
Bibliographic Metadata Harvesting to Support the
Management of an Institutional Repository

Ricardo Miguel Loureiro da Costa
Instituto Superior Técnico

Technical University of Lisbon
Avenida Rovisco Pais, 1 — 1049-001 Lisboa

Email: ricardo.costa@ist.utl.pt

Abstract—This thesis approaches the problem of automatic
harvest of bibliographic metadata records from indexing services
to populate institutional repositories. Manual insertion of records
is a tedious and error-prone task and the automation of the
process intends to facilitate the management of a repository.
However, processes for automated harvesting of records must
deal with author’s identification and duplicate records consoli-
dation. Approaching the aforementioned processes, we introduce
a system that is able to harvest bibliographic metadata from
different sources, identify and consolidate the retrieved records
and make them available to external parties interested in the
information, such as an institutional repository.

The proposed system was tested with real bibliographic meta-
data of scientific publications from a subset of faculty members
at Instituto Superior Técnico. The results of the evaluation show
that, despite the required time for consolidation, the merged
records contain a valid and rich aggregation of the available
information and can be efficiently accessed by external entities
through a machine-to-machine interface.

Keywords—Bibliographic Metadata, Automated Harvesting,
Institutional Repositories, Duplicate Consolidation

I. INTRODUCTION

Scholarly communication has been made through a tradi-
tional model run by publishers where several stakeholders in-
teract in order to try and disseminate the knowledge among the
scientific community. That model introduces a large scattering
of publications among several journals [1] making works are
not easily accessible.

The introduction of institutional repositories (IR) (section
II-A), whose purpose is to collect the intellectual work pro-
duced by the community members, has been contributing to
concentrate it in a structured environment, providing tools for
access to and evaluation of that work. However, the population
of an institutional repository can be troublesome due to the
several services that provide information and the problem of
author name management [2].

A. Problem

This thesis proposes to approach the problem of auto-
matic harvest of bibliographic metadata from different external
services to populate an institutional repository, as well as
make available through a functional interface the existent
information. It also approaches the problem of finding and
consolidating duplicate records in a large set of bibliographic
metadata. Given the problem of name matching [3], this thesis

is expected to be able to manage the identities of authors in
different services.

The following research questions summarize the problem
approached by this thesis:

• Research Question 1: Assuming that a digital library
might replicate contents already existing in other digital
libraries or services, how can we update the contents of
our system from those external ones with the minimal
human effort? In this work we addressed this challenge
only at the level of metadata, leaving in open the issue
of synchronizing the information objects described by the
metadata.

• Research Question 2: Assuming that a digital library
is required to share information (metadata records) with
other digital libraries, what are the most relevant scenar-
ios where that can occur nowadays, and what are the tech-
nical requirements and best reference implementations to
make that possible in the most efficient and effective way?

• Research Question 3: Assuming that a digital library
might harvest records from multiple external services,
how can we identify possible duplicate records and pro-
duce a consolidated set of records available to outside
parties?

B. Structure

This document is structured as follows: Section II presents
the related work. We approach the main topics that were
considered relevant for this thesis. A summary of an analysis
to possible sources of metadata records is presented in section
III. Section IV describes the main functionalities of the
designed and implemented system. Section V reports the
evaluation of the implemented solution in several scenarios.
Finally, Section VI presents some conclusions and points
directions for future work.

II. RELATED WORK

This section presents a summary of the related work in the
areas that were considered relevant for this thesis.

A. Institutional Repositories and Scholarly Communication

Institutional repositories (IR), a type of digital library, are
intended to store, select, offer access to, preserve and ensure

1



2

persistence over time of a set of resources, in the scope of an
institution’s intellectual capital. Lynch [4] identifies as factors
to the arise of IR the dropping costs of storage, the existence
of relevant standards, and the recognition of the need for
preservation. Also, initial occurrences of publicly available
journal articles showed how scholarly communication could
change.

With a repository, it is easier to demonstrate the scien-
tific, social and financial value of a university. However, the
implementation of an IR faces challenges that may threaten
its success. Faculty collaboration is vital and that must be
shown to the researchers, as authors do not receive direct
compensation for their publications; they do it to achieve
professional recognition and career advancement [1].

Several software packages exist:

• DSpace1, an open-source system, serves as repository for
all kinds of digital content produced by members of an
university or organization. It intends to be a simple system
that at the same time supports all the needs of a research
organization. The information model is focused on the
concept of “Communities”, sub-units within an institution
that can adapt the system to their own needs, and manage
their own submission process [5]. DSpace uses a qualified
Dublin Core metadata schema for describing items and
it supports interoperability through OAI-PMH, SWORD
(both as a server, receiving content, or as a client,
submitting content to other repositories) and OpenSearch.
According to Markey et al. [6], DSpace is the most used
institutional repository system in the United States as of
2007.

• Fedora2 does not provide a full solution for a repository
but instead a set of web services for storing, managing
and accessing digital content. It uses the concept of
“complex object” that aggregates multiple objects of
different kinds [7]. Similarly to DSpace, Fedora also
supports dissemination of information via OAI-PMH.

• EPrints3 provides a web interface for managing, publish-
ing and searching among the repository’s contents and
metadata. It also supports several interoperability fea-
tures, such as OAI-PMH, SWORD protocol, and through
usage of plug-ins, BIBTEX, Dublin Core, METS, MODS,
among others.

Investigators in research areas often come to conclusions
regarding their scientific work, that are then translated into
the form of written publications. Viewing scientific evolution
as a process based on small contributions for a bigger pur-
pose, it is natural for some researchers to build based upon
previous work of someone else. Crediting one’s contribution,
i.e. referencing, contributes for the enrichment of an article.
Authors are, therefore, encouraged to provide a listing of all
the bibliographic references used in their work. Several styles
exist for references, such as Chicago4, Harvard5, Modern Lan-

1http://www.dspace.org
2http://www.fedora-commons.org
3http://www.eprints.org
4http://www.chicagomanualofstyle.org/toolscitationguide.html
5http://libweb.anglia.ac.uk/referencing/harvard.htm

guage Association6, Nature7, Science8 and many others. The
used style depends on the discipline, and despite the natural
differences among different publishers styles, the provided
information contains descriptive metadata about the reference.

B. Identifiers
Identification is crucial when dealing with collections of

resources, because it is the way to refer to a specific resource.
When analysing identifiers, we can classify them according to
four different axis [8]: uniqueness, resolution, interoperability
and persistence.

Regarding the identification of resources, there are several
identifier systems related to bibliographic metadata, such as
ISBN [9], ISSN9, URI, URL [10] and DOI [8]. These identi-
fiers all have a specific purpose and can be classified according
to the mentioned axis as presented in table I.

Identifier Uniqueness Resolution Interoperability Persistence

ISBN YES YES YES YES

ISBN YES YES YES NO

URI YES YES YES NO

URL YES YES YES NO

DOI YES YES YES YES

Table I
COMPARISON OF RESOURCE IDENTIFIERS.

Unlike as it happens when identifying a resource, where
typically the title is enough to tell two resources apart,
uniquely identifying an author presents different challenges,
as there is no way to sure that the name really belongs to the
person that wrote the publications. Several factors contribute
to this uncertainty [2] [11]:

• Different people have the same name;
• Sometimes initials are mixed into the name;
• Non-Latin names are converted into the same equivalent

(e.g. Zhang);
• People change name over time (e.g., marriage and di-

vorce);
• Spelling errors;
• Affiliation and contact information gets outdated.

The proposed solution for this problem is to create an identifier
for each author, and associate the publications to the correct
identifier [2]. Different author identifier systems are already in
place such as International Standard Name Identifier (ISNI) 10,
Thomson Reuters’ ResearcherID 11, Elsevier’s Scopus Author
Identifier 12, Open Research & Contributor ID (ORCID) 13,
Digital Author Identifier (DAI) 14. However, the large number

6http://www.mla.org/style
7http://www.nature.com/nature/authors/gta/
8http://www.sciencemag.org/site/feature/contribinfo/prep/res/refs.xhtml
9http://www.issn.org
10http://www.isni.org/
11http://www.researcherid.com/
12http://www.info.sciverse.com/scopus/scopus-in-detail/tools/

authoridentifier
13http://about.orcid.org/
14http://www.surf.nl/en/themas/openonderzoek/infrastructuur/pages/

digitalauthoridentifierdai.aspx



3

of existent system becomes itself a problem, as the usefulness
of such as system comes from it being universal [11]. Other-
wise, the problem persists, because there’s no way to be sure
that author A in system 1 is the same author B in system 2.

C. Metadata

Metadata is defined as data about data or information about
information. On a more formal level, ”metadata is structured
information that describes, explains, locates or otherwise
makes it easier to retrieve, use or manage an information
resource” [12]. It can be seen from different perspectives and
therefore it is commonly divided into three main types [12]:

• Descriptive Metadata refers to information about the
resource itself.

• Structural Metadata tells how resources might be re-
lated among themselves, possibly as parts of another
resource in a higher level scope.

• Administrative Metadata is related to the intrinsic prop-
erties of the resource.

Metadata usage has been growing in line with the growth
of digital content [13], and it has been applied in several
areas with a growing importance. Those areas include resource
discovery, resource organization, and interoperability [14].
Table II presents examples of different metadata schema and
groups them according to their type.

Descriptive Metadata Structural Metadata

MARC21/UNIMARC METS

MODS

BIBTEX

DCMES

ESE

Table II
MAPPING BETWEEN METADATA SCHEMAS AND TYPES

D. Functional Interfaces

1) Z39.50: Initially defined as the “ANSI/NISO Z39.50”
15 United States national norm and later as the international
norm “ISO 23950”16, Z39.50 is a client-server protocol which
specifies data structures and interchange rules that allow
information retrieval over a database of records. Since different
databases may have different ways of describing the contained
information, a common model is necessary for that description
to which each implementation should be mapped [15].

2) OAI-PMH: The Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) is a protocol for harvesting
records stored in repositories. Components that participate in
this framework are classified as Data Providers, that expose
metadata, and Service Providers, those who use the harvested
metadata. Each item within a repository has a unique identifier
that must follow the URI syntax. Identifiers are used when

15http://www.loc.gov/z3950/
16http://www.iso.org/iso/catalogue\ detail.htm?csnumber=27446

listing records present in the repository or the identifiers
themselves, or when a request for a record in a specific
metadata format from an item issued. Figure II-D2 shows
an informal overview of an environment of services based
on OAI-PMH. Records present in a repository may follow
multiple metadata schemas; however, all repositories must
implement Dublin Core format for purposes of interoperability
[16].

Figure 1. An informal overview of an environment of services based on
OAI-PMH

OAI-PMH relies upon the Representational State Transfer
(REST) architectural style introduced by Fielding in his PhD
Thesis [19]. This style intends to transfer a representation of
a resource, typically in XML or JSON, that exists within
a server and has a state. REST is not a standard, but it
does rely on standards such as HTTP, URL, XML, among
others. In order for a service to be considered RESTful it
must meet the following constraints [19] [20]: Client-Server,
Stateless, Cache, Uniform Interface, Layered System and Code
on demand (optional).

3) SWORD: Simple Web-service Offering Repository De-
posit17 (SWORD) is a protocol for depositing content from
one location to another and a profile of the Atom Publishing
Protocol. SWORD aims at depositing any kind of files into a
remote repository in a standardized way. It supports querying
a repository for information about collections available for de-
posit and inserting an object into the repository [17]. Different
deposit interfaces have been developed for EPrints, Fedora and
DSpace repositories [18].

E. Duplicate Detection

When consolidating information, often occurs that informa-
tion ends up being duplicated. In that way, it is necessary to
eliminate the duplicate information. Since most information
is represented as strings, string similarity algorithms are used
for duplicate detection, such as Edit Distance, Bag Distance,
Smith-Waterman, Longest Common Sub-string, q-grams, Jaro
or Winkler [3]. A common problem related to bibliographic
references is to find whether two different strings represent the
same real name of a person, e.g., ”John Smith” and ”Smith, J.”.

17http://swordapp.org/



4

In addition to the already pointed pattern matching algorithms,
others exist that take into account the sound of the words.
Those are known as phonetic algorithms and some examples
are: Soundex, Phonex, Phonix and Double-Metaphone [3].

III. INFORMATION SOURCES

We define an information source as an external service
that registers an identifier for an author and, optionally, offers
the possibility of harvesting the author’s publications metadata
records. From this definition we assume that a valid informa-
tion source in the scope of this thesis always has, at least, one
publicly available identifier for each author. Therefore, and
given the problem of author identification discussed in section
II-B, we exclude services that provide publications listings
only through queries with the name of the author or some
other criteria.

An analysis was conducted prior to the system implemen-
tation in order to assess which existent services could play
the role of information source as previously described. That
analysis was based on the following criteria:

• Existence of an unique identifier for each author;
• Covered domain;
• Access to the system information;
• Data format of retrieved information;
• Required response document manipulation.
The analysed services are indicated in table III.

Information Source URL

Google Scholar http://scholar.google.com/

Microsoft Academic Search http://academic.research.microsoft.com/

ACM Digital Library http://dl.acm.org/

DBLP http://dblp.uni-trier.de/

IEEE Xplore http://ieeexplore.ieee.org

ResearcherID http://www.researcherid.com/

ScienceDirect http://www.sciencedirect.com/

Nature http://www.nature.com/nature/index.html

CiteSeer http://citeseer.ist.psu.edu/index

Mendeley http://www.mendeley.com/

Table III
HOMEPAGE URLS OF THE ANALYSED SERVICES.

From table IV, that summarizes the results of the analysis,
it is possible to see that of all analysed services that may act
as information sources, 7 of them provide a unique identifier
for each Author. As this a mandatory requirement for an
information source, services such as IEEE and ScienceDirect
are excluded.

For the other ones, and after a deeper analysis, it is
possible to conclude that the most suitable services to act as
information sources are: Google Scholar, Microsoft Academic
Search, ACM Digital Library and DBLP. Despite meeting all
requirements, ResearcherID requires a high manipulation of
the retrieved document, as well as user interaction simulation
to be allow harvesting of all records of an author. Because of
that, it was not included in the set of information sources

Information
Source

Unique
Identifier Domain Access Data

Format
Transfor-
mation

Google
Scholar YES Multiple

Single
HTTP
GET

BIBTEX None

Microsoft
Academic
Search

YES Multiple
Single
HTTP
GET

BIBTEX Minimal

ACM Digi-
tal Library YES Single

Single
HTTP
GET

BIBTEX Minimal

DBLP YES Single
Multiple
HTTP
GET

XML Major

IEEE
Xplore NO Single - - -

ResearcherID YES Multiple
Multiple
HTTP
GET

HTML High

ScienceDirect NO Multiple - - -

Nature NO Multiple - - -

CiteSeer YES Multiple
Multiple
HTTP
GET

HTML High

Mendeley YES Multiple API JSON High

Table IV
COMPARISON OF DIFFERENT POTENTIAL INFORMATION SOURCES.

considered for this work. Mendeley provides an API for
retrieving information but requires authentication for each
author to harvest his publications. Both ResearcherID and
Mendeley will be approached in section VI-A dedicated to
future work.

IV. PROPOSED SOLUTION

This section presents some of the details regarding the
implemented solution. It starts by introducing the domain
entities that compose the core of the system as well as
architectural view of it. It then presents the main functionalities
implemented into the system.

A. Use Cases

Taking into account the problem this work proposes to
approach, stated in section I-A, it is possible to define a
number of expected use cases for the system:

• Register unit: Register a unit in the system so that it is
possible to associate an author to it.
Actors: System administrator; librarian.

• Register information source: Register an information
source in the system, being importable or not, so that it is
possible to associate an author to it through an identifier.
Actor: System Administrator.

• Register author: Register an author in the system by
providing, at least, the authoritative name and the unit to
which the author belongs to.
Actors: System administrator; librarian.

• Set aliases of author: Set the aliases of an author so that
it is possible to find more information about that author.
Actors: System administrator; librarian.



5

• Register identifier: Associate an identifier to a pair
(author, information source), allowing the importation of
records of such author from the given information source.
Actors: System administrator; librarian.

• Get list of records: Get a list of records according to
some criteria such as the format, or information source.
Actors: Librarian, client.

• Configure system: Configure the different options that
affect the behaviour of the system.
Actors: System administrator; librarian.

• Order records harvest: Order a harvest process.
Actors: Librarian, client.

• Import records: Import metadata records.
Actor: Bibliographic source.

B. Domain

The domain of the system is based upon five different core
entities:

• Information Source: The information source entity rep-
resents an external service that registers an identifier
for an author and, optionally, offers the possibility of
harvesting the author’s publications metadata records. It
also contains the required information that allows a fully
automated mechanism of records harvesting.

• Identifier: The identifier entity represents the unique
identifier each information source has for an author,
establishing a connection between the two entities. It
holds the identifier that is later used when harvesting
records. Also, the identifier is necessary in order to
provide a link to the profile page of an author in the
information source system.

• Record: The record entity represents a bibliographic
metadata record. It contains the information regarding a
harvested record and keeps an association to the author
of the described publication and the information source
from where it was retrieved.

• Author: The author entity represents any faculty member
or researcher that has authored scientific publications. It
keeps an association to the Identifier entity and an associ-
ation to the Publication entity. Besides those associations,
an author entity also has a one-to-one association with the
unit entity. This means that an author always belongs to
one, and only one, unit.

• Unit: The unit entity represents an organizational unit
in the scope of the organization where the system is
installed. As mentioned before, a unit aggregates authors
in a one-to-one relationship.

C. Architecture

The implemented solution is composed of 5 different mod-
ules, as it can be seen in figure 2:

• Data Access: Responsible for accessing the data storage
system to perform read and write operations regarding
domain entities. It is also responsible for making elabo-
rated queries to retrieve collections of domain entities.

• Duplicate Detection: Responsible for the process of
finding and consolidating into one the records that are
duplicate descriptions of the same publication.

• Import: The import module is responsible for the har-
vesting of metadata records from the different information
sources.

• User Interface: The user interface module implements
the GUI (Graphical User Interface) for the human to
machine interaction with system.

• REST Services: The REST Services module is respon-
sible for the implementation of the machine-to-machine
interface of the system.

Graphical
User

Interface

Duplicate
Detection

ImportData Access

RESTful
Services

Figure 2. Dependency view of the architecture of the system. Each arrow
establishes a ”uses” relationship from the start to the end of the arrow. For
instance, the RESTful Services module uses the Data Access module.

D. Harvest

The main functionality required for the system is the auto-
mated harvest of descriptive metadata records from external
services. In order to achieve that, two things are necessary:
1) The format of the URL from where to retrieve the document
with the metadata records; 2) The identifier of the author in
the desired information source.

After acquiring that information, the harvesting processing
is as follows:

• Fetch the document using the specific URL for the
author’s publications;

• Transform the document into a BIBTEX format;
• Parse the BIBTEX document;
• For each parsed record, check if it is new or a modified

version of an already existent record and save it.
The retrieved documents from each information source are

not homogeneous. All of them require some transformation
in order to be parsed by the BIBTEX library. But even with
document transformations, sometimes it is not possible to
parse a metadata record. The system follows a best effort



6

approach: it parses one record at a time, discarding just the
ones it cannot parse.

After a successful parsing of a record, the system tries to
save it. Two things can happen: 1) it is a new metadata record
harvested from the given information source; 2) it is a metadata
record that was harvested in a previous import process for the
same information source. In order to make this distinction the
system tries to find a duplicate record from the same author
and information source. If it does not exist, it is considered a
new record and saved into the database. On the other hand,
if the system finds an existent record matching the criteria,
then it is considered another version of an existent one. In
this situation, the system checks if there is any modification
comparing to the existent record, and if it exists, replaces the
record.

The previous description of the import process shows that
it is possible to automatically harvest metadata records. How-
ever, such process requires action from the user to start and
research question 1 (see section I-A) sets as an objective the
minimal human effort in the harvesting process. This goal is
achieved by fully automatizing the import the following way:
when an information source is added to the system, a periodic
timer associated to that source is activated. When the defined
period ends, the harvesting process is automatically initiated.

Giving the possible constraints imposed by external services
(for instance, many requests over a small period of time
may lead to blockage of requests), it becomes necessary to
parametrize the frequency of the harvesting processes. The
used parameters are part of the information source entity (sec-
tion IV-B) and define the date/time of first import, how long
it will wait until the next import and the maximum number
of authors whose records will be harvested. This approach
allows for the system administrator to define the parameters
that better suit each information source. The authors whose
records will be imported are chosen based on the date of the
last import: the authors with the oldest records in the system.

E. Duplicate Detection

In order to identify which records represent the same
publication, a duplicate detection mechanism was developed. It
has as input two records and returns true if they are considered
duplicate, and false otherwise. The records are identified as
duplicates when both of them: 1) are of the same type (e.g.,
article); 2) have the same amount of fields; 3) have the same
fields with the same value.

The fields to compare between records are determined by
a configuration file (see section IV-F). If a record does not
contain a field specified as duplicate criteria, it is not possible
to draw conclusions regarding the duplicate status, because
the missing field could be the one establishing the difference.
Summarizing, two records are considered duplicates if and
only if they both have the same value for all the specified
fields. The duplicate detection process is invoked in two
different situations: 1) When a new record is being added to
the system, in order to know if that record is another version
of an existing one; 2) At the end of each harvesting process,
when the record consolidation mechanism occurs.

With the duplicate detection algorithm is possible to identify
different records for the same publication. Nevertheless, the
goal is to generate a consolidated list of records. To achieve
that, the system goes through all existent records and puts
them in a list. However, the algorithm first checks if there
is duplicate record already in the list; if so, it merges both
records. This way, a duplicate-free list of enriched records is
generated.

Analysing the complexity of the algorithm, we can see that
it has a complexity of O(N×M) where N is the total number
of records in the system and M is the number of consolidated
records.

With a large number of records in the system, the con-
solidation process is expected to take longer. Generating the
consolidated list every time it is requested would render the
system unusable due to long response times. This problem is
solved by generating cache files with the consolidated records
lists. This cache is refreshed after each harvest process and
when a unit, an author or an information source is deleted. The
choice for these moments follows this rationale: the records in
the system can only change when an harvesting process occurs
or a deletion is performed. In between those moments, the
records are the same and do not change. Relying on that fact,
there is the guarantee that consolidated lists generated between
harvests will always contain the same results. Therefore, the
system generates cache files and, when a client requests a
consolidated list, it reads the cache to generate an answer.
With this approach, the system is expected to be much faster
when answering requests for consolidated data.

F. Configuration

The implemented solution is designed to run continuously.
However, at setup time, the system is empty and the task of
inserting domain entities may become tedious and lead to er-
rors. To avoid that situation, the system has two configuration
files from which it reads the necessary data for loading the
defined information sources and organizational units.

In order to provide flexibility to the system, there are
other two configuration files. The first one defines which
fields in the metadata records will be used as criteria for
duplicate detection. The other configuration file defines the
fields that must be present in a record for it to be considered
BIBTEX compliant. The file follows a specific format to specify
the entry types that are supported, as well as the fields that
are required even in situation when only one of two fields are
required.

G. Functional Interface

In order to facilitate the access to the stored information,
the system provides a machine-to-machine functional interface
using RESTful services (section ??). They are organized in
an hierarchical structure of endpoints, with clean URLs that
provide a meaning for other developers that build systems that
interact with the defined services.

The implemented services can be divided into three cate-
gories:



7

1) Access services, corresponding to HTTP GET requests,
that intend to retrieve information contained in the sys-
tem.

2) Addition services, corresponding to HTTP POST re-
quests, that intend to add information to the system. The
data regarding the added entity is passed through the body
of the request that is validated before any change is made.

3) Deletion services, dedicated to delete some entity in the
system. These services correspond to HTTP DELETE
requests and permanently delete the designated entity,
which may involve cascading deletions.

V. VALIDATION

The validation section of this document aims at presenting
the main results of the evaluation of the system. It starts
by presenting the setup used for the executed tests, and
then presents the evaluated scenario and respective results. It
finishes with a small discussion of the results.

A. Validation Setup

All tests were executed on a localhost server and therefore
network latency times are minimal. The presented execution
times are recorded within the system so that they do not
depend on external factors. The machine on which the tests
were run has the following specification:

• Intel Core i7 - 2670QM @2.2GHz CPU
• 8GB of RAM memory
• 64bit operating system

All tests were performed using Postman - REST Client18, a
plug-in for Google Chrome browser that allows interaction
using RESTful services.

Since the system is expected to interact with external parties
using the machine-to-machine technologies, the graphical user
interface, expected to be used mostly by librarians and system
administrators, was not subjected to evaluation. The evaluated
scenarios use, when appropriate, a subset of authors from
IST, consisting of 10 randomly chosen faculty members of
Departamento de Engenharia Informática.

B. Results

1) Add information sources: Figure 3 shows the results of
adding information sources to the system. The x-axis repre-
sents the number of information sources inserted using the
same HTTP request, and the y-axis the time (in milliseconds)
required to add all specified information sources. A linear
tendency is observed when the number of instances increases
but the average time to insert an instance is approximately
constant.

2) Add units: Figure 4 shows the results of adding units to
the system. The x-axis represents the number of units inserted
using the same HTTP request, and the y-axis the time (in
milliseconds) required to add all specified units. Like when
adding information sources (section V-B1), a linear tendency
is observed when the number of instances increases.

18https://chrome.google.com/webstore/detail/postman-rest-client/
fdmmgilgnpjigdojojpjoooidkmcomcm?utm source=chrome-ntp-icon

0 20 40 60 80 100

0

200

400

Number of information sources added

Ti
m

e
(m

s)

t(n)
4.28 · n+ 9.32

Figure 3. Time to insert information sources.

0 20 40 60 80 100
0

100

200

Number of Units added
Ti

m
e

(m
s)

t(n)
2.23 · n+ 42.05

Figure 4. Time to insert units.

3) Add authors: This test evaluates the functionality of
adding authors to the system. In figure 5, the x-axis represents
the number of authors inserted using a single HTTP request,
and the y-axis the time (in milliseconds) required to add all
specified authors. As observed in the previous tests, a linear
tendency is observed, being the time to add a single instance
approximately constant with time.

0 0.2 0.4 0.6 0.8 1

·104

0

2

4

6

8

·104

Number of Authors added

Ti
m

e
(m

s)

t(n)
7.8 · n− 211.99

Figure 5. Time to insert authors.

4) Harvest records: This test evaluates the main functional-
ity of the system: harvesting records from different information
sources (IS)). All authors have an identifier in each of the
IS, so that a real comparison is possible. In figure 6, the x-
axis represents the number of harvested records and the y-
axis the time required to harvest the records. It is possible



8

to conclude that the growth in time is largely affected by the
number of harvested records and possible other factors that
will be discussed in section V-C.

0 100 200 300 400

0

20

40

60

Number of Records harvested

Ti
m

e
(s

)

Google Scholar
Microsoft Academic Search

DBLP
ACM Digital Library

Figure 6. Time to harvest records, per information source.

5) Consolidate and access records: Another important re-
sult is related to the efficiency of the consolidation algorithm.
In figure 7, the x-axis represents the total number of records in
the system, that is, the number of records to consolidate, and
the y-axis the time required to perform the task, in seconds.
It is possible to conclude that the growth in time is largely
affected by the number of records to consolidate. Section V-C
presents a more detailed discussion as to the possible reasons
for the obtained results.

0 500 1,000 1,500

0

1,000

2,000

3,000

Number of Records to consolidate

Ti
m

e
to

co
ns

ol
id

at
e

(s
)

Figure 7. Time to consolidate records.

Figure 8 relates the total number of records in the system
(x-axis) with the time in milliseconds required to generate
and send the response to the client (y-axis). Opposite to the
consolidation test, the results of accessing all existent records
show a linear trend.

Figure 9 compares the results of the consolidation and
accessing functionalities of the system. It is possible to see that
the access time is nearly zero compared to the consolidation
time. This is one of the most important results in our analysis
and will be subject of an explanation in section V-C.

500 1,000 1,500

50

100

150

Number of Records in the system

Ti
m

e
to

ac
ce

ss
(m

s)

Figure 8. Time to access all consolidated records.

0 500 1,000 1,500

0

1,000

2,000

3,000

Number of Records in the system

Ti
m

e
(s

)

Figure 9. Comparison between time to consolidate all records and time to
access all records.

C. Discussion

Analysing the results of first three tests, regarding scala-
bility, we can see that the time required to add instances of
entities grows linearly with the number of created instances.
This leads us to assume that the system will have a behaviour
within acceptable response times, even when adding a large
number of authors.

According to figure 6, the choice of one information source
has a big impact on the quantity of harvested metadata,
as different information sources have a different number of
records associated to an author. Google Scholar and Microsoft
Academic Search are the sources that provide more records.
They are also the services for which it takes the less time to
harvest the same amount records. Two factors may influence
these results: 1) The transformations on the retrieved docu-
ment, since Google Scholar and Microsoft Academic Search
already provide the records in BIBTEX format. DBLP requires
an additional request for each record and ACM Digital Library
provides a document that requires removal of HTML tags.
2) The infrastructure and computational resources of Google
and Microsoft should be larger, compared to the other services.
Plus, it is known that these organizations have powerful search
engines that may contribute to a broader reach when indexing
metadata records.

About consolidation and access to the records in the system
(section V-B5), it is possible to see that consolidating takes a
long time. With more records in the system, the task takes



9

longer, as the consolidation algorithm has a complexity of
O(N ×M) (section IV-E). With this complexity, a cautious
configuration of the system is necessary regarding frequency
of harvests. In relation to the access time to the records, we
can see that it is almost negligible when compared to the
consolidation time. Therefore we conclude that the effort in
consolidation generates a high reward when accessing the data,
due to the existence of cache. The results of these tests show
the consequences of the flexibility in the configurable duplicate
detection criteria: it is a trade-off between flexibility and
execution time. If the duplicate criteria was not configurable,
the consolidation process would be faster, but we would lose
the possibility of choosing which fields to consider when de-
duplicating.

VI. CONCLUSIONS

This thesis approached the problem of bibliographic meta-
data harvesting as a support for institutional repositories man-
agement, following a semi-automatic process. We introduced
a system that aimed at automatically harvest metadata records
of authors’ publications from different sources, identify and
consolidate duplicate records, and make available the existent
information to outside parties.

The implemented system was evaluated in a real context
environment, using real metadata records of a sample of
authors at Instituto Superior Técnico, harvested from the
supported information sources. Based on the results presented
in section V, we can conclude that the implemented system is
capable of:

1) Harvest metadata records from external sources and
update the contents of the system, without introducing
duplicate records.

2) Share stored information taking advantage of the avail-
able technology for interoperability, namely RESTful web
services.

3) Identify and consolidate duplicate records into a smaller
collection in which each record is an information-
enriched version of all the records identified as duplicates.

However, as section V states, the consolidation of harvested
records takes a long time. We accept this drawback because
we assume that the system will focus on serving information
instead of retrieving it. With the implemented solution, even
with long times for consolidation, the access to the information
by any external stakeholder is almost immediate.

A. Future Work

Even though the implemented system provides an answer
to the research questions, there is still room for several im-
provements. Some possible extensions to the system include:

• Introduce support to other descriptive metadata schemas,
such as Dublin Core (section II-C) or RIS19, that allow a
larger set of publication types and more descriptive fields.

• Implement support for more information sources. In this
work, only four external services were used to harvest
metadata records but there are more services from where

19http://www.refman.com/support/risformat intro.asp

to harvest records, such as ResearcherID and Mendeley.
This involves introducing new functionalities such as
authentication in external services and new ways of
retrieving information, such as XPath or JSON parsing.

• Develop a new algorithm to detect duplicate records
since that, at the moment, the system checks for equality
between field values. Another possibility is to use one of
the similarity measures presented in section II-E.

• Add an indexing engine such as Hibernate Search20 or
Solr21 that add search capabilities to the system, as well as
other ways of improving the detection and consolidation
of duplicate records.

REFERENCES

[1] R. K. Johnson, “Institutional Repositories: Partnering With Faculty
To Enhance Scholarly Communication,” DLib Magazine, vol. 8,
no. 11, 2002. [Online]. Available: http://www.dlib.org/dlib/november02/
johnson/11johnson.html

[2] J. W. L. Cals and D. Kotz, “Researcher identification: the right needle in
the haystack,” The Lancet, vol. 371, no. 9631, pp. 2152–2153, Jul. 2008.
[Online]. Available: http://dx.doi.org/10.1016/S0140-6736(08)60931-9

[3] P. Christen, “A Comparison Of Personal Name Matching: Techniques
And Practical Issues,” in Data Mining Workshops, 2006. ICDM Work-
shops 2006. Sixth IEEE International Conference on. IEEE, 2006, pp.
290–294.

[4] C. Lynch, “Institutional Repositories: Essential Infrastructure For Schol-
arship In The Digital Age,” portal: Libraries and the Academy, vol. 3,
no. 2, pp. 327–336, 2003.

[5] M. Smith, M. Barton, M. Branschofsky, G. McClellan, J. H. Walker,
M. Bass, D. Stuve, and R. Tansley, “DSpace: An Open Source Dynamic
Digital Repository,” DLib Magazine, vol. 9, no. 1, 2003. [Online].
Available: http://www.dlib.org/dlib/january03/smith/01smith.html

[6] K. Markey, S. Y. Rieh, B. St. Jean, J. Kim, and E. Yakel, “Census
of Institutional Repositories in the United States: MIRACLE Project
Research Findings,” Tech. Rep., Feb. 2007. [Online]. Available:
http://www.clir.org/pubs/execsum/sum140.html

[7] C. Lagoze, S. Payette, E. Shin, and C. Wilper, “Fedora: An Architecture
For Complex Objects And Their Relationships,” International Journal
on Digital Libraries, vol. 6, no. 2, pp. 124–138, 2006.

[8] N. Paskin, “Digital Object Identifier (DOI) System,” Encyclopedia of
library and information sciences, 2008.

[9] P. Bradley, “Book Numbering: The Importance Of The ISBN,” The
Indexer, vol. 18, no. 1, 1992.

[10] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource
Locators (URL),” Internet Engineering Task Force, RFC 1738, 1994.

[11] M. Enserink, “Are you ready to become a number?” Science,
vol. 323, no. 5922, pp. 1662–1664, 2009. [Online]. Available:
http://dx.doi.org/10.1126/science.323.5922.1662

[12] National Information Standards Organization, “Understanding
metadata,” 2004. [Online]. Available: http://www.niso.org/publications/
press/UnderstandingMetadata.pdf

[13] A. Sen, “Metadata Management: Past, Present And Future,” Decis.
Support Syst., vol. 37, pp. 151–173, April 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=992877.992887

[14] L. M. Chan and M. L. Zeng, “Metadata Interoperability And
Standardization - A Study Of Methodology Part I,” DLib Magazine,
vol. 12, no. 6, 2006. [Online]. Available: http://www.dlib.org/dlib/
june06/chan/06chan.html

[15] NISO, “Information Retrieval (Z39.50): Application Service Definition
And Protocol Specification: An American National Standard,” 2003.

[16] C. Lagoze, H. Van De Sompel, M. Nelson, and S. Warner, “The
Open Archives Initiative Protocol For Metadata Harvesting,” Open
Archives Initiative, vol. 2004, pp. 1–6, 2008. [Online]. Available:
http://www.openarchives.org/OAI/openarchivesprotocol.html

[17] S. Currier, “SWORD: Cutting Through The Red Tape To Populate
Learning Materials Repositories,” JISC CETIS. Retrieved February,
vol. 11, p. 2010, 2009.

20http://www.hibernate.org/subprojects/search.html
21http://lucene.apache.org/solr/



10

[18] J. Allinson, S. Francois, and S. Lewis, “SWORD: Simple Web Service
Offering Repository Deposit,” Ariadne, vol. 54, no. 54, pp. 1–10, 2008.
[Online]. Available: http://www.ariadne.ac.uk/issue54/allinson-et-al/

[19] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, Irvine - Irvine, CA 92697, USA, 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=932295

[20] R. L. Costello, “Building web services the REST way.” [Online].
Available: http://www.xfront.com/REST-Web-Services.html


