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 Abstract – In this paper, no-reference objective quality 

metrics for encoded videos transmitted over a lossy channel are 

proposed and evaluated. The metrics consider both the effects of 

H.264/AVC video encoding and packet losses over IP networks. 

All the algorithms predict the video perceived quality based on 

elements extracted from the compressed bitstream and on the 

information about the packet losses, taken from the headers of 

the arriving packets. Five quality assessment metrics for 

H.264/AVC videos impaired by packet losses are presented: 1) a 

simple model that accounts for the packet loss ratio; 2) a model 

that considers the frame type where the correspondent losses 

occur; 3) a model that considers the frame type and the 

movement in the video under analysis; 4) a model that considers 

the frame type, the movement and the dependencies between 

frames; 5) a model that considers the frame type and statistical 

metrics taken from the packet loss pattern. The fifth model 

provided the best results with the resulting quality prediction 

being well correlated with subjective assessment data.    

 

 

 Index Terms – No-reference video quality, H.264/AVC, 

Video over IP, Packet losses. 

 

1.  INTRODUCTION 

 Video transmission over Internet Protocol (IP) networks is 

a growing market. As competition between video service 

providers increases, the need to ensure that a service meets the 

end user’s expectations becomes more relevant; since the 

success of a service provider is strongly dependent on the 

entire end user experience, there is as clearly a need for 

Quality of Experience (QoE) evaluation methods. The most 

reliable source of QoE data is naturally the end user. However, 

gathering QoE data from users requires expensive and time 

consuming subjective quality assessment tests. An alternative 

to subjective quality assessment is to automatically score the 

users perceived quality using objective metrics.  

 Objective picture quality metrics can be categorized into 

full reference (FR), reduced reference (RR) and no-reference 

(NR). FR metrics require both the original and distorted video 

to compute the video quality, while NR metrics only require 

the distorted video. RR metrics are somewhere in between the 

other two, since they require the distorted video and only some 

information about the original video.  

 This paper describes several bitstream based NR metrics 

for quality assessment of H.264/AVC video transmitted over 

IP networks. We start analyzing the effects of lossy 

H.264/AVC video encoding, resulting in a NR quality metric 

that accounts for the compression impact on video quality. 

Afterwards, we analyze the effects of video transmission 

(namely packet losses) and improve the previous NR model, 

by considering both encoding and transmission losses.  

 This paper is organized as follows: after the introduction, 

section 2 provides an overview of video quality assessment; 

the main reasons for video quality degradation in IP are 

described and methods, used by the H.264/AVC encoder and 

decoder to resist and conceal occurring errors, are outlined. 

Additionally, we overview already proposed NR metrics for 

transmitted video. In section 3, new NR quality metrics that 

address only the compression distortion are described, 

evaluated and compared. In section 4, new NR metrics for 

transmitted video over IP networks, considering both 

compression and transmission distortions, are described, 

evaluated and compared. Finally, in section 5, the main 

conclusions are given and some proposals of future work are 

put forward.      

 

2.  VIDEO QUALITY OVERVIEW 

A. Overview of the H.264/AVC 

 H.264/AVC is a video compression standard developed 

by the ITU-T Video Coding Experts Group together with the 

ISO/IEC Moving Picture Experts Group (MPEG) in a 

partnership known as the Joint Video Team (JVT), formed in 

2001 [WSBL03]. The objective of the JVT was to develop an 

advanced video coding specification capable of coding 

rectangular video with higher compression efficiency, when 

compared to existing standards such as H.263, MPEG-2 video 

and MPEG-4 Visual. Another objective was to have a good 

flexibility in terms of efficiency-complexity trade-offs, 

allowing the standard to be applied on a wide variety of 

applications such as broadcast, storage and multimedia 

streaming services over various networks. 

 To address the need for flexibility and customizability, the 

H.264/AVC design covers a Video Coding Layer (VCL) and a 

Network Abstraction Layer (NAL). The VCL was designed in 

a way to represent the video content efficiently; the NAL 

formats the VCL representation of the video so it can be 

compatible with various transport protocols or storage media. 

At the VLC, efficient video compression is achieved by 

exploiting the spatial and temporal redundancies of the video. 

Much like previous standards, H.264/AVC is based on a 

block-based coding approach. This means each frame of the 

video is represented by block shaped units called macroblocks, 

being each macroblock represented by 16×16 luminance 

pixels and by two 8×8 chrominance samples. The standard 

defines three types of frames: 



 Intra frames (I-Frames), exploit spatial redundancy and 

are coded using only information within the frame. These 

frames are also used for random access since they do not 

require information from previous frames. I-Frames 

provide the less compression among the three frame types. 

 Predicted Frames (P-Frames), not only exploit spatial 

redundancy but also temporal redundancy. This is done by 

using information from previous I or P frames. 

 Bidirectionally Predicted Frames (B-Frames), also exploit 

spatial and temporal redundancies but they may use 

information from past, as well as from future I or P frames. 

B-Frames provide the highest compression among the 

three frame types. 

 

The three frame types were also defined on previous 

standards, but H.264/AVC improved on them by adding some 

new features, such as multiple reference frame motion 

compensation and the ability to use a B-Frame as a reference 

frame.    

 As previously mentioned, the NAL adapts the compressed 

data from the VCL, so it can be compatible with various 

transport protocols. For video transmission over IP networks 

some protocols were defined for the three layers of the Open 

Systems Interconnection (OSI) model: Real-time Transport 

Protocol (RTP) on the application layer, User Datagram 

Protocol (UDP) on the transport layer and IP on the network 

layer [Weng03]. 

 

B. The origins of video losses 

 When a H.264/AVC encoder exploits the spatial 

redundancy it uses a type of coding based on the Discrete 

Cosine Transform (DCT). The coefficients resulting from the 

transform are quantized in order to remove irrelevancy. 

However, this quantization can reduce the quality of the video 

since some information is discarded resulting in compression 

losses, that can manifest as visible picture artefacts. 

 Concerning transmission losses in IP networks, packet 

losses occur mainly due to three factors [KGPL06]: 

  Occasional bit errors caused by low noise margin or 

 equipment failure. 

  Buffer overflow or packet delay caused by congestion in 

 the network.  

  Rerouting to get around breakdowns or bottlenecks in the 

 network. 

 Since the decoder on the receiving side needs that packets 

arrive in time to be displayed, packets too much delayed are 

discarded. 

  

C. Error resilience and concealment techniques 

 The H.264/AVC standard provides error resilience 

schemes [KXMP06] in an attempt to minimize the 

consequences of transmission losses. These are mainly 

contained in the VCL and some of them have been used in 

previous standards. Some of the error resilience techniques 

are: the semantics and syntax used, Intra-frame refreshing, 

slice structuring and flexible macroblock ordering.  

 When the decoder detects an error, it may use an error 

concealment technique to try to make the error unnoticed. 

Some basic techniques are inter-frame prediction and intra-

frame prediction. Inter-frame prediction uses information from 

previous frames, while intra-frame prediction uses information 

from the same frame in order to predict the content of lost 

MBs. 

 

D. No-reference objective quality metrics 

 The effects of compression on video quality have been 

intensively studied and accurate metrics have been developed 

(e.g., [BrQu10][BrQu08] and the references included). On the 

other hand, the effects of transmission on video quality still 

need to be more investigated. Typical metrics used by service 

providers are the bit error rate (BER) or the packet loss ratio 

(PLR), which can be used to roughly predict the video quality.  

 At the present time, there are no standardized procedures 

for no-reference video quality assessment, although an 

intensive work on that subject is being performed by ITU-T 

and ITU-R through study/working groups SG9, SG12, and 

WP6C. The closest standard that is related with NR image 

quality assessment is ITU-T Recommendation G.1070 

[ITUT07], which presents a quality model for video telephony 

applications. 

 Concerning scientific publications, three NR methods 

were proposed in [EVS04] to estimate mean squared error due 

to packet losses, directly from the video bitstream. Winkler 

and Mohandas proposed in [WiMo08] a no-reference metric – 

the V–factor –oriented to packetized transmission of MPEG-2 

and H.264/AVC video. More recently, in [YWXW10], a 

quality measure for networked video is introduced using 

information extracted from the compressed bit stream without 

resorting to complete video decoding. 

 

3. OBJECTIVE QUALITY ASSESSMENT OF ENCODED VIDEO 

A. Objective quality models for encoded video  

 The main goal of all video quality prediction algorithms is 

to be able to predict the opinion a human observer would give, 

when evaluating a video’s quality. Therefore, subjective video 

quality evaluation is essential to benchmark the objective 

video quality metrics. These subjective evaluations use human 

participants and specific evaluation methods. After a statistical 

analysis of the subjective scores, the Mean Opinion Score 

(MOS) of the human participants is obtained for every video 

sequence. The subjective data can then be used to calibrate or 

to validate the quality prediction algorithms. The subjective 

data, used to validate the objective metrics described in this 

section, were obtained through subjective video quality 

assessment tests performed at Instituto Superior Técnico 

[PQR09] with the purpose of studying the subjective quality of 

H.264/AVC and MPEG-2 encoded video. 

 The MOS depends on how much the video was 

compressed – video encoded with a high bit rate usually has a 

better quality (high MOS value) than a video encoded at a 

lower bit rate. The same behaviour is observed for the mean 

square error (MSE) of the encoded video. In fact, although the 

MSE is a rough measure of the perceived quality, its 



correlation with the MOS tends to be high for the same 

sequence, when encoded at different bit rates, and using the 

same encoder. This conclusion may be confirmed by Figure 1, 

which shows the MOS versus the MSE values for the different 

video sequences, and encoding conditions, used in the 

subjective tests (described in [PQR09]). However, the 

previous conclusion does not hold when considering different 

video sequences – in this case, an increase of MSE may not 

correspond to a decrease in MOS values. For instance, looking 

once more at Figure 1, we may figure out that the increasing 

of MSE from 80 to 160 may be accompanied either by an 

increase in MOS from 0.46 (“Foreman”) to 0.63 (“Tempete”), 

either by a decrease in MOS to 0.18 (“Football”).  

 The MSE is defined as the mean squared difference 

between the original sequence and the coded sequence.  When 

applied to the video luminance component, it is expressed as: 

 

    
 

     
                         

  
   

 
   

 
     (1) 

 

where Yo represents the luminance of the original t-th frame at 

pixel (i,j), Yc the luminance of the compressed t-th frame at 

pixel (i, j), T the total number of frames and M,N  the number 

of pixels per line and the number of lines of each frame, 

respectively.   

 With the MSE we can obtain the Peak Signal-to-Noise 

Ratio (PSNR), which is commonly used as an objective 

measure of video quality. The PSNR is the ratio between the 

maximum possible value of luminance (for pixels represented 

in 8 bit per sample this value is 255) and the MSE, and it is 

usually expressed in logarithmic units as: 

 

              
   

 

   
 ,  [dB]                  (2) 

 

 All the metrics developed in this section, explore the 

MOS versus MSE relation and use the error estimation module 

proposed in [BrQu10] for a no-reference MSE estimate of the 

encoded video sequences. 

 

B. The MOS prediction models 

 Based on the relationship between MOS and MSE, four 

different MOS prediction models are described in this sub-

section. 

 The first MOS prediction model was proposed by Bhat in 

[BRK09] as a FR model and it considers that the relationship 

between MOS and MSE can be seen as a straight line with 

slope –ks and a y-intercept of 1; mathematically, it can be 

expressed as: 

 

                                       (3) 

 

where MOSp is the predicted MOS. By using linear regression 

of the MOS values, obtained from the subjective test, versus 

the corresponding MSE values, it is possible to obtain the 

straight line parameter (ks value) for each video sequence. 

Figure 2 shows the subjective data and the straight line  

 
Figure 1 - MOS versus MSE 

resulting from the linear regression for the “Crew”, 

“Foreman”, “Mobile” and “Stephan” video sequences. straight 

line parameter (ks value) for each video sequence. Figure 2 

shows the subjective data and the straight line resulting from 

the linear regression for the “Crew”, “Foreman”, “Mobile” 

and “Stephan” video sequences. 

 However, observing Figure 1, it becomes clear that the 

MOS versus MSE evolution has not the same behaviour for 

the highest values of MSE. The straight line parameter from 

the previous model doesn’t seem to be constant and appears to 

decrease as the MSE increases. In other words, the quality 

seems to decrease faster on lower MSE values when compared 

to higher MSE values. Therefore, another possible model is to 

consider the relation between MSE and MOS as an 

exponential function, which can be expressed by: 
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where MOSp is the predicted MOS and ks is the exponential 

parameter. By using regression with the subjective data and 

the real MSE values, the exponential parameters were 

obtained for each sequence. Figure 3 shows the subjective data 

and the resulting regression curves for the “Crew”, 

“Foreman”, “Mobile” and “Stephan” sequences. 

 



 
Figure 2 - Regression curves for the linear model for Crew, Foreman, 

Mobile and Stephan 

 

 
Figure 3 - Regression curves for the exponential model for Crew, 

Foreman, Mobile and Stephan 

 By taking a closer look at Figure 1, we can see that the 

MOS versus MSE relation is not a simple exponential 

function, as considered in the previous model. In fact, it seems 

to resemble a sigmoid function since the quality has a slower 

decrease on lower and higher MSE values when compared to 

mid MSE values. This third model (Sigmoid1 model) uses a 

sigmoid function which can be expressed as: 

 

         
        

             
                      (5) 

 

where MOSp is the predicted MOS and k1 and k2 are the 

sigmoid parameters. By using, once again, regression with the 

subjective data and the real MSE values, it is possible to 

obtain the sigmoid parameters for each sequence. Figure 4 

shows the subjective data and the regression curves obtained 

for the “Crew”, “Foreman”, “Mobile” and “Stephan” 

sequences.   

 

The fourth and final model was proposed in [WP02] as a FR 

model and it also follows a sigmoid function (Sigmoid2 

model) 

 

 
Figure 4 - Regression curves for the sigmoid model (MSE) for Crew, 

Foreman, Mobile and Stephan 

 

However, it uses the PSNR measurement to estimate the 

MOS. Mathematically, this model is expressed as: 

 

         
 

              
                (6) 

 

where MOSp is the predicted MOS and k1 and k2 are the 

sigmoid parameters. Applying, once again, regression with the 

subjective data and the real PSNR values, the sigmoid 

parameters were obtained for each sequence. Figure 5 shows 

the subjective data versus MSE (for a better comparison with 

the previous models, the plot is versus MSE and not PSNR 

values) and the regression curves obtained for the “Crew”, 

“Foreman”, “Mobile” and “Stephan” sequences.  

 We have seen that each model predicts the MOS by using 

the MSE and one or two parameters; these parameters were 

obtained by regression using the subjective data (MOS 

values). However, in a practical transmission scenario the 

subjective data is unavailable, so those parameters have to be 

estimated from the received data (video bitstream and/or 

decoded video). In [BRK09], where the straight line model 

was proposed, the authors showed that the required parameter, 

ks, is related to the video content activity. This approach was 

also followed in this thesis, in order to estimate the model 

parameters required by the new models. 

 An estimation of the video spatial activity can be obtained 

with information taken from the bitstream, namely the DCT 

coefficients. We propose to compute the video activity by first 

estimating the spatial activity of each I-frame through: 
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where σj is the estimated spatial activity of the j-th I-frame, 

DCTcoefi is the i-th DCT coefficient of the frame, μ is the 

average value of the DCT coefficients in the frame and n is the 

number of DCT coefficients in the frame.  

 The estimated activity of the video results from the 

average of the spatial activity of all I-frames: 
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where N is the number of I frames and σj is the estimated 

spatial activity of the j-th I frame. 

 In order to validate the estimated activities, the Pearson 

correlation between them and the activity values computed in 

the pixel domain, using the original video was computed, and 

a value of 0.97 was obtained. It was also verified that the 

effect of compression as a marginal impact on this value.  

 In the following, the used MSE values can be the ones 

computed using the original and encoded videos ("true" MSE) 

or using the no-reference MSE estimate from [BrQu10] 

("estimated" MSE). As for the video activity, it can be 

obtained directly from the uncompressed videos ("true" 

activity) as described in [BRK09] or by using equations (7) 

and (8) ("estimated" activity).   

 Figure 6 shows how the model parameters, obtained using 

the true MSE values, relate with the video activity; this figure 

suggests that some model parameters have a linear relation 

with the video activity, while others have an exponential 

relation.  

 The parameters (ks) for the exponential and the sigmoid1 

models were considered to have an exponential relation with 

the video activity, which can be expressed as: 

 

                                        (9)   

                    

 The parameters (ks) for the linear and sigmoid2 models 

were considered to have a linear relation with the video 

activity, which can be expressed as:  

 

                                      (10)   

                            

 Parameters β in (9) and (10) are obtained by regression 

using the subjective MOS, the MSE values, and the video 

activity, by substituting (9) or (10) in (3), (4), (5) and (6). 

 

C. MOS prediction 

 Using the described NR models the predicted MOS, for 

each video sequence, can be obtained. To do so, it is required: 

 

 
Figure 5 - Regression curves for the sigmoid model (PSNR) for 

Crew, Foreman, Mobile and Stephan 

 

 
Figure 6 - Model parameters versus video activity, and resulting 

regression curves, for: a) linear model, b) exponential model, c) and 

d) sigmoid1 model, e) and f) sigmoid2 model, using the true MSE 

and video activity values. 

  

  The functions of the prediction models. 

  A training video set to train the models by calculating the 

 parameters β. 

  An estimated MSE value of the video sequence whose 

 MOS we want to predict [BrQu10]. 

  An estimated (eq. (8)) of the activity for the video 

 sequence whose MOS we want to predict. 

 To validate objective quality metrics, it is often used a 

training set and a validation set. The training set calibrates the 

metrics which, in our case, correspond to the finding of the β 

values; the validation set is used to evaluate the metrics. Since 

we have a small set of video sequences, the leave-one-out 

cross-validation was used. This method is done by turns, in 

each turn the different encoded versions of the same video 

sequence are used as the validation set while all the other 

video sequences are used as the training set. In each turn, the 

MOSp of the validation set are obtained. This is repeated until 

all the video sequences have been used as the validation set 

and the corresponding MOSp obtained. 

 After performing the leave-one-out cross-validation 

method on the eleven video sequences, their MOSp was 

calculated for each prediction model. Figure 7 shows the MOS 

versus MOSp for the different models using the estimated 

MSE and video activities.  

 

D. Results and model comparison 

 To compare the four models, the VQEG performance 

metrics described in [VQEG03], namely Pearson and 

Spearman correlation coefficients and root mean squared 

(RMS) error, were used. Table 1 shows the three performance 



 

Figure 7 - MOSp versus MOS for the four NR prediction models 

using estimated MSE and estimated activity 

metrics obtained with all eleven videos using the estimated 

MSE and video activities. 

 In Table 1 we have highlighted in green the model with 

the best results for each performance metric. The linear model 

is the one with best results in the RMS and Pearson coefficient 

and, together with the Sigmoid1 model, has also the highest 

Spearman coefficient. All the models produce very similar 

results, making them all acceptable. However, the linear 

model can be considered as best of the four, not due to the 

correlation coefficients obtained but also because of its lower 

complexity when compared to the other models.  

 

4. OBJECTIVE VIDEO QUALITY ASSESSMENT IN IP 

NETWORKS 

A. Objective quality models for transmission with packet 

losses 

 The subjective data used in this section was obtained 

through subjective tests performed in Politecnico di Milano 

(PoliMi) – Italy and Ecole Polytechnique Fédérale de 

Lausanne (EPFL) - Switzerland [SNTD09] resulting in two 

databases. The subjective tests addressed the effect of packet 

losses on a video’s perceived quality when encoded with 

H.264/AVC. For this purpose, six video sequences in CIF 

format and with a frame rate of 30 fps, were considered, 

namely “Foreman”, “Hall”, “Mobile”, “Mother”, “News” and 

“Paris”.  

 The MOS and the MSE values of each video obtained 

after decoding, allow the analysis of the MOS versus MSE 

behavior resulting from packet losses. By looking at Figure 8, 

it is possible to conclude that, as in the previous section, where 

only losses due to compression were considered, the MOS 

does not correlate well with the MSE if we consider all video 

sequences. 

 If we look at each sequence individually, we can see that 

the MOS tends to decrease as the MSE increases. However, a 

closer look shows that, unlike what happens after 

compression, the plot MOS(MSE) does not have a 

monotonous variation, since there are situations where the 

MOS clearly increases when the MSE increases. 

 

 

 

 
Table 1 - Correlation coefficients using estimated MSE and estimated 

activity for all videos 

Correlation Coefficient Model All 

 

RMS 

Linear 0.355 

Exponential 0.478 

Sigmoid1 0.359 

Sigmoid2 0.377 

 

Pearson 

Linear 0.959 

Exponential 0.954 

Sigmoid1 0.957 

Sigmoid2 0.953 

 

Spearman 

Linear 0.947 

Exponential 0.945 

Sigmoid1 0.947 

Sigmoid2 0.943 

 

Outlier 

Linear 0.038 

Exponential 0.154 

Sigmoid1 0.038 

Sigmoid2 0.038 

 

 
Figure 8 - MOS versus MSE for the PoliMi database and MSE values 

in the range 0 - 150 

 With these observations, a video quality prediction model 

based on the MSE seems to be potentially unreliable for 

quality prediction of videos affected by packet losses. Thus a 

different approach is necessary. 

 Since the new element introduced were the packet losses, 

characterized by the PLR, the relation between PLR and MOS 

was analyzed. We started by computing the actual PLR of 

each video sequence by analysing the bitstream and checking 

the syntax of the packet header on each transmitted packet. 

Figure 9 presents the resulting  MOS values vs PLR for the 

PoliMi database. 



 

 
Figure 9 - MOS versus PLR for the PoliMi database 

The MOS versus PLR suggest that MOS values are better 

correlated with PLR than with MSE. To further confirm this, 

the Spearman correlation metric between MOS and PLR or 

MSE were calculated and are presented in Table 2.The values 

of the Spearman metric confirm that the MOS has a better 

correlation with the PLR. Taking this into consideration, all 

the following prediction models are based on the MOS/PLR 

relationship. 

  

B. Simple PLR Model 

 This model is based on the video quality prediction model 

proposed in ITU-T Rec. G.1070 [ITUT07] and it relates the 

MOS with the PLR. Figure 9 suggests that the MOS/PLR 

relation can be described by an exponential function, thus the 

model is mathematically given by: 

 

                 
   

 
                 (11) 

 

where MOSpl0 is the MOS of the video without any 

transmission losses, PLR  is  the packet loss ratio and θ  is a 

parameter. The θ parameter was considered a constant that can 

be obtained by regression. Since only six video sequences are 

available a cross-validation training method was used to train 

and test the model namely, the leave-one-out cross-validation 

was utilized. The model was also evaluated as a NR model by 

using an estimation of the MOSPL0. Figure 10 plots the 

obtained MOSp versus the subjective MOS (PoliMi) values, 

using the NR model; Table 3 shows the correlation metrics 

and RMS values obtained. From these results we may 

conclude that the Simple PLR FR model scores acceptable 

values for the Pearson, Spearman and RMS metrics.  

 
Table 2 - Spearman metric for MOS/MSE and MOS/PLR 

Correlation metric MOS versus MSE MOS versus PLR 

Spearman -0.7511 -0.9518 

 

 
Figure 10 - MOS versus MOSp for the PoliMi database using the NR 

Simple Model 

 Despite these positive results, there are a few particular 

cases where the Simple PLR Model didn’t have a good 

performance. An example is the sequence “Mother” where the 

model scored a Pearson value of 0.88 for PoliMi and 0.87 for 

EPFL; also, for low PLR values (i.e., PLR < 1%), there are 

some cases in which an increase in PLR is accompanied by an 

increase in MOS. In the next sub-sections we will address 

possible modifications to this simple model.  

 

C. Frame Type Model 

 Since the H.264 uses frame dependency, it is expected 

that the degradation caused by a packet loss on a video 

sequence will depend on the type of frame where the loss 

occurs. For the used encoding, a packet loss in an I-frame is 

expected to be more relevant than a loss in a B-frame since an 

I-frame has frames which depend on it, while a B-frame does 

not. Moreover, the decoder uses, as error concealment, intra-

frame prediction for I-frames and inter-frame prediction for P 

and B frames. This difference in the concealment technique 

reinforces the idea that losses should be discriminated by the 

frame type where they occur.  

 The model described and analyzed in this section, 

separates the packet losses according to the type of frame 

where they occur, giving them different weights. It tries to 

improve the Simple PLR Model by using a modified PLR 

 

                              (12) 

 

where, 

 

     
                                                  

             
   (13)

                  

being, fPL the modified PLR, MOSpl0 the MOS of the video 

sequence without any transmission losses, ωj the weight of the 

j-type frames, ∑ j Block loss the total of lost 4×4 blocks 

belonging to a j-type frame and ∑ total blocks the total 

number of 4×4 blocks in the video.  



 Figure 11 represents the resulting fPL values versus the 

MOS for the PoliMi database. Besides the exponential relation 

between fPL and MOS, Figure 11 shows a more 

monotonically relation between the two when compared with 

the MOS and PLR relation. In order to validate the model, the 

leave-one-out cross-validation method was used. Figure 12 

shows the MOS (PoliMi) versus MOSp for the Frame Type 

Model while Table 3 shows the resulting correlation metrics. 

 When compared with the Simple PLR Model, the Frame 

Type Model scored slightly worse results in all three 

correlation coefficients. A reason for this may be the fact that 

this model only considers the frame type where the losses 

occur and ignores the subjective impact cause by error 

propagation (due to frame dependency).  

 

D. Frame Type and Movement Model 

 As previously mentioned, video decoders use error 

concealment techniques to try to prevent video degradation 

caused by packet losses. Some techniques work better than 

others however, all of them can more efficiently conceal a loss 

when the video sequence doesn’t have much movement. The 

model described and analyzed in this sub-section, adds this 

information to the Frame Type Model. This is done by only 

considering a lost 4×4 block in a P or B frame as an actual 

loss, if the norm of its motion vector (MVabs) is higher than a 

threshold value. Losses occurring in an I-frame are always 

considered as actual losses.  

 The norm of a motion vector is computed by: 

 

                         (14) 

 

where MVx  and MVy  are, respectively, the x-axis component 

and the y-axis component of the motion vector. 

 Mathematically, the model is given by: 

 

                           (15) 

 

where,  

 

      
                                                    

             
   

(16) 

being fPLmv the modified PLR, MOSpl0 the MOS of the video 

sequence without any transmission losses, ωj the weight of the 

j-type frames,   j Block loss the total of actual lost 4×4 blocks 

belonging to a j-type frame and   total blocks the total 

number of 4×4 blocks in the video.  

 To choose the value of the threshold, the model was tested 

with various values and a threshold of 10 was the one 

producing the best results. It should be noted that the MVabs 

were computed using the MVs associated to the lost blocks. 

 Once again, the leave-one-out cross-validation method 

was used to validate the model.   Figure 13 shows the MOS 

(PoliMi) versus the obtained MOSp, while Table 3 shows the 

resulting correlation metrics. The results show that the Frame 

Type and Movement Model has scored acceptable values for 

the correlation coefficients. However, when compared with  

 

 
Figure 11 - MOS versus modified PLR for the PoliMi database 

 
Figure 12 - MOS versus MOSp for the PoliMi database for the Frame 

Type Model 

 Figure 13 - MOS versus MOSp for the PoliMi database using the 

Frame Type and Movement Model 

 

the Simple PLR Model, this model scored worse results, 

particularly for the RMS metric. 

 



E. Frame Type, Dependencies and Movement Model 

 This model takes into account the frame type where the 

losses occur, the additional losses as a result of the 

dependency between I, P and B-frames and the movement in 

the area where the losses occurred. Once again, a 4×4 block is 

only considered as an actual loss if its MVabs is higher than a 

threshold (which assumes that the concealment technique used 

by the decoder is able to properly conceal a loss in a low 

movement area). This is also done to the additional losses 

resulting from error propagation.  

This model is mathematically given by:  

 

                         (17) 

 

where, 

 
                                                   

                                                                (18) 

 
being fPL2 the modified PLR considering frame dependency, 

MOSpl0 the MOS of the video sequence without any 

transmission losses, ωj the weight of the j-type frames,   j 
Block loss the total of actual lost 4×4 blocks belonging to a j-

type frame,   Dep j Blk loss the total of 4×4 blocks received 

and with a MVabs higher than the threshold (but dependent on 

lost 4×4 blocks belonging to a j-type frame) and   total 
blocks the total number of 4×4 blocks in the video.  

 To choose the value of the threshold, the model was tested 

with various values and a threshold of 25 was the one 

producing the better results. It should be once again noted that 

the MVabs were calculated with the MVs of the lost blocks. 

 Once again the leave-one-out cross-validation method 

was used to validate the model. Figure 14 shows the MOS 

(PoliMi) versus the obtained MOSp while Table 3 shows the 

resulting correlation metrics. The results show that the Frame 

Type, Dependencies and Movement Model has scored 

acceptable values for the correlation coefficients. However, 

when compared with the Simple PLR Model, this model is 

worse in all the correlation metrics and it is also more 

complex. 

 

F. Statistical model 

 The modified PLR models weren’t fully able to address 

the situation they were initially trying to solve. Characteristics 

such as the frame type where the losses occur are relevant, but 

there is another characteristic that affects a video’s perceived 

quality, the packet loss pattern. By analyzing the syntax of the 

packet headers on each transmitted packet, this pattern can be 

obtained and various statistical metrics of the losses 

distribution can be computed. The ones that prove to be 

helpful in predicting a video’s perceived quality are selected to 

be part of the statistical model.  

 By analyzing the packet loss pattern various statistical 

metrics were computed and the correlation between each 

metric and the MOS was determined. To select the appropriate 

model it is necessary to determine which variables should be 

used in the model. At the end, it is expected a model with  

 
Figure 14 - MOS versus MOSp for the PoliMi database using the 

Frame Type, Dependencies and Movement Model 

enough variables so that it can perform satisfactorily; 

however, too many variables may overcomplicate the model. 

The variable selection was based on a stepwise regression 

[MoRu03]. The stepwise regression was applied (using the 

PoliMi database) and the following statistical metrics were 

kept: 

 Maximum number of lost packets on the same I-frame. 

 Average number of lost packets on frames with more than 

one loss 

 Maximum number of consecutive lost packets on the same 

P-frame 

 Average number of consecutive lost packets per I-frames 

 Average number of consecutive lost packets per P-frame, 

ignoring single losses 

 Average distance between frames with losses (considering 

single losses) 

 Modified PLR from the Frame type Model  

 

 The final statistical model is mathematically given by: 

 

                         
 
          (19) 

 

being n the number of statistical metrics (7 in this case), ωi  the 

weight of the i-th statistical metric and stati the value of the i-

th statistical metric.  

 In order to validate the model the leave-one-out cross-

validation method was once again used. In each turn, the 

weights are recalculated with the training set and the 

estimation of MOS values (MOSp) is obtained using the 

validation set. Figure 15 depicts the MOS (PoliMi) versus the 

MOSp values, while Table 3 shows the resulting correlation 

metrics. 

 

G. Model comparison 

 Figure 10 shows the MOS vs. MOSp plots for the Simple 

PLR Model. Here it can be seen that the Simple PLR Model 

has a good performance, which translates into high correlation 

coefficient values, as shown in Table 3. However, a few  



 
Figure 15 - MOS versus MOSp for the PoliMi database using the 

Statistical model 

predictions were far from the true values and that resulted in 

the development of the Modified PLR models. All the 

Modified PLR models have acceptable performances, as 

shown in Table 3, but were unable to significantly improve the 

Simple PLR Model. In fact, their RMS values are higher than 

the Simple PLR Model’s RMS values.    

 The Statistical model has a good performance (Pearson = 

0.950 (PoliMi), 0.945 (EPFL); Spearman = 0.950 (PoliMi), 

0.942 (EPFL)) when compared to the other models. For the  

Pearson and Spearman metrics, the model scored slightly 

lower than the Simple PLR Model. But, as a plus, the model 

was able to address the situations where the Simple PLR 

Model failed. This translates into better RMS values, since the 

Statistical model obtained a RMS of 0.426 (PoliMi) and 0.479 

(EPFL) while the Simple PLR Model obtained a RMS of 

0.581 (PoliMi) and 0.591 (EPFL). 

 

5. CONCLUSIONS AND FUTURE WORK 

 In this paper, bitstream-based NR quality metrics for  

H-264/AVC encoded video, when transmitted over IP 

networks, were proposed and evaluated. The results achieved 

have shown that the Statistical model lead to the best 

performance. The model uses the information taken from 

bitstream and from the packet headers. Although the Statistical 

model has shown a good performance, there is still room for 

improvements. As previously mentioned, video decoders use 

error concealment techniques to prevent video degradation 

caused by packet losses. Some techniques work better than 

others. However, all of them can more efficiently conceal a 

loss when the video sequence doesn’t have much temporal 

and/or spatial activity. Accordingly, it is expected that by 

better quantifying the video spatio-temporal activities, more 

accurate objective video quality metric could be developed at 

the expense of increased complexity. Additionally, the video 

sequences used on the subjective quality tests are quite limited 

and a new database that allows the study of the impact of the 

different network and coding parameters would be extremely 

useful.   

 

 
Table 3 - Performance of each model 

Model Model performance 

Database Pearson Spearman RMS 

 

 

Simple PLR 

Model 

PoliMi 0.959 0.956 0.581 

EPFL 0.960 0.963 0.591 

 

 

Frame Type 

Model 

PoliMi 0.941 0.935 0.699 

EPFL 0.949 0.952 0.688 

 

Frame Type 

and Movement 

Model 

Threshold 10 

PoliMi 0.958 0.956 0.637 

EPFL 0.933 0.933 0.752 

 

Frame Type, 

Dependencies 

Movement 

Model 

Threshold 25 

PoliMi 0.947 0.945 0.678 

EPFL 0.952 0.955 0.703 

 

 

Statistical 

Model 

PoliMi 0.950 0.950 0.426 

EPFL 0.945 0.942 0.479 
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