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ABSTRACT 

In the last years, societies growing environmental and health conscience, obliged the national 

authorities to reinforce existing legislation concerning the maximum permissible noise levels. These 

new demands lead to increasingly accurate tools to perform noise analysis, not only because they 

must include a growing number of parameters that influence its propagation, thus with more 

complexity, but also with more flexibility, quick and easy use and less computational effort. 

This dissertation, after presenting the several existing numerical methods to evaluate the sound 

propagation and its intrinsic limitations, describes the acoustic wave equation resolution method, using 

a Green function. Since the focus of this work is to develop a numerical application, which allows 

incorporating the wind and turbulence effects on sound propagation in the atmosphere, was created a 

C language numerical program. It includes input and output interfaces which ease the analysis of the 

referred effects variations on sound propagation. 

The numerical program validation was achieved not only by comparing its results with exact 

numerical methods, but also by using numerical approaches with known accuracy and with results 

from experimental measurements. The program was applied to an airport by using realistic 

parameters. The coherent results obtained confirmed that the program developed is numerically 

accurate and its user interface is suitable and can be, easily and effectively, used to evaluate the 

effects of wind and turbulence on sound in the vicinity of an airport. 
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RESUMO 

Nos últimos anos,  crescentes preocupações ambientais e de saúde, obrigaram as autoridades 

nacionais a reforçar a legislação existente referente aos níveis máximos de ruído admissíveis. Estas 

exigências conduzem à necessidade de dispor de ferramentas mais precisas de análise de ruído, por 

um lado mais complexas, por terem de incluir o maior número possível de parâmetros que 

condicionam a sua propagação, por outro lado mais flexíveis, de rápida e fácil ultilização e com maior 

rapidez de cálculo.  

A presente dissertação, após apresentar os vários métodos númericos existentes para a 

avaliação da propagação do som e as suas limitações intrínsecas, descreve o método de resolução 

da equação geral do som por intermédio de uma função de Green. Sendo o objectivo deste trabalho 

desenvolver uma aplicação numérica que permitisse incorporar o efeito do vento e da turbulência na 

propagação do som, foi desenvolvido um programa em linguagem C. Este dispõe de interfaces de 

entrada e saída de dados, que facilitam a análise da variação de ambos os efeitos.  

A validação numérica da aplicação foi efectuada, quer por comparação com métodos numéricos 

exactos, quer usando aproximações numéricas de precisão conhecida, quer ainda, por comparação 

com resultados de medições experimentais. O programa foi aplicado à situação de um aeroporto 

usando parâmetros realistas e a coerência dos resultados obtidos confirmou a sua precisão numérica 

e que a interface é adequada e pode ser, fácil e eficazmente, usada para avaliar o efeito do vento e 

da turbulência no som,  nas proximidades de um aeroporto. 

 

 

Palavras Chave:  propagação do som,  vento, turbulência, ruído, refracção do som, região de 

sombra. 
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1 INTRODUCTION 

1.1 BACKGROUND 

The sound propagation studies in the atmosphere had always been a major concern in the 

scientific community. In the 19
th
 century there were several isolated investigations to address specific 

requests, such as foghorns to aid shipping traffic or the location of artillery pieces. Refer to [Wescott & 

Kushner, (1965)], for a detailed bibliografy of the research done before 1965. When, in the 1960s, jet 

aircraft use grew significantly, governments throughout the world begun to produce specific legislation 

to limit the noise pollution, with the intent of protecting human health and minimizing the annoyance of 

noise to the communities and environment. As a result of this, new  research activity grew in this area 

and with the aid of knowledge from other fields of physics, new methods to measure the outdoor 

sound propagation, with increasing accuracy,  where developed. 

In the last years, societies growing environmental and health conscience, obliged the national 

authorities to reinforce existing legislation concerning the maximum permissible noise levels, such as 

the Green Paper, published by the European Commission, which addressed the need for a European 

noise reduction policy [E. C. Environment, (1996)]. 

1.2 MOTIVATION 

In the context described above, the knowledge of the sound propagation phenomena assumes 

a growing importance. Nowadays all the previous studies associated with the construction of new 

infrastructures or the renewing of another ones, that can generate significant levels of noise, namely 

airports, are mandatory. These studies must incorporate a large variety of parameters in order to 

reproduce the future real situation and they consume a large amount of resources to obtain accurate 

results, with special relevance for the financial costs associated, as well as, the long time to complete 

them. 

The existent methods to calculate the sound level in a given atmosphere, have different 

degrees of complexity accuracy and speed. Some of them do not incorporate many parameters that 

influence the real atmospheric sound behavior or are computationally inefficient. The most relevant 

methods are the Generalized Fast Field Program (FFP), that do not incorporate range dependent 

atmospheric parameters; the Crank-Nicholson Parabolic Equation (CNPE) method, which requires 

significant computation time, the Ray Model method, which results are not accurate enough for some 

situations and the Green Function Parabolic Equation (GFPE) method. 

As we will see later, the GFPE method, which was developed by [Gilbert, et al., (1993)], is the 

most suitable one to study the effect of wind and turbulence on sound propagation in the atmosphere. 

Using this method, we developed a computational program, in C language, to calculate the sound field 

where we included several inputs that represent the most significant parameters of sound propagation 

phenomena. The method puts together the best features of each of the three methods referred above 
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and its results were successfully validated its results by comparing it with other numerical models and 

existing experimental measurements.   

1.3 OUTLINE 

Chapter 1 of this text, introduces the problem by presenting the thesis background and aim.  

Chapter 2 describes the major aspects related with sound propagation, as well as some numerical 

methods used to compute the sound field and their intrinsic limitations.  

Chapter 3 details the GFPE as a method to solve the inhomogeneous Helmholtz equation as well 

as the theoretical incorporation of atmospheric turbulence.  

Chapter 4 presents and explains the assumptions used to develop a C language program to 

calculate the sound field. This program incorporates the main parameters that govern sound 

propagation in a real atmosphere.  

Chapter 5 presents the results and validates them by comparing with other numerical models and 

with existing experimental measurements.  

Chapter 6 applies the developed program to an airport situation, using realistic parameters, and 

evaluates its results and suitability. 

Chapter 7 provides a general discussion and concluding remarks of the present work, as well as, a 

few suggestions the author considers of interest for future developments. 
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2 BACKGROUND ON SOUND PROPAGATION 

This chapter is a review of the most important concepts and mechanisms that control sound 

propagation in the atmosphere. Since the field is so vast, only the dominant mechanisms of sound 

propagation will be presented here. Section 2.1 gives a general view over the atmospheric acoustics, 

while sound propagation in a homogeneous atmosphere (section 2.2) and sound propagation in an 

inhomogeneous atmosphere (section 2.3) are the following two areas described in this chapter. In 

section 2.4 the existent numerical models to compute the sound field are briefly described. 

2.1 ATMOSPHERIC ACOUSTICS 

Sound is a mechanical wave, which is an oscillation of pressure transmitted through a medium, 

composed of frequencies within the range of hearing and with a level sufficiently strong to be heard.  

A sound propagation scheme can be illustrated by a source, located at a height    above the 

ground, a receiver at a distance   from the source and placed at a height   , as illustrated in the 

following figure, 

 

 

 

Figure 2.1 - Outdoor sound propagation basic geometry 

 

Sound pressure in a atmosphere is the local pressure deviation from the average atmospheric 

pressure caused by a sound wave. The sound pressure level    is a logarithmic measure of the 

effective sound pressure of a sound relative to a reference value. Its value is measured in decibel and 

is given by, 

 

            
 

 
 
    

 

    
 
  (2.1) 

 

where      is a reference value, usually          and    is the sound pressure of a harmonic 

spherical wave. This reference value is considered the threshold of human hearing (at   kHz). 

 

 

http://en.wikipedia.org/wiki/Threshold_of_human_hearing
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Another useful quantity used is the relative sound pressure level that can be defined as, 

 

               (2.2) 

 

where         is the sound pressure in a homogeneous atmosphere without a ground surface, given 

by, 
 

                 
 

 
 
       

 

    
 
  (2.3) 

 
hence, the relative sound pressure    can be obtained by, 
 
 

            
    

 

       
   (2.4) 

 
However, in a benchmark point of view, the transmission loss is considered the most useful quantity 
for comparison purposes. The following definition is used, 

 

            
    

 

       
 

   

              
   (2.5) 

 

where        
 

   
 is the acoustic pressure of the direct sound field at   m from the source. 

The two previous formulas are used later in this work to evaluate the sound levels calculated by 

the developed program. 

2.2 SOUND PROPAGATION IN A HOMOGENEOUS ATMOSPHERE 

In a homogeneous atmosphere, the medium average pressure and average density are constant. 

The sound wave propagation is influenced by three main phenomena: 

 

i) spreading of sound waves, 

ii) atmospheric absorption, 

iii) ground absorption. 

2.2.1 Geometrical spreading 

As a sound wave travels out from a source with an increasing radius, the sound intensity 

decreases as the surface of the wave front expands. The resulting attenuation is dependent on the 

propagation distance, but is frequency independent. For a point source, the spreading is spherical 

(see Figure 2.2) and the sound level decreases 6 dB per doubling distance. On the other hand, if it is 

an infinite line source, the spreading of the sound waves is cylindrical (see Figure 2.2) and the sound 
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level drops 3 dB per doubling distance, half the rate of the spherical spreading. In both cases, those 

values occur if the sound propagates in a homogenous free field, i.e., with no boundaries or reflecting 

surfaces. 

The sound emitted from a single airplane or a single vehicle can be considered as a point source, 

thus the spreading is spherical. By contrast, a busy highway can be comparable to a line source with 

cylindrical spreading, i.e., equal sound power output per unit length. 

 

 

 

Figure 2.2 - Schematic diagram for spherical spreading (left) and cylindrical spreading (right) 

[Piercy, et al., (1977)] 

 

2.2.2 Atmospheric absorption 

Spreading losses represent only a reduction in the sound power per unit area as the distance of an 

expanding wave front increases. The real loss of sound power from the noise source is called 

atmospheric absorption and results from three effects: 

 

i) Thermal conduction and viscosity of air 

ii) Vibrational relaxation of molecules of air (oxygen and nitrogen) 

iii) Rotational relaxation of molecules of air 

 

this loss occurs due to the existence of small amounts of heating, viscous losses and energy 

exchange between air molecules, as a sound wave passes through. In this process the sound wave 

loses energy, which is converted into heat. Figure 2.3 shows the different physical effects and their 

contribution to the atmospheric absorption. It evidences that the atmospheric absorption increases 

mostly with the frequency of the sound wave. Meteorological effects, such as temperature, humidity 

and atmospheric pressure, also influence it, although in a minor level.  
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Figure 2.3  Absorption coefficient   in dB/100m as a function of frequency  , calculated for a 

temperature of 20 
o
C, relative humidity of 70 % and a pressure of 1 atm [Piercy, et al., 1977]. 

 

The attenuation by geometrical spreading, which was described in the previous section and is 

constant for a given ratio of propagation path lengths while, the attenuation by absorption is constant 

for equal propagation distance. Thus, in long range sound propagation perspective, the attenuation by 

absorption plays an important role, specially at high frequencies. On sound propagation at short 

distances, or at low frequencies, or both, the effect is small and can be neglected. 

2.2.3 Ground interaction 

When the source or the receiver, or both, are close to the ground, sound propagation is affected 

by a complex interaction of sound waves. This is the situation for most outdoor sound propagation 

problems, although some specific situations, such as high flying aircraft, do not have this boundary 

condition. When a sound wave reaches a ground surface, part of the wave is reflected back into the 

air and part is absorbed by the ground therefore, there are also reflected waves besides the direct 

sound waves (Figure 2.4). 

The reflection coefficient for a plane wave on a locally reacting surface is [Salomons,( 2001)], 

 

    
        

        
 (2.6) 
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and for practical situations, if both source and receiver are not  in a too low position, the wave 

reflection coefficient can be  approximated as for the case of plane waves.  

The plane wave reflection coefficient    varies with the angle of incidence    (Figure 2.4), but also 

with     , which is called normalized ground impedance. This value is a complex number and can be 

defined as             . The acoustic impedance,        ,  is the ratio of the complex pressure and 

the amplitude of the  speed of an acoustic wave traveling through a medium. For an acoustically hard 

surface, like water or concrete, we have      . An acoustically absorbing ground, like grassland, 

has a finite value of ground impedance. 

 

 

 

Figure 2.4 Reflection of a sound wave on a flat reacting ground surface 

 

Various accurate models for the impedance calculation of porous materials were developed by 

[Zwikker, et al., ( 1949)], [Delany, et al., (1970)] and [Attenborough, (1985)], each of them depending 

on the frequency of the source and of the type of ground material. They are based on different 

theoretical models and differ on the number of ground parameters used. For the computational 

program developed in this thesis, we adopt the Attenborough’s four parameter model. Its normalized 

ground impedance is defined as [Attenborough, (1985)]: 

  

     
   

  
  

  
  

  
 
   

 
 (2.7) 

being the wave number: 

   
 

 
     

 

 
 
   

 
    

  

 
  

  
  

  
 (2.8) 

 

where the constant         is the Prandtl number,    is the flow resistivity, Ω is the porosity,    is a 

grain shape factor,     is the pore shape factor ratio and        is the square of the tortuosity.  By 

adjusting these four parameters, different types of ground surfaces can be simulated for a given 

frequency. 
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2.3 SOUND PROPAGATION IN AN INHOMOGENEOUS ATMOSPHERE 

In an inhomogeneous atmosphere, the fluid pressure, density and speed are function of position. 

By this reason, the meteorological modeling of an atmosphere is very complex, depending on many 

variables such as temperature, wind speed and direction, air pressure and density. The following two 

sections describe two phenomena that affect sound propagation: atmospheric refraction and 

turbulence. 

2.3.1 Atmospheric refraction 

Atmospheric refraction can be described as the change of the sound wave propagation direction 

caused by the atmosphere sound speed gradient. For small distances between the source and the 

receiver, up to 100 m in an open area, atmospheric refraction can be ignored. Thus, to simplify 

calculations, a non-refracting or homogenous environment can be adopted. For distances larger than 

100m, the influence of temperature and wind gradients on sound level is significant, particularly if both 

the source and the receiver are close to the ground surface. Most problems deal with outdoor long 

range propagation so the latter situation is more common. Being aware of that, the computational 

model developed in this thesis will incorporate atmospheric refraction. 

The sound speed in the atmosphere change as a function of the temperature   and is defined by, 

 

      
 

  
 (2.9) 

 

where   is the temperature in Kelvin,    is the sound speed at the temperature    (commonly,    

         and         ). 

The sound propagation speed depends on the air temperature: higher temperature yields faster 

sound propagation. During daylight, solar radiation heats the earth´s surface resulting in a warmer air 

temperature close to the ground. This occurrence is called temperature lapse (Figure 2.5).   

 

 

 

Figure 2.5  Variation of temperature with height; examples of lapse (solid line) and inversion 

(dashed line) conditions from [Munn, (1966)]  
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Due to this event, the sound wave travelling close to the ground propagates faster than the sound 

wave travelling more distant of the ground. Furthermore, the existence of a temperature gradient 

causes successive refractions of the sound wave and a consequent change of direction, bending 

upwards as shown in Figure 2.6 . This will create a shadow zone where the sound pressure is zero 

and the ray delimiting this area is tangent to the ground surface. In reality the pressure is small 

because of the of the atmospheric turbulence scattering effect as discussed in section 6.4. 

During the night, the ground cools by radiation faster than the atmosphere (Figure 2.5). This 

causes the sound wave to change direction and bend downwards. This phenomenon is known as 

inversion and is illustrated in Figure 2.6. 

 

 

 

Figure 2.6 Top: illustration of downward refraction of sound. Bottom: illustration of upward 

refraction of sound [Piercy, et al., (1977)]. 

 

In the examples above, the atmosphere was considered non-moving, i.e., without wind. 

Conversely, an atmosphere with wind is called a moving atmosphere. Refraction caused by 

temperature is identical in all directions because it is a scalar quantity. However, refraction caused by 

wind depends on the sound direction of propagation. A vector of three components represents the 

wind in the atmosphere, 

 

                     (2.10) 

 

where  ,   and   form the three coordinates of a cylindrical coordinate system. 

Considering that the computational method developed in this work is two dimensional, only   and   

coordinates, the same ones represented on Figure 2.1, were considered. As a result, if the sound 

propagates directly crosswind (perpendicular to the wind path), the refraction component caused by 

wind is zero. The vertical component    is much smaller than   , therefore can be neglected 

[Salomons, (2001)]. We can then approximate a moving atmosphere to a non-moving atmosphere, 

with an effective sound speed using, 
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                   (2.11) 

 

where   is the adiabatic sound speed and    is the component of the wind speed in the direction of 

sound propagation. If the wind blows in the direction opposite to the sound propagation, it has a 

negative contribution to the sound speed and the sound rays are bent away from the ground. It results 

in upward refraction, just as the effect of the temperature lapse in Figure 2.6. Downward refraction 

occurs if the wind blows in the same direction. 

The wind speed is approximately zero near the ground, due to friction over the ground surface and 

its value usually increases with altitude. The type of ground dictates the wind speed close to it: rough 

surfaces, such as grassland, cause the wind to slow down more, in comparison with smooth surfaces, 

like water. 

A logarithmic function is frequently used to simulate a realistic atmosphere: 

 

                
 

  
    (2.12) 

 

where    is the sound speed at the ground surface, the parameter    is the roughness length and   is 

the refraction velocity. Positive values of   represent a downward refracting atmosphere and 

conversely, negative values represent an upward reflecting atmosphere. Section 6 describes how to 

obtain realistic profiles of temperature and wind speed by adjusting the parameters of a logarithmic 

function. This profile is an accurate representation of the sound speed profile and is used, for 

benchmarking purposes, in the computational program developed in this thesis. 

2.3.2 Atmospheric turbulence 

In the previous section, the atmosphere was characterized by vertical profiles of both temperature 

and wind. These profiles were assumed to be average values over a period of time, typical over 10 

minutes. However, in a real atmosphere, the profiles change continuously. These fluctuations can 

occur in a scale of several hours or longer, but also occur in much faster scales, of seconds or 

minutes. The latter fluctuations are known as atmospheric turbulence.  

Two types of flow exist in fluid dynamics: laminar and turbulent. Laminar flow occurs when a fluid 

travels smoothly or in regular paths, without any disruption between them. This type of flow is the least 

common in most aerodynamics problems, and is usually present in low velocity flow or when the flow 

section is relatively small (Figure 2.7). If the flow speed increases, the fluid transits into a new state 

characterized by chaotic and stochastic property changes, called turbulent flow. 

http://en.wikipedia.org/wiki/Stochastic
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Figure 2.7 Top: Illustration of laminar flow. Bottom: Illustration of turbulent flow 

 

The fluid currents in a turbulent flow often differ from the general flow direction, forming swirls in 

the fluid, which are called eddies (Figure 2.7). The eddies size in a turbulent flow depend on the 

characteristic dimension of it. In the atmospheric boundary layer, eddies size increase with ground 

distance. Although the eddies process formation is a continuous one, its constant instability induces 

them to break down continuously into smaller sizes until the energy is completely dissipated by 

viscosity. By that reason, there is a large spectrum of eddy sizes in the atmosphere. These motions 

span a broad spectrum of spatial scales from millimeters to kilometers [Kaimal, et al., (1994)]. 

Although its complexity and associated computational effort, the incorporation of atmospheric 

turbulence is essential nowadays to correctly evaluate the sound propagation in the atmosphere. 

2.4 NUMERICAL MODELS 

2.4.1 Fast Field Program (FFP) 

The Fast Field Program was originally developed as a computational method for underwater 

acoustics [Dinapoli, et al., (1979)] and [Jensen, et al., (1994)]. Later on, this method was adapted for 

outdoor sound propagation in the atmosphere [Lee, et al., (1986)] and [Raspet, et al., (1985)]. This 

computer model permits the prediction of sound pressure in a layered refracting atmosphere, with 

arbitrary position for both source and receiver, above an absorbing or rigid ground surface. The 

atmosphere is divided in horizontal homogenous layers where each one has its own wave number, 

i.e., with constant wind speed and temperature (see Figure 2.8). 
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Figure 2.8 - Representation of a stratified atmosphere for the FFP method, where each layer has 

its own wave number   [Salomons, (2001)]. 

 

The sound field is computed in the horizontal wave number domain and to calculate it, a Fourier 

transformation of the wave equation is used, from the horizontal spatial domain to the wave number 

domain. This is necessary to solve numerically the wave equation. Thereafter, an inverse Fourier 

transform is used to obtain the sound field in the spatial domain, back from the horizontal wave 

number domain. Since only one frequency is obtained per sound field calculation, computing an entire 

frequency spectrum is very time consuming. This method is sometimes called “wave number 

integration method”, since the sound field is computed in the horizontal wave number domain. The 

FFP is restricted to simulations where the sound speed profile and ground surface are constant 

through each horizontal layer (Figure 2.8). This reduces the complexity of the environments which can 

be simulated, not only for both range dependent wind and temperature gradients, but also for 

atmospheric turbulence. Additionally, this method is limited to either flat topography or single large 

scale topographical feature, as for example a large hill, with constant ground impedance value.  

However, despite these limitations, this model can calculate the sound field in a moving 

atmosphere, with realistic vertical wind and temperature gradients and has a speed advantage in long 

range calculations. It is important to note that, for homogenous atmospheres or linear sound speed 

profiles, the wave number equation can be solved analytically [Salomons, (2001)]. This is an important 

feature of this method, as it can be used to test the accuracy of other numerical methods. 

2.4.2 Parabolic equation method 

The Parabolic Equation (PE) method is a computational model based on a parabolic equation, 

which is an approximate form of the wave equation. It was developed initially for electromagnetic wave 

propagation on the earth’s surface by [Lentovich, et al., (1946)].   

 It is a step by step solution that uses a two dimensional grid (see Figure 2.9), where the source is 

at      with an arbitrary vertical position  , and sequentially solves the respective parabolic wave 

equation. The solution is usually computed in two dimensions to reduce the computational burden. 

This approach is based on an axisymmetric approximation and is described in section 3.1.   
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With this method, it is possible to change the sound speed gradient and the ground impedance 

along the route of propagation thus, it is also possible to include range dependent atmospheric 

conditions and more specifically, a turbulent atmosphere. Changing topography and obstacles, like 

barriers, are also feasible to implement. Hence, the PE method is more flexible than the FFP method 

in predicting real ground and climacteric conditions. 

 

 

Figure 2.9 - Grid on the    plane used in the two dimensional PE models [Salomons, (2001)]. 

 

As mentioned above, the parabolic equation is an approximation of the wave equation. There are 

different types of parabolic equations, each of them having a specific maximum elevation angle     . 

This is the reason why the PE method is only valid up to a certain elevation angle. Thus, the sounds 

levels are only valid for receivers with elevation angles smaller than      (see Figure 2.10) and 

consequently, for a given source, there is an area where the results are accurate.  

 

 

 

Figure 2.10 - Representation of the angular limitation of the PE method. 

 

In Figure 2.10, the receiver A is outside the area defined by       , so the results are not accurate. 

On the other hand, the receiver B is inside this area, where the sound levels are valid. For most 

outdoor sound propagation problems, both the source and the receiver are close to the ground, or the 

distance between them is large enough to minimize the influence of this limitation. 
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The parabolic equation is a one-way wave equation, thus the sound from a source is always 

directed outwards. This results in the absence of back scattering of sound waves but, as the sound 

speed profiles are commonly a smooth function of position, sound waves travel mostly from the source 

to the receiver. 

There are two major methods for solving the parabolic equation: the Crank-Nicholson Parabolic 

equation (CNPE) method and the Green’s Function Parabolic equation (GFPE) method. They are 

summarized in the two sections below.  

2.4.2.1 Crank-Nicholson Parabolic Equation method 

In this section, a summarized description of the Crank-Nicholson Parabolic Equation (CNPE) 

method, developed by [Gilbert, et al., (1989)], is presented. For a detailed description of this method, 

refer to [West, et al., (1992)]. As mentioned in the previous section, the CNPE is based in an 

approximation of the wave number equation, which, in this case, can be either a narrow-angle or an 

wide-angle parabolic equation. The accuracy in each approximation is guaranteed for          or 

        , respectively (Figure 2.10). In each extrapolation step, the parabolic equation is solved 

numerically by approximating the wave equation derivates, by a finite difference Crank-Nicholson 

scheme. The horizontal and vertical grid spacing, which is used to build the two dimensional grid, as 

the one illustrated in Figure 2.9, have a maximum value of about     , where   is the average 

wavelength. This maximum value limitation is necessary to assure that each range integration 

accounts for each oscillation of the sound field, and consequently, the sound level accuracy. The grid 

spacing varies with source frequency: the higher the frequency, the lower the grid spacing. This result 

has some implications, in particular with the horizontal range step   . In a situation with high source 

frequency or long range propagation, the number of extrapolation steps required can be very high. 

This problem is mitigated with the Green's Function Parabolic Equation (GFPE) method, which is 

briefly described in the following section. 

2.4.2.2 Green’s Function Parabolic Equation Method 

The GFPE method, which was developed by [Gilbert, et al., (1993)],  is another method to solve a 

parabolic wave equation and the one used in this thesis' computational program. A Green function is 

applied to solve the inhomogeneous wave equation, in a rectangular grid like the one in Figure 2.9. 

The sound field is computed in the vertical wave number domain, so two Fourier transforms are used. 

The first one transforms the spatial domain into the vertical wave number domain, while the second 

one changes back to the spatial domain. This method analytically takes into account the horizontal 

wave oscillations in the field, which allows large horizontal extrapolation steps (up to 50 wavelengths 

[Gilbert, et al., (1993)]). Consequently, the horizontal spacing    is significantly larger than the vertical 

spacing    , which is about the same as the one used in the CNPE method (    ). Therefore, this 

method is significantly faster than the PE algorithms that use the Crank-Nicolson scheme, and 



 
 

15 
 

provides faster calculations of entire frequency spectrums, real-time predictions on home computers 

and practical three dimensional calculations.  

These characteristics make the GFPE method the appropriate choice for an atmospheric 

computational program, combining the superior real atmosphere modeling of the PE method, with the 

faster long range calculations of the FFP method.  

2.4.3 Ray Model 

The sound propagation in the atmosphere can be computed using a ray sound model. This model 

is also called geometrical acoustics and has two steps: 

 

i) calculation of the paths of all rays, direct  or reflected, between the source and the 

receiver 

ii) calculation of the received sound pressure by the contributions of all sound rays. 

 

In a homogenous atmosphere with a ground surface, two ray paths are required to calculate the 

sound pressure. The first path represents the direct ray and the second term represents the ray 

reflected by the ground. The sound levels obtained are an exact solution and consequently, can be 

used to validate more complex computational models. 

Homogenous atmosphere is only valid for small propagation distances. For propagation distances 

larger than 100 meters, atmospheric refraction must be taken into account. In a refractive atmosphere, 

the sound paths curve and multiple reflections can occur then, the number or rays from a source to a 

receiver, is usually larger than two. The number of rays increases with the distance between the 

source and the receiver, making this model less suitable for long range sound propagation. The 

calculation of all ray paths is called 'ray tracing' . An interactive computational algorithm is necessary 

to map all ray paths, from the source to the receiver. 

Another usual problem related with this model derives from the fact that two rays, with infinitesimal 

difference in elevation, can be recognized by the algorithm as a caustic point. In this situation, 

geometrical acoustics predicts an infinite amplitude of the sound pressure. To overcome this limitation, 

a complex computational method is used, which makes the ray model less attractive for accurate 

calculations of sound propagation. 

Different computational algorithms were developed to map efficiently all ray paths, as well as to 

solve the caustic point’s problem, [Salomons, (1998)] and [Gabillet, et al., (1993)]. 
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3 THEORETICAL FORMULATION 

Starting from the inhomogeneous Helmholtz equation in the spatial domain, we describe how to 

obtain the basic equations of the two-dimensional GFPE method, as well as how to incorporate 

atmospheric turbulence. 

3.1 INHOMOGENEOUS HELMHOLTZ EQUATION 

Considering a system with a monopole source, in a moving atmosphere with a non constant sound 

speed profile, the governing Helmholtz equation in the spatial domain is, 

 

     
   

 

    
          

      (3.1) 

 

where       is the complex pressure amplitude,   is a three dimensional position vector and      

is the effective wave number. The Helmholtz equation 3.1 is deduced in detail in [Salomons, (2001)]. 

As described in section 2.3.1, a moving atmosphere is simulated with a non moving atmosphere 

with an effective sound speed      , defined as, 

 

      
 

    
 (3.2) 

 

  being the angular frequency and      is the effective sound speed as defined by equation (2.11). 

Since most  sound propagation computational programs, in particular the one developed in this 

text, use a two-dimensional representation of the atmosphere, an aproximation of the three-

dimensional Helmholtz equation is required [Gilbert, et al., (1993)]. Using a cylindrical coordinate 

system (     ), with   and   as shown in Figure 2.9 and   the azimuthal angle, equation (3.1) 

becomes,  

 

 
 

 

 

  
  
   
  

      
 

 

  
 

 

    
 

   
  

  
 

  
    
   

     
      (3.3) 

 

In the approximation, it is assumed that the system has azimuthal symmetry about the vertical axis  , 

therefore, the third term on the left-hand side of equation (3.3) can be neglected. Also a variable 

         is defined, which removes the cylindrical spreading. Replacing into equation (3.3), the 

resulting far-field equation (      
  ) is, 

 

 
    
   

     
 

 

  
 

 

    
 

   
  

      
      (3.4) 
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where the second term can be approximated by, 

 

     
 

 

  
 

 

    
 

   
  

  
    
   

 (3.5) 

 

Numerical computations show that this approximation is suitable for the majority of numerical 

applications [Salomons, (2001)]. With        and     , equation (3.4) becomes, 

  

 
   

   
 
   

   
       (3.6) 

 

with          and       . Equation (3.6) is used to obtain the equations of the GFPE method. 

3.2 KIRCHHOFF-HELMHOLTZ INTEGRAL EQUATION 

Considering an inhomogeneous fluid with a volume  , enclosed by a surface   with an outward 

normal pointing vector   and giving an acoustic wave field     , radiated by sources outside the 

surface  , the wave field       at a point               can be computed from       with the 

Kirchhoff-Helmholtz integral equation. In other words, it states that if the sound pressure is determined 

in all points on its surface, the sound pressure inside the volume free of sources can be also 

calculated (see Figure 3.1). 

 

 

 

Figure 3.1 - Example of a geometry for the Kirchhoff-Helmholtz integral  

 

The Kirchhoff-Helmholtz integral can be expressed as [Salomons, (2001)], [Morse, et al., (1953)],  

 

        
 

  
                            
 

 

      (3.7) 
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where the integral is over           on the surface  .  

The acoustic wave field      satisfies in   the two-way wave equation, 

 

                    (3.8) 

 

Likewise, the Green's function         satisfies in   the inhomogeneous wave equation with a 

point source at  , 

 

                                   (3.9) 

 

with                         being the product of two Dirac delta functions. 

Therefore, the Green's function can be explained as the spatial impulse response of the medium in 

the volume  . Equation (3.7) can be proved using the two above equations and the divergence 

theorem.  

The two dimensional Kirchhoff-Helmholtz equation can be obtained from equation (3.7), assuming 

that the wave field      is independent of the   coordinate, 

 

        
 

  
                              

 

 

      (3.10) 

 

where,          ,  the integral is over positions         on the closed contour  , which encloses 

the area   , and         is a two dimensional Green's function. 

Similarly, equation (3.8)  gives the two-dimensional Helmholtz equation, 

 

                    (3.11) 

 

The two dimensional Green's function          satisfies in    the inhomogeneous wave equation 

with a point source at   and is obtained integrating equation (3.9) from      to     , 

 

                                     (3.12) 

 

In the geometry of Figure 3.2, the closed contour   consists of the arc    with   radius and the 

segment     at     . The contribution of the Kirchhoff-Helmholtz integral (equation 3.10) over    to 

the pressure in   vanishes if   goes to infinity. The Green's function choice is important as it must 

have a contribution from a source at    , in order to satisfy equation (3.12). Additional contribution from 

sources outside the contour   can also be added to the Green's function. If these contributions are two 

monopole sources placed symmetrically with respect to     , in points    and    , its value is, 
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                          (3.13) 

 

 

Figure 3.2 - Geometry for the two-dimensional Kirchhoff-Helmholtz integral  

 

With the two monopole sources,      on    and the contour   only consists in the line segment 

  . Equation (3.10) results, 

 

        
 

  
                    

 

  

      (3.14) 

 

where,               
  

  
  from equation (3.13). The equation above becomes, 

 

       
 

  
      

        

  
 
    

 

  

   (3.15) 

 

This integral is known in acoustics as the Rayleigh II integral [Pierce, (1991)]. 

3.3 GENERAL GREEN'S FUNCTION METHOD 

Returning to the notation used in section 3.1, equation (3.15) results, 

 

       
 

  
      

        

  
 
    

 

 

   (3.16) 

 

where           ,         and the ground surface is located at    . 

The Green's function         also satisfies the two-dimensional Helmholtz equation and can be 

written as follows, 

 

  
  

   
 

  

   
                          (3.17) 
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Here is assumed that the medium is independent of the horizontal distance   (      ), so the 

range dependence is taken into account by changing   between sequential horizontal steps and    

can be written as           , with         as the horizontal spacing. To express the Green's 

function in terms of the horizontal wave number   , the following Fourier transform is introduced, 

 

                        
          (3.18) 

 

The inverse Fourier transform formula, 

 

            
 

  
            

         (3.19) 

 

is now substituted in equation (3.16), with         and        .  Taking into account Fourier 

transform properties, equation (3.16) results (changing the notation from   to    and from    to  ), 

 

           
 

    
    

        

 

  

       
    

 

 

           (3.20) 

 

The previous expression can also be derived from the spectral theorem of functional analysis [Gilbert, 

et al., (1993)] 

The Green's function       
     also satisfies the transformed version of the Helmholtz equation 

[equation (3.17)] and is obtained as follows, 

 

 

   
  

   
 

  

   
                    

       
 

  

   

                  
 

  

           

 

(3.21) 

applying the Fourier transform properties  and changing the  notation from    to   and from    to  , it 

reduces to, 

 

  
  

   
   

              
                (3.22) 

 

3.4 CONSTANT SOUND SPEED PROFILE 

For a constant vertical sound speed        , where    is the wave number at zero height, the 

solution of equation (3.22) with a surface impedance boundary condition is [Gilbert, et al., (1993)], 
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    (3.23) 

 

being     the vertical wave number defined by, 

 

   
          

  (3.24) 

 

and being        the plane wave reflection coefficient defined in equation (2.6). From Figure 2.4, 

            , thus equation (2.1) becomes, 

 

        
       

       
 (3.25) 

 

where    is  the normalized ground impedance described in section 2.2.3. 

Substituting equation (3.23) in equation (3.20) results, 

 

 
          

 

  
    

         
 

   
         

  
 

 

 

  

        
       

              

(3.26) 

 

To get an equivalent Fourier transform that uses the vertical wave number, two identities are 

introduced [Gilbert, et al., (1993)], 

 

 
 

   
         

    
 

  
 

        
  

  
    

 

 

  

    (3.27) 

and 

 
 

   
        

       
    

 

  
       

        
  

  
    

 

 

  

       
        

  

     
 

 (3.28) 

 

where         is the surface wave pole in the reflection coefficient. [Salomons, (2001)] describes 

with detail, using the residue theorem, the proof for both identities.  

Applying these identities to equation (3.26) and rearranging the integration order, 

 

 

 

          
 

  
         

 

  

     
             

 

 

 

  
 

      

  
    

 

 

  

     

 
 

  
        

       

 

  

    
             

 

 

 

  
 

      

  
    

 

 

  

     

               
 
       

 

 

   
 

  
 

      

     
 

 

  

      

(3.29) 
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Using the residue theorem and equation (3.24), the two first integrals over the horizontal wave 

number    result, 

 

 
 

  
 

      

  
    

 

 

  

      
 

  
 

      

  
    

    
 

 

  

       
      

    
 

 (3.30) 

 

The integral over    in the third term on the right hand side of equation (3.29) is evaluated with the 

same method, with    replaced by  . Equation 3.29 becomes, 

 

 

          
 

  
  

      
    

 

        

 

  

     
             

 

 

 
 

  
        

      
    

 

        

 

  

    
             

 

 

          
      

    
      

 
       

 

 

    

(3.31) 

 

The above equation represents the sum of three different types of sound waves. The first term 

represents the direct wave, the second term represents the wave reflected by the ground and the third 

term represents the surface wave. Equation (3.31) is the basic equation for the GFPE method with a 

non-refracting atmosphere. In the next section, atmospheric refraction is included. 

3.5 NON-CONSTANT SOUND SPEED PROFILE 

In the previous section, the equation for the GFPE method with a non-refracting atmosphere was 

calculated. In this section, an equation for a refractive atmosphere is presented. The variation in each 

horizontal range step is small enough to assume that the wave number is only a function of height  , 

therefore its value is, 

 

         
         (3.32) 

 

where    is a constant wave number at some average height. Usually it takes the correspondent value 

at the ground surface        . The second term on the right-hand side of equation (3.32) is the 

variation of the vertical profile, which can be either positive or negative and it is always small 

compared with      . 

Equation (3.6) can be written as, 

 

 
  

  
                 (3.33) 

 

where the operator Q is defined as           
  and it was assumed that   is independent of range.  
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Two-way wave propagation is described by, 

 

 
       

  
            (3.34) 

 

where the positive sign refers to waves travelling to the positive direction of  , and the negative sign 

applies to waves travelling to the negative direction of  . With the   dependence in   written explicitly 

and the   dependence implicit, the above equation results, 

 

                    (3.35) 

 

For a refracting atmosphere, the operator   is, 

 

     
    

         (3.36) 

 

The square root of the   operator can be approximated as [Gilbert, et al., (1993)], 

 

        
    

            
    

  
      

   
 (3.37) 

 

An alternative approximation of the square root operator is described in section 4.2.3. Substituting 

the above equation into the one-way equation (3.35) results, 

 

                    
    

  
      

   
       (3.38) 

 

assuming that     
    

   commutes with           , equation (3.38) is approximately, 

 

                
      

   
                  (3.39) 

 

where      
    

 .  

The above equation is the same as equation (3.35) minus the exponential factor                

     . Thus, is possible to include atmospheric refraction by multiplying the solution in a non-refracting 

atmosphere by a phase factor, as long as        is small relative to      . This method of splitting the 

effect of refraction in two terms (equation (3.39)), was first used in ocean acoustics and is known as 

the Fourier split-step algorithm [Dinapoli, et al., (1979)].  
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Replacing         with                         for improved accuracy in numerical 

computations and including the refraction factor                     , equation (3.31) results,  

 

 

           
   

      
   

 

  
                          

 

  

 
       

    
     

        

           
       

        
       

(3.40) 

 

where the spatial Fourier transform of        is, 

 

                     
   

 

 

    (3.41) 

 

Equations (3.40) and (3.41) are the basic equations of the GFPE method with atmospheric 

refraction, which are used in the computational program. 

3.6 ATMOSPHERIC TURBULENCE 

The following sections describe the theoretical formulation and incorporation of atmospheric 

turbulence. Section 3.6.1  shows a standard approach in order to approximate the effect of turbulence 

on sound propagation in the atmosphere. Section 3.6.2 briefly describes a statistical approach to 

atmospheric turbulence, using two-dimensional spectral densities in the calculation of the refractive-

index fluctuations. Section 3.6.3 explains the incorporation of turbulence in the GFPE method. Section 

3.6.4 describes how to calculate the refractive-index fluctuations        and how to apply them to the 

GFPE method presented in the previous section.  

3.6.1 Atmospheric model 

Atmospheric turbulence on sound propagation models is usually described using an effective 

sound speed that randomly fluctuates around an average value. From equation (2.11), the effective 

sound speed is defined as, 

 

         
 

  
   (3.42) 

 

where         is the adiabatic sound speed   [equation (2.9)] and   is the horizontal wind component 

in the direction of sound propagation (section 2.3.1). Temperature    corresponds to an average value 

and    is the corresponding sound speed. Small fluctuations of the temperature   and wind speed   
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correspond to turbulent fluctuations of the effective sound speed     . To measure these fluctuations, 

the acoustic refraction index   is used, 

   
  
    

 (3.43) 

 

This value fluctuates around an average number, which is of the order of the unit and is defined as   , 

being   a fluctuating stochastic part. Thus, being   a position vector            and   the time, the 

refraction index results,  

 

                     (3.44) 

 

where    , if weak turbulence is considered. Although the fluctuating part   is a function of both 

space and time, its value can be approximated in a specific instant of time. This approximation is 

called the frozen medium approach and it is possible because the sound waves travel so fast that the 

medium can be considered as 'frozen'. Further, and simplifying the problem,    varies only with the 

height   above the ground. Additionally,   varies with height   and range           . Therefore, 

the sound propagates in the    plane and the refraction index is azimuthally symmetric about the 

source. Taking into account these approximations, the refraction index is, 

 

                     (3.45) 

 

The refraction index fluctuations         are further evaluated in section 3.6.4. 

3.6.2 Gaussian and von Kármán spectral density 

Using equations (3.42) and (3.43), the expression for the fluctuation   is [Ostashev, (1997)], 

 

    
  
   

 
  
  

 (3.46) 

 

where    is the temperature fluctuation and    is the wind speed fluctuation. 

In a turbulent atmosphere, both temperature and wind speed are position and time fluctuating 

functions. In principle, these turbulent fluctuations are a deterministic process just as most physical 

phenomena, even though it is very hard to predict turbulence this way. Therefore, it is much easier to 

consider atmospheric turbulence a stochastic process. Statistical functions such as correlation, 

structure and spectral density, are used to describe temperature and wind speed fluctuations. 

[Salomons, (2001)] describes with detail how to obtain these functions. 

We consider two different types of spectral density functions: the Gaussian and the von Kármán. 

For an atmosphere with temperature and wind speed fluctuations, and using equation (3.46), the two-

dimensional Gauss spectral density function is [Ostashev, (1997)],  
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(3.47) 

 

where   is the correlation lenght,   
 is the standard deviation of the temperature fluctuation,   

  is the 

standard deviation of the wind speed fluctuation and     
    

 
. 

Using the same conditions of equation (3.47), the two-dimensional spectral density of the von Kármán 

spectrum is [Ostashev, (1997)], 

 

 

         
 

     
 

 
       

  
 
 

 
  

 

 
   

 

 
 

  
  

 
 

  
 

   
 

 
    

 

    
  

  
 

 
   

 

 
 

  
  

 
 

 
  
 

     
 

  
 

 
   

  

 
 

  
  

 
 

   

(3.48) 

 

where         and   is related to the size of the largest eddies,    is the structure parameter of the 

wind speed fluctuation,    is the structure parameter of the temperature fluctuation and     
    

 
. 

The gamma function   is defined by the improper integral [Abramowitz, et al., (1972)], 

 

           
 

 

      (3.49) 

 

These two-dimensional spectral density functions are used in the calculation of the refractive-index 

fluctuations in section 3.6.4. 

3.6.3 Turbulent phase factor 

The two-dimensional sound field is represented by equation (3.6). Using the same method as in 

section 3.5, the one-way wave equation results, 

 

 
       

  
           (3.50) 

 

where   is the operator, 

 

            
  (3.51) 

 

Since only weak turbulence is considered (   ), the acoustic field is dominated by outgoing 

waves therefore, one-way wave propagation is an accurate approximation for turbulent effects. 

Assuming   to be independent of range, the solution for equation (3.50) is, 
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                        (3.52) 

 

Like in section 3.5, the expression                         is used to improve numerical 

accuracy once it varies more slowly with range than does   alone. Equation (3.52) results, 

 

                               (3.53) 

 

as in equation (3.32),    is a constant wave number at some average height.  

With the relation        and assuming that   and   depend only of the height above the ground, 

equation (3.45) gives the following expression, 

 

         (3.54) 

 

Substituting the above equation into equation (3.51) and ignoring the term   
    (   ) results, 

 

     
 
   

        (3.55) 

 

The operator   is the sum of a deterministic part  
 
   

  and a stochastic part      . Substituting 

  into equation (3.53), 

 

                      
 
   

                   (3.56) 

 

Therefore, it is possible to calculate the sound field for a given value of   using equation (3.56) 

directly. Nonetheless, in computational terms, evaluating the entire operator    in each range step is 

numerically inefficient. An alternative numerically faster method, requires to separate the deterministic 

part  
 
   

 , which is calculated once, from the stochastic part      . [Gilbert, et al., (1990)]  explains 

in detail the separation of the two factors. The resulting equation is, 

 

                      
 
   

                        (3.57) 

 

The first exponential factor on the right-hand side of equation (3.57) represents the sound field for 

a non-turbulent atmosphere [equation (3.53)], while the second factor represents the effect of 

turbulence. This method is computational more efficient than using equation (3.56), because 

turbulence is included by multiplying the sound field by an exponential factor after each range step. 
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[Gilbert, et al., (1990)] introduces a more accurate approach of equation (3.57). It consists in split 

the exponential turbulent factor into two different factors therefore, half of the turbulent exponential 

factor is applied before the step for the non-turbulent calculation, while the other half is applied after. 

This results in the following turbulent exponential factor, 

 

              (3.58) 

 

where    is, 

 

    
 

 
                   (3.59) 

 

This exponential factor should be used when the horizontal range step is small compared with the 

turbulent correlation lenght, such as the CNPE method. In the GFPE, however, the range step can be 

larger than the turbulent correlation lenght thus, to correct this issue, [Martin, (1993)] gives the 

following turbulent exponential factor, 

 

         (3.60) 

 

where   is the turbulent phase fluctuation integrated over a range step, being its expression, 

 

            
    

 

   (3.61) 

 

Using the turbulent exponential factor in equation (3.60), the GFPE accurately takes into account the 

turbulent fluctuations within a range step. 

3.6.4 Refractive-index fluctuations 

Using the correlation function and the spectral density function, for a rectangular grid  in the    

plane with vertical spacing   , as represented in Figure 2.9, the refractive index fluctuations function at 

the grid points is [Salomons, (2001)], 

 

                                       

 

   

 (3.62) 

 

where, 

 

                                    (3.63) 
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being              ,               and        for           . The angles    and    are 

random numbers between   and   . These numbers are calculated using the pseudorandom number 

generator referenced in section 4.2.4. The function            is the two-dimensional spectral density 

and can be either equation (3.47) or (3.48). Replacing equation (3.62) into (3.61) results, 

 

                      (3.64) 

 

with 

 

            
          

   
                   

 

   

 (3.65) 

 

To reduce computational effort, the sine function is evaluated as, 

 

                                                 
   (3.66) 

 

This way, for a fixed  , the sine factors can be calculated by recurrent multiplication by a constant 

factor            . 
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4 NUMERICAL IMPLEMENTATION 

For the sound field calculation with the GFPE method, the equations (3.40) and (3.41) are used 

and, considering their nature, it is mandatory to make use of numerical methods to solve them (section 

4.1). Section 4.2 describes additional functions of the program to correct some errors generated by the 

numerical approach. The numerical implementation complexity requires a programming language, 

which must offer fast and precise mathematical calculations, a wide range of open source libraries and 

be able to run in different environments. For these reasons, we chose the C language. The program 

implementation is described in section 4.3. 

4.1 GREEN'S FUNCTION PARABOLIC EQUATION METHOD 

The GFPE method (section 2.4.2.2) is a step by step extrapolation of the sound field           

given by equations (3.40) and (3.41). A two dimensional rectangular grid like the one in Figure 2.9 is 

used, where     is the horizontal spacing and    is the vertical spacing. These two parameters are 

essentially frequency dependent, but atmospheric parameters also influence them. As it is a horizontal 

extrapolation method, the distance from the source to the receptor is given by the length of the grid 

and by the number of steps used. The grid is limited by the ground surface at     and is truncated at 

the top at height       , where the total height of the atmosphere is given by          , being   a 

positive integer. To prevent unwanted reflection from sound waves at the truncated top surface, an 

absorption layer is located between        and       , which is described in section 4.2.1. The next 

sections describe the different steps to implement the method numerically. 

4.1.1  Starting field  

As the GFPE method is a step by step extrapolation, the first step must be to define             

as a starting field function that represents a monopole source. The complex pressure amplitude in an 

unbounded non-refracting atmosphere is represented by a harmonic spherical wave and can be 

written as, 

 

        
    

 
 (4.1) 

 

 where   is the radial distance from the source and   is a constant. However, this expression cannot 

be used because it diverges from the source, since some of the sound waves have high elevation 

angles outside the area where the results are accurate (section 2.4.2), which creates computational 

errors in the solution.  
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In order to allow an accurate comparison with other methods, we use a Gaussian starting field 

given by [Tappert, (1977)], 

 

              
  
 

 
      

  
    

    
    

   
 

 
      

    (4.2) 

 

where    is the source height above the ground, the first term represents the direct sound wave and 

the second term represents the reflected wave.  

4.1.2 Discretization of the Fourier integrals 

 To compute the sound field (equation (3.40)), it is necessary to calculate several Fourier integrals 

in each range step. Each of the integrals can be approximated by a sum called Discrete Fourier 

Transform (DFT). For the Fourier integral represented by equation (3.41), the discrete sum is 

[Champeney, (1985)], 

 

                     
   

 

 

              
      

   

   

    (4.3) 

 

where the integration variables    and    are discretized respectively as, 

 

                                                       (4.4) 

 

                                  (4.5) 

 

where            ,    is the vertical spacing described in section 4.1 and      is the Fourier 

transform size. As a consequence of Fourier transform's periodic nature, the vector elements         

and          can be related between them by a permutation of vector positions. Therefore, it is 

possible to include both integrals into a single transformation of size     , which is the double of 

the vertical grid size. This assumption decreases the computational effort.  

The integral        only requires a single summation of N terms and its sum is, 

 

                  
     

   

   

    (4.6) 

 

After the above integrals have been evaluated, the inverse Fourier integral of equation (3.40) can 

be calculated with an approximation analogous to equation (4.3), 
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    (4.7) 

 

where, 

 

 
                                

       
    

     
 

(4.8) 

 

and     and    are described by equations (4.4) and (4.5) respectively. Finally, equation (3.4) is 

calculated with equations (4.6) and (4.7), 

 

            
   

      
   

 

  
                   

       
        

       (4.9) 

 

Hence, the calculation of one range step requires two Fourier transforms: one forward DFT and 

one inverse DFT. 

An alternative method for computing the Fourier integrals is based on the midpoint rule for 

numerical integration [Press, et al., (1986)]. The Fourier integral represented by equation (3.41) results 

in the following approximation, 

 

 

                 
 

 
            

 
 
   

   

   

                      

          
 

 
          

   

   

    
 
 
        

(4.10) 

 

where the integration variable    and    are discretized as equation (4.4) and (4.5) respectively. 

Equation (4.10) uses the   coordinates at the center of  the integration intervals           therefore, the 

ground surface (   ) is represented more accurately in equation (4.10) than in equation (4.3), which 

in turn leads to a more accurate approximation. Using an approximation analogous to equation (4.10), 

the inverse Fourier transform integral in equation (3.40) results, 

 

 

                 
 

 
           

 
 
   

   

   

                      

          
 

 
         

   

   

  
 
 
        

(4.11) 

 

using the same integration variables of equation (4.10). 
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4.1.3 Fast Fourier Transform 

The direct calculation of the discrete sums is too slow to be practical therefore, an algorithm called 

Fast Fourier Transform (FFT) is used to calculate the forward DFT and its inverse, producing exactly 

the same results as evaluating the DFT directly. The advantage is that a FFT is much faster. 

The chosen FFT was the "Fastest Fourier Transform in the West" or FFTW developed by Matteo 

Frigo and Steven Johnson at the Massachusetts Institute of Technology [Frigo, et al., (1997)]. The 

FFTW was written in C language and computes multidimensional complex discrete Fourier transforms 

of arbitrary size, using the Cooley–Tukey algorithm [Cooley, et al., (1965)]. FFTW's main advantages 

are:  

 

i) faster than all other free available FFT software and it is comparable or even better than 

proprietary highly-tuned implementations, 

ii) friendly interface and very well documented, 

iii) not only restricted to transforms with a power of two size, although being faster in this 

particular situation, 

iv) tunes the computation automatically to take advantage of particular hardware 

characteristics. 

 

For these reasons the FFTW was the selected software to the computational program developed. 

4.2 GFPE METHOD: ADDITIONAL FUNCTIONS 

Due to the GFPE method limitations, such as the finite vertical discretization of the atmosphere, or 

the discrete sampling of the inverse Fourier, additional functions are required to help to correct the 

results, which are described in the next sections. 

4.2.1 Artificial absorption layer 

A real atmosphere can be regarded as being infinite in vertical height therefore, the sound waves 

travel to a point where their amplitude reaches zero. However, the DFT requires a finite discretization 

of the vertical height, which causes sound waves to be reflected back into the calculation region, 

causing errors in the sound field. To avoid this limitation, near the top of the numerical grid       a layer 

is introduced which, artificially, attenuates the sound waves reaching the top      [Gilbert, et al., 

(1993)]. This attenuation is obtained by adding an imaginary part to the wave number between      

and     , as described by the following equation,  

 

                    (4.12) 

 

 

http://en.wikipedia.org/wiki/Algorithm
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where the imaginary part      is defined as, 

 

        
      
         

 

 

 (4.13) 

 

with   being an attenuation factor that varies with frequency (see Table 4.1) [Gilbert, et al., (1993)]. 

Intermediate frequencies are obtained by linear interpolation. Therefore equation (4.12) results, 

 

                 
      
         

 

 

 (4.14) 

 

The thickness of the absorption layer varies between     and     . If        , the number of points 

of the layer ranges from     to     . 

 

Table 4.1- Values of the attenuation factor for an octave band scale 

 (hz)                               

  (m
-1

)                           

 

By increasing the number of vertical points   up to a certain level, it is possible to obtain irrelevant 

sound wave amplitude values. Nevertheless, the use of this method is unpractical, since it increases 

the computational effort dramatically. 

The right plot of Figure 4.1 -shows a situation when there is no absorption layer. Similar situation 

occurs if the layer thickness is not enough to attenuate the sound waves completely. 

 

 

 

Figure 4.1 - Two-dimensional complete plots using the simulation parameters from test case B1 

(Table 5.6), with an absorption layer of    m               . 

 

The left plot shows that over     m of height (dark blue region), the absorption layer attenuates all 

the sound waves. As illustrated by the right plot above, the existence of sound waves reflected, as a 
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consequence of the computational method, creates artificial interferences. To avoid these 

interferences and to ensure accurate results, we use an absorption layer in all simulations. 

4.2.2 Window function 

The discrete sampling of the inverse Fourier transform causes errors when its summand oscillates 

rapidly. From equation (3.40), and    discretized as equation (4.4), the summand is, 

 

       
 

   
                         

       
    

     
       (4.15) 

 

being    the vertical spacing defined in equation (4.5) for a  reflecting ground surface. 

The cumulative sum of the above equation is, 

 

             

 

   

 (4.16) 

 

where   runs from zero to   in the order of equation (4.4). 

To illustrate the variation of equation (4.15) with the vertical wave number, the following table shows a 

test case where a single range step is used, 

 

Table 4.2 - Test case parameters 

frequency    (hz)     source height    (m)   

wave number    (m
-1

)      receiver height    (m)   

non-refracting atmosphere  horizontal spacing    (m)     

reflecting ground      vertical spacing    (m)      

 

The summand is characterized by the following graphs, 
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Figure 4.2 - Summand of the inverse Fourier transform in relation to the wave number    

 

As illustrated by the top two graphs of Figure 4.2, the summand oscillates very quickly for      

     . For         its magnitude is zero and therefore are called evanescence waves (bottom left 

graph of Figure 4.2). The inverse Fourier transform of equation (3.40) is determined only by the 

vertical wave numbers    near the point of stationary phase which, in this case, is          m
-1

 

(bottom right graph of Figure 4.2). We multiply the summand by window function to suppress its rapid 

oscillation [Salomons, (1998)],  

 

 

 

 
 
 

 
                            

     
            

  
 

                               

                    

 

(4.17) 

 

Applying the above function to the test case of Table 4.2  results the following graphs, 

 

 

 

Figure 4.3 - Summand of the inverse Fourier transform in relation to the wave number    with the 

window function apllied. 

 

Comparing the previous figure with Figure 4.2, the window function of equation (4.17) acts like a 

numerical filter in   space, suppressing the errors caused by the discrete sampling of the inverse 
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Fourier transform. The cumulative sum (equation (4.16)) for a height of   m is compared with and 

without the window function,  

 

 

 

Figure 4.4 - Cumulative sum of equation (4.15), the blue line has the window function active and in 

the red line the window function is not applied. 

 

As expected, the window function does not change the value of the cumulative sum. The red circle 

represents the complete sum of equation (4.16) or      . This value can be regarded as   for a single 

range step of     m at an altitude of   meters, with the parameters of Table 4.2. Maintaining the same 

range step, the complete calculation of  , for a height of     m, is given bellow, 

  

 

Figure 4.5 - Real and imaginary part of  . The red line represents the window function active, 

while in the blue line the window function is not applied. 

 

The two graphs above show that with the window function,   converges faster with increasing height, 

as expected.  

4.2.3 Alternate refraction factor 

In section 3.5, atmospheric refraction was taken into account by multiplying the solution by the 

following exponential factor, 

 

        
      

   
  (4.18) 
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An alternate approach comes from another expansion of the square root operator    defined as 

[Thomson, et al., (1983)], 

 

                 
     

    
           

    
     (4.19) 

 

with              . Following equations (3.38) and (3.39) the alternate refraction factor is, 

 

                (4.20) 

 

Numerical comparison with the CNPE presented in section 5.2.2, show that this exponential factor is 

slightly more accurate than the one given in equation (3.39) thus, all computational simulations use 

the alternate refraction factor. 

4.2.4 Pseudorandom number generator 

The statistical approach of calculation of the atmospheric turbulence used in this program (section 

3.6.4) requires the use of random numbers in each range step. Without specific external hardware, a 

desktop computer can only generate a sequence of numbers that approximates the properties of 

random numbers i.e., a pseudorandom number generator (PRNG). This algorithm is completely 

determined by an initial value, known as seed or key.  Therefore, the same sequence of numbers can 

be generated if the same seed is used. This feature is useful to test different turbulent parameters. 

The maximum sequence length before it begins to repeat itself is known as period. The period is 

determined by the size of the seed, measured in bits. 

Several PRNG exist, including the standard C PRNG algorithm, but most of them (including the C 

algorithm) suffer from limitations such as low periodicity, lack of uniformity of distribution for large 

amounts of generated numbers and correlation of successive values. To address these limitations, 

[Matsumoto, et al., (1998)] developed a PRNG algorithm, written in C language, called the Mersenne 

Twister. Its name derives from the chosen period length,         , which is a Mersenne prime 

number. This algorithm has a very long period, in contrast with short periods (such as    ) found in 

most algorithms, and has passed numerous tests for statistical randomness.  

Since the turbulent calculations use large amounts of random numbers, it is necessary to use a 

precise and fast algorithm, which generates long sequences of pseudorandom numbers, as close as 

possible to 'real' random numbers. For these reasons, the Mersenne Twister is the chosen PRNG 

algorithm and the seed used is the computer clock. 
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4.3 PROGRAM DESCRIPTION 

In this section it is presented the flow chart of the software program developed, its description and 

the several features included. 

The following diagram illustrates the organization of the computational program in a diagrammatic   

representation, including the user interface features, algorithm flow process, the input and the output 

interface.  

 

 

 

Figure 4.6 - Flow chart illustration of the computational program 
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4.3.1 User interface 

The interaction with the program is obtained by typing commands in order to select the different 

options from the home screen, by inserting filenames of output or input files and by manually inserting 

simulation variables. This type of mechanism to interact with a software is also known as a command-

line type interface (CLI).  

In the main screen, the main options for controlling the program are displayed and included, 

 

 

 

Figure 4.7 - Home screen interface 

 

The table bellow summarizes and explains the different options above, 

 

Table 4.3 - Home screen options explained in detail 

Simulations Displays the number of simulations stored in memory 

Insert new simulation 

variables [0] 

The  different parameters are introduced one by one, for one or more 

simulations and are stored in memory 

Load data file [1] 
Loads to the computer memory a text data file which can contain one or 

more simulations  

Save data file [2] 
Saves to a chosen text data file the current simulations parameters stored in 

memory  

View simulation 

variables [3] 
Displays the different parameters of all simulations stored in memory 

Run simulation [4] 
Executes the program for all simulations stored in memory, in the same order 

they were loaded or manually inserted 

Exit program [5] Closes the program as well as all simulations stored in memory 

 

  The program returns error messages when introducing invalid options or incorrect simulation 

parameters. 
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4.3.2 Input files 

As described in the section above, the program offers two ways to input the simulation variables: 

manually, inserting one by one directly in the program, or by loading a specific structured file. An 

example of the input file is, 

 

 

 

Figure 4.8 - Input file example. 

 

When using the save option in the home screen, the program stores all simulations in a chosen 

text file with the structure displayed in Figure 4.8. When there is more than one simulation, the 

program stores the parameters into a single file, in a sequential order. These features allow the user to 

modify the parameters directly in the text file, reducing the time to introduce more than one simulation, 

especially when they differ only by few parameters. The load file option located in the home screen 

(Figure 4.7), is used to load the input file to the computer memory. 

4.3.3 Simulation calculation 

When option [4] (Figure 4.7) is selected, the program starts to calculate all simulations stored in 

memory. Each of the following steps corresponds to a process illustrated in Figure 4.6: 

 

i) the starting field is calculated using equation (4.2) or        , where the vertical height   is 

discretized as equation (4.5); 

ii) then, the program runs a main loop, where each execution corresponds to a range step 

calculation. Using the previously calculated vector          (only for the first range step), 

the Fourier integral of equation (3.41) is approximated  by a DFT, as described in section 

4.1.2, with either equation (4.3) or the more accurate mid-point rule of equation (4.12). Any 

of the sums are calculated using the FFT algorithm described in section 4.1.3;  

iii) the integral        is calculated using equation (4.6), which only requires a single 

summation of   terms; 
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iv) as shown in section 4.1.2, the inverse Fourier integral of equation (3.40) is approximated 

by a DFT with either equation (4.7) or the mid-point rule of equation (4.11) using the same 

FFT algorithm as the forward Fourier transform; 

v) turbulence is included by calculating equation (3.64) for all heights   ; 

vi) the final process of the main loop is to calculate the exponential factor, which can be done 

either from equation (3.39) or from equation (4.20), with the latter being more accurate. 

The absorption layer is included here (Figure 4.9), as described in section 4.2.1. As the 

turbulence is also incorporated multiplying the sound field by the previously calculated 

turbulent exponential factor [equation (3.60)], it is computed simultaneously with the 

refraction factor, as a way to reduce computational effort. 

 

At the end of the loop,            for heights    where          , as a way to avoid coupling 

between the top and ground surface, which can generate computational errors (Figure 4.9). These 

heights can be interpreted as corresponding to negative heights, due to the Fourier transform's 

periodic nature. The program, then, repeats the loop, using the calculated vector          as illustrated 

in Figure 4.6. When all range steps are calculated, the program writes the results to a text file as 

described in the next section. The following figure illustrates how the computational grid is organized. 

 

 

 

Figure 4.9 - Schematic representation off the computational grid. 

4.3.4 Output files 

As defined in section 2.1, the relative sound pressure    (equation (2.4)) is used to measure the 

sound pressure in relation to the free field. This way, the attenuation caused by geometrical spreading 

(section 2.2.1) and the resulting attenuation from atmospheric absorption (section 2.2.2) can be 

ignored. Additionally, the transmission loss (TL) is also an output option of the program, primarily used 

for benchmark purposes.   
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The sound pressure level    (section 2.1) can be obtained from the following expression, 

 

                         (4.21) 

 

where the first term on the right hand side is the sound power level, or in other words, a measure of 

the strength of the sound source; the second term corresponds to the geometrical attenuation at a 

distance   from a source, corresponding to a spherical spreading situation; the third term represents 

the attenuation of sound waves due to atmospheric absorption, being   the absorption coefficient (in 

dB per unit of length);  finally, the relative sound pressure    can also regarded as the influence that 

meteorological factors (temperature, wind, turbulence), ground surface and topographical features 

have on sound levels. 

 Two types of graphs can be obtained for each simulation: one-dimensional or two-dimensional. 

One-dimensional type saves the sound levels at a specific receiver height     , whereas two-

dimensional type writes the sound  levels between     and     . Using the basic geometry of 

Figure 2.1 both cases can be represented as, 

 

 

 

Figure 4.10 - Left image represents one-dimensional graph. Right image represents two-

dimensional graph. 

 

On the one-dimensional type, each horizontal position   corresponds to a sound level output 

(represented by the thick line in the left image of Figure 4.10). On the two-dimensional case, each   

corresponds to a vector of sound levels, between     and      (represented by grey area in the 

right image of Figure 4.10). As the following figure illustrates, the one-dimensional type output file 

consists of two data columns: the first one being the range step and the second one is the 

corresponding relative sound pressure, 
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Figure 4.11 - One-dimensional output file of the example test case displayed in Figure 4.8 

 

On the two-dimensional output file, the first upper row indicates the range step  , while the first left 

column indicates the height   therefore, to every grid position       corresponds a specific relative 

sound pressure value. The figure below shows an example of the two-dimensional output file, with the 

parameters of Figure 4.8, 

  

 

 

Figure 4.12 - A portion of the two-dimensional output file of the example test case with parameters 

from Figure 4.8 

 

As expected, the row corresponding to a height of   meters has the same values of the one-

dimensional example shown in Figure 4.11. 

The program continuously calculates all simulations and saves the results in different files. This 

way is possible to introduce different parameters in the same atmosphere, such as entire frequency 

spectrums or various turbulence trials. When all simulations are calculated, the programs returns to 

the home screen (Figure 4.6). 
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5 ANALYSIS AND RESULTS 

In this chapter, we validate the numerical implementation described in chapter 4 based on the 

GFPE theory present in chapter 3 (section 5.2), using the test cases introduced in section 5.1. 

Furthermore, the numerical program developed is compared with sound levels collected from a real 

atmosphere, i.e., with atmospheric turbulence (section 5.3). 

5.1 BENCHMARK TEST CASES 

This section defines various test cases to analyze the accuracy and optimization of the GFPE 

method described in chapters 3 and 4. The following table describes the two test cases, which have a 

non-refracting atmosphere with three source frequencies [Salomons, (1998)], 

 

Table 5.1- Acoustic and environment parameters for two test cases in a non-refracting atmosphere 

Test case 1 2 

Atmosphere 
non-refracting 

       m/s 

non-refracting 

       m/s 

Ground surface 

   Hz 

    Hz 

     Hz 

reflecting 

 

     (at all frequencies) 

absorbing 

                

                

                

Source/receiver height   m   m 

 

As described in section 2.2, in a non-refracting atmosphere the adiabatic sound speed is constant 

in all medium's points. 

The influence of a ground surface on sound propagation is explained in section 2.2.3. Although 

ground surfaces are usually irregular and vary with range, in these test cases the ground is assumed 

to be transversely uniform, to have range independent properties and to be a completely flat ground 

surface. The ground impedance of test case 1 (    )  represents a water surface while the ground 

impedances enumerated for the test case 2 represent grassland. They are calculated using equations 

(2.7) and (2.8) with the following parameters: 

 

i) porosity      , 

ii) flow resistivity                , 

iii)    is the pore shape factor ratio         

iv) grain shape factor        

 

Both receiver and source are   meters above the ground surface. 
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Although these two test cases are incomplete representations of a real atmosphere, both have an 

exact analytical solution, which is useful and fundamental to test the accuracy of the program. 

The next test cases represent a more complex atmosphere, including atmospheric refraction as 

described in section 2.3.1 and their parameters are taken from benchmark problems used to test 

outdoor sound propagation models [Attenborough, et al., (1995)]. The following table displays the 

sound speed profiles of the four test cases, 

 

Table 5.2 - Atmospheric refraction parameters of four test cases  

Test case 3 4 5 6 

Sound speed 

profiles 

speed         

 

upward 

 

            

downward 

 

             

DUC downward 

               

               

          

        

               

       

 

                    

 

Test case 3 represents an idealized situation of sound propagation under upwind conditions. Test 

case 4 is similar to the previous one, only with opposite gradient sign and represents a downwind 

condition. Test case 5 is a DUC profile (downward - upward - constant) and is composed by three 

functions: a positive gradient up to     m, then a negative gradient between     and     m, followed 

by a constant profile. The gradient values are similar to the previous ones. Test case 6 is a logarithmic 

profile, which is used as a realistic representation of the atmosphere above open ground areas 

(section 2.3.1). From equation (2.12),        and        m/s. 

 Figure 5.1 illustrates the previous sound speed profiles and Table 5.3 displays the remaining 

simulation parameters. 

 

Table 5.3 - Acoustic and environment parameters for test cases from Table 5.2.   

Starting field Gaussian 

Ground surface 

     Hz 

    Hz 

   Hz 

absorbing 

                

                

              

Source height   m 

Receiver height   m 
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Figure 5.1- Plots of the sound speed profiles of Table 5.2. 

 

Normalized ground impedance values are similar for the four test cases and were calculated using 

equations (2.7) and (2.8) with the following parameters: 

 

i) porosity       , 

ii) flow resistivity                , 

iii)    is the pore shape factor ratio       , 

iv) grain shape factor       , 

v) air density             . 

 

These test cases will be used in the following section to validate the developed numerical program. 

5.2 GFPE METHOD VALIDATION 

In this section, we validate the computational program developed, which uses the GFPE method, 

with, either the exact solution for a non-refracting atmosphere (section 5.2.1), or a known accurate 

computational method for a refracting atmosphere (section 5.2.2), by analyzing and comparing its 

results. Simultaneously, we analyze some computational errors. 
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5.2.1 Non-refracting atmosphere 

With the parameters described in Table 5.1, we present the program results in the following plots 

using, either the standard Fourier transform [equation (4.3)], or the alternate Fourier transform based 

on the midpoint rule for numerical integration [equation (4.10)]. Furthermore, we introduce the results 

with the exact solution, which numerically integrates an exact Laplace transform for a point source in a 

homogeneous atmosphere above an absorbing ground [Di, et al., (1993)]. All the results in this section 

use the relative sound pressure to measure the sound levels [equation (2.4)].  

 

 

 

Figure 5.2 - Relative sound pressure up to    km with parameters from test case 1 (left figure) and 

test case 2 (right figure), for a     Hz  point source. 

 

As described in section 2.4.2.2, the vertical spacing     should not be larger than      or      m in 

these two test cases. On the other hand, the horizontal spacing can be up to    , depending on the 

simulation parameters. Since this section analyses the accurancy of the foward Fourier transform,  we 

use conservative values of    (   m and    m). 

Acording to Figure 5.2, the sound level results, with the standard Fourier transform, deviate 

substantially from the exact solution (up to    dB in test case 2). However, when using smaller vertical 

spacings, the latter results tend to approximate the exact solution. Oppositely, the error decreases 

with increasing horizontal spacing. 

The alternate Fourier transform results, based on the midpoint rule, are very similar to the exact 

solution, presenting a difference minor than     dB. With        , the standard transform deviates 

considerably. We found similar results for the frequencies    and      Hz. 

The alternate Fourier transform allows the use of larger    to obtain accurate sounds levels and 

consequently, the program requires a smaller number of vertical points. This results in a more efficient 

computational effort and, simultaneously, an accurate solution. For these reasons, all the following test 

cases use the alternate Fourier transform. 
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The discrete sampling of the inverse Fourier transform causes numerical errors due to the rapid 

oscillation of its summand [equation (4.11)]. Section 4.2.2 describes in detail the nature of this type of 

numerical error and the use of a window function to prevent it [equation (4.14)]. 

In the following plots, we test the window function's influence on sound levels and, simultaneously, 

compare them with the accurate results of Figure 5.2, using the test cases in Table 5.1. 

   

   

 

 

Figure 5.3 - Relative sound pressure up to    km, with parameters from test case 1 (left figure) 

and test case 2 (right figure), with and without the window function, for a     Hz point source. 

 

For a horizontal spacing over       and without the window function, the results begin to deviate 

from the exact solution. We obtained analogous results for    and      Hz. With the window function, 

we can use range steps up to     m, allowing a greater computational efficiency, without 

compromising the solution's accuracy. With atmospheric refraction, the maximum range steps allowed 

are smaller, as can be seen in the next section. 

Overall, the program results agree perfectly with the exact solution, particularly when we use the 

alternate Fourier transform and the window function. In this situation, the difference between the two 

solutions, up to a range of    km, is less than    dB. For this reason, we are quite sure that the 

numerical implementation for a non-refracting atmosphere is numerically accurate. 

5.2.2 Refracting atmosphere 

Using the test cases from Table 5.2 and Table 5.3, we calculate the results and compare them with 

the CNPE method, as its accuracy is well known. From [Gilbert, et al., (1993)] we took, as reference, 

the range step values for the GFPE method, as well as, the reported range step values for the CNPE 

method. This was required to compare the number of horizontal steps used by each method and thus 

evaluate the speed advantage of the GFPE over the CNPE methods. The downward and DUC sound 

speed profiles cause the sound levels to oscilate in some frequencies in contrast with the smooth 
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nature of the sound levels generated by the upward sound speed profile. These results allow to use 

larger range steps in upward profiles. 

In some frequencies, we verified it was possible to use larger range steps than the ones reported 

by [Gilbert, et al., (1993)], and at the same time to obtain similar sound levels. This result is most likely 

an influence of the window function (section 4.2.2), as we tested in the previous section. 

Since the CNPE method sound levels are evaluated using the transmission loss (TL) [equation 

(2.6)], we also used it to calculate the sound levels in the develop program. For all simulations we 

used a vertical spacing of         thus,      m for    Hz,       m for     Hz and       m for      

Hz. Furthermore, the number of vertical points   used was      for    Hz and     Hz and      for 

     Hz. Test case 3 is represent by three frequencies as diplayed in the following plots, 

 

 

  

   

Test case 3 Range step (m) 

Frequency    Hz     Hz      Hz 

GFPE            

CNPE            

 

  

 

 

Figure 5.4 - Comparison between the GFPE and the CNPE methods, with parameters from test case 

3. The respective range steps used are displayed in the bottom right table. 

 

Despite a slight difference of    dB over a range of      m for a frequency of    Hz, the compared 

results of the methods are in good accordance. The range step values used for the GFPE method are 

from [Gilbert, et al., (1993)], although we verfied that larger values could be used with small difference 

in the sound levels. For example, for a frequency of    Hz, a range step of     m only has a   dB 

difference in relation to the CNPE method results. For     Hz, a range step of     m results in the 

same difference. By comparing the range steps on Figure 5.4, we conclude that the GFPE method 

range steps are    ,     and    times the ones of the CNPE method at     ,    ,    Hz, 

respectively. This in turn corresponds into a faster calculation, without sacrificing accuracy. 

Nevertheless, the difference bewteen range steps can be higher, supposing that a slight difference in 
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the results is neglected. All the results were computed in a dual core desktop computer and it took 

less than   s to calculate the three frequencies in sequential order. The following plots are for test 

case 4, which has a medium with a downward refracting atmosphere. 

 

 

  

   

Test case 4 Range step(m) 

Frequency    Hz     Hz      Hz 

GFPE           

CNPE            

 

 
 

 

 

Figure 5.5 - Comparison between the GFPE and the CNPE methods, with parameters from test 

case 4. The respective range steps used are displayed in the bottom right table. 

 

Like the previous test case, the two lines of test case 4 are mostly indistinguishable for all 

frequencies. The oscillatory nature of the sound levels obtained, particularly for     and      Hz, is a 

result of interference between the propagating modes. For the GFPE method, larger range steps can 

be used, with the disadvantage that the sound field oscillations can be inadequately represented. 

By comparing the range step values, we conclude that the speed advantage of the GFPE over the 

CNPE method is smaller than the test case 3, where exists an upward refracting profile. Nonetheless, 

it is    to     times faster than the CNPE, depending on its frequency. The three simulations for test 

case 4 took about   s to complete, in sequential order.  

In Figure 5.6, we study the accuracy of the GFPE method with a profile composed of three 

functions, which are represented on the bottom left plot of Figure 5.1. The agreement between the two 

methods is very good and both possess an oscillatory behavior for     and      Hz. The explanation 

for this oscillation is similar for the one from test case 4. The range steps used for the GFPE method in 

test case 5 are identical with the ones used for test case 4 therefore, the speed advantage is identical 

as well. The three simulations for test case 5 took about   s to complete, in sequential order. Like the 

previous test case, we can use a larger range step if we are interested in obtaining the receiver sound 

level at some fixed range, thus neglecting the proper representation of the sound levels oscillations. 
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Test case 5 Range step(m) 

Frequency    Hz     Hz      Hz 

GFPE           

CNPE            

 

  
 

Figure 5.6 - Comparison between the GFPE and the CNPE methods, with parameters from test 

case 5. The respective range steps used are displayed in the bottom right table.    

 

 

  

   

Test case 5 Range step(m) 

Frequency    Hz     Hz      Hz 

GFPE           

CNPE            

 

  
 

Figure 5.7 - Comparison between the GFPE (two refraction factors) and the CNPE methods, with 

parameters from test case 6. The respective range steps used are displayed in the bottom right table.    

 

 

Finally, we use test case 6 to study the accuracy of the developed program with a logarithmic 

sound speed profile and, simultaneously, we test the influence of the alternative refraction factor of 
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section 4.2.3. The blue solid line represents the GFPE method with the standard refraction factor (A) 

derived in section 3.5, while the red solid line represents the GFPE method with the alternate 

refraction factor (B) described in section 4.2.3. To test the accuracy of both refraction factors, we 

compare them with results from the CNPE method. We use this method because it yields a solution of 

the wide angle parabolic equation, which is more accurate than the low angle parabolic equation used 

in the GFPE. 

For    Hz, the three lines are indistinguishable. For     Hz  and up to   km, the three methods are 

in accordance. Over   km, the GFPE method with the standard refraction factor (A) starts to generate 

a phase error, but the GFPE method with alternate refraction factor (B) and CNPE method have equal 

results. Similar situation occurs for      Hz, although the results deviate for a range over 2.5 km. 

[Gilbert, et al., (1993)] reported no improvement with the alternate refraction factor. This is 

probably because [Gilbert, et al., (1993)] only tested both factors up to the range where the results 

were matching. Small phase errors have insignificant physical meaning at long range, as atmospheric 

fluctuations cause further phase shifts and the average sound levels are similar in both two factors. 

Despite this, all the simulations in this text use the alternate refraction factor (B). 

By analyzing the range step values, we estimate that the GFPE method is    to     times faster 

than the CNPE method, depending on its frequency and the three simulations for test case 6 took 

about    s to complete, in sequential order. This value is larger than the previous ones due to the 

extreme long-range calculations performed.  

Overall, all the test cases using the GFPE method were in accordance with the CNPE method 

therefore, we are confident that the numerical implementation developed for refracting atmosphere is 

accurate. As we stated, by comparing the range steps of the two methods, the speed advantage of the 

GFPE method is notorious, without sacrificing the accuracy. 

5.3 TURBULENCE ANALYSIS AND RESULTS 

In the previous sections, the program was validated by comparing it with other numerical methods 

or exact solutions, for an atmosphere with temperature refraction, wind and an acoustically absorbing 

ground. Turbulence effects are always present in a certain degree in experimental measures hence, 

they must be included in order to correctly compare the program with those measures. In this section, 

we compare the numerical program developed with sound levels collected from a real atmosphere. 

5.3.1 Turbulence numerical parameters  

The data used to compare the program belongs to an extensive set of measurements of sound 

propagation, in an upward refracting atmosphere done by Weiner and Keast [Weiner, et al., (1959)]. 

The turbulence parameters for the two spectral density functions (section 3.6.2) and for the refractive-

index fluctuations (section 3.6.4), have to be correctly estimated to reproduce, as close as possible, 

the conditions of the experimental measurements. 
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[Ostashev, (1997)] gives the following parameters for the Gaussian spectrum [equation (3.47)]: 

correlation lenght     m,   
   

        and   
   . Those values are a good approximation of the 

real turbulent spectrum, but in a limited wave number range. In constrast, the von Kármán spectrum 

[equation (3.48)], agrees with the real spectrum over a larger wave number range. [Ostashev, (1997)] 

proposes the parameter ranges presented in Table 5.4, for the von Kármán spectrum. 

 

Table 5.4 - von Kármán spectrum parameters 

Parameter Minimum value Maximum value 

  
   

                              

  
   

                             

         
             

 

We used the following set of parameters for a turbulent atmosphere near a flat ground surface: 

  
   

                   
   

               and           

To estimate the parameters of the refractive-index fluctuation is necessary to calculate the size of 

the sum   and the wave number spacing    in equation (3.65). Figure 5.8 shows an example of the 

variation of the refractive-index flcutuation        [equation (3.62)] and its mode amplitude          

[equation (3.63)], using the previous parameters for both spectra, 

 

 

  

 

Figure 5.8 - Example of the refractive-index fluctuation       , for a height of   m along a 

horizontal line in the   direction (left figure) and its corresponding mode amplitude         with      

(right figure) for both von Kármán and Gauss spectra, using the parameters listed above.       and 

           are the wave number parameters [equation (3.63)] 

 

For the Gaussian spectrum, function           for       . In contrast, for the von Kármán 

spectrum, function         has finite value for         . Therefore, to calculate all the values of the 

von Kármán spectrum requires a large number of 'modes'  , being necessary to keep    small 

enough to correctly sample the small wave numbers. However, for most situations,             and 

      is enough to accurately represent the von Kármán spectrum, since wave numbers larger than 
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        generate small fluctuations of        [Salomons, (2001)]. Table 5.5 displays all the turbulence 

parameters used. 

 

Table 5.5 - Turbulence parameters used  

Gauss spectrum von Kármán spectrum Both spectra 

    
  
 

  
                    

  
 

  
       

  
 

  
                         

  
                       

 

5.3.2 Experimental test cases 

As refered in section 5.3.1, we use the experimental data from [Weiner, et al., (1959)] to compare the 

computational program with data collected from a real atmosphere. Weiner and Keast conducted an 

extensive program of measurements of sounds levels in an upward-refracting atmosphere.  

The measured values were corrected for spherical spreading and atmospheric absorption and 

ajusted to be   dB at      m. We assumed the measured level is the same as the sound pressure 

relative to the free field hence, we use the relative sound pressure    to compare the results [equation 

(2.4)].  

The sound levels were measured  at a height of     m, up to a distance of      m from the source, 

which was placed  at a height of      m. The source emitted octave bands of random noise, ranging 

from     to      Hz. A sound band covers a specific range of frequencies and, in the particular case 

of an octave ban, the upper band frequency is twice the lower band frequency. Two octave bands 

from the experimental measures were considered:            and            . The center 

frequency    of an octave band is,  

 

          (5.1) 

 

where     is the lowest frequency and    is the highest frequency in the octave bands previously 

considered. Using equation (5.1), the center frequencies are     and     Hz. 

[Gilbert, et al., (1990)] studied the sound speed profile and concluded that a logaritmic profile was 

the most accurate representation of the atmosphere. The profile is written as, 

 

       
       

 

 
      

       
  
 
      

  (5.2) 
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where           ,           and         . Two types of refraction where studied by [Weiner, 

et al., (1959)]: strong upward refraction and weak upward refraction. The first one refers to 

propagation almost directly upwind and the estimated refraction parameter is         . The second 

one represents the sound propagation mostly crosswind (see section 0) and the estimated refraction 

parameter is           . The two sound speed profiles are represented in the following plot, up to a 

height of     m. Additionally, Figure 5.10 visually elucidates the wind directions. 

 

 

 

Figure 5.9 - Graphical representation of the sound speed profiles for upwind (solid blue line) and 

crosswind propagation (solid red line).   

 

 

 

Figure 5.10 - Wind directions of the experimental measurement study by [Weiner, et al., (1959)]. 

 

The soil in the experimental measurement is described as a flat ground surface, covered with 

sparse vegetation, which can be simulated using a locally reacting plane with a complex impedance 

value representing  grassland, as described  in section 2.2.3. Using the empirical formulas of [Delany, 

et al., (1970)], the complex impedances for each source frequency are [Gilbert, et al., (1990)]: 

            and           , for     and     Hz respectively.  

Table 5.6 gathers the previous atmospheric and ground parameters for four test cases, each one 

with a specific frequency and sound speed profile. 
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Table 5.6 - Atmospheric and ground parameters from the experimental study 

Test case A1 A2 B1 B2 

Frequency     Hz     Hz     Hz     Hz 

Refraction                     

Ground impedance                                                                   

Source height     m 

    m 

    m 

    m Receiver heights 

 

5.3.3 Comparison of theory and experiment 

In this section, we compare the results of the four test cases presented in Table 5.6 using the 

GFPE method, for an atmosphere with and without turbulence, with the sound levels measured by 

Weiner and Keast.  

Each test case is represented bellow by two plots, one using the Gauss spectrum and the other 

using the von Kármán spectrum. Additionally, we calculated two different trials of the same test case, 

to evaluate how the refractive-index fluctuations   influence the average sound levels.  

Three different sound levels are presented. The connected red dots are experimental sound levels 

measure by Weiner and Keast. Each red dot represents the horizontal position of the microphones, 

which were used to measure, in dB, the sound levels. The solid lines are GFPE method solutions for a 

refracting turbulent atmosphere using either, the Gauss spectrum (green line, left side) or the von 

Kármán spectrum (blue line, right side). The dashed black lines are GFPE method outputs for a 

refracting atmosphere without turbulence. The following table displays the simulation parameters used 

in all test cases, 

 

Table 5.7 - Simulation parameters for the experimental test cases 

Parameter     Hz     Hz 

horizontal spacing    (m)     

vertical spacing   (m)           

vertical points             

range steps         

  

The following plots represent the test cases from Table 5.6, using the simulation parameters in the 

above table, with the arrangement described earlier in this section.  
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Test case A1  (Weak upward refraction     Hz) 

 

 

 

Figure 5.11 - Two trials of the relative sound pressure up to a range of      m for test case A1  

 

 

 

Test case B1  (strong upward refraction     Hz ) 

  

 

 

Figure 5.12 - Two trials of the relative sound pressure up to a range of      m using test case B1 
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Test case A2 (weak upward refraction     Hz) 

 

 

Figure 5.13 - Two trials of the relative sound pressure up to a range of      m using test case A2 

 

 

Test case B2  (strong upward refraction     Hz) 

  

  

 

Figure 5.14 - Two trials of the relative sound pressure up to a range of      m using test case B2 

 

Overall, the results from the GFPE method with turbulence (green and blue solid lines) are in 

conformity with the experimental measurements (red connected dots), for both spectra. The exception 
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is test case B1 (strong upward refraction for     Hz), which differs    dB in the range from     m to 

    m. There is a slightly better agreement using the von Kármán spectrum, although the results with 

the Gauss spectrum are nearly identical. This is most likely because the von Kármán spectrum 

represents a wider wave number range therefore, a better fit to the 'real' spectrum (section 3.6.2). 

Additionally, for any of the test case, the average sound levels for the two trials are consistent hence, 

one trial is enough to accurately estimate them.  

The spectral parameters initially assumed for a turbulent atmosphere close to a flat ground, are a 

reasoable representation of  the medium where the sound levels were measured. Nonetheless, a 

perfect match with the experimental results is possible by a trial and error detailed adjustment of the 

parameters for both spectra, specially the correlation length   for the Gauss spectrum and the wave 

number    for the von Kármán spectrum.  

Results from the GFPE method without turbulence (black dashed line) are severely 

underestimated for a distance greater than     m. Up to a range of     m, all the three results are in 

accordance. This means that turbulent effects are small up to this distance thus, at short range, sound 

propagation is mostly governed by deterministic parameters such as the source frequency or the 

refraction parameter. For long range sound propagation (more than     m), the incorporation of 

turbulence effects is essential in order to obtain realistic sound pressure levels. 

The results of these test cases can be approximated as a step function (Figure 5.15). In region 1 

the sound levels remains constant thus, spherical spreading is present. The sound levels start to drop 

down (region 2) and then approach to a constant value (region 3).  

 

 

 

Figure 5.15 – Example of the step function for a turbulent upward refracting atmosphere.  

 

From the results obtained from the test cases, we concluded that the shape of the step function 

depends mostly from the refraction parameter thus, from the wind direction and from the temperature 

profile. Source frequency has a slight influence in the shape of the step function, especially at short 

range. At longer range, sound levels do not depend much on frequency. 
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6 PROGRAM APPLICATION TO AN AIRPORT  

In this section, we use the developed computational program to study the noise generated by an 

aircraft in the surrounding areas of an airport. This task requires information on air temperature and 

wind speed and direction, in the region where the sound propagates therefore, in section 6.1 we 

present how these profiles can be realistically estimated by using semi-empirical formulas that depend 

on ground and meteorological conditions. With these conditions, we can have a realistic set of sound 

speed profiles (section 6.2), which along with a proposed group of simulation parameters (section 6.3), 

allow us to study the influence of turbulence and wind on the noise produced by aircraft near an airport 

(sections 6.4, 6.5 and 6.6) 

6.1 WIND AND TEMPERATURE PROFILES 

Most sound propagation problems occur near the ground surface in a region called atmospheric 

boundary layer (ABL). This layer contains the lower part of the earth's atmosphere, which is strongly 

influenced by the presence of the earth's surface, causing variations on the meteorological parameters 

in a time scale of about an hour or less. The ABL height varies substantially, between some hundred 

meters up to   km, depending on the location and time of the day. The atmospheric surface layer 

(ASL) constitutes de lowest part of the ABL. It is the active link between the atmosphere and the 

surface of the earth, transporting between them momentum, heat and other factors. Despite being 

only about     of the ABL total height, it is where most sound propagation problems take place. 

The vertical profiles of wind and temperature are influenced by the amount of turbulence present in 

the earth's atmosphere. Pasquill stability classes classify different atmospheric conditions based on 

incoming solar radiation (during the day), cloud cover (during the night) and wind speed. The six 

classes are displayed in Table 6.1 [Pasquill, (1961)].   

 

Table 6.1 - Pasquill meteorological stability classes 

Wind speed 

(m/s) 

Day - Incoming solar radiation Night - Cloud cover 

Strong Moderate Slight             

   A A - B B - - 

    A - B B C E F 

    B B - C C D E 

    C C - D D D D 

   C D D D D 

 

Class A represents a very unstable atmosphere with strong vertical mixing therefore, this type of 

atmosphere has large temperature gradients. Conversely, class F represents a stable atmosphere 

with weak vertical mixing. Class D corresponds to a neutral atmosphere, which has both high values 

of wind speed and cloud cover. Typically, the atmosphere is unstable during the day and stable during 
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the night thus, classes A - D are suitable for representing day time atmospheric conditions and classes 

D - F for nighttime atmospheric conditions. Moreover, large temperature gradients and high wind 

speed cannot coexist, since the strong turbulence present in an atmosphere with high wind speeds 

increases the fluid homogenization and therefore, inhibits the development of large temperature 

gradients. 

Several empirical formulas were developed by meteorologists to predict the wind and temperature 

gradients, when direct measurement is impractical or unattainable. The formulas we use, are based 

on the Monin-Obukhov simularity theory [Monin, et al., (1979)], where a logarithmic function and a 

correction term     and     are used to describe the vertical distribution of horizontal wind speed and 

air temperature. The following equation estimates the horizontal wind speed  , 

 

      
  

 
    

 

  
     

 

 
   (6.1) 

 

The temperature   at a height   above the ground is, 

 

         
  

 
    

 

  
     

 

 
     (6.2) 

 

The following table displays some of the parameters, as well as their respective values, from 

equations (6.1) and (6.2). 

 

Table 6.2 - Definitions and values of the parameters used to describe the Monin-Obukhov profiles 

   Friction velocity (m/s) Depends on the ground surface  

   Roughness lenght See Table 6.4 

   Scaling temperature (K) Depends on the ground surface  

   Air temperature at zero height (K) Convenient to use     

  Von Kármán constant          

  Adiabatic correction factor (            for dry air 

  Monin-Obukhov lenght (m) 

   stable atmosphere 

   unstable atmosphere 

   neutral atmosphere 

 

Monin-Obukhov lenght   is a scaling parameter which depends upon the heat flux at the ground 

surface. As displayed on the previous table, positive and negative values of   represent stable and 

unstable atmospheric conditions respectively. With a neutral atmosphere,   has infinite value. 

 Different forms of the correction terms have been sugested for unstable and stable conditions 

[Stull, (1991)], [Paulson, (1970)] and [Brekhovshikh, (1980)].  Under neutral conditions        . 

We use the following expression for the diabatic momentum profile correction function   , 
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  (6.3) 

 

with, 

 

      
   

 
 
   

 (6.4) 

 

For the diabatic heat profile correction function    the expression is, 

 

    
 

 
   

    
   

 
             

                  

  (6.5) 

 

Equations (6.3) and (6.5) are called Businger-Dyer profiles [Stull, (1991)] and are in accordance 

with measurements from a real atmosphere up to a height of     m. The evaluation of the Businger-

Dyer profiles requires the value for the respective Monin-Obukhov lenght  . [Salomons, et al., (1994)] 

suggests evaluating  , using the Pasquill meteorological categories (Table 6.1), with the following 

expression, 

 

 
 

 
              (6.6) 

 

where    is the roughness length and some typical values are described in Table 6.4 . The constants 

   and    are obtained from the following table, 

 

Table 6.3 - Value of constants    and    for the six Pasquill classes 

 Pasquill class 

 A B C D E F 

                                

                            

 

6.2 METEOROLOGICAL PARAMETERS 

The meteorological and ground surface data used in this study are similar to the conditions found 

on the Portela airport in Lisbon. The roughness lenght    is a corrective measure to include the effect 

of the surface roughness on wind flow, and its value is a fraction of the average height of the elements 

on the ground. Table 6.4 displays a few    values for different types of ground surfaces, including an 

airport area. 
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Table 6.4 - Some typical roughness lengths    

Type ground surface       

Water areas (lakes, open sea)      

Grassland      

Airport runway with some buildings      

City    

 

We use         to simulate sound propagation near an airport runway.  

[Wilson, et al., (2000)] performed numerical calculations for mean vertical profiles that obey Monin-

Obukhov similarity. Some of the results obtained are displayed in the following table,  

 

Table 6.5 - Parameters used in the Monin-Obukhov profiles for two meteorological conditions 

Meteorological condition Pasquill Class                                  Stability 

Moderate cloud cover 

and light wind 
B                      unstable 

Moderate cloud cover 

and moderate wind 
C                      slightly unstable 

 

With these parameters, we can obtain the wind [equation (6.1)] and temperature [equation (6.2)] 

profiles, for the two meteorological conditions. The profiles are represented in the following plots,  

 

 

 

Figure 6.1 - Temperature (left) and wind (right) profiles, for the meteorological conditions from Table 

6.5, up to a height of     m. 

 

Using these values in equations (6.1) and (6.2), the two resulting sound speed profiles are 

calculated from equation (2.9), adding the horizontal sound speed   if the wind is directly downwind, 

 

         
    

  
      (6.7) 
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If the wind is directly upwind, the horizontal wind speed    is subtracted. When  the wind is directly 

crosswind, the wind speed    is zero. The sound speed profiles are represented in Figure 6.2, with the 

three previous wind directions, for the meteorological conditons from Table 6.5.  

In the situation with light wind (Pasquill class B), the sound speed gradient is larger than with 

moderate wind (Pasquill class C), mostly due to  the strong turbulence present in an atmosphere with 

high wind speeds (section 6.1). The wind speed always increases with height, although its direction 

can increase (downwind) or deacrease (upwind) the sound speed.  

 

 

 

 

Figure 6.2 - Sound speeds obtained for two meteorological conditions from Table 6.5, including 

three different wind directions. 

 

Additionally, turbulence has to be included in order to correctly estimate sound levels, particularly 

when a shadow region exists (section 6.4). For unstable conditons, [Zaporozhets, et al., (2011)] uses 

the following expressions to obtain the parameters of the Gaussian spectrum (section 3.6.2),  

 

              
 

 
 
   

   (6.8) 

 

          
 

 
 
    

   (6.9) 

 

Using the previous expressions, we can estimate the Gauss spectrum parameters for the two 

meteorological conditions in Table 6.5. 

 

 

 

Table 6.6 - Gauss spectrum parameters at a height         

Pasquill class          
   

     
    

  

B                       

C                       
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6.3 SIMULATION PARAMETERS 

Additionally to meteorological imputs, the GFPE method requires assumptions about source and 

receiver locations and type of ground surface. Aircraft generates noise from two main sources: 

aerodynamic noise and engine noise. Aerodynamic noise originates from the airflow around the 

aircraft fuselase and control surfaces, while engine noise is  due to jet noise, although high bypass 

ratio turbofans also have high fan noise. 

Two source heights were considered:     m and   m. The first one represents an aircraft taking 

off or landing, whereas   m stands for an aircraft taxiing, i.e., moving slowly on the ground, under its 

own power. The wind direction proposed in Figure 6.3 was headwind or blowing against the direction 

of travel, since this is the most frequent and favorable situation when taking off or landing. We 

assumed three receiver locations, to simultaneously simulate upwind (receiver A), downwind (receiver 

B) and crosswind (receiver C) sound propagation. The receiver's height was set at     m to represent 

the typical human ear height. 

 

 

Figure 6.3 - Schematic representation of the source and receivers position (m) and wind direction.  

 

The ground along the sound propagation path is a mixture of hardened asphalt, grassland and 

exposed soil. To simplify calculations, we assume an average value for the parameters used in the 

Attenborough’s four parameter model [equation (2.7)]. The four parameters are,  

 

i) porosity      , 

ii) flow resistivity                , 

iii)    is the pore shape factor ratio         

iv) grain shape factor        

 

and the normalized ground impedances    for an octave band spectrum are, 

 

Table 6.7 - Normalized impedance values for an octave band spectrum 

Frequency (Hz)                               

Normalized 

impedance  
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Finally, Table 6.8 displays the test cases for the present study and their respective parameters. 

 

Table 6.8 - Test cases and their respective parameters  

Test case up2 down2 cross2 up100 down100 cross100 

Source height   m     m 

Receiver position A B C A B C 

Receiver height     m 

Wind direction upwind downwind crosswind upwind downwind crosswind 

 

6.4 EFFECT OF ATMOSPHERIC TURBULENCE ON SOUND PROPAGATION 

In this section we use the proposed test cases to evaluate the influence of turbulence on sound 

generated by an aircraft in the vicinity of an airport. 

Turbulence has three major effects on sound propagation: 

 

i) lower wave front coherence 

ii) random fluctuations of propagating sound waves in amplitude and phase 

iii) randomly scatters energy into shadow regions. 

 

The first two effects result in a spatial coherence loss that increases as the front waves propagate 

away from the source. This results into sound pressure fluctuations, from the average values. The 

one-dimensional plots, with the GFPE method from section 5.3.3, clearly display this effect. 

The third effect of turbulence occurs when an acoustical shadow region forms. The shadow region 

occurs in the presence of a negative sound speed gradient (Figure 2.6), or when the sound waves 

encounter topographical obstructions such as barriers or hills. According to the sound ray theory 

(section 2.4.3), the shadow region is defined by exact boundaries thus, one side of the boundary has 

finite sound levels and conversely, on the other side (shadow region) the sound pressure is zero. 

Experimental measurements carried by [Weiner, et al., (1959)], show that sound levels in the 

shadow region are significantly higher than expected by the ray theory. It is generally assumed that 

atmospheric turbulence affects the maximum attenuation achieved in a shadow region [Piercy, et al., 

(1977)]. Figure 6.4 exemplifies how turbulence increases the sound levels in the shadow region. 

Initially, a refracted spherical wave propagates with an angle   with the horizontal line, called skywave. 

This area of propagation close to the source corresponds to region 1 from Figure 5.15 and Figure 6.5. 
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Figure 6.4 - Representation of scattering of sound into the shadow region  

 

The skywave then reaches the shadow region and consequently, the sound level starts to drop 

(region 2). The non-uniform nature of atmospheric turbulence causes the sound waves to scatter into 

the shadow region, raising the sound levels to an average constant value (region 3).  

This phenomenon occurs in the presence of a negative sound speed gradient. To demonstrate it, 

we use two different types of sound speed profiles, with upwind and downwind sound propagation, 

from Table 6.8, and with class C atmospheric conditions (moderate wind). Then, we plot the results 

and compare the sound levels with and without turbulence (Figure 6.5). Moreover, the step function 

introduced in section 5.3.3 is also represented in the left plot.   

 

 

 

Figure 6.5 - One trial of the relative sound pressure up to a range of      m using test case up2 

(left plot) and test case down2 (right plot), with and without atmospheric turbulence. 

 

As we are interested in studying the influence of wind and turbulence, we used the relative sound 

pressure to quantify sound levels. To calculate the sound pressure levels from an aircraft, or any other 

sound source at a certain distance, we use equation (4.21), which takes into account the sound power 

level from the source. By knowing the value of   , it is easy to estimate the sound pressure level, 

since the geometrical spreading only depends on the distance from the source. Moreover, the 

atmospheric absorption attenuation can be considered constant through the sound propagation path. 

With upwind propagation (left plot), the sound speed decreases with height (Figure 6.2) thus, a 

shadow region forms in region 3 (step function) and accordingly, the average sound levels relative to 

the free field remain constant throughout this region. When turbulence is not incorporated, the sound 

levels are largely underestimated. 
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With downwind propagation (right plot), the sound speed increases close to the ground (Figure 

6.2) therefore, the sound speed gradient is positive within this region. In this situation, the sound levels 

without turbulence are in accordance with the average ones with turbulence. In this particular case, 

the addition of atmospheric turbulence is redundant and not mandatory. 

When the source is located at     m, the sound levels without turbulence and the average ones 

with turbulence are similar, but not identical (Figure 6.6). Since the wind speed above a certain height 

is nearly constant (Figure 6.1), the sound speed gradient at a height of     m is only slightly negative 

(Figure 6.2). This explains why both the results are in close agreement, despite the fact that the sound 

waves are propagating in a negative sound speed gradient medium. 

 

 

 

Figure 6.6 - One trial of the relative sound pressure up to a range of      m using test case up100 

(left plot) and test case down100 (right plot), with and without atmospheric turbulence. 

 

To graphically illustrate how turbulence influences the penetration of sound waves into the shadow 

region, we use the test cases up2 and cross2 from Table 6.8 and plot a two-dimensional 

representation of the relative sound pressure field, with (right plot) and without (left plot) turbulence 

effects. Note that the relative sound pressure values below     dB have the same color. 

 

 

 

Figure 6.7 - Two-dimensional plots of the relative sound pressure level    (dB), with parameters from 

test case up2. The source height is   m and the frequency is     Hz, with upwind propagation. 
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The skywave angle  , for crosswind and upwind propagation, is about    and      respectively 

(note that the horizontal spacing is smaller than the vertical one). The blue region above the source is 

an area where the GFPE results are not valid. This drawback is also known as the angular limitation of 

the GFPE method and is described in section 2.4.2. From Figure 2.10, we can conclude that the 

results are accurate up to an angle of about      (         , on both test cases. 

 

 

 

Figure 6.8 - Two-dimensional plots of the relative sound pressure level    (dB), with parameters from 

test case cross2. The source height is   m and the frequency is     Hz, with crosswind propagation. 

 

We obtained similar results for the remaining octave spectrum frequencies. These two-

dimensional plots clearly show that sound pressure levels in a shadow region are a direct result of 

scattering due to atmospheric absorption. In their experimental study [Weiner, et al., (1959)] verified 

that the relative sound pressure levels, in the shadow region, were mostly independent of range. 

Furthermore, [Daigle, et al., (1986)] in the same conditions of the previous study, reported a limited 

dependence of relative sound pressure levels with height. These observations are in accordance, not 

only with the results from the two dimensional plots in this section, but also with the one dimensional 

plots from section 5.3.3.  

From experimental and computational simulations, we conclude that the average relative sound 

pressure levels within the shadow region are, for the most part, uniform. Additionally, in a long range 

sound propagation perspective, in particular when a shadow region occurs due to the presence of a 

negative sound speed gradient, atmospheric turbulence has to be included to correctly estimate the 

sound pressure levels inside that region.  

6.5 EFFECT OF WIND ON SOUND PROPAGATION 

In this section, we study the influence of wind speed and direction on sound propagation. To 

accomplish this, we use the test cases from Table 6.8, with B and C class atmospheric conditions, and 

plot the results in a scale of octave bands, where each dot is a center frequency. Moreover, turbulence 
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is also included and we use the relative sound pressure    to measure the sound levels [equation 

(2.4)]. The following two plots are for a source height of   m. 

 

 

 

Figure 6.9 - Comparison of the relative sound pressure values, at a range of      m, for three 

wind directions (three different receiver locations at a height of     m) , each one for light wind (left 

plot) and moderate wind (right plot) atmospheric conditions and for a source height of   m. 

 

By comparing the wind directions in each plot, we infer that maximum attenuation is achieved 

when the wind is directly upwind (up2). When the wind direction is downwind (down2) a sound speed 

inversion for moderate wind occurs (C class atmospheric condition on Figure 6.2), which by turn 

results in less attenuation of the sound waves. With crosswind propagation (cross2), the attenuation 

value is between upwind and downwind propagation, as expected.  

By comparing both meteorological conditions, we conclude that a stronger speed wind increases 

the attenuation on the sound levels and a light wind speed attenuates it less. Furthermore, the sound 

level difference between the three wind directions grows with increasing wind speed. The following 

plots are the same as the previous test cases, but for a source height of      m. 

 

 

 

Figure 6.10 - Comparison of the relative sound pressure values, at a range of      m, for three 

wind directions (three different receiver locations at a height of     m) , each one for light wind (left 

plot) and moderate wind (right plot) atmospheric conditions and for a source height of     m. 

 

For a source height of     m, the attenuation achieved for a      m range is smaller than the one 

for a source height of   m, for all test cases. This difference is due to two effects: the source distance 
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from the ground and the sound speed gradient. Since the source height in these test cases is greater 

than the one in the test cases from Figure 6.9, the ground surface has less influence on the sound 

levels. It does not absorb sound waves with the same intensity as if the source was   m above the 

ground. The other reason is the sound speed gradient becomes less intense as the height from the 

ground surface increases, due to the fact that the wind speed is nearly constant above a certain 

height. This effect minimizes the magnitude of refraction and consequently, as we verified in the first 

two plots of this section, the attenuation on the sound levels is smaller. It should be noted that the 

sound levels are average values and thus can vary considerably.  

 

6.6 AIRPORT SCENARIO SIMULATION: CASE STUDIES  

In section 6.3 we studied the influence of wind and turbulence on sound propagation, using two 

different situations: one close to the ground, at an altitude of   m, and the other at an altitude of      

m. In the present section, we use the developed program to simulate two proposed scenarios, more 

realistic and complex. The first one simulates the noise emitted by an aircraft landing and the second 

one by an aircraft flying at a constant height.  

Figure 6.11 illustrates case study 1, where an aircraft, initially at a height of     m, approaches the 

runway and lands (height of   m). The approach angle, also called glide slope, is approximately    

above the horizontal (ground level), which is the one used in the Portela airport and in most airports. 

Like in section 6.3, we use different receivers to simulate different wind directions. Receiver A is 

positioned     m away from the point of landing, in the direction of landing. The sound emitted by the 

aircraft that reaches this receiver and the wind have opposite directions thus, the sound propagation is 

upwind. Receiver B is positioned as illustrated in figure 6.11 and accordingly, the sound propagation is 

downwind. The receiver's height was set at     m to represent the typical human ear height. We use 

the developed program to simulate the sound emitted by the aircraft in six points of the glide slope, 

each one with a horizontal spacing of     m.  

 

 

 

Figure 6.11 - Schematic representation of case study 1. All distances are displayed in meters. 
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Figure 6.12 illustrates case study 2, where we propose a scenario to simulate crosswind sound 

propagation. In this situation, an aircraft flies at a constant height of    m and the receiver C is 

positioned as displayed in Figure 6.12, at a height of     m. For the first      m, the wind speed 

component and the sound traveling from the source to the receiver have opposite directions thus, the 

sound propagation is upwind and with decreasing intensity. Conversely, from      to      m the 

sound propagation is downwind, with increasing intensity. The wind speed component, when the 

aircraft travels exactly      m, is zero (position 2), since the sound speed direction is perpendicular to 

the wind direction. 

 

 

 

Figure 6.12 - Schematic representation of case study 2. The aircraft travels from position 1 to position 

3 and all the distances are displayed in meters. 

 

For the meteorological parameters we use both moderate wind and cloud cover (Pasquill class C) 

from section 6.2. For the ground parameters, we use the normalized ground impedance values from 

Table 6.7.  

To obtain the sound pressure level    on the receivers we use the following expression [equation 

(4.21)], 

 

          (6.10) 

 

where    is the total attenuation and is defined as, 

 

                      (6.11) 

 

As  in equation (4.21), the first term on the right hand side is the geometrical spreading, the 

second term is the atmospheric absorption and the third term is the relative sound pressure. With the 

total attenuation TA and the source power level   , we obtain the sound pressure level   .  

As described in section 2.2.2, the atmospheric absorption depends on frequency, temperature, 

pressure and humidity. We assumed an average temperature of    C, relative humidity of     and air 

pressure of   atm. For a frequency of     and      Hz, the atmospheric absorption is     and      
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dB/km, respectively [Piercy, et al., (1977)]. Furthermore, we assume that the geometrical spreading is 

spherical. 

The following plots display the sound attenuation values due to geometrical spreading (black line), 

atmospheric absorption (red line) and meteorological and ground effects (blue line), for source 

frequencies of     and      Hz. The total attenuation (green line), is the sum of all combined effects 

[equation (6.11)]. The horizontal axis represents the horizontal distance traveled by the aircraft. For 

the top left and top right plots (case study 1),   meters of horizontal travel refers to the initial position 

of the aircraft (height of     m) and      m is the final position, at a height of   m. Similarly, for the 

bottom left plot,   m refers to the initial position 1 on Figure 6.12 and      m refers to the final position 

3. 

 

  

  

 

Figure 6.13 - Attenuation values for case study 1 (top left and top right plots) and case study 2 (bottom 

left plot), for a source frequency of     Hz. The horizontal axis represents the horizontal distance 

traveled by the aircraft. 

 

For the receiver A, the distance between it and the aircraft decreases therefore, the atmospheric 

absorption and spherical spreading attenuation decrease with horizontal travel. Moreover, the relative 

sound pressure increases, since initially the source is at     m and its height decreases (up to   m), 

where the sound speed gradient is more intense. We verified this behavior in section 6.5. With these 

attenuation values, the total attenuation remains mostly constant at roughly    db. 

For the receiver B the opposite occurs, the distance between the receiver and the aircraft 

increases hence, the atmospheric absorption and spherical spreading attenuation increase with 

horizontal travel. The relative sound pressure attenuation also increases, although with less intensity 
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than for the receiver A (upwind propagation). With these factors, the total attenuation increases from 

   to     db. 

For the receiver C, the distance between the aircraft and the receiver decreases from   m up to 

     m, where it reaches a minimum value, and then increases. The sound attenuation components 

also decrease up to      m and afterwards increase. The relative sound pressure has more 

attenuation when the sound propagation is upwind (from 0 to      m). When the propagation is 

downwind (from      to     ), the attenuation is less intense. We also verified this influence in 

section 6.5. 

We carried out a similar analysis  for a frequency of 1000 Hz (Figure 6.14). 

 

  

  

 

Figure 6.14 - Attenuation values for case study 1 (top left and top right plots) and case study 2 (bottom 

left plot), for a source frequency of      Hz. The horizontal axis represents the horizontal distance 

traveled by the aircraft. 

 

For      Hz, the attenuations values have similar behavior, although the relative sound pressure 

attenuation is smaller. This difference of attenuation between different frequencies also was verified  in 

section 6.5. In contrast, the atmospheric attenuation increases from     to      dB/km. 

6.7 PROGRAM APPLICATION TO AN AIRPORT: CONCLUSION NOTES 

In chapter 5 we validate the developed program, in an abstract situation, comparing the results 

with other methods and with real measures and its coherence was confirmed. 
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In this chapter a real situation associated with an airport was simulated. In fact, the parameters 

used reproduce an airport real situation namely, the source and receiver positions and the 

meteorological conditions.  The coherent results obtained in the previous sections confirmed, once 

again, that the program developed is numerically accurate.  Its user interface is also suitable and can 

be, easily and effectively, used to evaluate the effects of wind and turbulence on sound propagation 

near an airport. 
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7 GENERAL CONCLUSIONS AND FUTURE DEVELOPMENTS 

In the last years, societies growing environmental and health conscience, obliged the national 

authorities to reinforce existing legislation concerning the maximum permissible noise levels. 

In this context, the infrastructures that can generate significant levels of noise require studies, 

which must incorporate a large variety of parameters in order to reproduce the real situation. 

Nowadays, they consume a large amount of resources to obtain accurate results, with special 

relevance to the financial costs associated, as well as, the long time to complete them. 

The existent methods, described in chapter 2, calculate the sound level in a given atmosphere with 

different degrees of complexity, accuracy and speed. Some of them do not incorporate many 

parameters that influence the real atmospheric sound behavior or are computationally inefficient. To 

incorporate the effect of wind and turbulence on sound propagation in the atmosphere, the most 

suitable numerical method is the Green's Function Parabolic Equation (GFPE) method, which its 

theoretical formulation is described in detail in chapter 3. 

Since GFPE method does not allow an analytical solution, it was necessary to develop a numerical 

implementation (chapter 4) to solve the basic equations of the method (equations (3.40) and (3.41)). 

Several assumptions to develop the approach were introduced and justified. Some additional functions 

were also implemented, to overcome the limitations of the mathematical approach of the propagation 

physical phenomenon, such as the introduction of an artificial absorption layer, a window function and 

an alternate refraction factor. The functions were validated and they improved substantially the results 

accuracy and the computational effort. 

The numerical implementation complexity requires a programming language, which must offer fast 

and precise mathematical calculations, a wide range of open source libraries and be able to run in 

different environments. For these reasons, C language was chosen to implement the program. The 

algorithm flow process is presented in section 4.3 and it includes a command line interface, with input 

and output files, which allows a friendly use. 

In chapter 5, three sets of test cases were used to validate the numerical implementation 

developed. The first set is for a non-refracting atmosphere, which has a mathematical exact solution; 

the second set includes atmospheric refraction and was compared with the CNPE method results; 

finally, the third set includes atmospheric turbulence in addition to the previous conditions and was 

verified by comparing with experimental measurements. In all the test situations, the results 

accordance between the numerical implementation and the mathematical and benchmark cases, were 

good enough to assure that the numerical approach and the program developed are accurate. 

Finally, in chapter 6, a real situation associated with an airport was simulated. Once again, it was 

confirmed that the program developed is numerically accurate and its user interface can be, easily and 

effectively, used to evaluate the effects of wind and turbulence on sound propagation in the vicinity of 

an airport. 
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Nevertheless the good results obtained with the approach in this thesis, it should be kept in mind 

that several limitations were considered. To achieve a yet more realistic description, new features can 

be incorporated in future developments such as, ground barriers, topographic features and vegetation. 

A three dimensional approach, an inhomogeneous and anisotropic turbulence model, and a combined 

model of GFPE method with the Ray Model, to overcome the angular limitation of the first, are other 

possible improvements to better represent sound propagation in the atmosphere. 
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