

scenarios. The priority class, follows the classification adopted in this document already explained in

section 3.6.

All user-comfort applications never reach this point in a Emergency or Accident situation due to

already being discarded in the ARM module. Case the discard policy is changed, future upgrades on

this table should be made to comply.

By querying this table it is possible to determine the overhead that should be stamped in the

message to be sent to the support platform so that the adequate communication means and priorities

are applied.

Case a new priority scheme or classification is adopted, only the Application’s Priority Table needs

to be updated.

Table 4.2 depicts the relative priority-class overhead added to applications based on the applica-

tion’s type and class and also the current VADM platform status.

CommManagerReceiver

Whenever a message is received on the Communication Manager, sent by the support platform, its

type must be checked. Case the received information is a J2735 BSM message, a the ESPDReceive

function of the ESPD protocol is executed to check if the current node should change its status to

comply with the status of the surrounding vehicles. The ESPDReceive function is further explained in

section 4.5.3.

58

Case the received message is a J2735 ALC, a plausibility check is performed in order to determine

if the message should be sent to the application or of should be discarded, sparing the computational

resources of the VADM platform. A message is plausible if the application that generated it is relevant

to the current scenario situation where the node is executing. This plausibility check function is the

same function used for message scheduling in the ARM module, already explained in section 4.4.1.

If the message is plausible, the same is sent to the destination applications by using the Publish

Subscribe mechanism 5.

Appendix 5 details CommManagerListener thread class pseudo-code.

4.4.5 Application Registry Bank

Application Registry Bank keeps a copy of all the registered application’s information running and

active currently on the platform. Every time a application is started, it must register in the platform

through the API made available by the VADM already described in section 4.4. VADM will then use

ARB application register function to copy application’s information, stored in the its configuration file,

to the in-memory application data bank. One application is only active and able to run in the platform

when registered successfully in the ARB. Also, when a application subscribes to a system service,

such subscription is also registered and stored. Besides the register function, ARM makes available

to all the remaining modules several other functions detailed in listing 4.17.

Listing 4.17: Application Registry Bank functions

registerApplication(applicationID, SerializedApplicationInfo)
unregisterApplication(applicationID)
subscribeService(serviceName,applicationID)
getApplicationName(applicationID)
getApplicationVersion(applicationID)
getApplicationType(applicationID)
getApplicationClass(applicationID)
getApplicationDefaultFunctions(applicationID, nodeType)
getApplicationImplementedServices(applicationID)

1. 2. Register and Unregister applications functions to be used by the VADM.

3. Register service subscription by one application. Is also used to register services that are

deployed by the applications in the platform.

4. 5. Get application name and version.

6. 7. Get application Class and Type.

8. Get name of application’s default functions to be executed depending on node type (Vehicle or

RSU)

9. Get service’s names implemented and deployed by the application on the platform.
5All applications are default listeners of a publish service that publishes information generated by the same application

received from other participants of the network

59

4.4.6 Services

Services module is instantiated by the ARM module during the setup period. ARM maintains a

handler to asynchronously access Service’s functionalities, as mentioned in section 4.4.1. Services

module instantiates a set of services, that at a given frequency, compute and publish the results on

a Publish-Subscriber fashion. Applications that have subscribed to specific services will then receive

the results from each service. This way, a full decoupling between applications, platform and services

is achieved, granting a level of abstraction among them.

Services can be already installed and configured on the platform, named System Services, or

implemented and installed by applications, named Application’s Services.

A set of system services is available by default in the platform but only the services mentioned in

the platform configuration file, already described in section 4.4.1, will be automatically activated when

the platform starts its execution.

For abstraction and security purposes, services developed by applications, have their implemen-

tation serialized and sent to the Services module that executes that service at the same frequency

of the system services. With that, application’s services are executed only once, or as many times a

application needs, sparing platform computational resources.

Services are divided and executed in 2 different queues, one for safety-related services and the

other for comfort related services. Case the VADM platform status is set to normal both of the qeues

are executed. If the platform status is either Emergency or Accident, only the services that are

relevant to be used in such situations are executed. This mechanism applies to both System Services

and Application’s Services.

Services type and class as well as other possible configurations are stored in a XML file and

loaded when the VADM platform is initialized.

Listing 4.18 show the Services module available functions while the full module pseudo-code is

available in Appendix 6.

Listing 4.18: Services Module pseudo-code Thread class pseudo code

runApplicationService(serviceName, serviceImplementation)
addService(serviceName)
removeService(serviceName)

An evaluation was performed in order to determine what were the basic services that most appli-

cations needed. By choosing a key set of services, one was able to unveil the possibility of service

reuse by several applications. Since the mechanism for getting information from services to applica-

tions is based in Publish-Subscribe messaging, the fact that more applications subscribe to the same

service does not impose challenges or more computational resources usage.

Therefore, a set of four (4) system services was developed and installed in the platform for granting

basic functionality of the later:

1. GetNodeType - Returns the current node type (RSU or Vehicle) as well as some other additional

information about the node that can be loaded from the configuration file.

2. GetPlatformStatus - Returns current VADM platform status.

60

3. GetNodeInformation - Get current vehicle information regarding Speed, Fuel, RPM and GPS

position.

4. GetNeighborInfo - Return list with current neighbors information regarding ID, IP Address,

speed and GPS position.

All the developed services are classified as safety-related due to its functionalities being mostly

needed for safety-oriented applications.

More services can be implemented and installed in the platform as long as the API’s for communi-

cating with the remaining modules are used. Besides the System Services developed by default, there

is an additional service running the ESPD Advertise function of the ESPD protocol. Such service is

further explained in section 4.5.3.

4.4.7 Message Plausibility Scheduling

In order to evaluate if a message is plausible or not to be used in the VADM platform, either for

sending or receiving, a Message Plausibility Scheduling function was defined. This function takes into

account the policies already defined and described in 3.7.1.

Every time a message is to be sent or is received, this plausibility check mechanism is instantiated,

in both ARM and Communications Manager modules respectively. This plausibility check function,

checks the platform priorities and policies defined and returns if that message should be sent or

discarded based on the application ID and current VADM platform status.

A message that is classified as not plausible if the current VADM status is either Emergency or

Accident, posing a situation where resources should be spared. If a message is plausible it may

proceed its normal execution.

The reader should have in mind that the adopted policy in this work was to discard the message

case the same is not plausible. Other implementations such as the storage, queuing or prioritization

of messages can be applied in this function, making it easy to renew the policies adopted in the VADM

platform.

4.5 System Analyzer

System Analyzer module contains several different methodologies for determining the current ex-

ecution scenario situation and altering the VADM platform status to cope with that scenario. Three (3)

different approaches are used to change the VADM status and its implementation will now be detailed.

4.5.1 Analytical Heuristics

A vehicle can determine its current state based on interpretation of the information received by

sensors or any other vehicles that depict a abnormal state of circulation of the same vehicle. The

criteria to be used is varied and can be subject to further research work in order to evaluate automat-

ically and with a high degree of accuracy the current vehicle state. In our work we propose a simple

approach for determining if the vehicle is in a Emergency or Accident situation.

61

Some assumptions were made when defying the environment detection heuristics:

1. There is no differentiation between a Emergency or Accident status.

2. The frequency of heuristics execution is 1 Hz.

3. Heuristics make use of data made available by the Services module.

4. Heuristics assume that the information supplied by the Services module is fairly up-to-date and

reliable.

Having the above in mind, the heuristics used for changing the vehicle status were:

1. Current vehicle speed is between 0 and 1.38 m/s (0 and 5 km/h) and the average speed of the

last 3 seconds was of 8.3 m/s (30 km/h)

2. Current vehicle speed is between 0 and 1.38 m/s (0 and 5 km/h) and RPM’s higher than 3000.

3. GPS traveled distance of the last 3 seconds is shorter than the average speed of the last 3

seconds.

We do not take into account some factors that can invalidate the heuristics above defined, for

instance, sensors malfunctioning, sensors unavailability, or VADM platform calculation errors.

This heuristics take a simple approach for determining that a vehicle is in a emergency or accident

situation by evaluating its speed variation in short periods of time. More heuristics could be defined

by being based in the retrieval of in-vehicle sensors that indicate system malfunction or parsing of

information from the surrounding vehicles, e.g. by determining the average speed of the vicinity group

of vehicles and comparing with own speed.

4.5.2 User-Input

A simple user interface was designed in order to give feedback to the user and mainly to give the

ability of manually setting the current vehicle situation to Emergency or Accident.

Our approach aimed to be merely representative and to help on the debug and testing, therefore

lacking the validation of the commands typed. The user-interface developed is launched with the

VADM platform, instantiated by ARM, and its implementation is able to access the ARM module

functionalities as any other module of our platform. Therefore, the information displayed in the user-

interface is gathered from the Services running in the platform, respecting the overall architecture of

our solution.

Figure 4.3 shows a print screen of the user-interface made available to the manual change of the

vehicle status.

4.5.3 Epidemic Status Dissemination

The ESPD protocol makes use of the J2375 standard BSM, for inter-node messaging, making

use of fields such as MsgCount, Latitude, Longitude and TransmissionAndSpeed. In order to spread

62

Figure 4.3: VADM platform user interface for changing manually the vehicle status and get vehicle information

the platform status the TemporaryID (4bytes), is used. Table 4.3 depicts the several possible platform

status and their representation in the TemporaryID field.

Table 4.3: Platform status 4-byte representation

Status 4-byte representation
Normal norm

Emergency emer
Accident acci

As mentioned, the ESPD protocol is divided in two (2) parts:

1. ESPD Advertise - Detect VADM platform status change and advertise the need of a platform

change to the network. Executed as a service in the Services module.

2. ESPD Receive - Parsing of all the requests for a VADM status change received from the network

and calculate the plausibility of changing node vehicle to comply with the received request for

alteration. Executed every time the Communications Manager module receives a message from

the network.

Algoritms 4.1 and 4.2 depict the pseudo-code for the ESPD Advertise service and ESPD Receive

procedure respectively.

63

Algorithm 4.1 ESPD Advertise service pseudo-code
if currentStatus = ”Emergency” or ”Accident” then

if firstTime = ”Yes” then
get currentCoordinates
create J2735 BSM message with (currentCoordinates, currentStatus)
send message through control channel
firstTime = ”No”
broadcaster = ”me”

else
if broadcaster = ”me” then

return
else

get last J2735 BSM message received
repeat ESPDReceive algorithm two times

end
end

else
do nothing

end

Algorithm 4.2 ESPD Received service pseudo-code
Data: receivedMessage J2735 BSM
get currentCoordinates
senderCoordinates← get coordinates← receivedMessage J2735 BSM
receivedStatus← get status←receivedMessageJ2735 BSM
calculate Distance (currentCoordinates, senderCoordinates)
get currentSpeed
calculate SHSD (speed)
if distance ¡ SHSD then

if firstTime = ”Yes” then
set currentStatus = receivedStatus
send receivedMessageJ2735 BSM through control channel
firstTime = ”No”

else
if currentStatus = receivedStatus then

do nothing
else

set currentStatus = receivedStatus

end
end

else
newCoordinates← get currentCoordinates
calculate Distance (newCoordinates, currentCoordinates)
repeat from SHSD calculation

end

Each status alteration for Emergency or Accident has a timeout that is renewed every time a

J2735 BSM message from the ESPD protocol is received. If the timeout elapses, the status is set

back to Normal since it is assumed that the emergency or accident situation is not valid anymore, or

the vehicle is currently out of the ROP.

64

4.6 Applications

Applications load all the setup information from a XML configuration file with the following details:

1. Name - Application unique ID

2. Type - Application type [User-comfort, Safety]

3. Class - Application’s class based on its functionality

4. Version - Current version of the application

5. Description - Nominal description of the application’s functionality

6. Vehicle-functions - Application’s functions to be loaded if the later is running in a Vehicle

7. RSU-functions - Application’s functions to be loaded if the later is running in a Road-Side Unit

8. Platform Services - Platform services to be subscribed case the same are available and active

9. Application Services - Services implemented by the application to be installed and executed

within the platform

Applications, must follow some specific structure, in order to function and interact with the platform.

Two classes must be available and implemented within a application:

• Main Application Class - State the implementations of all the functions to be executed both

as Vehicle and RSU and designated at Vehicle-functions and RSU-functions fields of the

configuration file.

• Listener Class - State the implementation of the dispatchers that will handle the information

received by the subscribed services. Handlers for SystemMessages and InterNodeCommu-

nication system services are implemented by default in order to get information sent by the

platform for intern management and messages sent from the same application running in an-

other node of the network. Inter-application messaging is not supported.

In order to demonstrate how applications can easily be developed using the VADM platform by

using the supplied API and structure two (2) application examples, one for a safety application and

other for a comfort-related application, will now be depicted:

4.6.1 Application Example: RequestAssistance

RequestAssistance application requests for emergency vehicles dispatch to the location of an

accident by sending the vehicle position to the closest RSU. The RSU will then send a remote request

to the Emergency Vehicle central that will reply with the emergency vehicle’s ETA information that will

then be sent to the vehicle that made the request in the first place.

RequestAssistance XML configuration file is depicted in listing 4.19 and it lists the services and

functions than should be executed wether the node is a RSU or a vehicle.

65

Listing 4.19: RequestAssistance Application XML configuration file

<vnetplat>
<application>

<name>RequestAssistance</name>
<type>Safety</type>
<class>Assistance</class>
<version>1.0</version>
<description>Detects the change in the platform status and request for

assistance from a centralized service</description>
<vehicle-functions>requestAssistanceVehicle;</vehicle-functions>

<rsu-functions>receiveAndRequestAssistance;</rsu-functions>
<Vehicle-platformServices>GetPlatformStatus;GetNodeInformation</Vehicle-

platformServices>
<RSU-platformServices>GetNodeInformation;</RSU-platformServices>
<applicationServices>;</applicationServices>

</application>
</vnetplat>

The several parts of the application will now be depicted and further explained:

Listing 4.20: RequestAssistance Main Application Class pseudo-code

class Application:
def receiveAndRequestAssistance():

startEVserverConnection()
waitForRequests()

def requestAssistanceVehicle():
while(true):

if(currentStatus == "Emergency" or "Accident"):
messageJ2735ALC.setDestination(broadcast)
messageJ2735ALC.setMessage(RequestAssistance,

currentCoordinates)
while(ACK=="Null"):

publishInformation(messageJ2735ALC)
sleep(1)

The Main Application Class, where the functions to be executed when the application starts, de-

pending on the node type, are defined. In this application, we only define 2 functions, one to be

executed when the node is a RSU (receiveAndRequestAssistance()) and another one to be executed

when its a vehicle (requestAssistanceVehicle()).

receiveAndRequestAssistance() will start the connection with the Emergency Vehicle’s Central

server and then wait for requests for assistance from vehicles.

requestAssistanceVehicle() will check the current VADM status for changes and if the status is

changed to a Emergency or Accident status it triggers a broadcast request with the objective of

reaching the nearby RSU. The application will keep on broadcasting at 1 Hz the request until receiving

a ACK from a nearby RSU.

66

Listing 4.21: RequestAssistance Listener Class pseudo-code

class Listener:
def InterNodeCommunication(receivedMessage):

if(GetNodeType()=="RSU"):
sourceIP = receivedMessageJ2735ALC.getSource()
sourceCoordinates = receivedMessageJ2735ALC.getCoordinates()
ETA = requestETAtoServer(sourceCoordinates)
responseJ2735ALC.setMessage(ETA)
responseJ2735ALC.setDestination(sourceIP)
publishInformation(responseJ2735BSM)

if(GetNodeType()=="Vehicle"):
if(broadcaster=="me"):

if(receivedMessageJ2735ALC.getSource()=="RSU"):
if(ACK == "Not Received" and receivedMessageJ2735ALC

.getMessage() == "ACK"):
ACK = Received

elif(ACK == "Received" and receivedMessageJ2735ALC.
getMessage() == "ETA"):

displayETA()
else:

checkTimeout()
else():

publishInformation(receivedMessageJ2735BSM)

def GetPlatformStatus(serviceMessage):
storeVADMstatus(serviceMessage)

def GetNodeInformation(serviceMessage):
storeCurrentCoordinates(serviceMessage.getCoordinates())

The Listener Class depicts the implementation of the subscribed services listeners. Every time

a application receives a message from a subscribed service it executes the listener implementation.

For the RequestAssistance application, three (3) services were subscribed, meaning that 3 listeners

were defined as well.

InterNodeCommunication, listener of all the messages received from the same application running

in other nodes of the network, will start by checking the current node type. If the node is a RSU, it

means that a request for assistance was sent by a vehicle and therefore it sends the request to the

Emergency Vehicles central server that will reply with the ETA to the vehicle location. Then the RSU

will send back the ETA message to the vehicle that started the RequestAssistance application.

GetPlatformStatus and GetNodeInformation will receive and store information published by the

servers regarding the current platform status and GPS coordinates.

Listing 4.22: RequestAssistance Listener Class pseudo-code

def main():
registerApplication(Name,XMLPath)
NodeType = getNodeType()
availableServices = requestServicesList()
subscribeNeededServices(XMLpath, availableServices)
Listener.start()
Application.run(NodeType)

The main class of the application starts by registering the application in the VADM platform. Then

requests the node type so that the application know which functions to execute and which services

to subscribe. After that, it subscribes the needed services and starts both the Main Application Class

and the Listener Class.

By using the API primitives made available by the VADM platform, was very simple to develop a

application that automatically requests Emergency Vehicles to a accident location that can be installed

67

in both vehicles and RSUs without any need of adaptation or any long development process.

4.7 Chapter Summary

In this section we presented the implementation details and options of the development process

of the VADM platform. We started by developing a support platform with basic features to supply a

additional functionalities to our work that was outside of the scope of this thesis. Then the several

design decisions and implementation options were detailed.

In all author’s choices, taking into account that a easy-to-use, configurable and agnostic platform

should be the output of this work. We highlight the following features of our solution:

1. Several of the characteristics and behaviors of the platform and applications are loaded from

XML files, delivering a degree of configuration to the whole solution

2. By only having two (2) points of contact with the support platform it is fairly easy to change the

underlying support technologies in use.

3. The behavior of the several internal modules of the VADM platform can be adapted to cope with

the platform needs or as a response to a system optimization therefore delivering an adaptable

platform.

4. A set of well define API primitives is offered to applications so that they can make use of the

VADM platform functionalities and be developed having an agnostic approach on both the sup-

port communication technologies and protocols and the current context of execution.

5. Modules were developed in a decoupled approach, having well defined functions to communi-

cate within themselves. With this, is it possible to easily update a specific module implementa-

tion without prejudicing the remaining of the VADM platform functionality.

6. A standard for vehicular-oriented application messaging was used, opening the path for future

compatibility with other systems and solutions.

By using the VADM platform and the described interaction mechanisms, a simple application-

structure can defined, facilitating the easy-development of applications to be used in vehicular-network

environments while being totally agnostic of the scenario in which is being executed.

On the Chapter 5 we will evaluate our solution and present results.

68

5
Evaluation

In order to evaluate the developed solution, several tests were performed. All tests were per-

formed in a real scenario with a controlled environment with the objective to assess both the platform

performance, functionality and viability. The following sections detail the several steps and decisions

towards evaluating the proposed solution, starting by the definition of the developed applications and

used equipment and software in section 5.1 and 5.3. Test objectives and goals are defined in section

5.2. After that the test scenarios are explained in section 5.4 followed by the results presentation and

discussion in section 5.5.

5.1 Developed Applications

A set of applications were created in order to be used in the controlled scenario in a situation where

a vehicle has an accident and triggers the usage of a application that will request for Emergency

Vehicles dispatch to its location.

Five (5) applications were developed, each one with different behaviors and network requirements:

1. RequestAssistance - Application that every time a vehicle set its status to Accident1, triggers

a broadcast request to the nearby RSU in order to have emergency vehicles sent to its location.

2. VehicleStream - A vehicle streams video in a broadcast fashion to the RSU nearby. RSU

answers with an ACK for every video packet received. Video is streamed at 400 kbps.

3. Chat - Provides bidirectional text communication with the surrounding vehicles through the RSU.
1Note that the status of a vehicle can be changed in 3 different fashions as mentioned in section 3.5. In this test, the method

User-Input was used.

69

4. Points of Interest (POI) - The RSU broadcasts information regarding the nearby POI (Restau-

rants, Hotels and Gas Station locations) and other relevant local information, such as the max-

imum speed limit on that road. POI messages are broadcasted at 1 Hz. When on a vehicle

compares the current speed with the received information regarding the maximum speed al-

lowed on that road and displays warning if exceeding such velocity. This application creates

one service and uses another default service, depending on the node type:

• RSU - Creates a service to pinpoint the distance to the nearby hotels and restaurants

through a remote database call.

• Vehicle - Uses system service to get current vehicle speed.

5. RSUStream - RSU streams video to all the surrounding vehicles in a broadcast fashion at 300

kbps. Vehicle answers with a ACK for every video packet received.

The aforementioned applications cover situations in which the vehicle is the main source of both

high and medium traffic volume generation and also situations where the RSU, not the station in need

of using the safety application, is the most relevant traffic volume generator of the network. Table 5.1

depicts the application type and class, following the classification adopted in this document, already

mentioned in section 2.1.7.

Table 5.1: Developed Application’s classification

Application Type Application Class

RequestAssistance Safety Assistance
VehicleStream Comfort Entertainment

Chat Comfort Entertainment
POI Comfort Information

RSUStream Comfort Entertainment

Table 5.2 shows the default services available on the platform that are used by the developed

applications. By analyzing this table it is possible to understand that although applications have

different purposes, they end up requiring fairly the same services when being developed. When the

needed services are not available they can create their own services, or compose existing ones.

5.2 Tests Description

Several tests were performed in order to evaluate several aspects of the proposed platform such

as:

• Functionality and feasibility of the proposed platform for application development in vehicular

environments.

• Application’s performance impact of applying the several functionalities of the development plat-

form.

70

Table 5.2: Platform services used by the developed applications

G
et

N
od

eI
nf

or
m

at
io

n

G
et

P
la

tf
or

m
S

ta
tu

s

G
et

N
od

eT
yp

e

G
et

N
ei

gh
bo

ur
sI

nf
o

C
re

at
es

O
w

n
S

er
vi

ce

RequestAssistance Yes Yes No No No
VehicleStream No Yes No No No

Chat No Yes Yes No No
POI Yes No Yes No Yes

RSUStream Yes No Yes No No

(a) Test-bed map location

(b) Test-bed environment

Figure 5.1: Test-bed location and overall position of the communication nodes

• Proposed platform performance

A controlled scenario was then prepared in order to evaluate and test the proposed solution focus-

ing on achieving the aforementioned test objectives. The first scenario consisted of a simple setup

of a Vehicle Station and a RSU placed at a distance of 20 meters of each other, in a road with low

frequency of passing vehicles. During all the performed tests, a average frequency of 5 vehicles per

minute was registered. The tests were performed during 5 week days, on the period of 1:00 PM to

7:00 PM, in the region of Taguspark, Oeiras, Portugal. Figure 5.1 depicts the location and placement

of both stations in the controlled scenario test-bed.

5.3 Used Software and Equipment

Both node types, vehicle and roadside-unit were equipped with a ASUS eeePC equipment with

Intel Atom running at 1600 MHz and 2 GB of RAM running a Lubuntu distribution with Linux kernel

3.5.5. This distribution was chosen due to its low system requirements facilitating the usage of all

the developed work in systems with limited capacities. For communication purposes the vehicle was

equipped with a SMCWUSBS-N3 802.11b/g/n wireless pen, while for the RSU was used a high-gain

PowerLink Ultra High Power, both running IEEE 802.11n and with chipset chipset rt3070.

As sensors, the vehicle was equipped with:

71

(a) RSU node equipment (b) Vehicle node equipment

Figure 5.2: Equipment used in both RSU and Vehicle nodes

• Holux M-1200E GPS USB Dongle with sensitivity up to -150 dBm and a L1 1575.42 MHz

receiver, to determine vehicles position.

• Soliport ELM 327 OBD2 diagnostic scanner accessed by Bluetooth, to retrieve in-vehicle

sensor information such as current speed and RPM, Fuel system status, Intake air temperature

and others.

The developed platform was installed in both vehicle and RSU stations and configured using the

XML configuration file of each node-type, as described in section 4.4.1. Listing 5.1 depicts one

example of a platform configuration file.

Listing 5.1: Platform XML configuration file example

<vnetplat>
<platform>

<name>Application Development Platform 2013 - Vehicle 1</name>
<type>Vehicle</type>
<publishFrequency>1</publishFrequency>
<sensingFrequency>1</sensingFrequency>
<ID>53-20-QG</ID>
<IP>192.168.0.1</IP>
<version>1.0</version>
<description>Platform Description</description>
<defaultServices>

GetNeighboursInfo;
GetNodeType;
GetPlatformStatus;
GetNodeInformation;

</defaultServices>
</platform>

</vnetplat>

In order to gather information regarding the generated and received traffic volume as well as to

interpret application’s behavior in the several tests, TCPDump packet analyzer was used.

Figure 5.2 depicts the vehicle and RSU nodes equipment, as well as the equipment positioning for

the performed tests.

5.4 Test Scenarios

The developed application sets were first tested in a scenario with one vehicle and one RSU. The

controlled scenario situation consisted of a 30 seconds experience where at second 15 the vehicle

72

has an accident and triggers the RequestAssistance application.

In order to speed the testing procedures, spare additional costs with gas refueling and avoid possi-

ble material damage in simulating an accident, we forced GPS and speed values to the Call Manager

module, that assumed the data as received from the sensors provided by the support platform. The

dummy data forced into the platform was retrieved from a one-time experience where the objective

was only to retrieve the information gathered by the sensors. On the first 15 seconds of the test the

vehicle is traveling at an average of 50 km/h and at the 15th second is suffers a sudden stop, staying

still until the end of the test.

The developed applications were combined and executed in the controlled scenario 10 times. To

evaluate the overall performance of the proposed solution, 2 different metrics were taken into account:

1. Generated and received traffic volume by each node.

2. Response-time of the RequestAssistance application.

The traffic volume was used to determine the average generated and received traffic on the net-

work for the several applications on the several tested scenarios. With this it is possible to have a

clear idea of the application’s behavior and the impact that has on the RequestAssistance application

performance.

ResquestAssistance response-time was used in order to determine how relative priority schedul-

ing can affect safety-related services performance.

Applications were combined in such way, so that it would be possible to evaluate the situations

where the node having the accident was the node producing the majority of the network traffic as well

as the opposite situation, where another node was generating the vast majority of traffic. Therefore,

the below mentioned application sets were developed and tested:

• Vehicle as generator of the majority of network traffic:

– RequestAssistance + VehicleStream

– RequestAssistance + Chat

– RequestAssistance + VehicleStream + Chat

• RSU as generator of the majority of network traffic:

– RequestAssistance + POI

– RequestAssistance + RSUStream

– RequestAssistance + POI + RSUStream

Also, the tests were grouped in such a way that it was possible to evaluate situations where there

was a considerable amount of generated and received traffic value and situations where the generated

and received traffic volume had lower values.

Three (3) different test-scenarios were considered for the tests in order to evaluate different parts

of the architecture. Table 5.3 depicts the variations of the several test-scenarios.

73

Table 5.3: Test-scenarios architecture configuration variations

Scenario ARM scheduling CommManager scheduling ESPD protocol
A No No inactive
B No Yes active
C Yes Yes active

The first scenario aims to test the situation where scheduling is not used, simulating a situation

where the fact of a vehicle being in a emergency or accident situation does not imply application

prioritization schemes to work. Scenario B, by activating the scheduling of the CommManager, that

aims to apply the priority rules to all received information based on the current state and application

type, will let us comprehend how such scheduling for the received data affects the overall behavior

of applications and services. Finally, scenario C represents the case where the full functionality of

application flow control, by using all scheduling mechanisms, of the proposed solution is working. In

the last 2 scenarios, the ESPD protocol is active, meaning that all vehicles or RSUs within the ROP

will change their state to comply with the region status, normal situation, vehicle with emergency or

vehicle(s) involved in a accident.

Note that, for this evaluation the scheduling decision for not priority traffic adopted was full discard

without any caching of content.

5.5 Test Results Presentation and Discussion

We will now present the results obtained from the tests performed in our controlled scenario.

Despite the fact that we used a simple architecture the results allowed us to draw valuable conclusions

regarding the options we took on the development of our architecture.

5.5.1 Traffic Volume

Figures 5.3 and 5.4 depict the average traffic volume for the several test-scenarios with the different

application-sets. The first one, details the applications where the vehicle was the main generator of

traffic in the network while the second the situation where another node, the RSU, was the main

traffic-generator of the network. Bear in mind that Test Scenario A represents the situation were no

scheduling, messaging plausibility check or application priority rules are applied, Test Scenario B

the situation where scheduling is applied only on the receiving of messages and the VADM status

propagation protocol, ESPD is active and finally Test Scenario C, where the full functionality of the

VADM platform is active.

The tests depicted in figure 5.3 represent the situation where the vehicle is the main source of

traffic generation in the network and we will now detail each one of the plots:

• 5.3 (a) - Since no scheduling is active no actions are made in application’s behavior when a

accident happens and safety-applications are functioning. One may see that the generated and

received traffic for the remaining comfort-related applications was not altered.

74

• 5.3 (b) - In this scenario the scheduler is only active to inbound traffic. Meaning that all the traffic

was still generated to the network but the VADM platform discards the incoming traffic to spare

computational resources. One may notice that traffic generated by comfort-related applications

was still making is way to the network. Note that, this behavior applies to the remaining nodes

that, by receiving the notification to change their status, also discard the receiving traffic.

• 5.3 (c) - This plot represents the situation where all the scheduling mechanisms and ESPD

protocol are active. As one may see, both the generation and receiving of traffic if stopped in

the moment a accident is detected and such notification is spread to all nodes, therefore giving

priority only to safety-related applications.

This results shown the situation where the vehicle was the node generating the most amount

of traffic to the network. The larger percentage traffic generation was made by the Video stream

application and despite the fact that the results of the received traffic for that application - remind that

every time a RSU receives a Video Stream packet, responds with a ACK - are close to the generated

traffic visually, the Y axis of the plot is on a logarithmic scale, therefore not depicting visually the

percentage difference between generated and received traffic.

Figure 5.4 shows the situation where the main traffic generator node on the network was not the

vehicle that had the accident. This situation tries to illustrate the effect of needing to share and warn

the nodes in the vicinity that one vehicle is in a Accident or Emergency situation, and that all safety-

related applications should have priority in both resources usage and network occupation. Note that

the applications in use in this test scenario are different from the ones used in the previously described

test scenario, since we needed to assess applications that had the RSU as the main traffic generator.

We will now analyze in detail the results of each plot:

• 5.4 (a) - This plot shows that, as the plot depicted in 5.3 (a), no scheduling is activated when

the accident happens, fairly at second # 15.

• 5.4 (b) - In this scenario, it is possible to see the effect of spreading the VADM status alter-

ation need through the network, using the ESPD protocol. One may see that, after the vehicle

have the accident, the ESPD message reached the RSU and it stopped all running comfort

applications. However one may notice that in some situations the responses of the RequestAs-

sistance application arrived only after the receiving of comfort-related applications information

stopped. Also, please note that the traffic generation on the RSUStream application stopped

only because it represents the ACKs that are sent for each packet received.

• 5.4 (c) - This last plot, shows that when all the scheduling mechanisms are functioning, the

both receiving and sending of applications are stopped, but in this situation, and comparing with

the previous, one may notice the difference between the time that the vehicle stopped accepting

the receiving of information and the time where there was a reduction on the received traffic.

This is due to the fact that since there is a large amount of traffic being received, the commu-

nication technologies buffers take time to deliver all the buffered information. Nevertheless, it

75

is possible to see that the number of cases where the RequestAssistance application received

the final response was lower than the previous scenario. This is because, since the scheduling

on the sending of information is applied, on the RSU side, after the status is altered, only the

information from safety-related applications will be sent to the network.

Table 5.4 discloses and summarizes the traffic volume reduction results obtained by using the

scheduling mechanisms and the full platform functionality. Note that the node used as reference is

the vehicle triggering the safety application. Refer to Appendix 2 for the average traffic volume for all

the combined application’s sets used in the controlled scenario.

Table 5.4: Traffic volume reduction of the several application’s sets by using VADM application level scheduling

Applications Traffic Volume Difference
Scenario B Scenario C

Generated Received Generated Received
RequestAssistance + VehicleStream -0.111 % -55.956 % -65.473 % -56.784 %
RequestAssistance + Chat -14.463 % -48.804 % -70.925% -53.575 %
RequestAssistance + VehicleStream + Chat -1.508% -55.825 % -64.213 % -55.971 %
RequestAssistance + POI -8.207 % -49.119 % -16.644 % -61.818 %
RequestAssistance + RSUStream -58.480 % -4.671 % -58.222 % -46.460 %
RequestAssistance + RSUStream + POI -56.407 % -8.228 % -55.449 % -42.932 %

The results regarding the traffic volume generated and received by the applications in the several

situations shown that:

1. By using the scheduling based on the VADM platform status, it is possible to reduce the non-

relevant traffic in the network for safety situations.

2. When scheduling is only applied on the receiving data, at the CommManager, there is still non-

relevant application data being transmitted to the network. Therefore, the wireless channel is

still being flooded with non-relevant information that, by comparing with the results presented

previously, prejudice the safety-application response-time for situations where the node using

that application is not the main network-traffic generator.

3. The resulting reduction in the generated traffic is mostly due to the discard of information pro-

duced by comfort applications that in a Accident or Emergency scenario, have less priority in

access the platform and the available means.

5.5.2 RequestAssistance Response-Time

Figure 5.5 depicts the response-time of the RequestAssistance when in combination with several

other applications, as described previously in section 5.4.

By analyzing the results regarding the response-time of the RequestAssistance application in the

various situations, one can conclude that:

1. When no scheduling mechanisms are used in safety situations, the safety-application response-

time is overly higher for all the application sets combinations.

76

(a) Traffic volume for Test Scenario A

(b) Traffic volume for Test Scenario B

(c) Traffic volume for Test Scenario C

Figure 5.3: Average traffic volume generated and received for tests using applications RequestAssistance, Ve-
hicleStream and Chat

77

(a) Traffic volume for Test Scenario A

(b) Traffic volume for Test Scenario B

(c) Traffic volume for Test Scenario C

Figure 5.4: Average traffic volume generated and received for tests using applications RequestAssistance,
RSUStream and POI

78

Figure 5.5: RequestAssistance average response-time comparison with several application’s sets

2. When the CommManager scheduling mechanism is used, meaning that all received data that is

not relevant for the current node status is discarded, the response-time of the safety-application

is reduced.

3. When the full feature of the solution is functioning, meaning that all the scheduling mechanisms

and VADM status sharing protocol are active, the safety-application response-time is only en-

hanced when the node in need of using such safety service, is also the node generating the

most considerable amount of traffic in the network.

4. When all scheduling mechanisms are activated, for the situations where the node using the

safety-application is not the main generator of network-traffic, the response-time slightly in-

creases due to wireless channel being occupied with applications with traffic volume generation,

and therefore, the information to change the platform state and with that, start the scheduling

procedures, takes more time reaching the other node.

5. Also, it is possible to conclude that applications that have low requirements regarding the band-

width, have a response-time similar to the response-time used as benchmark due to its low

traffic volume generation.

One should bear in mind that the results here presented, are obtained by using as a scheduling

policy that discards without caching or storing all the non-relevant content. Other policies may be ap-

plied, but the results show that when no non-relevant information is sent to the network, the efficiency

of the safety-applications, or other relevant services running, is improved.

5.6 Chapter Summary

On this chapter we described the developed test-bed in order to evaluate both the functionality,

performance and improvements achieved with the proposed solution. Despite the simple network

topology, several extrapolations for more complex situations can be undertaken from the presented

results due to the extreme-case application sets used.

The main focus of the evaluation tests performed was pointing in the direction of evaluating the

performance of safety-applications in safety-related situations such as emergency or accident sce-

narios. Such performance was evaluated with the combination of several other types of applications

79

that could be in use by the several participants of the vehicular network, mostly applications that are

not relevant in safety-related scenarios.

The results shown that, by using our solution, the performance of safety-applications is increased2

up into 55.91% for safety-related situations, by using a priority-based mechanisms that takes into

account the relevance of one or more applications for the current road or traveling scenarios.

Even by only using two (2) nodes in the network, we created a complex and varied situation of in-

teraction between vehicles creating extreme cases of network and platform occupation with the video

streaming applications. With this, we believe that the results here presented are valid for scenarios

with more nodes in the network.

Comfort-applications were not developed having in mind the current execution state, meaning that

they are fully agnostic of the scenario and situation in where they are executing. All the application

management and prioritization is performed by the our platform.

Regarding the tests, some hurdles were felt while performing the field-test experiments, being

worth of mention:

1. Despite the fact that all the execution and logging is automated, performing tests still needs

human interaction to launch all the scripts in time and reset parameters on the several iterations

of the tests. At least 2 individuals were needed to perform the tests, one in the vehicle and

one in the RSU. Both individuals were also responsible for taking notes on external events that

happened while during the tests (e.g. note the number and type of passing vehicles).

2. By having persons running the tests, those were subject to human errors that were only mini-

mized when already prepared individuals were helping on the tests

3. Laptops battery-life lasted an average 4 hours on the vehicle node and roughly 2 and a half

hours on the RSU due to the high-power consumption antenna in use. Despite the fact that 1

extra battery was available, tests took longer in the process of changing the battery of the RSU

node and going back to charge all batteries when all were drained out of energy.

4. Some tests were delayed due to unpredictable rainy weather conditions.

Also this experiment was based in using adapted application-level implementations of a support

platform and traditional off-the-shelf equipment. Despite the fact that the developed support platform

supported the usage of 2 interfaces to simulate different channels for comfort and safety-related ap-

plications as available in the IEEE 802.11p standard, for logistic reasons we were only able to test

using one interface in each node, being the multiplexing of applications done by sending information

to different transport layer port ranges. However, since the available bandwidth was of 150 Mbit/s, it

was never fully occupied, still making the results here presented relevant.

Of course, since Vehicular-network oriented communication technologies such as IEEE802.11p

supply different channels for both comfort and safety-applications, results should show some improve-

ments when in use of several applications. Also 802.11p supplies some low-level priority mechanisms
2Safety-applications performance improvement is measured by taking into account the response-time reduction.

80

for applications. Nevertheless, such supporting technologies do not bear in mind the current execu-

tion situation, meaning that all the scheduling mechanisms and architecture of the proposed solution

remain relevant.

81

82

6
Conclusions and Future Work

In this thesis, our goal was to facilitate the development of applications to be used in vehicular com-

munication scenarios. Intelligent Transportation Systems (ITS) had its inception and expansion based

on the development of several communication technologies and protocols of vehicular networks. With

such, the number of possible services and applications that could be developed for such systems is

numerous. Despite the fact that standardization for a application development platform is available,

no well-defined implementation or support architecture structure is available. With that, the applica-

tion development process becomes dependent of the developers and manufacturers design options,

creating barriers to the easy and widespread application development. Another problem found is that

applications are heavily dependent on the scenario in which they are executing and some end up

being more plausible than others depending upon the context in which the vehicle is currently.

Having the above in mind, we started our work by evaluating the available standardization ini-

tiatives and projects as well as the vehicular-oriented technologies available. Also, we focused on

understanding the several applications and services that can be used in vehicular-communication

scenarios, evaluating their requirements and common characteristics.

After the primary evaluation of the State of the Art, we started defining our architecture, that by

coping with the available standardization work done, extended its functionalities in order to create

platform to facilitate the easy development of applications. Therefore the main contributions of this

work were:

1. A API for an agnostic application-development process that decouple applications implementa-

tion from both the underlying platform and also the context in which the vehicle is currently, to

be used freely by developers.

2. Development of a modular and decoupled architecture to facilitate the integration between ap-

83

plications and vehicular-communication technologies and systems.

3. Development of a platform that can organically adapt itself and pose adaptations in the network

towards giving priority to applications and services whose goal is the overall improvement of

road users safety.

4. Extension and reuse of the functionalities offered by the Facilities Layer of the standardized ITS

reference architecture.

The authors detailed thoroughly the several aspects of both architecture design and implementa-

tion process of the proposed platform, that presents a solution to be used in both vehicles and RSUs

for fostering the vehicular-application development process. Since we based the full development

process in the available standards and in open-source solution, creating a open-source solution as

well, we created a modular solution that is mainly important because of the concepts and basic struc-

ture, opening now the possibility of future enhancements of each module. The VADM architecture

suffered several changes during the development process of this thesis, and several of the decisions

presented in this document are result of extensive tries towards achieving the solution that coped with

the most of the problems we were addressing. One of the important changes that made its way until

the final architecture was the need to creation of a protocol that spread the need of platform status

adaptation in a epidemic fashion.

After the design and development process, we evaluated our solution in a controlled scenario

where it was possible to see that, by using our platform to coordinate application’s execution having as

priority safety applications, the performance of the later was generally improved. The scenario aimed

to simulate a situation where a vehicle has an accident and there is a sudden need of giving priority to

safety-related applications, in particular an application that is going to request for Emergency Vehicles.

We developed a set of applications with different requirements and evaluated the impact of each one

of them. Results shown that by using the several scheduling mechanisms and also the developed

ESPD protocol for sharing of the platform status within a region of plausibility, the performance of

the safety-related application was enhanced largely. This posed a positive turn on the development

process of this thesis since the evaluation performed, confirmed the validity and plausibility of the

design options we have made when developing the architecture.

Due to several logistic hurdles found while doing the tests and evaluating the platform, one was not

possible to test features of the platform such as the adaptation of modules behavior, in particular the

Call Manager getting of data frequency and Services publishing of information frequency. Neverthe-

less, the results of the platform, without any changes on the modules behavior was still very positive

and any change and improvement in modules behavior will most likely enhance and never prejudice

the results achieved.

With our architecture we also created the possibility of future extensions and enhancements of

the several parts that can help developing new approaches towards facilitating the application devel-

opment process while always giving priority to applications and services that can help enhancing the

overall security and safety of road users.

84

As future work, we would like to extend the controlled scenarios tests to a more complex network

topology until reaching the stage of taking the tests to a real-scenario in several communicating nodes

and high degree of vehicle’s behavior unpredictability. Moreover, we would like to test the platform

with using vehicular-communication oriented technologies such as the IEEE 802.11p that offers ad-

ditional features that can enhance and improve the results achieved by using our solution. After such

extensive testings, one should start addressing issues such as security, privacy and scalability that,

when developed and implemented, can taylor the possibility for our work to reach an extensive and

general use by both application developers, manufacturers and road users.

85

86

Bibliography

[1] A. Amanna, “Overview of IntelliDrive / Vehicle Infrastructure Integration (VII),” no. Vii, 2009.

[2] A. Dahiya and R. K. Chauhan, “A Comparative study of MANET and VANET Environment,”

DBMS, vol. 2, no. 7, pp. 87–92, 2010.

[3] M. Kafsi, P. Papadimitratos, O. Dousse, T. Alpcan, and J.-p. Hubaux, “VANET Connectivity Anal-

ysis,” IEEE Workshop on Automotive Networking and Applications, 2008.

[4] J. Jakubiak and Y. Koucheryavy, “State of the Art and Research Challenges for VANETs,” 5th

IEEE Consumer Communications and Networking Conference, pp. 912–916, 2008.

[5] A. Festag, G. Noecker, M. Strassberger, A. Lübke, and B. Bochow, “NoW – Network on Wheels:

Project Objectives, Technology and Achievements,” International Workshop on Intelligent Trans-

portation (WIT), no. March, pp. 211–216, 2008.

[6] T. Kosch, I. Kulp, M. Bechler, M. Strassberger, B. Weyl, and B. M. W. Group, “Communication

Architecture for Cooperative Systems in Europe,” IEEE Communications Magazine, no. May,

2009.

[7] ETSI EN 302 665, “Intelligent Transport Systems (ITS); Communications Architecture,” pp. 1–44,

2010.

[8] P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular com-

munication systems: Enabling technologies, applications, and future outlook on intelligent trans-

portation,” IEEE Communications Magazine, vol. 47, no. 11, pp. 84–95, Nov. 2009.

[9] Y. Qian and N. Moayeri, “Design of Secure and Application-Oriented VANETs,” VTC Spring 2008

- IEEE Vehicular Technology Conference, pp. 2794–2799, May 2008.

[10] L. S. MIHAIL and M. KIHL, “Inter-vehicle Communication Systems: A Survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 21, no. 1, pp. 111–111, Jun. 2008.

[11] M. Jerbi, P. Marlier, and S. M. Senouci, “Experimental Assessment of V2V and I2V Commu-

nications,” IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, pp. 1–6, Oct.

2007.

[12] K. Dar, M. Bakhouya, J. Gaber, and M. Wack, “Wireless Communication Technologies for ITS

Applications,” IEEE Communications Magazine, no. May, pp. 156–162, 2010.

87

[13] M. Sawahashi, Y. Kishiyama, H. Taoka, M. Tanno, and T. Nakamura, “Broadband radio access:

LTE and LTE-advanced,” 2009 International Symposium on Intelligent Signal Processing and

Communication Systems (ISPACS), no. Ispacs, pp. 224–227, Dec. 2009. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5383862

[14] M. Wellens, B. Westphal, and M. Petri, “Performance Evaluation of IEEE 802 . 11-based WLANs

in Vehicular Scenarios,” Performance Evaluation, pp. 1167–1171, 2007.

[15] R. A. Uzcátegui and G. Acosta-Marum, “WAVE : A Tutorial,” no. May, pp. 126–133, 2009.

[16] G. Rémy, S.-m. Senouci, F. Jan, and Y. Gourhant, “LTE4V2X : LTE for a Centralized VANET

Organization,” IEEE Globlecom, pp. 0–5, 2011.

[17] R. Guillaume, S.-m. Senouci, and Y. Gourhant, “LTE4V2X - Impact of High Mobility in Highway

Scenarios,” 2011.

[18] S. Eichler, C. Networks, and T. U. München, “Performance Evaluation of the IEEE 802 . 11p

WAVE Communication Standard,” pp. 2199–2203, 2007.

[19] T. I. M. O. K. Osch, C. H. J. A. Dler, S. T. E. Ichler, and C. H. S. Chroth, “The Scalability Problem

of Vehicular Ad Hoc Networks and How to Solve IT,” no. October, pp. 22–28, 2006.

[20] S. Gr and M. Petri, “Performance Evaluation of IEEE 1609 WAVE and IEEE 802 . 11p for Vehic-

ular Communications,” pp. 344–348, 2010.

[21] H. Hartenstein and K. Labertaux, “VANET - Vehicular Applications and Inter-Networking Tech-

nologies,” 2010.

[22] Y. Toor, P. Mühlethaler, A. Laouiti, and A. de La Fortelle, “Vehicle Ad Hoc Networks: Applications

and Related Technical Issues,” pp. 74–88, 2008.

[23] R. Karim and C. Science, “VANET : Superior System for Content Distribution in Vehicular Net-

work Applications,” pp. 1–8, 2008.

[24] K. Ioannis and P. Poulicos, “A Map Matching Algorithm for Car Navigation Systems with GPS

Input,” pp. 1–4, 2007.

[25] R. Simmons, B. Browning, and V. Sadekar, “Learning to Predict Driver Route and Destination

Intent,” IEEE Intelligent Transportation Systems Conference, pp. 127–132, 2006.

[26] T. Mishra, D. Garg, and M. M. Gore, “A Publish/Subscribe Communication Infrastructure for

VANET Applications,” IEEE Workshops of International Conference on Advanced Information

Networking and Applications, pp. 442–446, Mar. 2011.

[27] F. Soldo, C. Casetti, C.-f. Chiasserini, P. Torino, and P. Chaparro, “Streaming Media Distribution

in VANETs,” IEEE Globlecom, pp. 1–6, 2008.

88

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5383862

[28] N.-W. Lo and H.-C. Tsai, “Illusion Attack on VANET Applications - A Message Plausibility Prob-

lem,” IEEE Globecom Workshops, pp. 1–8, Nov. 2007.

[29] D. Kelley, “DSRC Implementation Guide A guide to users of SAE J2735 message sets over

DSRC.”

[30] D. Mundy and D. W. Chadwick, “An XML Alternative for Performance and Security: ASN.1,”

It Professional, vol. 6, no. 1, 2004. [Online]. Available: http://dx.doi.org/10.1109/MITP.2004.

1265540

[31] C. L. Robinson, D. Caveney, L. Caminiti, G. Baliga, K. Laberteaux, and P. R. Kumar,

“Efficient Message Composition and Coding for Cooperative Vehicular Safety Applications,”

pp. 3244–3255, 2007. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=

4358481&tag=1

[32] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A scalable location service

for geographic ad hoc routing,” Proceedings of the 6th annual international conference on

Mobile computing and networking - MobiCom ’00, pp. 120–130, 2000. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=345910.345931

[33] K. Michael, “A Reactive Location Service for Mobile Ad Hoc Networks,” 2002.

[34] W. Kieß, H. Füß ler, J. Widmer, and M. Mauve, “Hierarchical location service for mobile ad-hoc

networks,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 8, no. 4, pp.

47–58, Oct. 2004. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1052871.1052875

[35] T. M. Bohnert, S. A. P. Ag, and M. Schulze, “PRE-DRIVE C2X Definition of PRE-DRIVE C2X /

COMeSafety architecture framework,” 2008.

[36] C. Oh, E. Jeong, K. Kang, and Y. Kang, “Hazardous Driving Event Detection and Analysis System

in Vehicular Networks (HEAVEN): Methodology and Field Implementation,” vol. TRB 2013 A, pp.

1–18, 2013.

[37] T. J. Triggs and W. G. Harris, “Reaction time of drivers to road stimuli,” no. June 1982.

[38] N. Vaidya, X. Yang, J. Liu, and F. Zhao, “A vehicle-to-vehicle communication protocol for

cooperative collision warning,” The First Annual International Conference on Mobile and

Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004., pp. 114–123.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1331717

[39] M. Torrent-Moreno, P. Santi, and H. Hartenstein, “Fair Sharing of Bandwidth in VANETs,” Vehic-

ular Ad-hoc Networks, 2005.

[40] D. Jiang and L. Delgrossi, “IEEE 802 . 11p : Towards an International Standard for Wireless

Access in Vehicular Environments,” pp. 2036–2040, 2008.

89

http://dx.doi.org/10.1109/MITP.2004.1265540
http://dx.doi.org/10.1109/MITP.2004.1265540
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4358481&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4358481&tag=1
http://portal.acm.org/citation.cfm?doid=345910.345931
http://portal.acm.org/citation.cfm?doid=1052871.1052875
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1331717

90

A
.1 Technologies and Applications Characterizations

Table 1: Wireless Communication Technologies characteristics and features

Access Communication Directionality Latency Data Range Transmission Mobility Operating
Technology Mode Rate Mode Band

GPRS / V2I and V2Vi Both-ways 1.5 - 3.5 sec 80 - 384 kb/s 10 km Uni / Geo Yes 0.8 - 1.9 GHz
UMTS
LTE V2I and V2Vi Both-ways 5 ms 300 Mb/s ∼ 1 km Uni / Geo Yes 800 - 2600 MHz

WiMAX I2V Both-ways ∼110 ms 1 - 32 Mb/s 15 km Uni / Geo Yes 5.x GHz
DVB/DAB V2I and V2Vd One-way 10 - 30 sec ∼1 Mb/s 40 km Broad Yes 6 - 8 GHz

WLAN V2I and V2Vd Both-ways ∼46ms 54 - 600 Mb/s 250 m Uni Limited 2.4 - 5.2 GHz
MMWAVE V2I and V2Vd Both-ways ∼150µs ∼1 Gb/s ∼ 10 m Uni Limited 60 - 64 GHz
Infrared V2I and V2Vd Both-ways Very-low ∼1 Mb/s ∼ 10 m Uni No 2.6 GHz
ZigBee V2Vd Both-ways ∼16 ms 20 - 250 kb/s ∼ 100 m Uni Yes 2.4 - 2.5 GHz

Bluetooth V2I Both-ways ∼100 ms 1 - 3 Mb/s ∼ 10 m Uni Limited 2.4 GHz
DSRC/WAVE V2I and V2Vd Both-ways 200µs ∼6 Mb/s ∼ 1 km Uni Yes 5.8 - 5.9 GHz

CALM M5 V2I and V2Vd Both-ways 200µs ∼6 Mb/s ∼ 1 km Uni Yes 5 - 6 GHz

1

.2 J2735 Pyasn.1 Implementation and ASN.1 defition

Listing 1: J2735 ASN.1 Notation and Pyasn1 implementation

DSRCmsgID ::= ENUMERATED
class DSRCmsgID(univ.Enumerated):

namedValues = namedval.NamedValues(
(’reserved’,0),
(’alaCarteMessage’,1),
(’basicSafetyMessage’,2),
(’basicSafetyMessageVerbose’,3),
(’commonSafetyRequest’,4),
(’emergencyVehicleAlert’,5),
(’intersectionCollisionAlert’,6),
(’mapData’,7),
(’nmeaCorrections’,8),
(’probeDataManagement’,9),
(’probeVehicleData’,10),
(’roadSideAlert’,11),
(’rtcmCorrections’,12),
(’signalPhaseAndTimingMessage’,13),
(’signalRequestMessage’,14),
(’signalStatusMessage’,15),
(’travelerInformation’,16)
)

subtypeSpec = univ.Enumerated.subtypeSpec + constraint.SingleValueConstraint
(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

MsgCount ::= INTEGER (0..127)
class MsgCount(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,127)

TemporaryID ::= OCTET STRING (SIZE(4))
class TemporaryID(univ.OctetString):

subtypeSpec = constraint.ValueSizeConstraint(4,4)

DSecond ::= INTEGER (0..65535)
class DSecond(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,65535)

Latitude ::= INTEGER (-900000000..900000001)
class Latitude(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint
(-900000000,900000001)

Longitude ::= INTEGER (-1800000000..1800000001)
class Longitude(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint
(-1800000000,1800000001)

Elevation ::= OCTET STRING (SIZE(2))
-- 1 decimeter LSB (10 cm)
-- Encode elevations from 0 to 6143.9 meters
-- above the reference ellipsoid as 0x0000 to 0xEFFF.
-- Encode elevations from -409.5 to -0.1 meters,
-- i.e. below the reference ellipsoid, as 0xF001 to 0xFFFF
-- unknown as 0xF000
class Elevation(univ.OctetString):

subtypeSpec = constraint.ValueSizeConstraint(2,2)

PositionalAccuracy ::= OCTET STRING (SIZE(4))
-- And the bytes defined as folllows

-- Byte 1: semi-major accuracy at one standard dev
-- range 0-12.7 meter, LSB = .05m
-- 0xFE=254=any value equal or greater than 12.70 meter
-- 0xFF=255=unavailable semi-major value

-- Byte 2: semi-minor accuracy at one standard dev
-- range 0-12.7 meter, LSB = .05m
-- 0xFE=254=any value equal or greater than 12.70 meter
-- 0xFF=255=unavailable semi-minor value

2

-- Bytes 3-4: orientation of semi-major axis
-- relative to true north (0˜359.9945078786 degrees)
-- LSB units of 360/65535 deg = 0.0054932479
-- a value of 0x0000 =0 shall be 0 degrees
-- a value of 0x0001 =1 shall be 0.0054932479degrees
-- a value of 0xFFFE =65534 shall be 359.9945078786 deg
-- a value of 0xFFFF =65535 shall be used for orientation unavailable
-- (In NMEA GPGST)
class PositionalAccuracy(univ.OctetString):

subtypeSpec = constraint.ValueSizeConstraint(4,4)

TransmissionState ::= ENUMERATED {
neutral (0), -- Neutral, speed relative to the vehicle alignment
park (1), -- Park, speed relative the to vehicle alignment
forwardGears (2), -- Forward gears, speed relative the to vehicle alignment
reverseGears (3), -- Reverse gears, speed relative the to vehicle alignment
reserved1 (4),
reserved2 (5),
reserved3 (6),
unavailable (7), -- not-equipped or unavailable value,
}
class TransmissionState(univ.Enumerated):

namedValues = namedval.NamedValues(
(’neutral’,0),
(’park’,1),
(’forwardGears’,2),
(’reverseGears’,3),
(’reserved1’,4),
(’reserved2’,5),
(’reserved3’,6),
(’unavailable’,7)
)

subtypeSpec = univ.Enumerated.subtypeSpec + constraint.SingleValueConstraint
(0,1,2,3,4,5,6,7)

Speed ::= INTEGER (0..8191) -- Units of 0.02 m/s
-- The value 8191 indicates that
-- speed is unavailable
class Speed(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,8191)

TransmissionAndSpeed ::= OCTET STRING (SIZE(2))
ADAPTATION :: USED AS A SEQUENCE
-- Bits 14˜16 to be made up of the data element
-- DE_TransmissionState
-- Bits 1˜13 to be made up of the data element
-- DE_Speed
class TransmissionAndSpeed(univ.Sequence):

componentType = namedtype.NamedTypes(
namedtype.NamedType(’state’,TransmissionState()),
namedtype.NamedType(’speed’,Speed())
)

Heading ::= INTEGER (0..28800)
-- LSB of 0.0125 degrees
-- A range of 0 to 359.9875 degrees
class Heading(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,28800)

SteeringWheelAngle ::= OCTET STRING (SIZE(1))
-- LSB units of 1.5 degrees.
-- a range of -189 to +189 degrees
-- 0x01 = 00 = +1.5 deg
-- 0x81 = -126 = -189 deg and beyond
-- 0x7E = +126 = +189 deg and beyond
-- 0x7F = +127 to be used for unavailable
class SteeringWheelAngle(univ.OctetString):

subtypeSpec = constraint.ValueSizeConstraint(1,1)

AccelerationSet4Way ::= OCTET STRING (SIZE(7))
-- composed of the following:
-- SEQUENCE {
-- long Acceleration, -x- Along the Vehicle Longitudinal axis

3

-- lat Acceleration, -x- Along the Vehicle Lateral axis
-- vert VerticalAcceleration, -x- Along the Vehicle Vertical axis
-- yaw YawRa
-- }
class AccelerationSet4Way(univ.OctetString):

TODO Data Frame to implement
subtypeSpec = constraint.ValueSizeConstraint(7,7)

BrakeSystemStatus ::= OCTET STRING (SIZE(2))
-- Encoded with the packed content of:
-- SEQUENCE {
-- wheelBrakes BrakeAppliedStatus,
-- -x- 4 bits
-- wheelBrakesUnavailable BOOL
-- -x- 1 bit (1=true)
-- spareBit
-- -x- 1 bit, set to zero
-- traction TractionControlState,
-- -x- 2 bits
-- abs AntiLockBrakeStatus,
-- -x- 2 bits
-- scs StabilityControlStatus,
-- -x- 2 bits
-- brakeBoost BrakeBoostApplied,
-- -x- 2 bits
-- auxBrakes AuxiliaryBrakeStatus,
-- -x- 2 bits
-- }

class BrakeSystemStatus(univ.OctetString):
TODO
subtypeSpec = constraint.ValueSizeConstraint(2,2)\

VehicleWidth ::= INTEGER (0..1023) -- LSB units are 1 cm
class VehicleWidth(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,1023)

VehicleLength ::= INTEGER (0..16383) -- LSB units are 1 cm
class VehicleLength(univ.Integer):

subtypeSpec = univ.Integer.subtypeSpec + constraint.ValueRangeConstraint(0,16383)

VehicleSize ::= SEQUENCE {
width VehicleWidth,
length VehicleLength
} -- 3 bytes in length
class VehicleSize(univ.Sequence):

componentType = namedtype.NamedTypes(
namedtype.NamedType(’width’,VehicleWidth()),
namedtype.NamedType(’length’,VehicleLength()),
)

#####
SAE J2735 DSRC standard message sets
#####
class BasicSafetyMessage(univ.Sequence):

componentType = namedtype.NamedTypes(
namedtype.NamedType(’msgID’,DSRCmsgID()),
namedtype.NamedType(’msgCnt’,MsgCount()),
namedtype.NamedType(’id’,TemporaryID()),
namedtype.NamedType(’secMark’,DSecond()),
namedtype.NamedType(’lat’,Latitude()),
namedtype.NamedType(’long’,Longitude()),
namedtype.NamedType(’elev’,Elevation()),
namedtype.NamedType(’accuracy’,PositionalAccuracy()),
namedtype.NamedType(’speed’,TransmissionAndSpeed()),
namedtype.NamedType(’heading’,Heading()),
namedtype.NamedType(’angle’,SteeringWheelAngle()),
namedtype.NamedType(’accelSet’,AccelerationSet4Way()),
namedtype.NamedType(’brakes’,BrakeSystemStatus()),
namedtype.NamedType(’size’,VehicleSize())
)

4

.3 Implementation Pseudo-code

Listing 2: Acquisition Module Pseudocode

class GPSAcquisition():
def __init__():

currentLatitude = null
currentLongitude= null
currentSpeedGPS = null
currentAltitude = null

def run(port):
checkSerialPort(port)
while(true):

NMEA = port.readlines(None)
currentLatitude = parseNMEA_Latitude(NMEA)
currentLongitude = parseNMEA_Longitude(NMEA)
currentSpeedGPS = parseNMEA_Speed(NMEA)
currentAltitude = parseNMEA_Altitude(NMEA)

def getCoordinates(self):
return currentLatitude, currentLongitude, currentSpeedGPS, currentAltitude

class OBDAcquisition():
def __init__():

OBDHandler = null
currentSpeed = null
currentRPM = null
currentFuel = null

def run(port):
OBDHandler = setupBluetoothOBD(port)

def getOOBDinfo(self):
currentSpeed = OBDHandler.getandParse(’speed’)
currentRPM = OBDHandler.getandParse(’rpm’)
currentFuel = OBDHandler.getandParse(’fuel’)
return currentSpeed, currentRPM, currentFuel

/*Main Execution*/
GPSAcquisition.start()
OBDAcquisition.start()
connection = startListening()
while(true):

JSONrequest = connection.acceptAndReceive()
if(JSONrequest == "GPS"):

connection.send(GPSAcquisition.getCoordinates())
elif(JSONrequest == "OBD"):

connection.send(OBDAcquisition.getOBDinfo())
elif(JSONrequest == "NEI"):

connection.send(TableManager.getCurrentNeighbours())
elif(JSONrequest == "ALL"):

connection.send(GPSAcquisition.getCoordinates(),
OBDAcquisition.getOBDinfo(),
TableManager.requestNeighbours()
)

Listing 3: Call Manager thread class pseudo code

class callManager(Thread):
def __init__():

requestFrequency = <Frequency value loaded from platform configuration
file>

currentCoordinates = null
currentSpeed = null
currentRPM = null
currentFuelLevel = null
currentNeighborList = null
self.start()

def run():

5

while(True):
currentCoordinates = requestToPlatform("GPS")
currentSpeed = requestToPlatform("OBD").speed
currentRPM = requestToPlatform("OBD").RPM
currentFuelLevel = requestToPlatform("OBD").fuel
currentNeighborList = requestToPlatform("NEI")
sleep(requestFrequency)

def requestToPlatform(request):
connectToPlatform(port)
connection.send(request)
listen(myport)
reply = listen.acceptReceive()
return reply

Listing 4: Communication Manager Sender thread class pseudo-code

class commManagerSender(Thread):
def __init__():

safetyChannelListener.start(port)
comfortChannelListener.start(port)
InterfaceManager.start(port)

def sendMessage(messageJ2735ALC):
stampedMessageJ2735ALC = runPriorityCheck(messageJ2735ALC.getApplicationID)
InterfaceManager.send(stampedMessageJ2735ALC)

def sendMessageControlBroadcast(messageJ2735BSM):
stampedMessageJ2735BSM = stampWithHighPriority(messageJ2735BSM)
InterfaceManager.send(stampedMessageJ2735BSM)

def sendMessageComfort(message, protocol):
stampedMessageJ2735ALC = runPriorityCheck(messageJ2735ALC.getApplicationID)
InterfaceManager.send(stampedMessageJ2735ALC)

Listing 5: Communication Manager Listener thread class pseudo-code

class commManagerListener(Thread):
connection = startListening()
while(true):

receivedMessage = connection.acceptAndReceive()
if(receivedMessage.type()=="J2735 BSM"):

ESPDReceive(receivedMessage)
elif(receivedMessage.type()=="J2735 ALC"):

checkPlausibility(receivedMessage)
if(plausibleMessage):

publishToApplication(message)
else:

discardMessage()

Listing 6: Services Module pseudo-code Thread class pseudo code

class Services(Thread):
def __init__():

/* Setup Variables */
publishFrequency = Frequency value loaded from platform configuration file
SafetyServicesToExecuteList = [] //List with default services to be

activated and executed, loaded from platform configuration file
ComfortServicesToExecuteList = [] //List with default services to be

activated and executed, loaded from platform configuration file
self.start()

def run():
while(True):

if(currentVADMstatus == "Normal"):
for service in SafetyServicesToExecuteList:

runServiceImplementation(service)
for service in ComfortServicesToExecuteList:

runServiceImplementation(service)
sleep(publishFrequency)

else:
for service in SafetyServicesToExecuteList:

6

runServiceImplementation(service)

def runApplicationService(serviceName, serviceImplementation):
runServiceImplementation(serviceName, serviceImplementation)

def addService(serviceName):
if(checkServiceType(serviceName)=="Safety"):

SafetyServicesToExecuteList.append(serviceName)
elif(checkServiceType(serviceName)=="Comfort"):

ComfortServicesToExecuteList.append(serviceName)

def removeService(serviceName):
if(checkServiceType(serviceName)=="Safety"):

SafetyServicesToExecuteList.remove(serviceName)
elif(checkServiceType(serviceName)=="Comfort"):

ComfortServicesToExecuteList.remove(serviceName)

.4 Evaluation and Tests Partial Results

Table 2: Traffic volume generated and received by the several applications reduction by using VADM application
level scheduling

Applications Traffic Volume (KBps)
Scenario A Scenario B Scenario C

Generated Received Generated Received Generated Received
RequestAssistance + Vehi-
cleStream

202.488 21.099 202.263 9.293 69.913 9.118

RequestAssistance + Chat 0.032 0.022 0.027 0.011 0.009 0.010

RequestAssistance + Vehi-
cleStream + Chat

134.847 13.698 132.813 6.051 48.257 6.031

RequestAssistance + POI 0.004 0.107 0.00324 0.054 62.582 0.041

RequestAssistance +
RSUStream

19.257 136.900 7.995 130.506 8.045 73.296

RequestAssistance +
RSUStream + POI

12.470 88.720 5.436 81.420 5.555 50.631

7

8

	Title
	Acknowledgements
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Goals and Contributions
	1.2 Existing Solutions
	1.3 Thesis Structure

	2 Context and Related Work
	2.1 Intelligent Transportation Systems
	2.1.1 Related Projects, Consolidation and Standardisation
	2.1.2 ITS Components
	2.1.3 Network architecture
	2.1.4 ITS Communication Technologies
	2.1.5 ITS Facilities Layer
	2.1.6 ITS Management and Security Layers
	2.1.7 ITS Applications and Services
	2.1.8 Standards for Vehicular-Network Application's Messaging

	2.2 Chapter Summary

	3 Architecture
	3.1 Requirements
	3.2 Proposed Solution Description
	3.2.1 Support platform integration and functionalities

	3.3 System Architecture Description
	3.3.1 Architecture Interactions and Description

	3.4 Vehicular-Application Development Middleware
	3.4.1 Application Request Manager
	3.4.2 Call Manager
	3.4.3 Communication Manager
	3.4.4 Application Registry Bank
	3.4.5 Services

	3.5 System Analyzer
	3.5.1 Analytical Heuristics
	3.5.2 User-Input
	3.5.3 Epidemic Status Dissemination

	3.6 Applications and Services Priorities
	3.7 Rescheduling and Discard Policy
	3.7.1 Application's Policies
	3.7.2 Services's Policies

	3.8 Applications
	3.8.1 Application's Lifecycle and functioning
	3.8.2 Application's Messaging

	3.9 Chapter Summary

	4 Implementation
	4.1 Adopted Technologies
	4.1.1 Programming Languages
	4.1.2 Implementation Options

	4.2 Support Platform
	4.2.1 Acquisition Module
	4.2.2 Interface Manager

	4.3 SAE J2735 DSRC Standard
	4.3.1 J2735 Encoder and Decoder

	4.4 Vehicular-Application Development Middleware
	4.4.1 Application Request Manager
	4.4.2 Platform Status
	4.4.3 Call Manager
	4.4.4 Communication Manager
	4.4.5 Application Registry Bank
	4.4.6 Services
	4.4.7 Message Plausibility Scheduling

	4.5 System Analyzer
	4.5.1 Analytical Heuristics
	4.5.2 User-Input
	4.5.3 Epidemic Status Dissemination

	4.6 Applications
	4.6.1 Application Example: RequestAssistance

	4.7 Chapter Summary

	5 Evaluation
	5.1 Developed Applications
	5.2 Tests Description
	5.3 Used Software and Equipment
	5.4 Test Scenarios
	5.5 Test Results Presentation and Discussion
	5.5.1 Traffic Volume
	5.5.2 RequestAssistance Response-Time

	5.6 Chapter Summary

	6 Conclusions and Future Work
	Bibliography
	Appendix A
	.1 Technologies and Applications Characterizations
	.2 J2735 Pyasn.1 Implementation and ASN.1 defition
	.3 Implementation Pseudo-code
	.4 Evaluation and Tests Partial Results

