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ABSTRACT
This document presents a framework for the development of
robots able to learn through dialogue.

The framework’s architecture is a functional, layered ar-
chitecture, with the mind on the top layer, competences on
the middle layer and the body on the bottom layer. This
architecture focuses on extensibility, flexibility and portabil-
ity.

The architecture was deployed for two test scenarios, the
first involving a robot able to learn different colors and iden-
tify them later and the second involving a robot able to meet
people and remember their names.

Those two test scenarios were evaluated, both objectively,
through previously defined evaluation tests, and subjectively,
through the opinion of observers.

The evaluation had positive results and, thus, the theo-
retical framework was proved useful, at least in simple sce-
narios.
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1. INTRODUCTION
We believe that creating a framework enabling the devel-

opment of robots able to learn through dialogue may open
many doors for research on Artificial Intelligence and lead
to the development of robots able to help mankind in multi-
ple tasks, from the most simple daily tasks, to difficult and
dangerous ones. Furthermore, as we were not sure if the
people in general had the same opinion about the utility of
the framework and this kind of robots in general, we made
an inquiry and found out that the great majority had the
same opinion.

This led us to the development of the framework presented
in this document, which had to face the following problems
and accomplish the following objectives.

1.1 Problems
Enabling a robot to learn things about the surrounding

environment through dialogue places many challenges, such
as communicating with other agents (human or not) in the
environment, identifying elements in the environment and
obtaining knowledge about them, solving knowledge con-
flicts while reasoning about the obtained knowledge, and
acting according to that knowledge.

1.2 Objectives
We defined as general objective of our work the develop-

ment of a theoretical framework able to help in the develop-
ment of robots able to learn through dialogue.

This framework must enable the creation of such robots,
without limiting their functionality and adaptability to mul-
tiple scenarios.

It must define some high level processes for the mapping
between language and knowledge, as well as for action plan-
ning adaptation according to the existing knowledge and
possible actions.

Furthermore, it must provide simple adaptability to mul-
tiple and different physical or virtual bodies.

In addition to the theoretical framework, at least one test
scenario must be defined and a prototype implementation
of the framework for that scenario must be developed for a
matter of testing and validity checking.

2. RELATED WORK
On the field of dialogue processing, there are multiple

frameworks for the development of dialogue systems, like
Galatea [6, 7], Olympus [2] and DIGA [9]. However, all these
are based on TRIPS [1] and although there are some archi-
tectural differences, the base is ultimately the same. The
TRIPS’ architecture, figure 1, defines a core for the conver-
sational system which supports asynchronous interpretation,
generation, planning and acting. Also, it has a clear sepa-
ration between discourse modeling and task/domain levels
of reasoning. This design simplifies the incremental devel-
opment of new behaviors, enhances the system’s ability to
handle complex domains, improves portability and allows
task-level initiative. The three main components are the in-
terpretation manager, the generation manager and the be-
havioral agent.

On the field of intelligent agents, in addition to the previ-
ous systems, which may also be considered agents, we found
FAtiMA [5], an agent architecture with planning capabil-
ities which uses emotions and personality to influence the
agent’s behavior. Its latest version is a modular architec-
ture that separates functionalities and processes into inde-
pendent components, simplifying extension. This modular
architecture is composed of a core layer, figure 2, to which
components can be added in order to provide additional
functionality.

In the same field, we found Greta1 [12], a conversational

1http://perso.telecom-paristech.fr/~pelachau/
Greta/
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Figure 1: TRIPS Core Architecture [1]

Figure 2: FAtiMA Core Architecture [5]

agent embodied in a 3D model of a woman designed to en-
gage in information giving dialogues in the form of question
/ answer. Following the architecture on figure 3, when the
dialogue starts, the goal in that particular domain is set and
passed to the dialogue manager, enabling the creation of a
discourse plan according to the agent’s mind, which repre-
sents how the agent will try to achieve the communicative
goal during the conversation. Once the dialogue manager
selects the output, it asks the mind if there are any affective
states to be activated and their intensities. In the next step,
the output is enriched by the Midas module with the addi-
tion of tags indicating the synchronism between the verbal
stream and other communicative functions. Finally, the en-
riched dialogue move is passed to the body generator, which
interprets and renders it, producing the corresponding be-
havior.

On the knowledge representation field, we found out that
ontologies are widely used for intelligent agents’ knowledge
representation and that there are many publicly available.
Furthermore, we found two reasoners, FaCT++ [15] and
Pellet [14], that are able to extract and update knowledge
from those ontologies. The first focus on reasoning with
classes, while the second also reasons with instances.

Finally, we also found some projects that are partially

Figure 3: Greta Architecture [12]

related to ours, such as Companions2 [11], which developed
agents able to learn their owners’ habits, needs and life mem-
ories; LIREC3, which designed agents able to develop and
read emotions and maintain long term relationships with hu-
mans, while acting on different platforms; CoSy4 [4], which
developed cognitive systems for multiple tasks; and CogX5,
which is the closest to ours and is devoted to developing
cognitive systems able to function on open and challenging
environments and deal with novelty and change.

3. ARCHITECTURE
As we are developing a framework for the development of

robotic agents for multiple scenarios, it must focus on exten-
sibility, flexibility and adaptability, as the agents may have
different needs and competences, as well as multiple physical
bodies, for each scenario. The LIREC6 Project’s architec-
ture had a similar focus, thus, we took advantage of that
architecture’s strengths and came up with the functional,
three-layer architecture presented on figure 4.

3.1 Top Layer: The Mind
On the top layer is Brainiac, the mind, which stores and

reasons about knowledge, defines objectives based on that
knowledge and received perceptions, and plans actions to
fulfill those objectives. In order to enable Brainiac to per-
form these tasks we developed the Knowledge-Objectives-
Competences model presented bellow.

2http://www.companions-project.org/
3http://lirec.eu/
4http://www.cognitivesystems.org/
5http://cogx.eu/
6http://lirec.eu/
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Figure 4: The system’s architecture

3.1.1 The KNOC Model
The KNOC – Knowledge-Objectives-Competences – Model,

is a mind model which, as the name indicates and can be
seen on figure 5, has three main focuses – Knowledge, Ob-
jectives and Competences.

Figure 5: The KNOC Model

Knowledge management, the crucial task for a learning
agent, is performed by resorting to a knowledge base which
separates knowledge into two different categories – short
term memory and long term memory – where the former rep-
resents the most recently received perceptions and the latter
the knowledge obtained by the agent along time through ex-
perience, learning and reasoning.

As for the objectives, they are generated and updated
by reasoning with both knowledge categories present in the
knowledge base, a process which is able to update knowledge
as a side effect.

However, reasoning is not always enough to fulfill an ob-
jective and that is where the competences become handy, as
by knowing which are the competences of the current body
the mind is able to generate a plan with a set of supposedly
valid actions that may be executed by that body in order to
fulfill an objective. Furthermore, it helps the mind decid-
ing if an objective cannot be fulfilled with the current body
and, thus, should be abandoned, at least until the body as
changed.

3.2 The Manager Approach
We believe that Brainiac’s functionality may be divided

into four complementary high level tasks – perception pro-
cessing, knowledge representation and reasoning, objective
management, and action plan execution – and, thus, that

an independent module should exist for each of these tasks,
being responsible for its management.

As can be seen on figure 6, there are four managers – Per-
ception Manager, Knowledge Manager, Objective Manager,
and Execution Manager – responsible for each of the tasks,
respectively. We believe that, together, these four managers
are able to fulfill the requirements and function of the KNOC
Model.

Figure 6: The Manager Approach for Brainiac

Furthermore, we also included a Communicator module
that deals with communication with the competence man-
ager, so that dependencies from specific communication in-
terfaces and protocols are avoided in the management mod-
ules.

3.3 Middle Layer: The Competences
The middle layer aggregates the agent’s competences and

includes a competence manager, Mourinho, as well as mul-
tiple competence processors. As we focus on agents able to
obtain knowledge through dialogue, we included a manda-
tory language processor, Jint, but many other processors
may be added according to the scenarios and different phys-
ical bodies.

3.3.1 Mourinho: The Competence Manager
The competence manager functions as a hub with which

every other component communicates, in an attempt to keep
the independence between the components. It is responsible
for dispatching commands from the mind and sensor infor-
mation from the body to the correspondent competence pro-
cessors, as well as dispatching perceptions from the later to
the mind and actions to the body. Furthermore, it is respon-
sible for knowing the current body’s competences and deal-
ing with body changes, which is achieved through a body ab-
straction interface, which will be presented on section 3.4.1.

As can be seen on figure 7, Mourinho is divided in three
modules – Communicator, Perception Dispatcher, and Com-
mand Dispatcher – responsible for communicating with the
other components, dispatching perceptions, and dispatching
commands, respectively.

3.3.2 Jint: The Language Processor
Jint is a language processor, responsible for managing the

speaking and listening competences of the agent. On the one
hand it receives speech commands from the mind in the form



Figure 7: Mourinho: The Competence Manager

of predicates and translates them into natural language, gen-
erating the corresponding audio signal. On the other hand
it receives the audio signal from the body’s sensors and rec-
ognizes speech in it, generating the corresponding textual
form, which is later translated into predicates and sent to
the mind in the form of language perceptions.

As can be seen on figure 8, Jint has three main modules –
Translator, Speech Synthesizer and Speech Recognizer. The
first one is present on both the previously referred tasks, as it
is responsible for translating predicates into textual natural
language and vice-versa. Each of the other two modules is
responsible for the other important part of the corresponding
task, with the speech synthesizer being able to generate the
audio signal from the corresponding textual sentence and
the speech recognizer being able to do the reverse process.

Figure 8: Jint: The Language Processor

Furthermore, Jint also has a Communicator module re-
sponsible for the abstraction of the communication interface
and protocol, reducing the number of dependencies in the
other modules.

3.4 Bottom Layer: The Body
The bottom layer is the agent’s body, which is physical

most of the times and can have multiple and distinct capa-
bilities.

We want our framework to easily function with multi-
ple, different bodies and even to be able to deal with body

changes in runtime, However, these different bodies probably
have different competences and most certainly have differ-
ent interfaces. Given this, we had to come up with a way
of dealing with these different bodies without compromising
the system’s ability to function.

The solution we found was the creation of a Body Ab-
straction Interface, based on the competences that a given
body might have, which functions as an adapter for every
body that might be used with our system.

3.4.1 Body Abstraction Interface
The Body Abstraction Interface functions, in part, as the

Communicator modules presented for all the other compo-
nents, as it deals with the communication with the physical
body without introducing dependencies from specific com-
munication interfaces and protocols, which is needed as they
differ from body to body. However, the Body Abstraction
Interface is more than that as it is able to activate only the
functions that the current body is able to perform, based
on competences. Furthermore, the execution of those func-
tions is abstracted, enabling a silent transition between bod-
ies with the same competences, even when the methodology
used to achieve a certain end differs.

About competences, as they are responsible for enabling
or disabling certain functions, they can help the mind decide
the best way to achieve a certain objective according to the
existing body. This process was previously presented on
section 3.1.1.

According to the bodies we have available and the im-
portance for our framework we selected the following set
of competences and corresponding subset of functions for
our version of the Body Abstraction Interface. However,
new competences may easily be added, without the need for
messing with instances of the interface developed for bodies
where those competences are not relevant.

Moving: A competence that represents the body’s ability
to change its position.

changeSpeed(speed): A function for changing the
movement speed.

rotate(direction, speed): A function to rotate in a
given direction, at a given speed.

move(distance, direction, speed): A function to move
a given distance, in a given direction, at a given
speed.

Seeing: A competence that represents the body’s ability to
capture visual information from the environment.

captureFrame(): A function that captures a single
frame from the camera(s).

captureVideo(time): A function that captures video
input from the camera(s) during a given time pe-
riod.

Hearing: A competence that represents the body’s ability
to capture audio information from the environment.

captureAudio([time]): A function that captures au-
dio input from the microphone(s) during a given
time period or until silence is detected.

Speaking: A competence that represents the body’s ability
reproduce an audio signal.



playAudio(audio): A function that reproduces a given
audio signal.

Displaying: A competence that represents the body’s abil-
ity to display visual information.

displayFrame(frame): A function that displays a sin-
gle image.

displayVideo(video): A function that displays a video
clip.

displayText(text): A function that displays textual
information.

It is important to notice that, although a given body has
a certain competence, it is possible that it is not able to
execute some of the functions from the subset enabled by
that competence, leading to exception cases.s

Furthermore, it is important to refer that although our
framework accepts bodies with different competences, or
with no competences at all, there are some competences that
are mandatory for the agent to be able to achieve its purpose
of learning through dialogue. These competences, Hearing
and Speaking, must exist, as they play a very important role
in dialogue. Also, it is recommended that the used bod-
ies have at least another competence that enables them to
obtain information from the environment (e.g., Seeing), for
the possibility of coupling linguistic information with known
physical properties.

3.5 Transversal Aspects
From the previous sections we are able to conclude that

each component has its independent module for communica-
tion, the Communicator module. These modules were intro-
duced for the sake of flexibility and portability, as they re-
move dependencies from communication interfaces and pro-
tocols from each component’s main modules.

Although any communication interface or protocol may be
used, we suggest the use of ones able to perform event based,
asynchronous communication as, although synchronous com-
munication is much simpler, it leads to a severe negative
impact to the system’s performance.

Furthermore, as this is a framework for development, it
must allow quick and simple changes to the system’s con-
figuration, in order to simply testing and the comparison of
multiple solutions for a given problem. Also, the framework
must provide a simple way of defining which actions and per-
ceptions might occur in a given scenario, so that transition
between scenarios is simplified.

In order to achieve this, we opted for the usage of con-
figuration files, as they can be easily edited by the users of
the framework. Also, we decided that each component must
have a default configuration and that other configurations
might be loaded by the users, from different locations, so
that there is always a backup configuration present.

4. SCENARIOS
In order to test the value and validity of the theoretical

framework presented on the previous chapter, we defined
two test scenarios involving learning through dialogue. The
first scenario is about a robot able to learn colors through
dialogue with a human teacher, while the second is about
a robot that meets people and is able to remember their
names. Although these are relatively simple scenarios, with

small, closed domains, they are both focused on learning
through dialogue and, thus, are valid test cases for the frame-
work’s ability to deal with such kind of learning. Further-
more, they have different learning focus and domains and,
thus, are also valid test cases for the framework’s extensibil-
ity, flexibility and adaptability.

4.1 Scenario 1: Learning the Colors
In this scenario, a robotic agent is taught different col-

ors by a human teacher and should, after that, be able to
identify those colors when prompted. Furthermore, after
learning a given color, the agent should be able to select
the object (ball in our example) of the correct color when
prompted for the one of the given color, amongst multiple
choice possibilities.

A possible interaction for this scenario is the following:

user: What color is this?
[User shows a yellow paper sheet to the robot.]

phaster: Sorry, I don’t know. What color is it?
user: It’s yellow.
phaster: Ok, now I know. Thanks!
user: What about this? What color is it?

[User shows a blue paper sheet to the robot.]
phaster: I don’t know that color. What color is it?
user: It’s blue.
phaster: Thanks, now I know one more color.
user: Can you guess this color now?

[User shows an orange paper sheet to the robot.]
phaster: I believe it’s yellow. Am I correct?
user: You were close, but no.
phaster: Oh, what color is it then?
user: Orange.
phaster: Ok, I’ll remember that.
user: Now, finally, tell me what color this is.

[User shows a blue paper sheet to the robot.]
phaster: Oh, I’m sure that’s blue!
user: Great!

[User places three balls of different colors in front of

the robot.]
user: Find the yellow ball!

[The robot rotates until it is facing the yellow ball.]
phaster: Here it is!
user: Nice!

4.2 Scenario 2: Acquaintances
In this scenario, a robotic agent meets multiple people

and learns their names through conversation. Later on, if
a known person greets the agent, it should be able to greet
that person, using the correct name.

A possible interaction for this scenario is the following:

person 1: Hi!
phaster: Hi! I’m Phaster. What’s your name?
person 1: Eugénio.
phaster: Nice to meet you, Eugénio!
person 2: Hello Phaster!
phaster: Hi! Who are you?
person 2: I’m David.
phaster: Hi David!
person 1: Hi again!
phaster: Hi Eugénio!



4.3 Competences
By analyzing the two scenarios, we decided that, in or-

der to perform as expected, the agents should have hearing,
speaking, seeing and moving competences. Given this, we
defined the two following predicate sets, the first defining a
set of high-level actions the agents may perform and the sec-
ond defining a set of high-level perceptions the agents may
capture.

4.3.1 Actions

Rotate(direction, speed): Rotate the body at the given
speed until it is facing the given direction.

Move(distance, direction, speed): Moves the body a given
distance, in the given direction, at the given speed.

Find(object, properties): Tries to find the properties of
the given object.

State(object, properties, certainty): States the proper-
ties of the given object, with a relative certainty.

Ask(object, properties): Asks for properties of a given
object.

Greet([person]): Greets someone, using the person’s name
if it is given.

Thank([person]): Thanks someone, using the person’s name
if it is given.

4.3.2 Perceptions

Crash(): States that the robot has collided with something.

Color(red, green, blue): A color represented as its red,
green and blue components.

Circle(x, y, radius, color): A circle represented has its
center’s x and y coordinates, as well as its radius and
color in RGB.

Face(id): A face represented by an id calculated by the face
recognizer. The reasons for this kind of representation
will be explained later.

Statement(object, properties): A statement about the
properties of an object.

Question(object, properties): A question about the prop-
erties of an object.

Request(object, properties): A request for an object with
the given properties.

Greeting(): A greeting.

Negation(): A negation(e.g. no) negating something.

Affirmation(): An affirmation(e.g. yes) confirming some-
thing.

5. DEPLOYMENT
With the scenarios defined, we developed an implementa-

tion of the framework for testing its performance in the two
scenarios. As this was simply a prototype, designed for test-
ing purposes on specific scenarios, it is important to notice
that some of the framework features, which were included
for further extensibility, flexibility and adaptability were ne-
glected in this implementation for simplicity purposes.

5.1 Brainiac
While designing our Brainiac implementation, we though

about using OWL ontologies for knowledge representation
and Pellet [14] as a reasoner and, thus, we decided to de-
velop the managers in the Java programming language for
a matter of compatibility. However, later, during develop-
ment, we noticed that the kind of knowledge stored and rea-
soned with in our scenarios was too simple for the need of
such an evolved reasoner and, thus, we decided to represent
and reason with it in simpler ways, which will be presented
later in this section.

5.1.1 Perception Manager
For the Perception Manager, we included a sub-module,

the Perception Storage, which stores the asynchronously re-
ceived perceptions until a new iteration of the KNOC cycle
starts. When a new iteration starts, the main module gets
those perceptions and processes them, selecting the impor-
tant ones and discarding the others, using a set of restric-
tions.

After this process, the important perceptions are sent to
the Knowledge Manager as updates to short-term memory
and notifications are sent to the Objective Manager inform-
ing it of the existence of new knowledge which may be useful.

5.1.2 Knowledge Manager
As short-term memory stores only the most recent im-

portant perceptions, we opted for storing the perceptions
themselves, which are replaced every time a new perception
of the same type is received.

For the representation of associations between color codes
and respective names, we defined a structure called Color
Cluster. Each of these clusters is associated with a differ-
ent color name and has a representative color code and a
maximum deviation.

Finally, we wanted our agents to be able to associate a
name with any person they met. However, we were not
able to find a face recognition system able to perform online
training and, as this was not part of our focus, we opted for
using a pre-trained face database, together with the Eigen-
faces [16] algorithm for face recognition. This approach re-
duced the agents’ learning process to a simple association
between the identifier given by the face recognizer and the
name obtained through dialogue. Given this, for the rep-
resentation of the knowledge obtained through the learning
process, we opted for a simple hash map, mapping face rec-
ognizer identifiers into names obtained through dialogue.

5.1.3 Objective Manager
The Objective Manager generates and updates objectives

according to the existing knowledge and generates action
when that knowledge is not enough. For our two scenarios
we defined three simple kinds of objective - Answer, Find,
and Greet.

Although there are only three, limited and specific kinds
of objective, they are enough to achieve the expected func-
tionality for our scenarios. This is one example of the pre-
viously referred neglections of extensibility, flexibility and
adaptability for the sake of simplicity, as this implementa-
tion is just a simple testing prototype.

These objectives are generated and updated according to
the received perceptions and were defined so that, in friendly
conditions, only one action at most is needed for obtaining



enough knowledge to change each objective’s state.

5.1.4 Execution Manager
As the transition between states of the previously defined

objectives requires the maximum of one action, we decided
not to store the action plans and execute the actions imme-
diately instead. This way, the Execution Manager receives
an action to be executed from the Objective Manager, veri-
fies if there is a similar one in the action history and, in the
negative case, stores it in the history and dispatches it to
the competence manager as a command.

5.2 Mourinho
In contrast with the complexity of the mind, the compe-

tence manager is a simple dispatcher, able to select which
commands belong to each processor and to send the percep-
tions they capture to the mind. Given the specificity of the
scenarios, this is a simple task, with the commands being
dispatched as follows:

– Ask / State / Greet / Thank → Language Processor

– Find → Vision Processor

– Rotate / Move → Mapped into actions → Body

Also, input from the body sensors is redirected to the
competence processors and, on the other way around, ac-
tions sent by the processors are redirected to the body.

As Mourinho is constantly processing commands and per-
ceptions, it was developed in C++ for the sake of perfor-
mance. Furthermore, the whole process is event based, with
multiple threads being created for dispatching the received
messages when they arrive.

5.3 Jint
For the language processor, we decided to use English as

the agent’s language, thus, we had to find both an English
recognizer and an English synthesizer. We decided to use
CMU Sphinx7 [8] for recognition and MARY TTS8 [13] for
synthesis, as they are widely used and have acceptable per-
formance and results. As they both are easier to use with
the Java programming language, we developed the Transla-
tor module for the same language.

For the Speech Recognizer module we developed a simple
grammar, as explained on the CMU Sphinx website, defining
the sentences we were expecting to capture in our scenarios.
With this grammar loaded, the CMU Sphinx speech recog-
nizer receives the audio input which was directed from the
body to Jint by the competence manager and is able to cap-
ture the sentences matching the grammar, generating the
corresponding textual representation.

For the Speech Synthesizer, it is necessary to configure
MARY TTS by selecting the language and kind of voice to
be used. After that it is enough to send the textual sentences
received from the Translator module to MARY TTS for it
to generate the corresponding audio signal.

For the Translator module we had to develop both an
English Interpreter and an English Generator, mapping the
textual sentences into predicates and vice-versa, using a bag
of words approach for the first task and simple generation
rules for the second.

7http://cmusphinx.sourceforge.net/
8http://mary.dfki.de/

5.4 vPro
As the learning focuses of our scenarios are colors and

people’s names, we decided that the best way to capture
both color and face information that could be associated
with linguistic information was through vision, that is, by
capturing visual features in the video captured by a cam-
era. To achieve this, we added a new competence processor
to our architecture for the vision competence. This vision
processor, vPro, as can be seen on figure 9, consists on an ag-
glomerate of feature detectors which receive the video frames
and detect possible elements of the corresponding feature in
those frames.

Figure 9: vPro: The Vision Processor

For our scenarios we decided to include detectors for col-
ors, circles and faces, however, vPro is prepared for the sim-
ple addition of new ones. These detectors analyze the video
frames and capture the corresponding features if present.

Similarly to the competence manager, the vision proces-
sor also has performance issues that must be thought of, as
it must quickly process video frames to find features. So,
we also opted for the C++ programming language to im-
plement it. Furthermore, the OpenCV9 [3] library already
provides multiple feature detectors that can be used as is,
or combined to produce more evolved detectors, and has
a C++ version, thus, we decided to take advantage of its
capabilities while implementing vPro.

5.5 Body
As a body, we decided to use Magabot10, a platform de-

signed to give mobility to laptops, as together with a laptop
it provides us the sensors we need – camera, microphone,
and crash bumpers – as well as the actuators – speakers
and wheels. Furthermore, it has the capability to support
other structures on top of it, so that height can be adjusted
according to the scenario. The physical appearance of our
agent can be seen on figure 10.

Using this body’s sensors and actuators, together with
both competence processors, we were able to implement the
Body Abstraction Interface with the previously presented
required competences.

9http://opencv.willowgarage.com/
10http://magabot.cc
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Figure 10: Phaster, our learning robot

5.6 Communication
Due to the use of different programming languages in the

different system components, we decided to use the YARP11 [10]
framework for implementing the Communicator modules, as
it provides a simple, asynchronous, inter-language commu-
nication interface through the use of its Port and Bottle ob-
jects.

5.7 Configuration
Finally, for configuration, we decided to take advantage of

the Java programming language Properties for the compo-
nents written in that language, while for the components
written in C++ we developed our own configuration file
reader. In both cases, the configurations are written in the
form object.property = value.

6. EVALUATION
In order to evaluate each scenario, we performed some

objective tests that evaluate the agent’s performance in that
scenario, as well as subjective tests where observers give
their opinion about the agent’s learning skills.

There were 65 observers, with ages ranging between 17
and 40 years, with most of them assuming to have a close
relationship with technology.

After observing each scenario the observers answered two
questions:

1. Do you think that the robot was able to learn?

2. Do you think that the dialogue was natural?

6.1 Scenario 1: Learning the Colors
For the first scenario we used the following evaluation pro-

cedure:

1. Teach five different colors to the robot using sheets of
paper.

2. Count the number of turns until the agent can guess
them all correctly.

3. Ask the color of five different objects with known col-
ors.

11http://eris.liralab.it/yarp/

4. Count the number of correct answers.

5. Place three balls of different colors in front of the robot.

6. Ask the agent to select the ball of a given color.

7. Verify if the agent selected the correct ball.

By repeating this procedure ten times, we obtained the
results presented on figure 11. As we can see, only one time
more than two learning turns were needed for the agent to
be able to correctly guess all the colors, which we believe are
good results. Furthermore, when the agents was prompted
about the color of different objects, the average number of
correct guesses was 4.2 out of 5, never failing more than two
guesses, which we consider to be very good results. As for
the results of the ball selection test, they are not presented
as they were inconclusive, due to problems with the circle
detector usage, which led to no balls being detected on most
of the tests. However, on the few relevant tests, the agent
was able to select the right ball.

Figure 11: Scenario 1: Test results

An early stage prototype for this scenario was publicly
presented on a robotics board part of the Game On12 expo-
sition. Although this was a very simple prototype and it still
did not include speech recognition, the public reacted very
well to it, understanding what we were trying to show and
proposing multiple applications outside the color domain.

Furthermore, the public stated that if robots were able
to learn through dialogue with open domain, the number of
common people wanting to intellectually develop their own
robots would highly increase, as there would be no need for
knowledge of complicated programming languages. How-
ever, it was also stated that speech recognition was a must
for this kind of robot, as it is much simpler for humans to
speak than to write, leading to a much more pleasant expe-
rience for the human users.

As for the observer’s opinion, 92% of the observers believe
that the robot was able to learn. However, the other 8%
believe the contrary, with reasons ranging from believing
that the agent was just randomly guessing, to the difficulty
of defining what might be considered learning.

12http://gameon.gameover.sapo.pt/
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As for the dialogue being natural, 88% of the observers
agreed, while the other 12% disagreed, stating that the vo-
cabulary was limited and that it will always be like that, as
it must be programmed.

6.2 Scenario 2: Acquaintances
For this scenario we expected to use an evaluation proce-

dure involving at least two people, however, due to the pre-
viously referred limitations of the face recognizer and lack of
availability from possible users, we had to use the following
single person procedure:

1. The person greets the agent.

2. When prompted, the person introduces himself to the
agent.

3. The person leaves the room.

4. The person comes back and greets the agent.

5. Verify that the robot remembers the person’s name.

This procedure was repeated ten times and in all of them
the agent was able to notice the presence of a person and
remember the correct name.

For the question about the robot’s learning skills, the re-
sults were slightly lower than the ones from the previous
scenario, with only 89% believing that it was able to learn.
The lower value is due to the fact that there was only one
person interacting with the agent and, thus, the observers
were unable to understand if it could distinguish between
two different people.

However, for the dialogue question, the results were slightly
higher than on the previous scenario, with 89% of the ob-
servers stating that the dialogue was natural. As reasons
for not agreeing, the only one different from the ones stated
in the previous scenario was that the agent did not show
emotional affection towards the person.

7. CONCLUSIONS
From the previous sections we can conclude that agents

developed using our framework are able to learn through
dialogue, at least in relatively simple scenarios.

As it was developed with focus on extensibility, flexibility
and adaptability it is simple to adapt the framework to mul-
tiple scenarios, through the addition or extension of actions,
perceptions and competence processors.

Furthermore, in our test scenarios, the performance was
good, with fast action and response times. Also, the accu-
racy in the evaluation tests was really high.

As for the opinion of the observers, it was positive for
the large majority. However, there were also some negative
opinions, which can help us improving our system in the
future.

Continuing on the negative side, some of the vision pro-
cessor’s detectors did not work as expected. Furthermore,
speech interpretation and generation, as well as knowledge
management, were not very developed and scenario specific,
which, in some ways, limited the developed agents. How-
ever, we believe that this is normal, as for the development
of such a large framework in such a short time, some parts
of its deployment must be neglected.

In our opinion, we were able to fulfill the expectations, at
least partially and we believe that the previously presented

results show that the great majority of the observers is of
the same opinion.

8. FUTURE WORK
In the most immediate future, we want to improve the

vision processor, by correcting the circle detector and devel-
oping a face recognizer able to perform online training.

Also, in the near future we want to improve speech inter-
pretation and generation, as well as knowledge management,
in order to allow more open scenarios and dialogues.

Furthermore, we want to test the framework in more com-
plex scenarios to be aware of its true value. One of the sce-
narios we are more eager to develop is one where the agent
is able to learn information about itself and use that infor-
mation to perform new actions.

On a different area, we would also like to add emotional
components to our system, as we believe it can make the
dialogue more natural and the agents more appealing to the
humans interacting with them.
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