
On the feasibility of a context-aware application
development platform for VANETs

Rui Costa
Instituto Superior Técnico

Av. Prof. Dr. Anibal Cavaco Silva
2744-016 Porto Salvo, Portugal

Email: ruicosta@ieee.org

Teresa Vazão
Instituto Superior Técnico

Av. Prof. Dr. Anibal Cavaco Silva
2744-016 Porto Salvo, Portugal
Email: teresa.vazao@ist.utl.pt

Abstract—The development of vehicular communication tech-
nologies and networks allowed the further development of In-
telligent Transportation Systems (ITS). Such systems are heavily
based in the creation of applications and services that will be
design to serve multiple purposes, either for delivering more
pleasant driving experience to users and also for enhancing the
safety and security of road users. In this paper we propose a
platform for facilitating the agnostic development of vehicular-
environment oriented applications by offering a common API
for both safety and comfort-oriented applications. Our solution
features application and service’s flow control in order to give pri-
ority to most relevant applications in every moment, supporting
scenarios such as Normal, Emergency and Accident. A protocol
for disseminating vehicle safety status is proposed in order to
determine the current execution context. Results from a field-
tests in controlled environment shown reduction in non-relevant
traffic volume in safety situations while reduction of relevant
service’s response time.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) had its inception
and expansion based on the development of several com-
munication technologies and protocols of vehicular networks.
With such, the number of possible services and applications
that could be used in those systems grown exponentially,
opening space for market opportunities but also for the en-
hancement and creation of services that have as mission the
overall improvement of road users safety. Several standards
and technologies were developed and designed having in
mind those two realities, one concerned with offering a more
pleasant driving experience to the user and the other directed
to augment its safety and security while circulating on all kinds
of roads. Besides the two categories of applications that can
be developed for ITS, more challenges arise with the constant
change of road topology and possible safety-related situations
that can happen, such as accidents or emergency scenarios.

The proposed work aims to unite the aforementioned two
application paradigms in one application development mid-
dleware that offers common functions to both kinds of ap-
plications while maintaining awareness regarding the road
situations that may affect how the driver, the user or even
applications should behave.

Our solution helps accelerating the process of application’s
development by abstracting those of the several implemen-
tation details taken by the underlying support platforms and

technologies. While offering a common API to applications,
this platform can control application’s flow and therefore
decide which applications have priority, based upon several
criteria, for all kinds os scenarios that can happen in vehicular
environments, such as normal circulation, traffic, emergency
or accidents.

Therefore, the major contributions of the proposed work are:
1) API for agnostic development of applications to be used

in vehicular networks, regardless of its type.
2) Application coordination and priority-based scheduling

in emergency situations.
This paper presents a solution that is heavily based in the

standards for the European ITS communication architecture,
focusing on using and grouping and extending, rather than
changing, the recommended functionalities towards meeting
our goals.

The rest of this document is organized as follows. Section II
will depict a brief introduction to ITS, the available standards
and main contributors and a classification of the applications
that can be created to this systems. Section III details the
proposed architecture that is then subject to a experimental
evaluation performed in a real controlled scenario whose
results are presented in Section IV. Conclusions and future
work notes are depicted in Section V.

II. INTELLIGENT TRANSPORTATION SYSTEMS

As a subset of traditional Mobile Ad-hoc Networks
(MANETs), Vehicular Ad-hoc Networks (VANETs) have spe-
cific properties that distinguish those from the traditional
MANETs[1], for instance the deployment scenario the mo-
bility pattern, properties of the communication nodes as well
as some other challenging characteristics as the network scale,
network topology variation or even the degree of connectivity
[2]. With the work performed in enhancing VANETs the
inception of ITS architectures, technologies and protocols was
finally possible [3].

In order to grant that ITS communication technologies
and systems are disseminated throughout all the road infras-
tructure, standardization became a mandatory path to unveil.
Several initiatives from both academia and industry started
developing work in order to conglomerate technologies, appli-
cations, protocols and security and management mechanisms



into one widely accepted architecture. A European project,
named COMeSafety[1], was responsible for consolidating,
gathering and fostering the several contributions from the
several initiatives [4] for later proposal to relevant standardiza-
tion bodies such as Internet Engineering Task Force (IETF),
International Standards Organization (ISO) and IEEE.

With that work, a proposal of a standardized ITS architec-
ture, ETSI EN302665[5] was drafted. That architecture takes
into account four (4) different components on the commu-
nication infrastructure. Vehicles, mobile consumer devices as
Personal Stations,Roadside Unit (RSU)s, representing a fixed
installation along the road with communication capabilities
and sensors and Central Stations that can supply some value-
added applications and services.

Two (2) types of communication scenarios were con-
ceived: Vehicle-to-Vehicle (V2V), where vehicles commu-
nicate among themselves through a Ad-hoc network, and
Vehicle-to-Infrastructure (V2I), for accessing services for ex-
changing relevant information with the RSUs.

Despite the fact that the standard was approved, most
current initiatives focus in either creating adaptations of the
standard, by adding architectural changes, towards meeting
their needs or only focus in safety-related applications.

Regarding communications, Wireless Access in Vehicular
Environments (WAVE)[6] and IEEE 802.11p[7] standard, un-
veiled the possibility of creating communication capabilities
adapted demands of the vehicular communication environ-
ment. One important characteristic of the 802.11p standard
is that it makes available two different channels of wireless
communication, one for relevant prioritized information, later
used for safety-related applications, and other for standard,
non-priority traffic.

With the European ITS communication architecture a new
layer, appeared[8]. The Facilities Layer aims to provide func-
tionality for the rapid application development while ensuring
that each application running in the same station is using the
same data and information.

This layer, poses an important role in defining an archi-
tecture for applications development systems for vehicular
environments, to be addressed in the work presented on this
document.

A. Application Types

Within ITS, several applications and services can be de-
veloped. Traditional applications may be used, but generally
vehicular oriented applications tend to be the option taken
by developers working with ITS applications and services.
Applications and services can be classified in several different
fashions[9][10], both most of those take into account the objec-
tive, priority and technical requirements for those applications.

Two (2) major categories can be defined for applications
and services characterization within vehicular-communication
environments:

a) Safety-related: intended to prevent accidents by warn-
ing and assisting drivers about traffic or road conditions. Safety
applications can for instance provide information such as road

conditions, weather information, traffic lights scheduling and
speed limits as well as some traffic coordination and monitor-
ing. Such applications can even provide collision notification
or support for emergency management purposes.

b) User-Confort: intended to provide a more pleasant
travel experience to the driver or other individuals traveling.
This applications traditionally depict applications usual to be
used in the traditional TCP/IP model. For instance, these
applications can provide information about points of interest
such as restaurants museums and other local information.
Applications with high network requirements such as video
and audio streaming, web browsing, e-mail access, voice and
instant messaging may also be developed.

By having this two, quite distinct application types, different
approaches should be taken due to the different application’s
requirements of each kind. Safety-related applications con-
sist mainly of time-critical requirements while for instance
delay sensitive services such as multimedia data transfer or
instant messaging should also be considered when defining
an architecture for application’s development in vehicular
communication scenarios.

Several assessments regarding both application types re-
quirements have been performed in the literature [10][11][12].
That work served as basis for the work presented in this paper,
defining the relevant features and services that one architecture
must follow to cope with both comfort and safety-related
applications needs.

III. VEHICULAR-APPLICATION DEVELOPMENT
MIDDLEWARE

In order to offer a Application Programming Interface (API)
that offered applications relevant yet common functions to be
used while maintaining those agnostic from the underlying ex-
ecution environment we developed the Vehicular-Applications
Development Middleware (VADM). This platform had in mind
the following requirements:

1) Low-cost and modular platform;
2) API for agnostic services and applications development

and support;
3) context-aware configurable platform.
To cope with a low-cost and modular platform, the authors

developed a general architecture for both roadside units and
vehicles, that can be used with of-the-self embedded systems
and communication technologies.

The developed API, extends and uses the ITS communica-
tion standard, through combination of a set of functionalities
of the Facilities Layer. Also, in order to grant compatibility
with other solutions for vehicular environments, the proposed
solution makes use of the SAE J2735 messaging standard[13].
This standard defines message’s format and structure to be
used in the IEEE 802.11p wireless vehicular-communication
standard.

The developed architecture has de possibility to adapt itself
to the scenario in which the vehicle is at the moment, and
therefore adapt the applications and service’s flow to give
priority to the most relevant in such situations. The developed



platform has an internal state that mirrors the above mentioned
scenarios, representing the vehicle status at a given time.

We considered three (3) possible states:
• Normal - Vehicle is traveling normally;
• Emergency - Vehicle declared an emergency situation

such as, flat tyre, engine damage, emergency driving or
irregular driving;

• Accident - Vehicle declares as being in an accident or
eminent accident;

Every time a vehicle is in a Emergency or Accident situation
that also affects the surrounding vehicles and road participants.
A status dissemination protocol is also proposed in this work
and is further described in III-C.

A. Solution Architecture Design

Figure 1 depicts the overall architecture of the proposed
solution. Our architecture poses as a middleware between the
applications and the physical world, that by following the
principles of the Facilities Layer, gathers information from
sensors, communication technologies and all the available
resources in order to offer such information to applications
in a parsed, organized and relevant manner.

Therefore, a set of decoupled modules was developed in
order to offer several functionalities within the VADM plat-
form to applications. Modules can be updated separately in
order to enhance their functionality, while keeping the overall
functionality of the VADM. Bellow follows a brief description
of each module:

• Application Request Module (ARM)- Management of
all the underlying modules by orchestrating interactions
among them and also acting as a coordinator of the
overall inner-VADM architecture. All communication is
made through the ARM that contains a scheduler to
define the relative priority of each message being sent
based on the application type and the current state of
the platform. Case a application does not have priority
to access the platform, the scheduler blocks the request.
Several policies can be configured, e.g. discard or queuing
of the request.

• Service - Several system services were identified as
common requirements for applications that execute in
vehicular environments and therefore are made available
as default. Services such as retrieving the current coordi-
nates, speed or any other available vehicle information
(GetNodeInformation), as well as getting the current
platform status (Normal, Emergency or Accident) (Get-
PlatformStatus) or getting the current type of node (RSU
or vehicle) (GetNodeType). Also there is a service that
provides the current neighbors list and retrieves informa-
tion of those, such as the address or last known position
(GetNeighboursInfo). Some system support services, that
can only be accessed by the platform and its protocols,
were also developed. With this already available services
it is possible to grant basic functionalities for applica-
tions, that then can compose several services or create and

install their owns in order to cope with the application’s
needs.

• Application Registry Bank (ARB)- Storage of registered
application’s information.

• System Analyzer - Alter the current execution state
of the VADM platform (Normal, Emergency, Accident).
VADM platform state can be altered in three (3) different
fashions: through analytical methods[14], that determine
the need of altering the state based on data analysis gath-
ered from several sources such as in-vehicle sensors, navi-
gation data, modules malfunctioning or any other relevant
information. Also the state of the platform can be altered
through user-input within a human-machine interface.
Besides the aforementioned methods for changing the
platform state, state can be also altered by proximity to
vehicles in accident situation using the protocol described
in III-C, the Epidemic Status Plausibility Dissemination
(ESPD).

In order to maximize compatibility to whatever support plat-
form or architecture supplies the communications technologies
and sensors,while keeping the platform overall functionality,
only two modules have access to the underlying facilities
support platform:

• Call Manager - Storage of parsed and updated infor-
mation retrieved from several sources such as sensors,
navigation and data analysis.

• Communication Manager - Establish connection with
all the available communication facilities to send and
receive information and act as scheduler between several
of the communication technologies. In case several com-
munication technologies are available, Communication
Manager can use its scheduler to decide upon sending
or retrieving information from one or several commu-
nication technologies based on several possible policies.
One example of a policy, is in case of accident situation,
information can be send through both Wi-Fi and cellular
technologies.

B. Application Development API

The API proposed in this paper has several primitives
that can be used by applications regardless of their types of
requirements. When a application starts, it should being its
setup procedure by using the following primitives in such
order:

1) Register Application - Register the application within
the platform in order to use its functionalities.

2) Retrieve Node Information - Get information regarding
the current node characteristics, such as node type (Ve-
hicle/RSU), license plate, current IP, platform version.

3) Request Service List - Get list of available services
currently active in the platform.

4) Subscribe to Platform Services - Subscribe to the
services available at the platform that will be needed
by the application.



Fig. 1. VADM overall architecture and its interaction with the European ITS
Communication layered standard

5) Deploy and Run Application-Service - Deploy and run
a service specific of the application. This service can be a
new implementation or a composition of other services.

6) Publish Information - Publish information and data
to the platform that will send it through the available
communication resources using TCP or UDP transport
protocols with the available communication technolo-
gies.

7) Unregister Application - Unregister application from
the platform, remove all application deployed services
and unsubscribe to all subscribed platform services.

Applications interact with the platform in a decoupled
fashion, by sending information through the above referred
function, and retrieving all the information, from the own plat-
form or from other vehicles or nodes in a Publish/Subscribe
fashion. Applications can subscribe to services installed in the
platform or depoy, run and subscribe their specific services.
Those services can result by the composition of other services
or simple updates to the existing ones. Applications are default
listeners of a service that publishes all the information received
from other nodes of the network using the same application.
Therefore it is assured the communication of the same appli-
cation in different nodes, while keeping the decoupled event-
driven paradigm of the indirection between applications and
the platform.

C. Epidemic Status Plausibility Dissemination Protocol

Whenever a vehicle is in an Accident or Emergency situa-
tion, that also affects the surrounding vehicles and individuals.
Therefore, the authors developed a protocol for disseminating
the state of a vehicle within a region of relevance, henceforth

referred as Region of Plausibility (ROP), called ESPD. The
criteria used for determining that region can be varied. The
ESPD protocol functions in a multi-hop fashion where each
node determines the relevance of changing its own VADM
platform state. When a vehicle is in a Accident or Emergency
situation, it triggers the sending of beacons to other vehicles,
sending its position, the emergency state and other variable
information. Each vehicle, that receives that beacon determines
if it is within the ROP and also retransmits that information to
the surrounding nodes. ESPD makes use of the safety channel
of the 802.11p standard and is defined using the Basic Safety
Message (BSM) of the J2735 standard.

IV. EXPERIMENTAL EVALUATION

A set of applications were created in order to be used
in a controlled scenario where a vehicle has an accident
and triggers the usage of a application that will request for
Emergency Vehicles dispatch to its location. The response
time of the request for assistance application was used as
benchmark in order to determine the effect of using several
other applications, with different characteristics, at the same
time.

A. Developed Applications

Five (5) applications were developed, each one with differ-
ent behaviors and network requirements:

1) RequestAssistance - Application that every time a
vehicle set its status to Accident, triggers a broadcast
request to the nearby RSU in order to have emergency
vehicles sent to its location.

2) VehicleStream - A vehicle streams video in a broadcast
fashion to the RSU nearby. RSU answers with an ACK
for every video packet received. Video is streamed at
800 kbps.

3) Chat - Provides bidirectional text communication with
the surrounding vehicles through the RSU.

4) Points of Interest (POI) - The RSU broadcasts infor-
mation regarding the nearby POI (Restaurants, Hotels
and Gas Station locations) and other relevant local
information, such as the maximum speed limit on that
road. POI messages are broadcasted at 1 Hz. Creates a
service when on a RSU to pinpoint the distance to the
nearby hotels and restaurants through a remote database
call.

5) RSUStream - RSU streams video to all the surrounding
vehicles in a broadcast fashion at 480 kbps.

Table I shows the default services available on the platform
that are used by the developed applications. By analyzing this
table it is possible to understand that although applications
have different purposes, they end up requiring fairly the same
services when being developed. When the needed services are
not available they can create their own services, or compose
existing ones.

The aforementioned applications cover situations in which
the vehicle is the main source of both high and medium traffic
volume generation and also situations where the RSU, not the



TABLE I
PLATFORM SERVICES USED BY THE DEVELOPED APPLICATIONS

G
et

N
od

eI
nf

or
m

at
io

n

G
et

Pl
at

fo
rm

St
at

us

G
et

N
od

eT
yp

e

G
et

N
ei

gh
bo

ur
sI

nf
o

C
re

at
es

O
w

n
Se

rv
ic

e

RequestAssistance Yes Yes No No No
VehicleStream No Yes No No No

Chat No Yes Yes No No
POI Yes No Yes Yes Yes

RSUStream Yes No Yes No No

(a) Test-bed map location (b) Test-bed environment

(c) RSU node equipment (d) Vehicle node equipment

Fig. 2. Test-bed components, location and overall position of the communi-
cation nodes

station in need of using the safety application, is the most
relevant traffic volume generator of the network.

B. Tests Description

These applications were tested together in a scenario with
one vehicle and one RSU. The controlled scenario situation
consisted of a 30 seconds experience where at second 15 the
vehicle has an accident and triggers the RequestAssistance
application. Figure 2 depicts the test-bed components location
and position using in this controlled scenario testing procedure.
On the vehicle was used a SMCWUSBS-N3 802.11b/g/n
wireless pen, while for the RSU was used a high-gain Pow-
erLink Ultra High Power, both running IEEE 802.11n and
with chipset chipset rt3070. Both stations, vehicle and roadside
consist of ASUS eeePC equipment with Intel Atom running
at 1600 MHz and 2 GB of RAM.

C. Discussion of Results

The developed applications were combined and executed
in the controlled scenario 10 times. To evaluate the overall
performance of the proposed solution, 2 different metrics were

taken into account, the response time of the RequestAssistance
application and also the generated and received traffic volume.
ResquestAssistance response time was used in order to deter-
mine how relative priority scheduling can affect safety-related
services performance. The traffic volume was used as metric
due to being a direct consequence of non-relevant applications
being discarded in emergency or accident situations, since
generated and received traffic volume reduction could have
impact on the safety-application’s response time.

Two different scenarios were considered: first in which no
scheduling regarding the send and receiving of information
is performed by both RSU and vehicle; second where based
on the status of the platform a scheduling between traffic
from safety and comfort applications is performed. For this
evaluation the scheduling decision for not priority traffic
adopted was full discard without any caching of content. Also,
the ESPD protocol is active in both situations, meaning that
when in the accident situation, RSU adapts its inner status to
be compliant with the vehicle’s status.

Figure 3 depicts the response time of the RequestAssistance
application when in used with several other applications cov-
ering situations in where the vehicle in accident is the main
generator of traffic in the networks and also the situation where
the RSU is the most relevant generator of traffic in the network.

Table II depicts the average traffic volume for all the
combined application’s sets used in the controlled scenario.
The node used as reference is the vehicle.

The results regarding the traffic volume generated and
received by the applications in the several situations shown
that, by using the scheduling based on the VADM platform
status, it is possible to reduce the traffic in the network, more
emphasized in high demanding applications such as the video
streaming. The resulting reduction in the generated traffic is
mostly due to the discard of information produced by comfort
applications that in a Accident or Emergency scenario, have
less priority in access the platform and the available means.

By analyzing the results regarding the response time of the
RequestAssistance application in the various situations, one
can conclude that, the service response time is only enhanced
by using scheduling when the node in need of using such
safety service, is also the node generating the most consider-
able amount of traffic in the network, therefore able to control
the generation of such information. In the remaining situations,
the overall response time of the application increased due
to wireless channel being occupied with applications with
traffic volume generation, and therefore, the information to
start the scheduling procedures never reaching the other node.
Also it is possible to conclude that applications that have low
requirements regarding the bandwidth, have a response time
similar to the response time used as benchmark due to its low
traffic volume generation.

V. CONCLUSION AND FUTURE WORK

The work presented in this paper offers a fast methodology
for applications and service’s development to be used in ve-
hicular communication scenarios to facilitate the creation and



Fig. 3. RequestAssistance average response time comparison with several application’s sets

TABLE II
TRAFFIC VOLUME GENERATED AND RECEIVED BY THE SEVERAL APPLICATIONS REDUCTION BY USING VADM APPLICATION LEVEL SCHEDULING

Applications No Scheduling (KBps) With Scheduling (KBps) Difference
Generated Received Generated Received Generated Received

RequestAssistance + VehicleStream 172.719 7.878 62.582 7.682 -63.767 % -2.492 %
RequestAssistance + Chat 0.024 0.010 0.010 0.009 -61.114 % -9.176 %
RequestAssistance + VehicleStream + Chat 110.678 5.043 40.215 5.026 -63.665 % -0.334 %
RequestAssistance + POI 0.003 0.055 0.002 0.044 -9.191 % -20.474 %
RequestAssistance + RSUStream 7.582 66.089 7.217 64.354 -4.809 % -2.625 %
RequestAssistance + RSUStream + POI 5.041 45.338 4.571 38.693 -4.809 % -2.625 %

expansion of Intelligent Transportation Systems. The VADM
platform offers a set of simple functions and functionalities
that allow applications to be developed in such a way that
the developers do not need to know advanced details about
the platform in which applications and services are being exe-
cuted. Also our platform permits the development of context-
aware applications without incorporating complex context-
detection mechanisms in application’s design and structure.
Applications flow control and priority mechanisms are main-
tained and coordinated by the VADM platform, that by having
a modular design approach can be improved in such a way
that several functionalities can be added in the future without
compromising the overall functioning of both applications and
the platform itself.

Field-test results shown that, by passing the application’s
flow control to the VADM platform, besides making easy the
application development, improvements in the generated traffic
to the network and services response time in safety-critical
situations were achieved.

The next steps towards evaluating the proposed solution
is by adding complexity to the field-test scenarios, either by
increasing he number of communicating vehicles as well as
by creating complex traffic safety-critical situations with even
more applications executing and then evaluate the scalability
of our platform and developed protocols. Also, adding one
more wifi antenna to each node in order to evaluate the use
of separate channels for safety and comfort applications will
be addressed on the next experimental evaluation iterations.

REFERENCES

[1] A. Dahiya and R. K. Chauhan, “A Comparative study of MANET and
VANET Environment,” DBMS, vol. 2, no. 7, pp. 87–92, 2010.

[2] M. Kafsi, P. Papadimitratos, O. Dousse, T. Alpcan, and J.-p. Hubaux,
“VANET Connectivity Analysis,” IEEE Workshop on Automotive Net-
working and Applications, 2008.

[3] J. Jakubiak and Y. Koucheryavy, “State of the Art and Research
Challenges for VANETs,” 5th IEEE Consumer Communications and
Networking Conference, pp. 912–916, 2008.

[4] T. Kosch, I. Kulp, M. Bechler, M. Strassberger, B. Weyl, and B. M. W.
Group, “Communication Architecture for Cooperative Systems in Eu-
rope,” IEEE Communications Magazine, no. May, 2009.

[5] ETSI EN 302 665, “Intelligent Transport Systems (ITS); Communica-
tions Architecture,” pp. 1–44, 2010.

[6] R. A. Uzcátegui and G. Acosta-Marum, “WAVE : A Tutorial,” no. May,
pp. 126–133, 2009.

[7] D. Jiang and L. Delgrossi, “IEEE 802 . 11p : Towards an International
Standard for Wireless Access in Vehicular Environments,” pp. 2036–
2040, 2008.

[8] COMeSafety, “The European Communications Architecture for Co-
operative Systems A Key Enabler for the Development and,” 2009.

[9] L. S. MIHAIL and M. KIHL, “Inter-vehicle Communication Systems:
A Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 111–111, Jun. 2008.

[10] Y. Toor, P. Mühlethaler, A. Laouiti, and A. de La Fortelle, “Vehicle Ad
Hoc Networks: Applications and Related Technical Issues,” pp. 74–88,
2008.

[11] H. Hartenstein and K. Labertaux, “VANET - Vehicular Applications and
Inter-Networking Technologies,” 2010.

[12] K. Dar, M. Bakhouya, J. Gaber, and M. Wack, “Wireless Communication
Technologies for ITS Applications,” IEEE Communications Magazine,
no. May, pp. 156–162, 2010.

[13] D. Kelley, “DSRC Implementation Guide A guide to users of SAE J2735
message sets over DSRC.”

[14] C. Oh, E. Jeong, K. Kang, and Y. Kang, “Hazardous Driving Event
Detection and Analysis System in Vehicular Networks (HEAVEN):
Methodology and Field Implementation,” vol. TRB 2013 A, pp. 1–18,
2013.


