
Modern Programming for Generative Design

José António Branquinho de Oliveira Lopes

Dissertation for the degree of Master of Science in
Information Systems and Computer Engineering

Jury

President: Prof. Dr. Mário Rui Fonseca dos Santos Gomes
Adviser: Prof. Dr. António Paulo Teles de Menezes Correia Leitão
Member: Prof. Dr. João António Madeiras Pereira

June 2012

Agradecimentos

Agradeço... I thank...

Ao Instituto Superior Técnico que permitiu ao rapaz que sempre gostou de engenharia informática

e programação realizar o sonho de se tornar engenheiro informático.

À Fundação para a Ciência e a Tecnologia (FCT) pelo apoio financeiro na participação na conferência

ACADIA 11 em Banff, Canadá.

Aos meus irmãos António, Ana e Miguel que sempre me apoiaram e sempre se disponibilizaram

para me ajudar no meu trabalho.

Aos meus pais pelo apoio e paciência. Ao meu pai digo, em tom de brincadeira, que embora tenha

acabado a tese de mestrado em segundo lugar, um desafio o espera no doutoramento. À minha mãe

que a sua experiência e sabedoria sublinhe para todo o sempre esta dedicatória.

Ao Prof. Dr. António Leitão pelo seu imenso apoio nos momentos mais difı́ceis e pelo seu eficaz,

ainda que difı́cil, equilı́brio entre criticismo e elogio. Mas acima de tudo, pela sua honestidade intelec-

tual e carácter ético, e pela sua facilidade em olhar para além da linha que separa um professor de um

amigo.

Aos meus amigos Bernardo, David, Jaime, João e Miguel, pelo seu apoio nos momentos mais difı́ceis

do curso, e pela sua infindável amizade e confiança.

Gosia, for her love and support, the Poland, Hong Kong, Macau, London, and Lisbon, adventures

and scary times, the happiness of being close and the sadness of wishing to be closer, but above all for

the dream and promise of being together.

Lisboa, July 4, 2012

José Lopes

“We think in language.

And so the quality of our

thoughts and ideas can only

be as good as the quality of

our language.”

George Carlin

Resumo

Cada vez mais arquitectos transitam dos processos tradicionais e das codificações arquitecturais clássicas

para uma nova área chamada Desenho Generativo. Desenho Generativo (DG) é a aplicação de métodos

computacionais na geração de objectos arquitecturais. Nesta área, designers escrevem programas que

quando executados produzem modelos geométricos. Este movimento é claramente visı́vel no mundo

académico, com a adopção de cadeiras de programação no currı́culo de arquitectura, e no mundo da

indústria, com estúdios de arquitectura a substituir processos tradicionais por aplicações de computa-

dor. Consequentemente, arquitectos e designers precisam desesperadamente de um sistema moderno

para DG. Infelizmente, a maior parte dos sistemas actuais não é capaz de responder a esta necessidade

porque (1) ou estão desactualizados ou obsoletos; (2) ou obrigam à adopção de métodos de programação

inadequados; (3) ou não são pedagógicos. Para ultrapassar este problema, esta tese propõe um con-

junto de princı́pios de desenho que um sistema para DG deve implementar para ter sucesso, nomeada-

mente, (1) portabilidade de programas; (2) rigor matemático; e (3) forte correlação entre programas

e modelos. Porque actualmente não existem sistemas para DG que implementem estes princı́pios

com o devido suporte, um novo ambiente de programação, chamado Rosetta, é proposto. O Rosetta

suporta múltiplas Linguagens de Programação e múltiplas aplicações de Desenho Assistido por Com-

putador (DAC), fornecendo diferentes paradigmas e técnicas de programação, e ricas funcionalidades

linguı́sticas. Esta tese utiliza o Rosetta para implementar e validar os princı́pios de desenho propostos,

mostrando as vantangens deste ambiente de programação moderno comparativamente aos sistemas

mais utilizados para DG.

Abstract

Increasingly more architects are moving from the traditional architectural processes and the classic

forms of architectural coding to a modern area called Generative Design. Generative Design (GD) is

the application of computational methods to design architectural structures or objects. In this area,

designers write programs that when executed produce geometric models. This movement is clearly

visible both in the academia, with current architecture curricula adopting programming courses, and in

the industry, with architecture studios replacing traditional processes with computer applications. As

a result, architects and designers are in desperate need of a modern system for GD. Unfortunately, the

most used systems are not capable of responding to this need because either (1) they are old or obsolete,

or (2) they enforce inadequate programming methods, or (3) they are not pedagogic. In order to over-

come this problem, this thesis proposes a set of design principles that a GD system must implement in

order to be successful, namely, (1) portability of programs, (2) mathematical correctness, and (3) strong

correlation between programs and models. Because currently there are no GD systems that implement

these principles with the necessary support for GD, a new programming environment, called Rosetta,

is proposed. Rosetta supports multiple Programming Languages and multiple CAD applications, pro-

viding different programming paradigms and techniques, and rich linguistic features. This thesis uses

Rosetta to implement and validate the proposed design principles, clearly showing the advantages of

this modern programming environment over the most used systems for GD.

Palavras Chave

Keywords

Palavras Chave

Linguagens de Programação

Desenho e Implementação de Linguagens de Programação

Computação Gráfica

Desenho Generativo

Desenho Assistido por Computador

Arquitectura

Keywords

Programming Languages

Programming Language Design and Implementation

Computer Graphics

Generative Design

Computer Aided Design

Architecture

Contribuições

No âmbito desta tese de mestrado, foram realizadas cinco publicações cientı́ficas, nomeadamente, (1) o

artigo Programming Languages For Generative Design: A Comparative Study publicado na revista Interna-

tional Journal of Architectural Computing (Leitão, Santos, & Lopes, 2012b) para o qual o autor desta tese

contribuiu com as partes relativas ao Rosetta e ao CityEngine CGA; (2) o artigo Portable Generative Design

for CAD Applications publicado na conferência ACADIA 11: Integration through Computation (Lopes &

Leitão, 2011b); (3) o artigo Essential Language Features for Generative Design publicado no III Simpósio de

Informática (INForum 2011) (Lopes & Leitão, 2011a); e, finalmente, (4) o artigo Collaborative Digital Design

aceite na conferência eCAADe 2012: Digital Physicality — Physical Digitality (Leitão, Santos, & Lopes,

2012a).

Contributions

During the development of this master thesis, five scientific articles were written, namely, (1) the article

Programming Languages For Generative Design: A Comparative Study published in the journal International

Journal of Architectural Computing (Leitão et al., 2012b) for which the author of this thesis contributed

the Rosetta and CityEngine CGA sections; (2) the article Portable Generative Design for CAD Applications

published in the conference ACADIA 11: Integration through Computation (Lopes & Leitão, 2011b); (3) the

article Essential Language Features for Generative Design published in the III Simpósio de Informática (INFo-

rum 2011) (Lopes & Leitão, 2011a); and, finally, (4) the article Collaborative Digital Design accepted in the

conference eCAADe 2012: Digital Physicality — Physical Digitality (Leitão et al., 2012a).

Contents

1 Generative Design 1

1.1 Coding in Architecture . 1

1.2 Generative & Parametric Design . 1

1.3 Programming Languages & Environments . 2

2 Related Work 5

2.1 Programming Languages & Generative Design . 5

2.2 Textual Programming Languages . 5

2.2.1 AutoLISP . 5

2.2.2 RhinoScript . 6

2.2.3 GDL . 7

2.2.4 MAXScript . 7

2.2.5 PLaSM . 8

2.2.6 Processing . 9

2.2.7 Python . 9

2.2.8 SDL . 10

2.2.9 TikZ . 10

2.2.10 VisualScheme . 11

2.2.11 Textual Language Analysis . 12

2.3 Visual Programming Languages . 12

2.3.1 Grasshopper . 14

2.3.2 GenerativeComponents . 16

2.3.3 CGA . 16

2.3.4 Hypergraph . 16

2.3.5 GD System Analysis . 17

i

3 Modern Programming Environment 23

3.1 Design Principles . 23

3.2 Portability . 24

3.3 Parametric Elements . 24

3.4 Functional Operations . 25

3.5 Dimension Independent Operations . 26

3.6 Algebra of Sets . 26

3.7 Algebraic Equivalences . 28

3.8 Traceability . 28

3.9 Immediate Feedback . 29

4 Rosetta 31

4.1 Design Requirements . 31

4.2 Software Architecture . 31

4.3 Editor . 33

4.4 Backends . 34

4.4.1 AutoCAD and Rhinoceros3D . 34

4.4.2 OpenGL . 36

4.5 Frontends . 37

4.5.1 RosettaRacket . 38

4.5.2 AutoLISP and JavaScript . 38

4.6 Shapes and Operations . 38

4.7 Traceability . 39

4.8 Visual Widgets . 41

5 Programming Paradigms & Techniques 43

5.1 Multi-Paradigm Programming Language . 43

5.1.1 Example 1: Tessellators and Coordinate Generators 43

5.1.2 Example 2: Automated Rendering . 46

5.2 Programming Techniques . 48

5.2.1 Example 1: Combination of Programming Techniques 48

ii

5.2.2 Example 2: Higher-Order and Anonymous Functions 49

5.2.3 Example 3: Monads . 52

5.2.4 Example 4: Non-Deterministic Programming . 54

6 Multiple Frontends and Backends 57

6.1 Portability . 57

6.2 TikZ . 58

6.3 RosettaFlow . 58

7 Practical Experiments 61

7.1 TPLs vs. VPLs . 61

7.2 Program Conversion and Analysis . 64

8 Conclusions 69

8.1 Conclusions . 69

8.2 Current and Future Work . 71

A RosettaLang 79

iii

iv

List of Figures

2.1 Grasshopper program for computing the coordinates of a conical spiral 12

2.2 Grasshopper program fragment with tangled connectors and wireless endpoints 15

2.3 CGA editor showing textual and visual representations of a shape grammar 17

3.1 Symmetric difference of cylinders . 25

3.2 Morphing a cylinder into a disk, a line, and a point . 27

3.3 Hollow cylinder subtracted by a sphere . 28

4.1 Rosetta with a JavaScript program and corresponding geometry in AutoCAD 32

4.2 DrRacket window . 33

4.3 RosettaRacket program and corresponding geometry in AutoCAD 34

4.4 RosettaRacket program and corresponding geometry in Rhinoceros3D 35

4.5 RosettaRacket program and corresponding geometry in OpenGL 35

4.6 Hollow sphere pierced by several cones . 36

4.7 Orthogonal cones . 37

4.8 Möbius truss . 37

4.9 Scriptecture . 37

4.10 Symmetric difference: definition (on the left) and implementation (on the right) 39

4.11 Dimension independent symmetric difference . 40

4.12 Relating program expressions to the generated shapes. The highlighted cylinders (on the

left, in yellow) are generated by the highlighted program text (on the right, in blue) 40

4.13 Relating shapes to the program expressions that generated them. The highlighted cylin-

ders (on the left, in yellow) are generated by the highlighted program flow (on the right,

using red arrows) . 41

4.14 Using sliders and the OpenGL backend to interactively generate different models 42

5.1 Space frames and the Wimbledon Stadium roof . 44

v

5.2 Arc surface space frame . 45

5.3 Möbius space frame . 46

5.4 Sphere made of cones . 49

5.5 Sphere pierced by a set of cones . 49

5.6 Balcony with a saw teeth variation . 51

5.7 Balcony with an oscillating variation . 52

5.8 Balcony with a sinusoidal variation . 52

5.9 Giant panda Lego example . 53

5.10 Tubes in sphere . 54

5.11 Blocks in sphere . 55

5.12 Tubes in cube . 55

5.13 Tubes in cylinder . 55

6.1 TikZ example . 58

6.2 Changing sliders in RosettaFlow causes the geometric model to update in real-time 60

7.1 First task of the experiment . 61

7.2 Second task of the experiment . 61

7.3 Grasshopper solutions for first (on the left) and second (on the right) tasks, with changes

highlighted in orange . 62

7.4 VisualScheme solution for the first task of the experiment 63

7.5 VisualScheme modifications for the second task of the experiment 63

7.6 Turning Torso with different parametrizations . 65

7.7 Catalog of Rosetta programs . 66

7.8 Catalog of Rosetta programs (continuation) . 67

A RosettaLang 79

A.1 RosettaLang catalog . 79

A.2 RosettaLang documentation . 80

vi

List of Tables

2.1 Distinguishing features of GD languages . 13

2.2 Survey legend . 17

2.3 Survey of shapes . 18

2.4 Survey of operations and other GD objects . 19

4.1 Time (in milliseconds) needed to update the generated design 37

vii

viii

Nomenclature

API Application Programming Interface. The Application Programming Interface is the set of vari-

ables, functions, methods, and types, exported by a system which clients of that system can use

to interface with it.

CAD Computer Aided Design. Computer Aided Design is the use of software to create architectural

models.

GD Generative Design. Generative Design is a modern form of Computer Aided Design in which

architectural models are generated using algorithms.

GUI Graphical User Interface. A Graphical User Interface is the set of windows and dialogs of an

application that allow a user to interact with it.

JIT Just In Time. Just In Time compiler is a programming language compiler that optimizes code on

demand at runtime.

PL Programming Language.

TPL Textual Programming Language. A Textual Programming Language is a programming language

in which programs are a linear sequence of characters.

VPL Visual Programming Language. A Visual Programming Language is a programming language

in which programs are usually a bidimensional representation of iconic elements that can be

interactively manipulated according to some spatial grammar.

ix

1Generative Design

1.1 Coding in Architecture

Throughout architecture history, coding has been a means of expressing rules, constraints, and systems,

that are relevant for the architectural design process. Among other meanings (e.g., statutory, represen-

tation, and production codes), coding in architectural design can be understood as the representation of

algorithmic processes that express architectural concepts or solve architectural problems. Even before

the invention of digital computers, algorithms were applied and incorporated in the design process, as

documented in the De re aedificatoria (Krüger, Duarte, & Coutinho, 2011).

Computers popularized and extended the notion of coding in architecture (Rocker, 2006) by sim-

plifying the implementation and computation of algorithmic processes. As a result, increasingly more

architects and designers are aware of digital applications and programming techniques, and are adopt-

ing these methods as generative tools for the derivation of form (Kolarevic, 2000). Even though the

improvements of direct manipulation in CAD applications led many to believe that programming was

unnecessary, the work of Maeda shows the exact opposite (Maeda, 1996).

Computational design methods allow automation of the design process and extension of the stan-

dard features of CAD applications (Killian, 2006), thus transcending their limitations (Terzidis, 2003).

As a result, CAD software shifts from a representation tool to a medium for algorithmic computation,

from which architecture can emerge.

1.2 Generative & Parametric Design

The application of computational methods to design architectural structures or objects is called Gener-

ative Design (Krause, 2003). In other words, in Generative Design (GD), designers write programs that

when executed produce geometric models.

One of the problems of GD is that, in some cases, programs have little correlation between inputs

and outputs. As a result, it is difficult, and in some cases impossible, to predict which inputs produce

the desired outputs. This can be overcome by introducing constraints and parameters in GD programs,

resulting in a constrained form of GD called parametric design (Shea, Aish, & Gourtovaia, 2005). Hav-

ing stronger correlation between program inputs and outputs means that designers can search for a

particular output simply by adjusting the input parameters, without modifying the program.

2 CHAPTER 1. GENERATIVE DESIGN

1.3 Programming Languages & Environments

To apply computational methods, one must first translate the thought process into a computer program

by means of a Programming Language. A Programming Language (PL) is composed of (1) primitives,

(2) combination mechanisms, and (3) abstraction mechanisms. The most used PLs, such as, C, C++, Java,

and C#, are general purpose languages: they provide few predefined abstractions that are not specific

to any particular domain. On the other hand, domain-specific languages (Hudak, 1998; Deursen, Klint,

& Visser, 2000) provide several primitives and abstractions tailored to a given domain, which together

with adequate combination mechanisms can dramatically simplify the programming effort.

Unfortunately, several of the most used languages for GD (GD languages), such as, AutoLISP, Rhino-

Script, and GDL, provide little domain-specific features and make it difficult to define them. As a result,

these PLs are difficult to use for GD. Examples of domain-specific features for GD include (1) primitives,

such as, points, curves, surfaces, and solids; and (2) abstractions, such as, coordinate, matrix, and coor-

dinate system. PLs that provide domain-specific features can more closely match the human thinking

process and, therefore, are easier to use. Examples of such PLs include Grasshopper and VisualScheme.

Nevertheless, there are other contributing factors, such as, the learning curve and the required amount

of background knowledge, that affect the success of a given PL within the GD community. And, ulti-

mately, it is important to remember that designers do not have the same programming skills as software

engineers, therefore, GD languages must be simple to learn and use.

Programming environments are equally important because they provide the tools necessary for

developing programs, namely, editors, compilers, debuggers, and interpreters. Without the proper sup-

port from the programming environment, a good PL is still difficult to use. For example, an important

feature of the AutoLISP and Grasshopper programming environments is the good integration with their

host CAD application, namely, AutoCAD and Rhinoceros3D, respectively. This integration makes it possi-

ble to complement the functionality of the programming environment with that of the CAD application.

Unfortunately, not all GD languages follow this approach.

This thesis proposes a set of principles, called design principles, that are essential for a modern GD

system. Because currently there are no GD systems that implement the proposed principles with the

necessary support for GD, a new system, called Rosetta, is also proposed. Rosetta is a modern program-

ming environment for GD that implements the proposed principles, clearly showing the advantages of

this environment over the most used GD systems.

In order to design a successful programming environment for GD, it is first necessary to understand

the features and limitations of current systems. Some of them have already been discussed, such as,

automation and domain-specific features. The next section presents a survey of the most used GD

systems, detailing the most relevant features and problems. The results of this survey were used as a

guide for defining the requirements for a modern programming environment. In order to evaluate these

1.3. PROGRAMMING LANGUAGES & ENVIRONMENTS 3

requirements, they were implemented in Rosetta, the programming environment proposed in this thesis.

After the survey, Rosetta is explained, including its software components, features, and advantages

over current GD systems. Finally, Rosetta is evaluated resorting to several GD programs, new software

components, and two practical experiments.

4 CHAPTER 1. GENERATIVE DESIGN

2Related Work

2.1 Programming Languages & Generative Design

In order to design a successful programming environment for Generative Design (GD), it is first neces-

sary to understand what kind of GD systems exist, including Computer Aided Design (CAD) applica-

tions, 3D modeling applications, GD languages, renderers, and geometric libraries. For example, CAD

applications, such as AutoCAD, have a very good knowledge of the GD domain in terms of geometric

shapes and operations, such as, line, sphere, extrusion, and union. Therefore, studying the features and

limitations of these applications and their programming capabilities is a necessary starting point for

designing a new programming environment. To this end, a study was devised to analyze both Textual

PLs, such as, RhinoScript and PLaSM, and Visual PLs, such as, Grasshopper and GenerativeComponents.

This section presents the results of this study.

2.2 Textual Programming Languages

In a Textual Programming Language (TPL), a program is a one-dimensional representation consisting

of a linear sequence of characters. This section presents several TPLs for GD. Some of these PLs, such as

AutoLISP for AutoCAD, are integrated in GD systems, while others, such as, PLaSM, are standalone PLs.

2.2.1 AutoLISP

Similarly to other CAD applications, AutoCAD provides a programming environment, called VisualLISP,

which gives designers scripting capabilities to extend the functionality of AutoCAD and create geometric

models procedurally. VisualLISP has a text editor, an interpreter, a debugger, and the AutoLISP PL, a very

old dialect of LISP, which is a family of PLs notably known for the fully parenthesized syntax. Despite

being one of the most used GD languages, AutoLISP is obsolete and has several problems, most of which

have a historical reason.

AutoLISP uses dynamic scope, which is a source of many problems, particularly when combined

with higher-order functions (Cabecinhas, 2010). Examples of these problems include the downward and

upward funarg problems (Moses, 1970).

There is little support for data structures apart from lists. Therefore, design concepts, such as,

6 CHAPTER 2. RELATED WORK

coordinates and vectors, are implemented with lists and, as a result, AutoLISP programs suffer from

limited abstraction and performance problems.

Symbols are also problematic because while statically typed languages, such as, C and Java, do not

even compile when an undeclared symbol is used, AutoLISP not only accepts them but the computa-

tion proceeds normally without issuing any dynamic error. As a result, even small typos are accepted,

leading to errors that are very difficult to detect.

Other errors that are equally difficult to detect are integer overflow/underflow because arithmetic

operators fail silently. This a problem in AutoLISP but not in the majority of LISP dialects. For example,

Common LISP, another LISP dialect, overcomes this problem with arbitrary-size integers.

AutoLISP communicates with AutoCAD via three different mechanisms, namely, the command prim-

itive, entity manipulation, and the Component Object Model (COM).

The command primitive is a function that receives a variable number of arguments that are injected

in AutoCAD as if the user had typed them at the AutoCAD prompt. This function has a significant

performance penalty and its semantics is too general, making it difficult to use.

Entities are manipulated via entmake, entget, entmod, entnext, and entlast, which create

geometric objects and access their internal structure. It is difficult to use these functions because users

must learn and remember a large set of numerical codes or constantly read technical documentation.

Moreover, in some cases, it is necessary to combine these functions with the command primitive. A typi-

cal scenario consists of creating shapes using command and obtaining references to them using entlast

and entnext, and then reading and modifying their properties using entget and entmod.

Finally, COM is a programming technology that allows programs to be packaged as software com-

ponents and easily integrated into applications written in other PLs. With COM, it is possible to write

applications external to AutoCAD that interact with this application by remote procedure calls.

2.2.2 RhinoScript

Rhinoceros3D is one of the most used CAD applications. It provides RhinoScript (Rutten, 2007), a variant

of VBScript for GD with domain-specific features. Similarly to Fortran and Pascal, RhinoScript follows the

old tradition of having different declaration and call syntax for functions and subroutines. This distinc-

tion is confusing and industry-wide languages, such as, C and Java, prove it is unnecessary. Moreover,

by default, function parameters are passed by value. Therefore, arrays are automatically copied when

passed to functions. Because this has a severe performance penalty, users must learn the difficult con-

cepts of passing parameters by value and by reference, and declarations become more verbose.

Arrays are the main data structure and they are used to implement design concepts, such as, co-

ordinates and vectors. Statically-sized arrays are initialized with the upper bound index, instead of

2.2. TEXTUAL PROGRAMMING LANGUAGES 7

the array size, and dynamically-sized arrays require an extra re-dimension operation. Arrays can be

multidimensional or nested, and array operations must be called accordingly.

2.2.3 GDL

In ArchiCAD, another popular CAD application, geometric objects, called library parts, are organized in

a hierarchy with property inheritance, similar to that of object-oriented programming. Each library part

contains a set of parameters and a GDL script.

GDL (Watson, 2009) is a descendant of BASIC. Contrary to its siblings, such as, VisualBasic and

VisualBasic .NET, GDL did not evolve, providing very little abstraction mechanisms, namely, variables,

subroutines, and macros. Subroutines cannot define local variables, receive parameters, or return values,

therefore, global variables are used instead. Because GDL provides insufficient abstraction mechanisms,

and commands are mainly low-level, there is a significant effort spent in writing scripts, which quickly

become verbose and difficult to read.

The parameters of library parts can be modified through a properties window or through hotspots,

which are widgets that appear in the ArchiCAD window and can be interactively selected and dragged.

Because the parameters are defined outside the GDL script, it is possible to experiment with different

values without changing the program.

The GDL script associated with a library part contains a sequence of commands that describe ge-

ometric shapes. Similarly to OpenGL, transformations are implemented by a matrix stack. As a result,

transformations are accumulated on the stack, such that, when creating a new shape, the position, ori-

entation, and scaling, of that shape are taken from the stack. However, there is inconsistency between

2D and 3D shapes because for 2D shapes the position is specified by a parameter.

2.2.4 MAXScript

MAXScript (Autodesk, 2006) is an imperative, object-oriented PL that combines the simple syntax of

VisualBasic and C with the powerful semantics of LISP, being both easy to use and rich in abstraction

mechanisms. Because it was designed to work closely with the scene graph of 3ds Max, it gives con-

trol over modeling, animation, materials, and rendering, and multiple objects/properties are globally

accessible using wildcards.

The object-oriented system implements inheritance and polymorphism, and methods include (1) sin-

gle dispatch, (2) mapped methods (i.e., implicit foreach), and (3) parameters by value and by reference.

Parameters are (1) positional: mandatory and imposing a position to formal and actual arguments; or

(2) keyword: optional with the formal argument identifier preceding the actual argument.

8 CHAPTER 2. RELATED WORK

Additional features include (1) exception handling similar to Java; (2) libraries for 3D vector, ma-

trix, and quaternion, which combine powerful computation with ease of use; (3) array and bit-array

literal initializers; and (4) default initialization value for variables, making errors easier to detect. How-

ever, code blocks are parenthesis delimited, instead of bracket delimited, resulting in no visual clue to

distinguish between code blocks and expressions.

Moreover, MAXScript is an interpreted PL, therefore, programs might execute slowly. In this case,

users are officially advised to use C++ instead. However, this language is impractical for designers

because of its difficult syntax and semantics.

2.2.5 PLaSM

PLaSM (Paoluzzi & Sansoni, 1992), the Programming LAnguage for Symbols Modeling, is a functional

PL that descends from the Function Level (FL) PL (Backus, Williams, Wimmers, Lucas, & Aiken, 1989;

Aiken, Williams, & Wimmers, 1993), with differences in syntax, the use of multiple lists of formal argu-

ments and longer lists of actual arguments than the ones declared (Cabecinhas, 2010).

What makes PLaSM different from traditional PLs, such as, C and Java, is the ability to operate at

the function level: functions can be combined to create other functions. For example, compact expres-

sions can be created using sophisticated operators, such as, apply-in-composition and apply-in-sequence,

and extensive mathematical notation. Despite this expressiveness, users with little programming expe-

rience will find it difficult to read programs and master such advanced programming concepts. Func-

tions can also be higher-order, overloaded, or partially applied (curried), but free scope nesting is not

allowed (Cabecinhas, 2010).

PLaSM has a small set of primitives but powerful, dimension-independent operators. Together,

they form a polyhedral algebra embedded in the language. For example, (1) CUBOID creates hyper-

parallelepipeds of any dimension, such as, line segment, rectangle, cube, and 4D hyper-parallelepiped;

(2) SIMPLEX creates shapes from the smallest convex hull of a set of points, such as, point, line segment,

triangle, and tetrahedron; (3) CYLINDER creates a 3D cylinder of specified radius, height, and number

of faces; (4) MKPOL creates polyhedral complexes, namely, lines, polygons, and solids, using vertices,

cells, and polyhedra, where vertices are points in the same space, cells are convex hulls of vertices, and

polyhedra are unions of cells; (5) JOIN returns the convex hull of a sequence of polyhedral complexes

in the same space; (6) EMBED inserts polyhedra complexes in an Euclidean space of higher dimension;

(7) STRUCT creates hierarchical assemblies by composing polyhedral complexes, thus introducing lo-

cal coordinate systems such that geometric transformations are propagated along the hierarchy; and

(8) ALIGN, TOP, LEFT, etc, are used for relative positioning. Another interesting operator is MAP, which

applies a function to the vertices of a polyhedron. With this operator, it is possible to create parametric

shapes, such as, splines and surfaces.

2.2. TEXTUAL PROGRAMMING LANGUAGES 9

In most cases, shapes are represented in parametric form, which is exact. However, it is not always

possible to use this representation. For example, Boolean operations between curved shapes compute

a faceted approximation of the actual result. Nevertheless, this problem is not specific to PLaSM: most

CAD applications, such as, AutoCAD and Rhinoceros3D, also suffer from this limitation.

2.2.6 Processing

Processing (Reas & Fry, 2010) is a PL and an interactive programming environment specialized for the

production of images and animations. Initially designed for sketching, it has grown to become a profes-

sional tool. The PL is a simplified version of Java and is capable of generating applets for Java-enabled

browsers or standalone applications. The standard library resembles OpenGL with a higher-level of

abstraction and an event-based programming model for handling, for example, user input.

The fact that Processing was conceived for computer graphics, and not GD, reflects on the very

restricted set of shapes that are provided, including only (1) 2D shapes, namely, arcs, ellipses, lines,

points, rectangles, and triangles; (2) curves, namely, beziers, and splines; and (3) 3D shapes, namely,

boxes and spheres. This limited set prevents from developing minimally sophisticated GD programs

because not even the most basic operations, such as intersection, subtraction, and union, are provided.

Moreover, Processing, and PLaSM, do not integrate with CAD applications.

2.2.7 Python

Python (Rossum & Drake, 2003) is a general purpose PL, not a GD language. Therefore, this section

focuses on the GD domain-specific features provided by Blender for Python scripts. Python is compared

to other PLs, namely, Tcl (desktop applications), Perl (systems), Ruby and Java (web-based applications),

and Scheme (teaching). The key features of Python include (1) clear syntax, strong introspection capabil-

ities, and several standard and community developed libraries; (2) easy integration with applications

written in other PLs to provide built-in facilities, such as, interpreters; and (3) language extensibility

through C and C++ (Python), Java (Jython), or .NET (Iron Python), depending on the implementation.

Blender uses a scene graph (Cunningham & Bailey, 2001) to organize the scene objects. A scene

graph is an abstract data type usually implemented as a tree or a directed acyclic graph (DAG). Scripts

can access the scene graph, for example, to add objects, such as, shapes, cameras, and constraints, and

apply transformations, such as, translation, rotation, and scaling. Blender exposes a number of Python

types in addition to the scene graph, such as, group, bone, and mesh. With these facilities, scripts can

create geometric scenes procedurally.

The mesh type is a sequence of interconnected points that represent a polygonal mesh. It is com-

posed of vertices, edges, and faces, where (1) vertices are Cartesian tuples; (2) edges are line segments

between vertices; and (3) faces are sets of edges, in most cases, triangles. While flat surfaces are easily

10 CHAPTER 2. RELATED WORK

represented by meshes, curved surfaces are usually a faceted approximation where the number of sur-

faces determines the approximation degree. Meshes can also be created using prefabricated primitives,

such as, sphere, cone, cube, and cylinder, and manipulated by a set of operators, such as, extrusion,

screw, spin, split, and subdivide.

Scripts can also define drawing algorithms using the Python bindings for OpenGL. The difference

between a polygonal mesh and a drawing algorithm is that the former describes the geometry to be

drawn by a generic algorithm and the latter makes it possible to render objects that cannot be (easily)

described by polygonal meshes, for example, infinite surfaces.

2.2.8 SDL

POV-Ray1 is an open source ray-tracer that is programmable via SDL. SDL programs are divided in

a declarative description of the scene to be created and an imperative part for programming the ray-

tracer. The declarative part is clearer and more concise than the imperative one, but it requires prior

knowledge of the scene, which is not always the case. Macros are the main abstraction mechanism

and require special care. Functions are also provided but encapsulate only mathematical expressions.

Moreover, macros and functions combine poorly due to several language restrictions.

Being a ray-tracer, POV-Ray can provide geometric shapes that most CAD applications cannot,

for example, (1) infinite solid primitives, such as, polynomial surfaces, paraboloids, and hyperboloids,

described by nth order polynomials; and (2) isosurface and parametric objects described by implicit

functions and parametric equations, respectively.

Operations are very limited: there is little more than affine and Constructive Solid Geometry (CSG).

For example, it is not possible to perform (1) lofts, sweeps, and extrusions; and (2) shape introspection,

namely, solid, face, and edge explosion. Nevertheless, POV-Ray is mostly concerned with ray-tracing,

therefore, sophisticated geometry is imported from modeling applications (Cabecinhas, 2010). Finally,

ray-tracers are, in most cases, over computationally intensive for interactive parameter experimentation,

which is essential for GD.

2.2.9 TikZ

TikZ is a 2D graphics LATEX package for drawing and embedding pictures in documents. TikZ programs

are a sequence of commands that draw shapes, such as, lines, curves, rectangles, circles, and nodes, with

variety of options for changing their behavior.

TikZ pragmatics can be metaphorically described as a user controlled pen that walks within the

picture, drawing and placing shapes. The pen trajectory is described by a path, which is composed

1http://www.povray.org/

http://www.povray.org/

2.2. TEXTUAL PROGRAMMING LANGUAGES 11

of (1) coordinates, used to specify relevant points in the picture, for example, the center of a circle;

(2) path extension operations, which make use of brief syntax to connect coordinates, for example,

straight (--), perpendicular (-|, |-) or curve lines (.., arc); and (3) path construction operations,

which place shapes, such as, circles and rectangles.

Another essential concept is the node, which represents a small part of a picture. It can be used for

placing text and drawing shapes. More importantly, nodes are used for establishing relative positioning

using an anchoring system that gives a fine control over placement. The anchoring system combines

cardinal directions with bounding rectangles. For example, the north-east anchor of an object is the

top-right corner of its bounding rectangle. When creating a node at a particular coordinate, TikZ can be

asked to place that node shifted around in such a way that a certain anchor is at a specified coordinate.

There are different options to change the behavior of a command. For example, parameters can

change position, rotation, and shading. For some values, such as distance, units of measurement, for

example, centimeter (cm) and millimeter (mm), can also be used.

Several visual options, such as shading, can be grouped in a named structure, called style, which

can be used on different commands. A style can also be parametrized, such that, even after its definition,

parameters can still be added or overridden. There are several predefined styles, such as decorations,

which can be used to customize the appearance without changing the program, and there are also built-

in templates for creating automata, Petri nets, calendars, mind-maps, and trees.

For programs that perform complex geometric calculations, TikZ exposes its internal math engine,

which includes, for example, functions for calculating intersections of straight and/or curved lines.

TikZ introduces scopes and the foreach statement, in addition to the control structures of LATEX.

Transformations and options have a local effect, and are automatically created according to paired brack-

ets, although manual control is also possible.

2.2.10 VisualScheme

VisualScheme (Leitão, Cabecinhas, & Martins, 2010) is programming environment for GD. It inherits the

pedagogic qualities of the Scheme PL (Chen, 1992; Berman, 1994; Felleisen, Findler, Flatt, & Krishna-

murthi, 2004a, 2004b; Marceau, Fisler, & Krishnamurthi, 2011) to provide a platform that can be used to

teach programming to architecture students, who do not have a background in Computer Science.

VisualScheme integrates with CAD applications and provides several features for GD. For example,

it implements different coordinate systems, namely, Cartesian, polar, cylindrical, and spherical. The use

of an adequate coordinate system reduces the need for trigonometric calculations. It includes also so-

phisticated abstraction mechanisms, recursion, higher-order and anonymous functions, visual widgets,

and the ability to use different programming paradigms. These features simplify the programming task

and the resulting programs are more concise and elegant.

12 CHAPTER 2. RELATED WORK

Despite the identified advantages, there are three important drawbacks, namely, (1) users have to

spend time learning a TPL, namely Scheme, that is relatively unknown in the GD community; (2) it be-

comes difficult to share and reuse programs written in different languages; and (3) similarly to most GD

languages, VisualScheme forces the use of a particular CAD package, contributing to a known problem

of current CAAD-education (Penttilä, 2003): students become experts in a single CAD application.

2.2.11 Textual Language Analysis

Table 2.1 summarizes the distinguishing features of the TPLs discussed in this section. Several features

were excluded from this analysis because they were either identical in all TPLs or less relevant for the

comparison, namely, (1) error systems based on numerical codes and exceptions; (2) memory manage-

ment; (3) integer, float, and string data types; (4) native or C-like Boolean expressions; (5) arithmetic,

logical, and relational operators; (6) global and local variables; (7) point, vector, plane, curve, surface,

mesh, and solid data structures; and (8) maps, trees, and arbitrary precision numbers. From the obser-

vation of the table, we can conclude that most TPLs are imperative, statement based, lexically scoped,

dynamically typed, and function based with higher-order functions. Iteration is performed mostly with

loops and array indexes.

2.3 Visual Programming Languages

In addition to TPLs, there are Visual Programming Languages (VPLs). A VPL program is a bi-dimensional

representation consisting of iconic components that can be interactively manipulated by the user accord-

ing to some spatial grammar (Myers, 1990). In general, these components are boxes, which represent

shapes and operations, and connectors linking these boxes, which establish dataflow between compo-

nents, such that the output of a component is the input of another. As an example, Figure 2.1 shows a

Grasshopper program that computes the coordinates of a conical spiral. Grasshopper is one of the most

popular VPLs for GD.

Figure 2.1: Grasshopper program for computing the coordinates of a conical spiral

Textual and visual PLs have significant differences in the learning curve. While VPLs have shorter

2.3. VISUAL PROGRAMMING LANGUAGES 13

Language A
ut

oL
IS

P

R
hi

no
Sc

ri
pt

G
D

L

M
A

X
Sc

ri
pt

SD
L

PL
aS

M

Pr
oc

es
si

ng

Py
th

on

Ti
kZ

V
is

ua
lS

ch
em

e

Paradigm
Functional ! ! ! !

Imperative ! ! ! ! ! ! ! ! !

Object based !

Object oriented ! ! ! !

Declarative !

Syntax
Expression ! ! ! ! ! ! ! ! ! !

Statement % ! ! ! ! % ! ! ! %

Scope
Lexical ! ! ! ! ! ! ! !

Dynamic ! ! !

Type checking
Static !

Dynamic ! ! ! ! ! ! ! ! !

Eval ! ! % ! ! ! % ! ! !

Data structures
Lists ! % % % % ! ! ! % !

Arrays % ! ! ! ! ! ! ! % !

Tuples % % % % % ! % ! % !

Control structures
Case % ! % ! ! % ! % ! !

Repeat ! % ! % % % % % % %

For % ! ! ! ! % ! ! ! !

While ! ! ! ! ! % ! ! % %

Do while % ! ! ! % % % % % %

For-each ! ! % % % % % ! ! !

Return % ! ! ! % % ! ! % %

Break % ! % ! % % ! ! % %

Continue % % % ! % % ! ! % %

Iterators
Internal ! ! % ! % % ! ! ! !

External % % % % % % ! ! % %

Subroutine
Macro % % % % ! % % % ! !

Function ! ! % ! ! ! % ! % !

Procedure % ! ! % % % % % % %

Higher-order ! % % ! ! ! % ! % !

Table 2.1: Distinguishing features of GD languages

14 CHAPTER 2. RELATED WORK

learning curves, making them more adequate for novice programmers, large and complex VPL pro-

grams require more time to understand, maintain, and adapt to changing requirements, than TPL pro-

grams (Leitão & Santos, 2011). As a result, the time invested in a TPL is quickly recovered once the

complexity of the design task becomes sufficiently large.

Grasshopper is one of the most popular VPLs for GD, therefore, it will be used as representative

of VPLs to exemplify several problems of the visual approach. Grasshopper is based on the dataflow

paradigm, which is too restrictive, making it difficult to express some control structures, such as, itera-

tion or recursion. In Grasshopper, this is not a serious problem because most components implicitly map

operations over sequences of values, which is enough in some cases. Moreover, Grasshopper implements

a large set of primitive components, such as, ranges, mappings, and geometric operations, some of them

with a high degree of sophistication, allowing an effective reduction in the implementation effort.

However, it has been repeatedly reported (Chok, 2011; Miller, 2011; Stouffs & Chang, 2010) that

it might be difficult or impossible to describe an algorithm without resorting to custom components.

Grasshopper provides custom components for advanced tasks, which are textually scripted by the user,

thus contradicting the visual nature of the language.

Moreover, with increasingly large and complex programs, connectors become tangled, making pro-

grams very hard to read and maintain. In this case, users are advised to replace connectors with wire-

less endpoints, which do not have a visible line (Figure 2.2). Nevertheless, these endpoints make the

situation considerably worse because users must inspect components one by one to understand which

endpoints are paired. In general, the readability and maintainability problems arise from the visual na-

ture of these languages. But there are relevant features particular to each VPL that were not discussed

so far. The rest of this section details Grasshopper, GenerativeComponents, CGA, and Hypergraph.

2.3.1 Grasshopper

Grasshopper provides interactive input widgets, which are a better alternative to number and string

literals, and lists of values, which are the only options in most PLs. For example, numerical inputs can

be connected to sliders. When a slider is dragged, the program is recomputed with the new values. For

small programs, it is possible to adjust the sliders interactively and see the model regenerate in real-time.

However, for large and complex programs, the time needed to propagate the values is unreasonable. As

a result, there is a severe break in interactivity and even the most patient designer will avoid this feature.

Another form of feedback occurs when a component is added to a program, causing the Rhinoceros3D

model to be immediately updated. Moreover, when the user selects a component, the geometry gener-

ated by that component is highlighted in that model. Even more helpful would be the converse associa-

tion but, unfortunately, this is not supported: it is not possible to select a shape in the model to identify

the corresponding program component.

2.3. VISUAL PROGRAMMING LANGUAGES 15

Figure 2.2: Grasshopper program fragment with tangled connectors and wireless endpoints

Most operations handle transparently a single value, or a list of values, as parameter. For example,

a list of spheres connected to the translation operation implicitly translates all the spheres in the list.

Even though this behavior is very useful, it can introduce difficult semantics. For example, the addition

operation applied to lists of different lengths has several possible outcomes, namely, (1) trim the result

according to the shortest list; (2) perform addition after padding the shorter lists according to the longest

list; and (3) perform addition on the cross product of the lists. Data matching strategies are used to

specify how the operation should handle each of these cases. However, these strategies are confusing

and users must inspect operations one by one to understand the meaning of the program.

Due to the poor abstraction mechanisms, users rely extensively on copy/paste, which easily propa-

gates errors and makes programs longer than they should be. There is a special component, the cluster,

which allows users to treat a subset of components, including other clusters, as a single component. This

can have a significant impact in the clarity of programs and it improves the reuse of its parts. Unfortu-

nately, it still requires copy/paste and does not really represent an abstraction: each cluster is independent

from its copies, thus preventing centralized modifications.

16 CHAPTER 2. RELATED WORK

2.3.2 GenerativeComponents

GenerativeComponents (Aish & Woodbury, 2005) is a parametric and associative GD system used to gen-

erate geometry and implement several processes related to architecture and civil engineering, such as,

measurement, evaluation, configuration, and fabrication. It provides three forms of user interaction,

namely, (1) direct manipulation of geometry; (2) definition of relationships among geometric elements;

and (3) textually scripted algorithms. These forms of interaction correspond to different, but synchro-

nized, views of a single model (Menges, 2006).

The recommended learning path for GenerativeComponents consists of (1) designing using the in-

teractive Graphical User Interface (GUI); (2) writing simple scripts using the formula bar and GCScript;

and (3) developing complex programs through C#, a TPL mainly used for large-scale software devel-

opment. This shows that, similarly to Grasshopper, for complex design tasks, users need to become

proficient in a TPL. However, it is generally admitted that this need comes later in Grasshopper than in

GenerativeComponents, which might explain why the former is considered easier to learn and use.

2.3.3 CGA

CityEngine (Müller, Wonka, Haegler, Ulmer, & Gool, 2006) is a modeling application for buildings and

cities. It features a Python scripting interface and a dedicated PL for procedural modeling: CGA (Com-

puter Graphics Architecture). This PL allows the definition of shape grammars using derivation rules,

parameters, and attributes, and it can be considered a VPL/TPL hybrid because the built-in editor sup-

ports both textual and visual interaction (Figure 2.3).

Similarly to Grasshopper, the visual representation used in CGA results in readability and maintain-

ability problems for large and complex programs. Moreover, the single paradigm used in CGA makes

the language too restrictive for GD in general.

2.3.4 Hypergraph

Maya is a popular modeling application with a built-in scripting editor. Textual scripts can be written

in MEL and Python. When users interact with Maya, via a script or the GUI, an interactions history is

created, which can then be visualized and manipulated via visual editors such as Outliner and Hyper-

graph (Wilkins, Kazmier, & Osterburg, 2005). Hypergraph provides two editable views: (1) the hierarchy

graph displays scene items according to their parent-child relationships; and (2) the dependency graph

represents model construction history. However, unlike GenerativeComponents and CGA, the relation-

ship between the scripts and the editors is unidirectional, meaning that changes in these editors are

not reflected on the scripts. Despite the visual editing features of Hypergraph, a TPL is still required for

creating more complex algorithms.

2.3. VISUAL PROGRAMMING LANGUAGES 17

Figure 2.3: CGA editor showing textual and visual representations of a shape grammar

2.3.5 GD System Analysis

This section presents a survey on the domain-specific features of the most used GD systems, namely,

AutoCAD, Blender, 3ds Max, Maya, Rhinoceros3D, TikZ, PLaSM, and ArchiCAD. This survey is important

to decide what primitives are relevant for a modern programming environment. The survey focused on

(1) geometric shapes, such as, arc, rectangle, box, and sphere; (2) parametric curves and surfaces, such

as, splines and NURBS; (3) geometric operations, such as, union, intersection, sweep, and extrusion; and

(4) other architectural and computer graphics objects, such as, particle systems, doors, and windows.

Note that operations focused on CSG, therefore, operations that deform shapes, such as, bend, bevel,

cross section, and skew, were not considered. The results of the survey are in Table 2.3 and Table 2.4.

These tables use several symbols whose meaning is in Table 2.2.

Symbol Description
blank No match
X Match
≈ Partial match
∼ Possible match
footnote Match and footnote
≈footnote Partial match and footnote

Table 2.2: Survey legend

A description of the notes used in the survey tables follows:

1 All primitives are either meshes, or metaobjects (implicitly defined), or NURBS

18 CHAPTER 2. RELATED WORK

A
ut

oC
A

D

Bl
en

de
r

[1
]

3d
s

M
ax

M
ay

a

R
hi

no
ce

ro
s3

D

Ti
kZ

PL
aS

M

G
D

L

2D shapes
Arc X 17 X X X X
Elliptical arc X X X
Circle X 22 17 10 X X X
Donut X 17
Ellipse X 17 X X
Helix 2D [6] X 25 17 X 35
Line segment X 17 ∼ X X 52,53 X
NGon X X 17 ∼ X X
NURBS X X X X X
Rectangle X X 17 X X X 52 X
Spline X X ∼ X
Star 17 42
Text X X 17 X X 50 X

3D shapes
Box X X X X X 52 X
Cone X X X X X
Cut cone X 38 X
Cylinder X X X X X X X
Elliptical cone X X
Gengon [23] X
Helix 3D X 7
Mesh X X X X X X
Paraboloid [37] ≈24 ≈21 X X
Pipe [5] X 13 X 13
Platonic solids 14 8 ≈43
Pyramid X 2 X X X 49
Sphere X 3 12 X X X
Spindle [16] X
Superellipsoid 15 36
Torus X X X X X
T. icosahedron X ≈43
Wedge X 4 11 X 47 X

Table 2.3: Survey of shapes

2.3. VISUAL PROGRAMMING LANGUAGES 19

A
ut

oC
A

D

Bl
en

de
r

[1
]

3d
s

M
ax

M
ay

a

R
hi

no
ce

ro
s3

D

Ti
kZ

PL
aS

M

G
D

L

Operations
Bend X X X X X
Bevel X X X 44
Cross section X ≈34 X 39
Extrusion X X X X X X X
Guided loft X X X
Intersection X X X X X X X
Lattice [19] X
Loft X 48 X X
Mirror X X X 9,29 X 51
Move X X X X X X X X
Offset X 20 X X X
Path loft X X
Revolution X X 18 X X X
Rotation X X X X X X X X
Scale X X X X X X X X
Skew 26 X 30 X 54
Slice X 27 X 31 40 X
Subtraction X X X X X X X
Sweep X X X X X 41
Thicken X 33 X ∼32 ≈45
Union X X X X X X X

Other Objects
Particle systems X X X
Doors 28 X ≈46 X
Windows 28 X ≈46 X
Stairs 28 X ≈46
Railing 28 X ≈46
Wall 28 X ≈46 X
Foliage 28 X ≈46

Table 2.4: Survey of operations and other GD objects

20 CHAPTER 2. RELATED WORK

2 A pyramid is a faceted approximation of a cone

3 i.e., UVSphere, IcoSphere e NURBS sphere.

4 A prism is a faceted approximation of a cylinder

5 Result of subtracting two concentric cylinders of different radius

6 i.e., spiral

7 Helix 2D and 3D are the same

8 Tetrahedron, octahedron, dodecahedron, icosahedron

9 The same can be achieved through scaling with negative values

10 Dedicated NURBS tools

11 Triangular prism

12 Sphere and GeoSphere

13 i.e., tube

14 i.e., tetrahedron, cube, octahedron, dodecahedron, icosahedron, star

15 i.e., Chamfer box, Chamfer cylinder, oil tank, capsule

16 i.e., cylinder with conical caps

17 Through spline tool

18 i.e., lathe

19 The lattice modifier converts the segments or edges of a shape or object into cylindrical struts with

optional joint polyhedra at the vertices

20 Through array modifier

21 Through a plug-in:

http://www.creativecrash.com/3dsmax/downloads/scripts-plugins/modeling/c/quadratic-primitives-nurbs

22 Through NURBS

23 Use Gengon to create an extruded, regular-sided polygon with optionally filleted side edges

24 Through a Python script:

http://wiki.blender.org/index.php/Extensions:2.4/Py/Scripts/Add/Add Mesh Paraboloid

25 Through screw tool

26 Through PET and shear

27 Through knife tool

28 Available in AutoCAD Architecture

29 Through mirror geometry and mirror cut

30 Through shear

31 Through cut faces tool

32 Through extrude tool

33 Through solidify selection

34 Through a Python script:

http://www.creativecrash.com/3dsmax/downloads/scripts-plugins/modeling/c/quadratic-primitives-nurbs
http://wiki.blender.org/index.php/Extensions:2.4/Py/Scripts/Add/Add_Mesh_Paraboloid

2.3. VISUAL PROGRAMMING LANGUAGES 21

http://wiki.blender.org/index.php/Extensions:2.4/Py/Scripts/System/CrossSection

35 Helix and spiral

36 i.e., ellipsoid

37 i.e., cone-like ellipsoid

38 i.e., truncated cone

39 Section and CSec

40 Through wire cut; cutplane only creates planes, it does not perform the actual cut

41 Through sweep or tube

42 Through polygon

43 Through downloadable files:

http://www.rhino3d.com/pythposter/pyth3dm-eng.html

44 Through chamfer surface

45 Through T-Splines which is a commercial product:

http://www.tsplines.com/products/tsplines-for-rhino.html

46 Through VisualARQ plug-in:

http://www.rhino3d.com/resources/display.asp?language=&listing=4424

47 i.e., prism

48 i.e., skinning

49 Implemented as an operation, not a primitive

50 TikZ is embedded in LATEX so text can also be achieved through Latex

51 Through negative scaling

52 Through cuboid primitive

53 Through simplex primitive

54 Through shear primitive

http://wiki.blender.org/index.php/Extensions:2.4/Py/Scripts/System/CrossSection
http://www.rhino3d.com/pythposter/pyth3dm-eng.html
http://www.tsplines.com/products/tsplines-for-rhino.html
http://www.rhino3d.com/resources/display.asp?language=&listing=4424

22 CHAPTER 2. RELATED WORK

3Modern Programming

Environment

3.1 Design Principles

Architecture coding is evolving to GD and leading to the adoption of computational methods, clearly

showing that designers are in desperate need of a modern programming environment specifically tai-

lored for GD. Unfortunately, as shown in the previous section, current systems are not capable of re-

sponding to this need because either they are old or obsolete, or they enforce particular programming

methods that are inadequate, or they are not pedagogic, meaning that they are not designed for the

particular programming skills of the GD community.

Most GD systems are attached to a CAD application. For example, AutoLISP is attached AutoCAD,

and RhinoScript and Grasshopper to Rhinoceros3D. This combination of GD and CAD tools has significant

advantages, including leveraging already acquired experience and facilitating the subsequent use of

the generated model. Unfortunately, traditional CAD technology is preventing GD tools from evolving

freely. The fact that CAD applications were designed for the interaction between a human and a com-

puter (Sutherland, 1963) is also a source of several problems. But it is not the only source: TPLs, such

as, AutoLISP, RhinoScript, and GDL, are old and obsolete, providing insufficient support for GD. And

modern VPLs, such as, Grasshopper and GenerativeComponents, are very restrictive and scale poorly with

the size and complexity of the design task, making them difficult to use. Finally, advanced PLs, such as

PLaSM, target the programming skills of mathematicians and expert software engineers, making them

unsuitable for designers.

In order to overcome this problem, this thesis proposes to design and implement a programming

environment for GD that is pedagogic, with domain-specific features for GD, capable of interacting with

the most used CAD applications, and capable of supporting multiple PLs. This programming environ-

ment should be simple to use in the sense that advanced programming concepts, such as memory man-

agement, should be handled automatically by the environment so that designers can focus on the design

task and do not become distracted with implementation details. Moreover, a successful programming

environment for GD must meet the design principles that are explained in this section.

24 CHAPTER 3. MODERN PROGRAMMING ENVIRONMENT

3.2 Portability

Programs written in the PLs provided by CAD applications are not portable because they execute only

in the family of CAD applications for which they were originally written. As a result, users are locked-in

to one family of CAD applications and they cannot reuse programs written for other families. Portability

and reusability are qualities that allow software to adapt to new environments. For example, if a given

CAD application replaces a long provided PL with a new one, all programs written in the first PL

become useless. In this case, designers have two options: either discard the programs or rewrite them

in a supported PL. Unfortunately, both options are inadequate.

Software reuse is also important because it increases productivity and, in some cases, it is the key

factor for the survival of small- and medium-sized communities. Several years of software engineering

research and practice have shown the importance of collaborative programming environments. For

example, the success of mainstream PLs, namely, Java and C#, is due in large part to the extensive

API provided by these PLs and the thousands of libraries available. The Perl PL is another example:

this PL is supported by an online collection of software and documentation called the Comprehensive

Perl Archive Network (CPAN). Through CPAN, Perl users have access to tens of thousands of modules

that practically cover every programming task. CPAN relies on the contributions and collaborative

development of the Perl community and it is one of the reasons for the success and survival of Perl.

Even though there are thousands of AutoLISP scripts available on the Internet, the fact is that there

is no centralized infrastructure similar to CPAN, and the AutoLISP programming environment provides

no mechanisms for collaborative development. The same can be said about RhinoScript and several

other GD languages. As a result, unless there is a portable programming environment tailored for GD

that enables collaborative development and allows the large number of existing GD programs to be

reused, the GD community might never grow. To this end, this programming environment should sup-

port multiple CAD applications, which can be used interchangeably to display the generated models,

and multiple PLs, in which users can write their GD programs. But it is also necessary to rethink the

geometric support of these PLs.

3.3 Parametric Elements

GD languages support few parametric elements but they work mainly with geometric shapes. The

difference is that geometric shapes have a visual representation, whereas parametric elements can be

described mathematically by functions. In GD, it is possible to write algorithms that work with para-

metric elements. For example, the parametric function f(t) = (t, 0, sin(t)) together with the domain

[0, 2π] represents a sinusoidal curve segment on the XZ plane. Ideally, this function could be used, for

example, as the path in a sweeping operation together with a circle profile to create a sinusoidal tube.

3.4. FUNCTIONAL OPERATIONS 25

However, CAD applications cannot handle functions directly. As a result, designers must first

transform the circle profile and the sinusoidal path into shapes. While the former is natively supported

by most CAD tools, the latter usually requires the designer to interpolate the sinusoidal function on

a set of sampling points, distracting him from the essence of the design task and making the problem

unnecessarily complex, especially when the required sampling is nonlinear. In order to overcome this

complexity, geometric operations should accept not only geometric shapes but also parametric objects,

and any sampling and interpolation required by the CAD application should be handled automatically

by the programming environment.

3.4 Functional Operations

Another problem of current CAD applications is that, in some cases, objects are consumed by geometric

operations to create other objects. For example, the intersection operation applied to two solids might

consume those solids to produce the result, or consume one of them and destructively modify the other

to become the result. Several operations, such as, loft and revolve, have similar behavior. Other opera-

tions, such as, sweep, can have mixed behavior, where the path is consumed but the profile is not.

Even though this behavior might make sense in the interaction between a human and a CAD appli-

cation, GD algorithms must rely on a consistent behavior in order to be correct. For example, consider

the union of two cylinders R0 and R1, subtracted by their intersection (Figure 3.1).

Figure 3.1: Symmetric difference of cylinders

In mathematical terms, this example is the symmetric difference (∆) of R0 and R1

∆(R0, R1) = (R0 ∪R1)− (R0 ∩R1)

where ∪, ∩, and −, represent the union, intersection, and subtraction of shapes, respectively.

Unfortunately, this mathematical definition is not valid when the union between R0 and R1 con-

sumes R0, R1, or both, because it makes the subsequent intersection and subtraction impossible to com-

pute. In order to overcome this problem, it is necessary (1) to prevent shapes from being consumed, or

26 CHAPTER 3. MODERN PROGRAMMING ENVIRONMENT

(2) to create copies of the original shapes beforehand. Both alternatives require manual intervention

from the designer, who must carefully place deletion or copying commands throughout his program.

Knowing which objects must be copied/deleted is equivalent to a garbage collection process (Jones & Lins,

1996), a task that should be done automatically by the programming environment. In order to overcome

this problem, all geometric operations must be functional, meaning that they should not consume their

arguments.

3.5 Dimension Independent Operations

In most GD languages, there is no uniform treatment for one-, two-, and three-dimensional shapes. For

example, depending on the dimension of each shape, their intersection might be implemented by a large

number of distinct procedures, for example, curve-curve, curve-surface, surface-surface, curve-solid,

surface-solid, and solid-solid, as well as special cases for planar surfaces, straight lines, closed coplanar

lines, and mesh-based surfaces. As a result, it is difficult for designers to write generic programs. For

example, if all operations are generic, in the sense that they work uniformly in n-dimensional space, a

user-defined symmetric difference operation is also generic. Unfortunately, this is not the case of current

GD languages. As a result, user-defined operators must make a large case-based analysis or comprehend

several different definitions, thus aggravating the non-uniform treatment of shapes. In either case, the

operator implementation might be incomplete.

Similar to this problem is the insufficient support for shapes that can parametrically morph between

different space dimensions. As exemplified in Figure 3.2, a vertically aligned cylinder can be described

by the center and radius of its base and by its height: (1) when both radius and height are positive,

the shape is three-dimensional; (2) when the radius is positive but the height is zero, it becomes a bi-

dimensional circle; (3) when the height is positive but the radius is zero, it becomes a one-dimensional

line segment; and (4) when both radius and height are zero, it becomes a zero-dimensional point. For

mathematical (and computational) correctness, it is important that all operations accept and properly

handle all cases, even though in some cases it might be impossible to visualize the result.

3.6 Algebra of Sets

Another case in which mathematical correctness is important is in the calculation of shapes. Shapes are

mathematically described as sets of points in space. Therefore, Boolean operations, namely, intersection,

subtraction, and union, are merely operations on sets. These operations admit identity and absorbing

elements, for example, (1) for union, the identity element is the empty set ∅ (S∪∅ = S) and the absorbing

element is the universal set U (S ∪ U = U); (2) for intersection, the identity element is the universal set

(S ∩ U = S) and the absorbing element is the empty set (S ∩ ∅ = ∅); and (3) the subtraction operation

has the empty set as both right-identity (S − ∅ = S) and left-absorbing element (∅ − S = ∅).

3.6. ALGEBRA OF SETS 27

Figure 3.2: Morphing a cylinder into a disk, a line, and a point

Unfortunately, CAD applications do not implement this mathematical representation. For exam-

ple, reconsider Figure 3.1 and imagine the result of moving the cylinders apart from each other or,

alternatively, shrinking the radius of the cylinders: the inner hole becomes increasingly smaller until it

disappears, resulting in the union of two cylinders. When the cylinders are separated, their intersection

becomes empty:

(R0 ∪R1)− (R0 ∩R1) ≡ (R0 ∪R1)− ∅ ≡ R0 ∪R1

Despite this equivalence, in AutoCAD and Rhinoceros3D an empty intersection results in an error. In

Grasshopper, an empty intersection issues a warning but it does not fail. Unfortunately, the subsequent

subtraction fails.

In fact, the majority of GD languages do not even implement the concepts of empty or universal set.

Although they seem irrelevant in CAD tools, they are essential in GD languages to fully define certain

operations. For example, the union of a set of shapes can be defined with recursion, but the recursion

needs a base case that explicitly uses the empty set:

⋃
({S0, S1, . . . , Sn}) = S0 ∪

⋃
({S1, . . . , Sn})⋃

({}) = ∅

A similar reasoning applies to the intersection operation and the universal set.

28 CHAPTER 3. MODERN PROGRAMMING ENVIRONMENT

3.7 Algebraic Equivalences

While sets allow understanding shapes from their mathematical point of view, algebraic equivalences

are important to understand operations. For example, Figure 3.3 shows a shape consisting of a cylinder

R0 subtracted by a smaller cylinder R1 and a sphere R2:

(R0 −R1)−R2 ≡ R0 − (R1 ∪R2)

Figure 3.3: Hollow cylinder subtracted by a sphere

The previous equivalence shows that, in order to get the intended shape, one can either remove the

sphereR2 from the hollow cylinderR0−R1 or remove the union of the inner cylinderR1 and the sphere

R2 from the outer cylinder R0.

Unfortunately, this basic algebraic equivalence is invalid in several CAD applications. Rhinoceros3D,

for example, currently cannot model hollow solids unless there is an interconnecting surface between

the outer and inner surfaces. This means that a Rhinoceros3D user cannot use the first approach. Given

the dependency on Rhinoceros3D, Grasshopper also suffers from this limitation. Other CAD tools, such as

AutoCAD, do not have this problem and designers can use both approaches.

Nevertheless, what is significant is not the number of possible modeling approaches but their equiv-

alence, which gives the designer freedom of choice. This property is fundamental when writing a pro-

gram because (1) the actual performed combination of Boolean operations can be difficult to predict;

(2) a program that only runs in the CAD application that supports one particular combination is not

portable; and (3) adapting a program to use only the combinations of Boolean operations supported by

a CAD application might require extensive changes.

3.8 Traceability

As mentioned before, in GD designers interact with a program that creates a model. Because they

do not interact directly with the model, it becomes difficult to understand the relationship between

3.9. IMMEDIATE FEEDBACK 29

the parts of the program and those of the model. The programming environment should be capable

of displaying this relationship because it is essential for program comprehension, maintenance, and

debugging. Otherwise, it can be very difficult to find the causes of errors, or to identify the changes

needed to adapt a GD program to some additional or different purpose, or to understand the impact of

changes in a program. A capable programming environment should allow designers to (1) point to a

program element and immediately identify the corresponding elements of the model; and (2) point to

an element of the model and immediately identify the corresponding elements of the program. This

association is called traceability and few PLs fully implement it. For example, Grasshopper implements

traceability, but only in the direction from the program to the model.

3.9 Immediate Feedback

Traceability allows a designer to understand the correlation between his GD program and the gener-

ated model. However, it does not allow the designer to easily understand the correlation between the

program inputs and that model (output). To this end, the program must be re-executed when the input

changes and the model re-visualized, a slow-pace process that will tire even the most patient designer.

Immediate feedback attempts to solve this problem, by allowing the designer to continuously adjust the

program inputs and immediately visualize the generated model until it reflects his intentions. With this

mechanism, designers can not only better correlate the program and the model but also endeavor in de-

sign exploration. Several GD systems provide immediate feedback. For example, in Grasshopper, when

a designer drags a slider the program is automatically re-executed. However, the model is updated only

in real-time for very simple GD programs.

30 CHAPTER 3. MODERN PROGRAMMING ENVIRONMENT

4Rosetta

4.1 Design Requirements

The previous section explained the design principles for a successful programming environment for GD.

These principles can be summarized in (1) portability of programs, (2) mathematical correctness, and

(3) strong correlation between programs and models. Because currently GD systems do not implement

these principles with the proper support for GD, a new programming environment, called Rosetta, was

created. This section explains Rosetta, its main features, and the approach taken for each principle.

4.2 Software Architecture

Rosetta is a modern programming environment for GD designed to overcome the limitations of the most

used GD systems. One of the most important limitations concerns the portability of programs written in

the PLs provided by GD systems. For example, an AutoLISP program will execute in different versions

of AutoCAD, sometimes requiring changes in few lines of code, but it will not execute in Rhinoceros3D.

In this case, users must translate their programs to a PL that is supported by the target GD system, for

example, RhinoScript. Translating programs might be a common task for a software engineer, but it is

a difficult and error-prone task for a designer. Unable to overcome this limitation, designers become

locked-in to a particular family of CAD applications and cannot reuse programs of other families.

Rosetta overcomes this problem by providing (1) multiple PLs as frontends, from which users can

choose to write their GD programs; and (2) multiple CAD applications as backends, which are used to

display the geometric models. For example, Figure 4.1 shows Rosetta with a JavaScript program and

corresponding geometry in AutoCAD.

With Rosetta, users can explore different frontends and backends in order to find a combination

that is most suitable for the design task. Moreover, users have access to different PLs which can be

used interchangeably to write portable GD programs. Furthermore, a single program creates identical

geometry in different CAD applications. This approach promotes the development of programs that are

portable across the most used CAD applications, thus facilitating the dissemination of those programs

and of the underlying ideas. Finally, providing multiple PLs not only overcomes the portability problem

but also creates an easy migration path for users of other PLs, such as, AutoLISP and JavaScript, who can

find these languages available in Rosetta.

32 CHAPTER 4. ROSETTA

Figure 4.1: Rosetta with a JavaScript program and corresponding geometry in AutoCAD

In order to support this approach, the software architecture has a core component and several

loosely coupled components for each frontend and backend: (1) the core component defines function-

ality that is common to all components; (2) a frontend component represents one PL and implements

its linguistic and editing tools, such as, lexer, parser, compiler, and syntax highlighting; and (3) a back-

end component represents one CAD application and implements the connection between the program-

ming environment and that application. While changes in the core component strongly affect all other

components, changes in frontend or backend components are merely local. As result, new program-

ming languages and CAD applications can be added to extend the programming environment without

changing the remaining components or existing programs.

The core component provides an abstraction layer with the functionality that is common to the

programming environment and all programs. This abstraction layer defines a portable API, which is

the key for virtualizing different backends, and it includes (1) general purpose data types, such as, list,

vector, and interval; (2) geometric data types, such as, shape, coordinate, matrix, bounding box, color,

and material; (3) shape constructors, such as, point, circle, and box; and (4) geometric transformations,

such as, translation, loft, extrusion, and sweep.

However, this virtualization results in that functionality that is not common to most CAD applica-

tions cannot be provided in the portable API. In order to overcome this problem, the abstraction layer

does not restrict the use of CAD-specific functionality and designers can choose whether or not to use it.

Giving access to CAD-specific functionality might result in programs that are not portable but it makes

4.3. EDITOR 33

Rosetta available to a broader audience of designers. In the following sections, the supported frontends

and backends are explained in detail. Moreover, DrRacket, the editor used by Rosetta, is also explained.

4.3 Editor

DrRacket (Figure 4.2) is a programming environment designed to be pedagogic and to simplify the im-

plementation of new PLs. It provides a text editor with the standard programming features, such as,

text formatting, and syntax checking and highlighting. Programs are written in the Definitions Window

and the Run button compiles the program and its dependencies, and initiates its execution. During exe-

cution, the Interactions Window becomes available, providing an interactive evaluator which can be used

to quickly test the running program, add new definitions to the session, experiment with different pa-

rameters or, ultimately, evaluate any kind of expression. This evaluator is fundamental for incremental

development and interactive testing, being one of the main sources of feedback during program devel-

opment. There is also a debugger and a JIT compiler, which optimizes code on demand at runtime.

DrRacket provides several PLs, such as, Scheme, Scribble, and Racket. Racket is a modern, functional PL

and it is the main language of DrRacket.

Figure 4.2: DrRacket window

34 CHAPTER 4. ROSETTA

4.4 Backends

Currently, Rosetta implements three backends, namely, AutoCAD, Rhinoceros3D, and OpenGL. Backends

serve as modeling target and geometric kernel for complex calculations. These backends were imple-

mented for different reasons, namely, (1) AutoCAD and Rhinoceros3D are two of the most used CAD

applications and they provide enough functionality to design a portable platform; and (2) OpenGL does

not provide as much functionality as the previous backends, but rendering is considerably faster; Pro-

grams can use either backend with no additional modifications and, more importantly, the geometry

created in each backend is identical (Figure 4.3, Figure 4.4 and Figure 4.5).

Figure 4.3: RosettaRacket program and corresponding geometry in AutoCAD

4.4.1 AutoCAD and Rhinoceros3D

AutoCAD and Rhinoceros3D provide more or less the same functionality but, in some cases, with dif-

ferent semantics. For example, a solid sphere in AutoCAD is the space enclosed by the surface of the

sphere, whereas the same sphere in Rhinoceros3D is merely the spherical surface. This difference has

very important consequences: for example, in AutoCAD, the subtraction of two concentric spheres of

different radius results in a hollow sphere, whereas in Rhinoceros3D, the same operation results in an

error because the two spherical surfaces do not intersect.

In order to overcome these semantic differences, each backend understands the limitations of the

corresponding CAD application and provides ways around those limitations. As an example, consider

4.4. BACKENDS 35

Figure 4.4: RosettaRacket program and corresponding geometry in Rhinoceros3D

Figure 4.5: RosettaRacket program and corresponding geometry in OpenGL

36 CHAPTER 4. ROSETTA

the shape in Figure 4.6. This shape can be produced by subtracting cones from a hollow sphere. How-

ever, Rhinoceros3D cannot model hollow shapes (Section 3.7). Therefore, when using Rhinoceros3D as

backend, Rosetta delays the creation of the hollow sphere until one of the cones perforates a hole in the

outer sphere. This reordering of operations is automatically done by Rosetta, by application of algebraic

rules, in order to correctly generate the intended geometric model. In general, Rosetta gives designers

the illusion that they can use different modeling approaches. To this end, GD programs are evaluated

in such a way that they can be executed within the limitations of that CAD application.

Figure 4.6: Hollow sphere pierced by several cones

However, the fact is that without proper CAD support certain operations are simply impossible.

For example, while computing a hollow solid in Rhinoceros3D, Rosetta can eliminate the inner shape to

avoid the subtraction error if it can prove that no other Boolean operations take place and that the inner

shape is completely contained, i.e., not visible. However, in general the latter test is non-trivial.

4.4.2 OpenGL

The OpenGL backend does not depend on a fully fledged CAD application. Instead, it connects (almost)

directly to the graphics device of the computer. This backend allows much faster rendering and, as a

result, the designer can enjoy real-time feedback for larger inputs and for a broader spectrum of pro-

grams. When satisfied with the design, he can then switch to a normal CAD backend, such as, AutoCAD

or Rhinoceros3D, and continue working as before. Table 4.1 shows the time taken by different backends

for updating identical geometry (Figure 4.7, Figure 4.8 and Figure 4.9). It is visible that the OpenGL

backend is considerably faster than the other backends. Note that this backend is still in a prototypical

phase and further optimizations can be implemented to improve the running times.

Even though the OpenGL backend is faster than the other backends, it does not provide the same

functionality. OpenGL is a rendering library, therefore, it provides several drawing procedures to op-

4.5. FRONTENDS 37

Example/Backend AutoCAD Rhinoceros3D OpenGL

Orthogonal cones 1022 191 1
Möbius truss 28837 9235 4446
Scriptecture 21920 5088 210

Table 4.1: Time (in milliseconds) needed to update the generated design

Figure 4.7: Orthogonal cones Figure 4.8: Möbius truss Figure 4.9: Scriptecture

erate in image space but, in most cases, objects do not have a parametric representation. This makes

it difficult to implement some geometric transformations, such as, loft and sweep. Nevertheless, affine

transformations are trivial because they map directly to OpenGL matrices, and Constructive Solid Geom-

etry (CSG) can be performed in image space. The library OpenCSG is an example of such functionality,

and it is planned to integrate Rosetta.

4.5 Frontends

Currently, Rosetta implements three frontends, namely, AutoLISP, JavaScript, and RosettaRacket, which

is a customized version of Racket. Racket, the PL of DrRacket, provides several tools that simplify the

design and implementation of new PLs. For example, macros simplify the implementation of compilers

because they allow the definition of new syntactic forms that expand to Racket code. As a result, different

PLs can interoperate because they are part of the same ecosystem.

With this approach, it is possible to virtualize the syntax of new PLs. However, some syntactic

problems cannot be avoided. For example, it is difficult to define portable names that follow the naming

convention of every PL because identifiers have different syntax. As an example, consider the coordinate

addition operation. In Racket, a valid name for this operation is +c. Although this name is also valid

in AutoLISP, it is invalid in JavaScript because the syntax of identifiers does not include the symbol +.

On the other hand, a valid choice for JavaScript is addC, which does not follow the Racket or AutoLISP

naming conventions, making it unsuitable for these PLs.

To overcome this problem, all names exported by Rosetta follow some naming convention and each

38 CHAPTER 4. ROSETTA

frontend is responsible for defining the proper bindings that translate the exported name into a valid

name in the PL they provide. For example, for the coordinate addition operation (1) Rosetta defines the

name add-c; (2) Racket and AutoLISP define the binding +c; and (3) JavaScript defines the binding addC.

The following sections detail each of the frontends provided by Rosetta.

4.5.1 RosettaRacket

RosettaRacket is a PL that extends Racket to include bindings that follow the Racket naming convention, as

well as to allow the definition of new syntactic forms without compromising the remaining frontends.

Another advantage is that by using this frontend, users no longer need to manually import the Rosetta

library. This has a significant impact in the reduction of the number of prerequisites for learning Rosetta.

4.5.2 AutoLISP and JavaScript

AutoLISP and JavaScript implement the syntax and semantics of the corresponding PLs and provide the

proper bindings. The main purpose of these frontends is to attract the large community of designers

that learned and used these PLs in the past and to simplify their transition to Rosetta.

AutoLISP is one of the most used PLs for GD. However, this PL has some shortcomings that Rosetta

overcomes. For example, one of the most frequent mistakes is to accidentally misspell the name of some

variable or function. Because AutoLISP treats the use of undefined names as automatically bound to a

default value, it will silently accept the mistake. Obviously, something will go wrong, but in general it

will not be easy for the user to understand the cause of the error. In this regard, the syntax checker and

the static debugger provided by Rosetta will immediately point out the cause of the error even before

running the program. Other similar problems that are automatically (and statically) detected include

syntax errors and a subset of type errors.

4.6 Shapes and Operations

Rosetta implements the majority of geometric shapes and operations supported by the most used CAD

applications, namely, AutoCAD and Rhinoceros3D. However, Rosetta goes further: it overcomes the lim-

itations of these CAD applications to provide shapes and operations with mathematical and geometric

correctness. For example, Rosetta implements the empty and universal sets as special geometric shapes.

Boolean operations automatically recognize and handle these shapes, implementing the identity and

absorbing elements of the intersection, subtraction, and union, operations. Moreover, the empty and

universal shapes are embedded in the language expressions, therefore, they are transparent to the de-

signer who, in most cases, is unaware such shapes are being used. However, while the empty shape

4.7. TRACEABILITY 39

actually produces the correct result in the CAD application (i.e., nothing), the universal shape cannot be

represented. Nevertheless, apart from the mathematical correctness, visualizing this shape is irrelevant.

Operations are also functional, meaning that designers do not have to worry whether or not shapes

are consumed by operations and GD programs do not need to be flooded with copy/delete commands.

As a result, shapes can be shared by all parts of a program and freely used as arguments to operations.

In order to provide the correct mathematical semantics, Rosetta programs do not compute the geomet-

ric shapes and transformations described in the program. Instead, these elements are composed in a

scene graph. When evaluated, the scene graph produces shapes and applies the transformations in the

selected CAD tool, ensuring that the final model reflects the intention of the designer, and all necessary

copying/deletion is handled automatically according to the requirements of that CAD tool. Moreover,

operations accept also parametric elements, meaning functions that describe shapes coupled with in-

tervals that specify their domain. If necessary, these elements are automatically interpolated using an

adaptive sampling strategy (Chandler, 1990) that minimizes the interpolation error.

Finally, because several operations in Rosetta are dimension independent, user-defined operators

are generic, meaning that they can be applied to shapes of different dimensions. Naturally, the internal

implementation of each predefined operation might require several specific CAD procedures. But this

is hidden from the designer, who only has to know one generic operator. As an example, reconsider the

symmetric difference in Figure 3.1. With functional operations, the implementation of this operator is

straightforward (Figure 4.10). The result of this operator is exemplified in Figure 4.11.

∆(A,B)⇒ (A ∪B)− (A ∩B)
(define (symmetric-difference a b)
(subtract (union a b) (intersect a b)))

Figure 4.10: Symmetric difference: definition (on the left) and implementation (on the right)

4.7 Traceability

Rosetta implements traceability, therefore, it is possible to (1) point to program elements to identify the

corresponding model elements; and (2) point to model elements to identify the corresponding program

elements. Designers can use both approaches at the same time, moving from one to other as necessary,

thus accelerating the development process.

Figure 4.12 illustrates a typical scenario where the user selects an expression in his program and

Rosetta shows the set of shapes that resulted from that expression. Note that this set contains all shapes

that were created by the expression during the complete execution of the program.

Figure 4.13 illustrates the converse scenario, in which a user selects an element of the model in the

CAD application and Rosetta highlights the corresponding program elements.

40 CHAPTER 4. ROSETTA

Figure 4.11: Dimension independent symmetric difference

Figure 4.12: Relating program expressions to the generated shapes. The highlighted cylinders (on the
left, in yellow) are generated by the highlighted program text (on the right, in blue)

4.8. VISUAL WIDGETS 41

Figure 4.13: Relating shapes to the program expressions that generated them. The highlighted cylinders
(on the left, in yellow) are generated by the highlighted program flow (on the right, using red arrows)

4.8 Visual Widgets

Similarly to Grasshopper, Rosetta provides sliders (Figure 4.14) which can be connected to program in-

puts. When designers change a slider, Rosetta automatically recomputes the model. This re-computation

process operates in real time, for simple GD programs, being a form of immediate feedback. However,

complex programs can take significant time to recompute and the interactive use of widgets can become

annoying, a problem that affects both Grasshopper and Rosetta. Unfortunately, immediate feedback can

never scale to arbitrarily large programs because each operation that is added to a program increases

the total amount of time needed to compute it. Moreover, some operations have an intrinsic complexity,

such as, linear, quadratic, or exponential, that cannot be avoided.

Nevertheless, there are two approaches to minimize this problem, namely, (1) introduce parallel

computations, and (2) reduce the time needed for each basic operation. Unfortunately, for GD tools

that operate on top of classic CAD tools, such as, Grasshopper for Rhinoceros3D and AutoLISP for Au-

toCAD, both of these approaches are difficult to implement: the first, because most CAD tools are not

thread-safe, and the second because most CAD tools were designed for the speed of human operation

and not for the large volume of operations required by some GD programs. Rosetta improves this situ-

ation by providing the OpenGL backend, which sidesteps most of the functionality of traditional CAD

applications and focuses mainly on rapid generation and visualization of the geometric model.

42 CHAPTER 4. ROSETTA

Figure 4.14: Using sliders and the OpenGL backend to interactively generate different models

5Programming Paradigms

& Techniques

5.1 Multi-Paradigm Programming Language

The previous part of this thesis argued that there are several design principles that a programming

environment for GD must implement in order to be successful. One of these principles is the ability

to provide multiple approaches to GD. This section shows how Rosetta can be used to explore different

programming paradigms.

Rosetta provides RosettaRacket (Section 4.5.1), a multi-paradigm PL that is an extension to Racket.

Even though RosettaRacket puts a strong emphasis on the functional paradigm, it does not restrict the

use of other paradigms because there are many situations in which they are more suitable. For example,

consider a GD program that has been executed. At this moment, the geometric models are already in

the CAD application and the designer wants to experiment with the view and rendering parameters. In

an imperative approach, the programmer merely has to invoke the procedures that control the view and

rendering with different parameters, because these procedures do not modify the scene.

However, in a functional approach, these parameters must be specified at the same time the scene

is created. In other words, when the programmer wants to modify a parameter, the entire scene must

be recreated in the CAD application. Recreating large-scale or complex scenes requires significant time,

making this experiment non-interactive. Therefore, in this case, the imperative approach is preferable.

GD tasks have different requirements and, for each task, there is a paradigm that is more suitable. To

this end, Rosetta allows the programmer to choose from a variety of paradigms that include functional,

imperative, object-oriented, and declarative. Moreover, several primitives have both imperative and

functional versions. The following sections show examples of functional and imperative programming.

5.1.1 Example 1: Tessellators and Coordinate Generators

Trusses are pyramids made of joints and bars, and they adjust to and tessellate over straight and curved

surfaces while maintaining strong structural properties. Trusses are a common element in GD with

many applications, for example, in architecture and structural engineering (Figure 5.1).

Trusses can be represented, for example, by the set of joint coordinates. It is possible to general-

ize this representation to space frames (multiple trusses connected together) simply by extending this

representation to multiple sets of coordinates. The following program implements space frames:

44 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

Figure 5.1: Space frames and the Wimbledon Stadium roof

(define (truss-knots cs radius)
(map (lambda (c) (sphere c radius)) cs))

(define (truss-bars cs1 cs2 radius)
(map (lambda (c1 c2) (cylinder c1 radius c2)) cs1 cs2))

(define (spatial-truss curves (knot-r truss-knot-radius) (bar-r truss-bar-radius))
(let ((as (first curves))

(bs (second curves))
(cs (third curves)))

(list
(truss-knots as knot-r)
(truss-knots bs knot-r)
(truss-bars as cs bar-r)
(truss-bars bs (drop-right as 1) bar-r)
(truss-bars bs (drop-right cs 1) bar-r)
(truss-bars bs (rest as) bar-r)
(truss-bars bs (rest cs) bar-r)
(truss-bars (rest as) (drop-right as 1) bar-r)
(truss-bars (rest bs) (drop-right bs 1) bar-r)
(if (empty? (cdddr curves))

(list
(truss-knots cs knot-r)
(truss-bars (rest cs) (drop-right cs 1) bar-r))
(list
(truss-bars bs (first (drop curves 3)) bar-r)
(spatial-truss (drop curves 2) knot-r bar-r))))))

The function spatial-truss creates space frames given any set of coordinates for the joints,

meaning that it can create truss tessellations for any kind of surface. Note that this function is recursive, a

feature that is typical of functional programming. To create the set of coordinates for the joints, consider,

for example, an arc-shaped surface with coordinates given by the following program:

(define (arc-cs c r phi th1 th2 dth)
(map
(lambda (th) (+sph c r phi th))
(: < th1 .. dth .. th2 <)))

(define (arc-surface-cs c ra rb phi th1 th2 e n)

5.1. MULTI-PARADIGM PROGRAMMING LANGUAGE 45

(let ((dth (/ (- th2 th1) n)))
(list
(arc-cs (+pol c (/2 e) (+ phi pi/2)) ra phi th1 th2 dth)
(arc-cs c rb phi (+ th1 (/2 dth)) (- th2 (/2 dth)) dth)
(arc-cs (+pol c (/2 e) (- phi pi/2)) ra phi th1 th2 dth))))

The function arc-cs calculates the coordinates of an arc using spherical coordinates, which elim-

inates the need for trigonometric expressions and makes the code more elegant and concise. Similarly

to VisualScheme, Rosetta implements the Cartesian, cylindrical, polar, and spherical coordinate systems.

The function arc-surface-cs follows the same example, using the polar system to calculate the coor-

dinates of an arc-shaped surface. This function can be combined with the function that creates trusses,

spatial-truss, to produce an arc-shaped space frame.

However, the following program shows that combining these two functions results in all parame-

ters being duplicated. It is possible to avoid this duplication by making the composition of functions

arc-surface-cs and spatial-truss explicit. This is achieved using function composition, via

compose, an operator seen in advanced functional PLs, such as, PLaSM and Haskell. Because composi-

tion might be considered too advanced for designers, Rosetta provides both mechanisms (Figure 5.2).

; implicit composition, with duplicated parameters
(define (arc-surface-truss c ra rb phi th1 th2 e n)

(spatial-truss
(arc-surface-cs c ra rb phi th1 th2 e n)))

; explicit composition via "compose"
(define arc-surface-truss

(compose trusses arc-surface-cs))

Figure 5.2: Arc surface space frame

By separating functions that perform tessellations (tessellators), such as spatial-truss, from

functions that calculate coordinates (coordinate generators), such as arc-surface-cs, it is possible to

explore different combinations of tessellators and coordinate generators, and to reuse these functions in

different contexts. For example, Figure 5.3 shows a program that reuses the truss tessellator to create a

space frame along the Möbius band.

The function spatial-truss-insert-apex is a utility function that creates space frames with-

out requiring the programmer to supply the coordinates of the truss apexes. Instead, it uses the function

insert-pyramid-apexes to calculate the apexes for each patch of the surface according to the surface

normal defined at the center of the patch. The function moebius-cs calculates the coordinates of the

Möbius band using cylindrical coordinates, via cyl, and list comprehensions, via enumerate-m-n, an-

46 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

(define (spatial-truss-insert-apex cs)
(let ((c1 (first (first cs)))

(c2 (first (second cs)))
(c4 (second (first cs))))

(spatial-truss (insert-pyramid-apexes cs))))

(define (moebius-cs u1 u2 m v1 v2 n)
(enumerate-m-n
(lambda (u v)

(cyl (* 4 (+ 1 (* v (cos (/2 u)))))
u
(* 4 (* v (sin (/2 u))))))

u1 u2 m v1 v2 n))

(define moebius-truss
(compose spatial-truss-insert-apex moebius-cs))

Figure 5.3: Möbius space frame

other feature of functional PLs. The function moebius-truss is the composition of the truss tessellator

with the Möbius band coordinate generator.

Many GD tasks can be expressed using coordinate generators and tessellators, which suggests that

this programming model can be considered a design pattern. While this programming model enables

programmers to explore different combinations of tessellators and coordinates generators, creating ge-

ometry is only useful if it can be visualized. The following section describes an important visualization

method called rendering.

5.1.2 Example 2: Automated Rendering

One of the most recurring tasks in GD is rendering geometry with a high level of realism. However, it

is impractical for designers to configure rendering engines because, in most cases, there are dozens of

parameters to control, for example, the ray-tracer, lighting, and shading properties. In order to overcome

this problem, Rosetta provides a rendering script that simplifies and automates the rendering process.

The script consists of a set of procedures that (1) establish rendering properties; (2) create the geometry

to be rendered in the proper layers; and (3) control the rendering process.

As mentioned in Section 4.6, geometric shapes are composed in a scene graph and the time at

which this scene graph is evaluated is not controlled by the designer. However, the rendering script

must ensure that the shapes to be rendered are created before the rendering process starts, otherwise,

the rendering result will be a blank image. To this end, the script forces the evaluation of the shapes

using evaluate. For example, the following procedure creates the geometric shapes to be rendered in

the proper layer:

(define (make-render-shapes node/nodes)
(evaluate (layer shapes-layer node/nodes)))

5.1. MULTI-PARADIGM PROGRAMMING LANGUAGE 47

Shadows increase the realism of the scene. But for shadows to be visible, there must be a surface

on which they reflect. To this end, the script creates a reflective floor that spans under the entire scene,

such that objects, when hit by sunlight, cast a shadow on that floor. The following procedure uses the

bounding boxes of all objects in the scene to create the reflective floor at the appropriate location:

(define (make-render-floor w h col)
(let ((z-min (reduce min

(map bbox-min-z
(map bbox (clone-shapes (get-shapes)))))))

(evaluate
(layer (floor-layer col) (rectangle-surface (z z-min) w h)))))

The function bbox returns the bounding box of a shape but it has the undesired side-effect of con-

suming (deleting) it. Therefore, shapes must be manually duplicated beforehand via clone-shapes.

In most cases, the programming environment has a functional behavior, therefore, these side-effects are

invisible. However, with evaluate the program becomes imperative and side-effects must be handled.

The following procedure defines lighting properties and controls the rendering process, combining

the previous procedures for creating the geometry to be rendered and the reflective floor:

(define (render-shapes-floor node/nodes w h path type fl-w fl-h fl-col)
(begin0

(make-render-shapes node/nodes)
(let ((floor (make-render-floor fl-w fl-h fl-col)))

(set-sky-status! sky-status-background-and-illumination)
(render-shapes w h path type)
(delete-shape floor))))

Before the rendering process starts, via render-shapes, the reflective floor is created. Therefore,

after the rendering process finishes, it is necessary to delete this floor, via delete-shape, otherwise,

the user will see a shape in the selected backend he did not create. The manual/forced evaluation and

deletion of the reflective floor is another example of imperative programming.

Finally, because the procedure render-shapes-floor requires a large number of parameters, the

script provides a convenience procedure, render-with-floor, that defines default values for most

parameters and allows these values to be overridden with keyword arguments or through a configu-

ration file. The following program illustrates how to render the examples from the previous section,

namely, the arc and Möbius space frames, using AutoCAD and default parameter values:

(define (render-examples)
(render-with-floor (arc-trusses u0 10 9 0 (- pi/2) pi/2 1 20) "arc.png")
(render-with-floor (moebius-trusses 0 (* pi 4) 80 0 0.3 1) "moebius.png"))

The use of the imperative paradigm to implement the rendering script requires few primitives from

Rosetta. Other paradigms could have been used instead, but additional or more sophisticated primitives

48 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

would be necessary. A functional implementation of the rendering script would have to conceal or

detach the side-effects of changing the rendering properties and creating and destructing the reflective

floor. The following program is an example of a functional implementation of the same script:

(define (make-render-shapes node/nodes)
(layer shapes-layer node/nodes))

(define (make-render-floor w h col)
(let ((z-min (reduce min (map bbox-min-z (map bbox (get-shapes))))))

(layer (floor-layer col) (rectangle-surface (z z-min) w h))))

(define (render-shapes-floor node/nodes w h path type fl-w fl-h fl-col)
(with-temporary-shape (make-render-floor fl-w fl-h fl-col)

(parameterize ((sky-status sky-status-background-and-illumination))
(render-shapes w h path type (make-render-shapes node/nodes)))))

Compared to the imperative version, the functional implementation is more concise, in part, be-

cause manual evaluation and deletion are no longer necessary. However, there are significant changes,

namely, (1) a new primitive, with-temporary-shape, is necessary to conceal the side-effects of creat-

ing and destructing the reflective floor; (2) the procedure set-sky-status! is replaced by a dynami-

cally scoped variable which is used together with parameterize; and (3) render-shapes must be a

function, instead of an imperative procedure, and it must receive the geometric shapes.

The functional version might seem more adequate for designers because it is simpler and more con-

cise. However, this script is part of the programming environment and it is intended that designers use

it as a black-box. Therefore, the implementation details of the script will not affect the design workflow.

Moreover, the imperative version is easier to implement in Rosetta because the primitives and semantic

differences demanded by the functional version require additional implementation effort.

5.2 Programming Techniques

Rosetta provides multiple paradigms to address the broad spectrum of design task requirements. In

addition to paradigms, there are several programming techniques that can dramatically simplify the

programming effort, such as, higher-order and anonymous functions, monads, and non-deterministic

programming. The following sections show how to use and combine these programming techniques.

5.2.1 Example 1: Combination of Programming Techniques

As mentioned before, in Rosetta it is possible to use different paradigms. In fact, it is even possible to

combine them in the same program. For example, Figure 5.4 shows a program which places several

cones inside a sphere. The function sphere-of-cones uses list comprehensions to iterate along the

parametric dimensions of a sphere. Each pair of th and phi is used to calculate the base center of the

cones placed by the function cone-sph, using spherical coordinates.

5.2. PROGRAMMING TECHNIQUES 49

(define (cone-sph r h phi th)
(cone (sph h phi th) r u0))

(define (sphere-of-cones r h n)
(flatten
(for/list ((th (: < 0 .. (/ 2pi n) .. pi >)))

(for/list ((phi (: < 0 .. (/ 2pi n) .. 2pi >)))
(cone-sph (+ r (* r (sin th))) h phi th)))))

Figure 5.4: Sphere made of cones

Figure 5.5 shows a second program, which consists of a hollow sphere from which the cones calcu-

lated in the first program were subtracted. The function pierced-sphere uses the for cycle to iterate

through the list of cones returned by sphere-of-cones. And it uses assignment (set!) to accumulate

the subtractions in the variable hollow-sphere. After the last iteration, the variable hollow-sphere

contains the hollow sphere pierced by several cones: the pierced sphere.

(define (pierced-sphere r e rc n)
(let ((hollow-sphere

(subtract (sphere r) (sphere (- r e))))
(cones
(sphere-of-cones rc (* 1.1 r) n)))

(for ((cone cones))
(set! hollow-sphere

(subtract hollow-sphere cone)))
hollow-sphere))

Figure 5.5: Sphere pierced by a set of cones

While the first program is an example of functional paradigm, the second program is an example

of the imperative paradigm. This shows that with Rosetta it is possible to use multiple paradigms and

techniques, and combine them in the same program without additional effort.

5.2.2 Example 2: Higher-Order and Anonymous Functions

Programs are decomposed in structural and behavioral concerns. The majority of programs have static

structure, which means that the set of all possible behavioral variations, determined by the program

parameters, is finite. Therefore, all possible behavioral variations a program can contemplate must be

either accounted a priori in the program structure or delegated to a parameter.

50 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

Designers need to experiment with different variations of a geometric scene without changing the

program structure. Therefore, programs must be as parametric as possible so that variations can be

easily achieved simply by changing the parameters of a program. Moreover, programs are constantly

changing to address new requirements. Generalizing a program and making it more parametric can

minimize the impact of such changes and, therefore, the implementation effort. For example, a program

that creates a sphere can be generalized to create a given number of spheres that is determined by a

parameter. In the case of Grasshopper, the number of spheres could be specified by a slider.

It is possible to further generalize this program to create a given number of any kind of shape. Un-

fortunately, in Grasshopper, this generalization cannot be implemented because of insufficient abstraction

mechanisms. This limitation forces designers to manually modify the program structure when a new

behavioral change is necessary. As a result, in most cases, what appears to be simple parametrizations of

the same program is, in fact, a collection of similar programs that create almost identical shapes. More-

over, in most cases, these programs are created using copy/paste, meaning that they are redundant and,

therefore, have maintenance problems. Using the right programming techniques, it is possible not only

to avoid code duplication but also to write programs that can cope with behavioral changes without

suffering structural modifications.

Modern PLs, such as, Racket and Scala, provide mechanisms for addressing behavioral changes,

namely, (1) higher-order functions, which are functions that receive other functions as parameters and/or

produce functions as result; and (2) anonymous functions, which are functions without a name. While

higher-order functions allow programs to delegate behavior to a parameter, anonymous functions allow

these parameters to be concisely defined in-place without polluting the program namespace.

As an example, consider that a designer wants to create a building but he does not know yet what

kind of balconies the building should have. Instead, he wants first to create the building without bal-

conies and, only afterward, experiment with different kinds of balconies. In Rosetta, the designer ad-

dresses this problem by implementing a high-order function that creates the building but delegates the

responsibility of creating the actual balcony to a parameter, which is another function. The following

program illustrates the higher-order function balcony that creates generic balconies, where fn is the

parameter that decides the kind of balcony to create:

(define (balcony c fn x0 x1 dx ly slab-h guard-h handrail-l handrail-h bobs-d)
(list
(slab c fn x0 x1 bobs-d ly slab-h)
(guard (+xyz c 0 handrail-l slab-h)

fn x0 x1 dx ly guard-h handrail-l handrail-h bobs-d)))

This function is decomposed in two other functions. The first function, slab, extrudes the floor

plan to create the floor:

5.2. PROGRAMMING TECHNIQUES 51

(define (slab c fn x0 x1 dx ly lz)
(let ((cs (coords-fn (+xy c (- x0) (- ly)) fn x0 x1 dx)))

(let ((p0 (first cs))
(p1 (last cs)))

(extrude
lz
uz
(surface
(join
(spline cs)
(line p0 c (+x c (- x1 x0)) p1)))))))

The second function, guard, creates the handrail and bobs:

(define (handrail c fn x0 x1 dx ly l h)
(sweep
(spline (coords-fn (+xy c (- x0) (- ly)) fn x0 x1 dx))
(surface (line-closed u0 (y l) (yz l h) (z h)))))

(define (bobs c fn x0 x1 dx ly h r)
(for/list ((ci (coords-fn (+xy c (- x0) (- ly)) fn x0 x1 dx)))

(cylinder ci r (+z ci h))))

(define (guard c fn x0 x1 dx ly guard-h handrail-l handrail-h bobs-d)
(list
(handrail (+z c guard-h) fn x0 x1 bobs-d ly handrail-l handrail-h)
(bobs c fn x0 x1 bobs-d ly guard-h (/2 handrail-l))))

With this approach, it is easy to create several variations of balconies simply by supplying a different

function as parameter. As a first example, consider a balcony with a saw teeth variation:

(define (saw a b c x)
(abs (+ a (* b (- x c)))))

(define (saw-balcony-example)
(balcony
u0
(lambda (x) (saw 0 0.3 (* 3 pi) x))
0 (* 4 pi) 0.5
4 0.2 1 0.04 0.02 0.4))

Figure 5.6: Balcony with a saw teeth variation

Apart from higher-order functions, this example also uses anonymous functions, via lambda. With

higher-order and anonymous functions, designers can parametrize behavior of GD programs, incorpo-

rating variations easily without changing the program. This shows the first relative advantage of Rosetta

over GD languages, such as, Grasshopper and RhinoScript. The following programs use higher-order and

anonymous functions to create other kinds of variations.

52 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

(define (oscillator a b c x)
(* a (exp (- (* b x))) (sin (* c x))))

(define (oscillator-balcony-example)
(balcony
(xy 8 8)
(lambda (x) (oscillator -2 0.1 2 x))
0 (* 4 pi) 0.2
4 0.2 1 0.04 0.02 0.2))

Figure 5.7: Balcony with an oscillating variation

(define (sinusoidal a omega phi x)
(* a (max -0.6 (min 0.6 (sin (+ (* omega x) phi))))))

(define (sinusoidal-balcony-example)
(balcony
(xy 16 16)
(lambda (x) (sinusoidal 1 1 0 x))
0 (* 4 pi) 0.2
4 0.2 1 0.04 0.02 0.4))

Figure 5.8: Balcony with a sinusoidal variation

5.2.3 Example 3: Monads

Writing programs that create Lego toys is not a recurring task in GD. However, several concepts used in

Lego programs are, in fact, common in GD, namely, (1) world, where geometric shapes exist; (2) object

and world coordinate systems; (3) absolute and relative coordinate systems; and (4) symmetry, gravity,

and collision. For example, (1) a Lego toy exists in a world with a certain width and length (and possibly

height) measured in bricks; (2) some bricks float and have an absolute position, other bricks are relative

to the boundaries of the world or other bricks; and (3) some bricks are placed on top of other bricks.

A Lego program simply places Lego bricks in certain positions of the world. Representing a Lego

world in a program is quite simple due to its discrete nature. However, defining the set of operations

that manipulate it, in a concise and elegant fashion, can be quite challenging. A naive solution would be

to define an imperative implementation of a procedure lay! that drops a brick on a specified position

of the world. As an example of this implementation, consider the following program that creates a Lego

world of size 10x10 and places two bricks of size 2x2x1 on top of each other:

5.2. PROGRAMMING TECHNIQUES 53

(define lego-world (make-lego-world 10 10))
(lay! lego-world 2x2x1 (xy 1 2))
(lay! lego-world 2x2x1 (xy 1 2))

From this example, it is clear that the Lego world variable must be manually passed to all functions

that add bricks. Because Lego programs have a large number of bricks, eliminating one parameter can

have a significant impact in program size, especially if that parameter is the same for most programs.

Overcoming this problem by making the Lego world a global variable is not viable because the program

becomes non-reentrant, which, in turn, could lead to conflicts between unrelated programs that use the

Lego library. Instead, the imperative implementation can be replaced with a state monad. The following

program illustrates the state monad applied to the previous program:

(lego
(make-lego-world 10 10)
(lay 2x2x1 (xy 1 2))
(lay 2x2x1 (xy 1 2)))

An interesting consequence of the monadic implementation is that the resulting program is func-

tional, even though it changes the state of the world. Figure 5.9 shows a complete example with 136

bricks. The original program has 136 commands, one for each piece. However, several functions were

introduced and the simplified program has 36 commands for the same 136 pieces (≈ 74% reduction).

Figure 5.9: Giant panda Lego example

Some of these simplifications exploit relative coordinates and symmetries by means of several func-

tions, namely, (1) right-xy and back-xy produce coordinates relative to the positive X and positive

Y boundaries of the world, respectively, and can be composed; (2) right and back change the center

of the brick in its object coordinate system; (3) with-world-cs changes the location of the origin of

54 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

the world in a lexically enclosed scope; (4) with-world-size changes the apparent size of the world

in a lexically enclosed scope; (5) lay drops bricks and is aware of gravity and collision, while put can

place floating bricks; (6) lay-x-sym and lay-y-sym drop pairs of symmetrically positioned bricks,

following the semantics of right-xy and back-xy, respectively.

5.2.4 Example 4: Non-Deterministic Programming

One of the most recurring tasks in GD is design exploration: the designer has a basic notion of the

design he wants to achieve and, starting from a rough draft, he continues experimenting with different

parameters until the concept has evolved into a solid idea. In most cases, there is not a concrete idea

about the result, therefore, the path in which the design evolves is not always known beforehand.

It is possible to find a computational model that behaves similarly to the design exploration ap-

proach, namely, non-deterministic programming. Programs that make use of this programming model

inherit automatically certain properties that facilitate design exploration, namely, the ability of achieving

all, possibly infinite, modeling variations that satisfy a particular set of design requirements.

For example, consider that a designer wants to fill a spherical volume with a sequence of non-

intersecting pipes (Figure 5.10). However, the designer does not know the actual path the pipes should

take. What he knows is that the sequence of pipes cannot self-intersect or escape the spherical volume.

Therefore, instead of writing a sophisticated search algorithm with backtracking, he can simply use

non-deterministic programming and focus on implementing these design requirements.

Figure 5.10: Tubes in sphere

Non-deterministic programming is based on (1) the ambiguous operator (amb), which receives sev-

eral computations and chooses one of them non-deterministically to proceed (McCarthy, 1963); and

(2) the fail operator (fail), which aborts the current computation and non-deterministically chooses

another computation to proceed from the ones that were passed as argument to amb. In case there are

no more computations left, the program aborts.

The following program computes a list of coordinates that make up the pipe path.

5.2. PROGRAMMING TECHNIQUES 55

(define (explore c d n fn? visited-cs)
(if (= n 0)

(reverse (cons c visited-cs))
(if (fn? c visited-cs)

(explore (amb (neighbors c d)) d (- n 1) fn? (cons c visited-cs))
(fail))))

(define (connect-blocks c d r n fn?)
(pipe (explore c d n fn? (list)) r))

This program uses neighbors to generate the next coordinates on the path, which correspond to

the possible computations (note the use of surrounding amb); and the parameter fn? is a function that

implements the design requirements, such that if this predicate fails, the computation will fail. Finally,

the connect-blocks is another example of the coordinate generators and tessellators design pattern,

combining explore, which calculates the coordinates of the pipe path, with pipe, which creates a

sequence of pipes and spheres given a list of coordinates. With this generic algorithm, it is easy to im-

plement the design requirements for Figure 5.10 using, for example, an anonymous function (lambda):

(connect-blocks
(xyz 0 0 0) 4 1 30
(lambda (c visited-cs)

(and (not (visited? c visited-cs)) (< (xyz-r c) 10))))

Using the coordinate generators and tessellators design pattern, and higher-order functions, it is

simple to implement different variations, simply by replacing pipewith another tessellator or by replac-

ing the lambda function with different design requirements (Figure 5.11, Figure 5.12, and Figure 5.13).

Figure 5.11: Blocks in sphere Figure 5.12: Tubes in cube Figure 5.13: Tubes in cylinder

56 CHAPTER 5. PROGRAMMING PARADIGMS & TECHNIQUES

6Multiple Frontends and

Backends

6.1 Portability

Rosetta has several advantages over other GD languages, such as, the ability to provide multiple PLs

and multiple CAD applications, the multitude of programming paradigms and rich linguistic features,

and the ability to overcome several limitations of current CAD technology. These design decisions have

a very strong impact, for example, in program portability. Even though there are millions of AutoLISP

scripts on the Internet, they are useless outside the AutoCAD family unless they are rewritten in a dif-

ferent PL, which implies learning that PL, learning a new set of primitives, and possibly overcoming

several of the limitations of either that PL or the respective CAD application. The same happens with

Rhinoceros3D and the thousands of RhinoScript programs also available on the Internet. Because Rosetta

supports several PLs as frontend, it is possible to reuse scripts written in different PLs and to use scripts

across different PLs. For example, a program in JavaScript can use an AutoLISP script. Moreover, all

frontends share the same set of primitives, therefore, designers can learn new PLs without having to

worry about a new API, thus reducing the learning curve of that PL.

The same can be said about CAD applications. Traditionally, moving from one CAD application

to another entails changing programming environments and learning a new PL which, in some cases,

is not the PL the designer wanted. An effective change of CAD application forces designers to either

discard or translate the incompatible programs, but either option is inadequate. However, with Rosetta,

designers can change CAD applications and reuse their previous programs without additional modifi-

cations. This means that designers are no longer locked-in to a particular CAD application but it also

has the advantage that users of different CAD applications can use the Rosetta program as a medium

for exchanging models. As a result, they avoid the problematic conversion between the file formats

supported by those particular CAD applications.

At first glance, it would be expected that in order to be a portable environment Rosetta could only

provide the functionality that was supported by all backends. For example, Rosetta could only provide

the sweep operation if both AutoCAD and Rhinoceros3D supported it. This is not entirely true because

Rosetta emulates several functionality that is partially supported by CAD applications. For example,

Rosetta is capable of performing Boolean operations of non-intersecting shapes in both AutoCAD and

Rhinoceros3D, even though this functionality is not directly provided by Rhinoceros3D (Section 3.7). This

also means that designers can use Rosetta only to overcome the limitations of their CAD application. In

58 CHAPTER 6. MULTIPLE FRONTENDS AND BACKENDS

the end, the functionality provided by Rosetta, which consists of the portable and emulated functionality,

is more than enough for complete GD. In fact, it has been reported in several cases that it is faster

to develop geometric complex programs in Rosetta than to manually create that geometry in a CAD

application, showing that Rosetta can also be considered a tool for rapid prototyping. Moreover, Rosetta

programs have the advantage of being parametric, while geometric models of CAD applications are not.

6.2 TikZ

As mentioned before, Rosetta can be extended with additional backends and frontends. In order to

demonstrate this capability, a backend for TikZ (Section 2.2.9) was implemented. TikZ is a 2D graphics

library for LATEX. Even though CAD applications can render both 2D and 3D objects, TikZ is a better

choice for rendering illustrations (Figure 6.1) for technical articles and research papers. Moreover, with

an additional library, called Sketch, it is even possible to create 3D illustrations. Rosetta was designed to

support multiple backends, therefore, it was very simple to add support for TikZ: this backend merely

has to implement a set of procedures that create shapes and apply transformations. Moreover, programs

that existed before this backend was created are automatically compatible without additional changes.

Figure 6.1: TikZ example

6.3 RosettaFlow

The frontends that are currently provided by Rosetta are all TPLs. However, Rosetta does not restrict the

use of visual approaches or even the integration of external applications in the programming environ-

ment. In order to prove this point, a prototype of a VPL was implemented as a standalone application,

using .NET. This VPL, called RosettaFlow, was inspired in Grasshopper and GenerativeComponents. Simi-

larly to these VPLs, RosettaFlow programs consist of iconic elements, which represent geometric shapes

6.3. ROSETTAFLOW 59

and transformations, associated by dataflow connectors. Because RosettaFlow is a standalone applica-

tion, it is difficult to take advantage of the linguistic tools provided by Racket, such as the macro system.

Therefore, RosettaFlow is responsible for (1) compiling the dataflow program into Racket code; (2) start-

ing a separate process with the Racket environment; and (3) loading the compiled Racket code into this

environment. Moreover, similarly to Grasshopper (Section 2.3.1), whenever designers drag a slider or

change the program, the model is immediately updated. Figure 6.2 shows a RosettaFlow program that

subtracts two spheres whose radii are controlled by sliders. Moving the second slider from left to right

results in a larger portion of the spheres to intersect and a larger portion to be subtracted.

60 CHAPTER 6. MULTIPLE FRONTENDS AND BACKENDS

Figure 6.2: Changing sliders in RosettaFlow causes the geometric model to update in real-time

7Practical Experiments

7.1 TPLs vs. VPLs

The previous sections presented an evaluation based on the development of GD programs and extension

of the programming environment. This section completes this evaluation with practical experiments,

namely, a comparison of TPLs and VPLs, and conversion and analysis of AutoLISP programs.

Rosetta is a direct descendant of VisualScheme, maintaining the same pedagogical concerns, but with

a different approach: Racket, formerly called Scheme, is still used for the general audience of designers

that do not have a background in Computer Science. However, additional PLs are included and multiple

CAD applications are provided. An additional advantage is the automatic compatibility of the chosen

language with the programming environment and the portability of the programs written in it.

Leitão et al. (Leitão et al., 2012b) compares TPLs and VPLs using VisualScheme and Grasshopper as

representative of TPLs and VPLs, respectively. This comparison is based on a practical experiment to test

program maintenance and adaptability consisting of two tasks, namely, (1) writing a program to create

cylindrical towers (Figure 7.1); and (2) modifying that program to create conical towers with sinusoidal

variations (Figure 7.2). Despite being one of the most popular GD languages, this comparison identifies

several problems in Grasshopper and clearly shows the advantages of VisualScheme over that PL. Being a

descendant of VisualScheme, Rosetta inherits these advantages.

Figure 7.1: First task of the experiment Figure 7.2: Second task of the experiment

There were several Grasshopper solutions for this experiment (Figure 7.3). In general, these solutions

show redundancy resultant of extensive copy/paste and the amalgam of wire connections makes the code

62 CHAPTER 7. PRACTICAL EXPERIMENTS

difficult to understand, leading to future maintenance problems (Davis, Burry, & Burry, 2011).

Figure 7.3: Grasshopper solutions for first (on the left) and second (on the right) tasks, with changes
highlighted in orange

The VisualScheme solution for the first task (Figure 7.4) is more analytic and modular than the

Grasshopper ones. One advantage of VisualScheme, and modern TPLs in general, is that concepts that are

independent of particular problems, such as the linear variation, can be reused in different contexts.

This is more difficult to do in Grasshopper because of the limited abstraction mechanisms. An important

advantage of this approach is that each additional definition has an applicability that transcends the

actual problem it is addressing, thus promoting code reuse. Higher-order functions also contribute to

code maintainability by facilitating the implementation of alternative behaviors.

The VisualScheme solution for the second task (Figure 7.5) adds sinusoidal variations (sinusoidal),

and linear composition of functions (+fx). The only part of the first solution that was actually modified

was the function spiral-points to combine the linear and sinusoidal variations.

Compared to the Grasshopper solutions, the VisualScheme solution was adapted from the first to the

second task with very little, localized modifications. In fact, it is still possible further improve the Visu-

alScheme solution by delegating the variations in spiral-points to parameters so that new variations

7.1. TPLS VS. VPLS 63

(define (linear a b)
(lambda (t) (+ a (* t (- b a)))))

(define (variation f n)
(map f (range 1 n)))

(define (spiral-points r0 r1 phi0 phi1 h n)
(map cyl

(variation (linear r0 r1) n)
(variation (linear phi0 phi1) n)
(variation (linear 0 h) n)))

(define (spirals r0 r1 h s t n)
(map (lambda (phi)

(spiral-points r0 r1 phi (+ phi (* 2 pi t)) h n))
(variation (linear 0 (* 2 pi)) s)))

(define (spirals-cs r0 r1 h s t n)
(append (spirals r0 r1 h s t n)

(spirals r0 r1 h s (- t) n)))

(define (spirals-mesh css r)
(map (lambda (cs) (sweep (spline cs) (circle r))) css))

Figure 7.4: VisualScheme solution for the first task of the experiment

(define (sinusoidal d omega)
(lambda (t) (* d (sin (* 2 pi omega t)))))

(define (+fx f g)
(lambda (x) (+ (f x) (g x))))

(define (spiral-points r0 r1 phi0 phi1 h d omega n)
(map cyl

(variation (+fx (linear r0 r1) (sinusoidal d omega)) n)
(variation (linear phi0 phi1) n)
(variation (linear 0 h) n)))

Figure 7.5: VisualScheme modifications for the second task of the experiment

64 CHAPTER 7. PRACTICAL EXPERIMENTS

can be added without even changing this function. Unfortunately, Grasshopper cannot do the same.

The VisualScheme solutions are compatible with Rosetta. But in Rosetta, it is still possible to further

simplify these solutions using parametric elements (Section 3.3 and Section 4.6). Instead of calculating

the coordinates for the spirals that make up the tower, the parametric functions of the spirals are used.

The following program shows a possible Rosetta solution for the first task using parametric functions.

Note that (1) the parameter n used to specify the number of coordinates for the splines was removed,

(2) most functions produce other functions, or lists of functions, as result, and (3) the function sweep

does not receive a spline as before, but a parametric function instead. In essence, the sampling strategy

was removed, because it is automatically handled by Rosetta.

(define (linear a b)
(lambda (x) (+ a (* x (- b a)))))

(define (spiral-points r0 r1 phi0 phi1 h)
(lambda (x)

(cyl
((linear r0 r1) x)
((linear phi0 phi1) x)
((linear 0 h) x))))

(define (spirals r0 r1 h s t)
(for/list ((phi (: < 0 .. < s > .. 2pi >)))

(lambda (x)
((spiral-points r0 r1 phi (+ phi (* 2pi t)) h) x))))

(define (spirals-fns r0 r1 h s t)
(append (spirals r0 r1 h s t)

(spirals r0 r1 h s (- t))))

(define (spirals-mesh fns r)
(for/list ((fn fns))

(sweep (function-curve fn) (circle r))))

7.2 Program Conversion and Analysis

In addition to this experiment, several AutoLISP projects have been converted to Rosetta. After the

conversion, Rosetta detected several problems present in the original AutoLISP code that had not been

detected. For example, in AutoLISP, local variables must be declared in the function parameter list. This

is a tedious task and failure to do it results in other problems that are very difficult to detect. Unlike

AutoLISP, in Rosetta local variables must always be declared beforehand, therefore, the static analysis

detected at compile time several situations of undeclared variables in the converted programs.

The static analysis is also present in the AutoLISP frontend. There is an AutoLISP library used in

the course Programação e Computação para Arquitectura at Instituto Superior Técnico that is supplied by the

teaching staff for the students to use for the project of this course. Even though this library has been

used for many years, the static analysis was still capable of detecting errors that students never found.

7.2. PROGRAM CONVERSION AND ANALYSIS 65

Another problem detected by the static analysis was name clash. It is very common for users work-

ing on the same project to choose the same names for variables or functions. AutoLISP does not help

with collaborative development because (1) there is no concept of modular compilation unit that can be

dissociated from the rest of the program; and (2) names used in variables and functions can be rede-

fined, such that if two objects have the same name the second overwrites the first. Rosetta overcomes

this problem with modules, and within a module there can be no two objects with the same name.

It was also detected that some AutoLISP programs were trying to emulate linguistic constructs that

are not provided by this PL, such as, closures. Because AutoLISP implements dynamic scope, the use of

anonymous functions can lead to problems called the upward and downward funarg problems. Rosetta

implements lexical closures, therefore, these problems do not apply. Rosetta implements also macros that

allow users to define new linguistic constructs even when the PL does not provide them. This means

that with Rosetta users can write programs but also extend the PL they use to write those programs.

Finally, Rosetta supports large and complex projects. As an example, consider the Turning Torso

(Figure 7.6), whose program has 452 lines of RosettaRacket code and makes extensive use of the func-

tionality provided by Rosetta, namely, (1) shapes, such as, arc, cone frustum, cylinder, line, and spline;

(2) Boolean operations, namely, intersection, subtraction, and union; (3) geometric transformations, such

as, translation, rotation, join, loft, and sweep; (4) cylindrical and polar coordinate systems; (5) lists, as

the main data structure; (6) linguistic features, namely, global variables, functions, list comprehensions,

function mappings, anonymous functions, recursion and iteration, higher-order functions, and function

currying; and (7) the coordinate generators and tessellators design pattern.

Figure 7.6: Turning Torso with different parametrizations

Apart from the Turning Torso and the figures that illustrate this thesis, several other GD programs

were written to demonstrate and test the capabilities of Rosetta, some of which are shown in the follow-

ing catalog (Figure 7.7 and Figure 7.8).

66 CHAPTER 7. PRACTICAL EXPERIMENTS

Figure 7.7: Catalog of Rosetta programs

7.2. PROGRAM CONVERSION AND ANALYSIS 67

Figure 7.8: Catalog of Rosetta programs (continuation)

68 CHAPTER 7. PRACTICAL EXPERIMENTS

8Conclusions

8.1 Conclusions

Coding has always been present in the architectural design process, for example, in statutory, represen-

tation, and production codes. Computers popularized and extended the notion of coding in architecture,

suggesting that coding could be used to represent algorithmic processes that express architectural con-

cepts or solve architectural problems. As a result, increasingly more architects and designers are aware

of digital applications and programming techniques, and are adopting these methods in a modern ar-

chitectural form called Generative Design (GD). In GD, designers write programs that when executed

produce geometric models. These programs are usually controlled by a large set of parameters, such

that designers can experiment with different variations of a geometric model simply by changing those

parameters and without modifying the program.

The choice of a good Programming Language (PL) reduces dramatically the effort in writing GD

programs. However, the most used PLs, such as, C, C++, Java, and C#, are inadequate because they are

general purpose languages, providing few predefined abstractions for GD.

Moreover, the survey of the most used GD systems (Chapter 2) showed that the most popular

TPLs for GD, such as, AutoLISP, RhinoScript, and GDL, are old, obsolete, provide little domain-specific

features, and make it difficult to define them. As a result, they are also inadequate choices for GD. On

the other hand, VPLs for GD such as, Grasshopper and GenerativeComponents, enforce a very restricted

programming paradigm and programs scale poorly with size and complexity, making them suitable

mainly for small throwaway prototypes. And CAD applications are based on interactive technology

and impose their own programming environments and languages, making users locked-in to specific

CAD families and introducing correctness, performance, and portability, problems. This scenario clearly

shows that even though there is a great need for a modern programming environment for GD, the

current and most used tools are unsuitable choices.

In order to overcome this problem, this thesis argued that a modern programming environment

should (1) be pedagogic; (2) provide domain-specific features; (3) provide multiple PLs; and (4) provide

multiple CAD applications. Moreover, this thesis proposed a set of design principles (Chapter 3), which

include, (1) portability, (2) parametric elements, (3) functional operations, (4) dimension independent

operations, (5) algebra of sets, (6) algebraic equivalences, (7) traceability, and (8) immediate feedback.

70 CHAPTER 8. CONCLUSIONS

Finally, this thesis argued that a successful programming environment for GD must implement these

principles. Because currently there are no GD systems that implement these principles with the proper

support for GD, a new programming environment, called Rosetta, was created.

Rosetta (Chapter 4) is modern programming environment designed to overcome the problems of

current GD systems. To this end, Rosetta provides (1) multiple frontend PLs, which can be used in-

terchangeably to write portable GD programs and to reuse existing software; (2) multiple CAD appli-

cations, which generate identical geometry, thus freeing designers from vendor lock-in, allowing the

Rosetta programs to be used as an alternative to the file formats of these applications, and allowing stu-

dents to learn more than one CAD package; (3) multiple programming paradigms (Chapter 5), which

allow designers to more closely match the computational method with the design task, thus simpli-

fying the implementation effort, as shown in the examples of coordinate generators and tessellators

design pattern and automated rendering; (4) modern linguistic features and programming techniques

(Chapter 5), such as, higher-order and anonymous functions (balcony example), monads (Lego panda

example), and non-deterministic programming (pipes inside a sphere example); (5) visual input wid-

gets that make it simple to adjust GD programs interactively and in real-time. Moreover, Rosetta was

designed to be a pedagogic programming environment, providing a choice of simple and advanced pro-

gramming concepts, making it a suitable platform for designers to study programming in a controlled

environment, with the additional advantage that geometric concepts are independent of the chosen PL.

Currently provided backends include AutoCAD, Rhinoceros3D, and OpenGL. While AutoCAD and

Rhinoceros3D provide enough functionality for CAD programming, OpenGL was added for fast render-

ing and immediate feedback.

Currently provided frontends include AutoLISP, JavaScript, and RosettaRacket. They virtualize the

syntax of these PLs and use the macro system to compile programs written in these PLs to a compatible

environment in which they can interoperate. Moreover, this approach has the additional advantage

that these frontends can take advantage of the syntax checker and static debugger. For example, the

AutoLISP frontend can detect undeclared names, even though the original AutoLISP cannot.

Finally, Rosetta overcomes several limitations of current CAD technology, most of which arise from

the fact that CAD applications were designed for the interaction between a human and a computer.

These limitations are overcome by implementing well defined mathematical rules in the programming

environment. Moreover, Rosetta programs have a strong correlation between the program and the

model, providing traceability mechanisms that establish a relationship between the elements of the pro-

gram and those of the model and allow the designer to navigate in both directions. Immediate feedback

is provided by the OpenGL backend and visual widgets.

To evaluate these design principles, several GD programs were written that explore the multitude

of programming paradigms and techniques, showing the advantages of Rosetta over GD systems that

8.2. CURRENT AND FUTURE WORK 71

enforce a particular programming approach (Chapter 5). Moreover, a discussion was presented that

focused on the advantages of a portable programming environment that supported multiple frontends

and backends. To prove this point, the TikZ backend and the RosettaFlow frontend were implemented

(Chapter 6). Finally, this evaluation was completed with practical experiments, namely, a comparison

of TPLs and VPLs, and conversion and analysis of AutoLISP programs, including large and complex

projects, namely, the Turning Torso.

In summary, Rosetta is a modern programing environment for GD, designed to implement and

evaluate several design principles that this thesis argues as fundamental for successful GD. In seek

of this goal, current CAD technology has always been a difficult obstacle but Rosetta is the proof that

these problems have been overcome in a number of ways. In the end, Rosetta is merely a computational

manifestation of the principles and ideas argued in this thesis, and if the GD community and GD system

developers follow these principles, it is possible for GD to evolve in a successful and effective fashion

with good support from Computer Science and software.

8.2 Current and Future Work

At the moment, there are already students using Rosetta as a research platform for their M.Sc. theses. For

example, one student is linking Rosetta to CGAL (Fabri, Giezeman, Kettner, Schirra, & Schönherr, 1996)

in order to take advantage of the exact computation paradigm, thus avoiding the errors that result from

the limited precision numerical representations used in CAD applications. CGAL provides also several

interesting features including specialized data structures and geometric algorithms.

Another student is exploring fully detailed projects that model both macro objects, such as, walls

and windows, and micro objects, such as, door knobs, in the same project.

Moreover, Rosetta will also be used to teach programming to architecture students in the course

Programação e Computação para Arquitectura at Instituto Superior Técnico, replacing the AutoLISP library

that has been used so far.

Regarding the future development of Rosetta, there are several possible paths, such as, (1) explore

a full parametric approach to GD, in which all objects are parametric instead of geometric; (2) link

Rosetta with a geometric kernel, such as ACIS, which implements several geometric algorithms with

high performance; (3) link Rosetta with a ray-tracer to have finer control over rendering and minimize

dependency on CAD applications; (4) design a syntax for a new frontend to further simplify GD pro-

gramming; and (5) explore other adaptive sampling strategies for parametric elements.

72 CHAPTER 8. CONCLUSIONS

Bibliography

Aiken, A., Williams, J., & Wimmers, E. (1993, September). The FL project: The design of a functional language

(Tech. Rep.). San Jose, CA, USA: IBM Almaden Research Center.

Aish, R., & Woodbury, R. (2005). Multi-level interaction in parametric design. In A. Butz, B. Fisher,

A. Krüger, & P. Olivier (Eds.), Smart Graphics, 5th international symposium, SG 2005, Frauenwörth

cloister, Germany, August 22-24, 2005, Proceedings (Vol. 3638, p. 151-162). Berlin, Germany: Springer

Verlag.

Autodesk. (2006). 3Ds Max MAXScript essentials (Second ed.). Elsevier Focal Press.

Backus, J., Williams, J., Wimmers, E., Lucas, P., & Aiken, A. (1989, October). FL language manual: Parts 1

and 2 (Tech. Rep. No. IBM Research Report RJ 7100). San Jose, CA, USA: IBM Almaden Research

Center.

Berman, M. (1994, February). Does Scheme enhance an introductory programming course?: Some pre-

liminary empirical results. SIGPLAN Notices, 29(2), 44-48.

Bicalho, A., & Feltman, S. (2000). Mastering MAXScript and the SDK for 3D studio max. USA: Sybex.

Cabecinhas, F. (2010). A high-level pedagogical 3D modeling language and framework. Unpublished master’s

thesis, Instituto Superior Técnico (IST), Technical University of Lisbon (UTL), Lisboa, Portugal.

Chandler, R. (1990). A recursive technique for rendering parametric curves. Computers & Graphics, 14(3/4),

477-479.

Chen, N. (1992). High school computing: The inside story. The Computing Teacher, 19(8), 51-52.

Chok, K. (2011, October). Progressive spheres of innovation: Efficiency, communication and collaboration.

In J. Johnson, J. Taron, V. Parlac, & B. Kolarevic (Eds.), Acadia 11: Integration through computation

[Proceedings of the 31st annual conference of the Association for Computer Aided Design in Architecture

(ACADIA)] (p. 234-241). DE, USA: Association for Computer Aided Design in Architecture.

Cunningham, S., & Bailey, M. (2001, February). Lessons from scene graphs: Using scene graphs to teach

hierarchical modeling. Computers & Graphics, 25(4), 703-711.

73

74 BIBLIOGRAPHY

Davis, D., Burry, J., & Burry, M. (2011). Untangling parametric schemata: Enhancing collaboration through

modular programming. In P. Leclercq, A. Heylighen, & G. Martin (Eds.), CAAD futures 2011:

Designing together (p. 55-78). Liège, Belgium: Les Editions de l’Université de Liège, Liège, Belgium.

Deursen, A. van, Klint, P., & Visser, J. (2000, June). Domain-specific languages: An annotated bibliography.

SIGPLAN Notices, 35(6), 26-36.

Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., & Schönherr, S. (1996, May). The CGAL kernel: A basis

for geometric computation. In M. Lin & D. Manocha (Eds.), Applied computational geometry: To-

wards geometric engineering Proceedings (WACG’96), Philadelphia, May, 27th-28th (p. 191-202). Berlin,

Germany: Springer-Verlag.

Felleisen, M., Findler, R., Flatt, M., & Krishnamurthi, S. (2004a, July). The structure and interpretation of

the Computer Science curriculum. Journal of Functional Programming, 14(4), 365-378.

Felleisen, M., Findler, R., Flatt, M., & Krishnamurthi, S. (2004b). The TeachScheme! project: Computing

and programming for every student. Computer Science Education, 14(1), 55-77.

Hudak, P. (1998). Domain specific languages. In Handbook of programming languages, Volume III: Little

languages and tools (p. 39-60). Indianapolis, IN, USA: MacMillan.

Jones, R., & Lins, R. (1996). Garbage collection: Algorithms for automatic dynamic memory management. Eng-

land, UK: Wiley.

Killian, A. (2006). Design innovation through constraint modeling. International Journal of Architectural

Computing, 4(1), 87-105.

Kolarevic, B. (2000, October). Digital architectures. In M. Clayton & G. de Velasco (Eds.), Eternity, infinity

and virtuality in architecture [Proceedings of the 22nd annual conference of the Association for Computer

Aided Design in Architecture (ACADIA)] (p. 251-256). DE, USA: Association for Computer Aided

Design in Architecture.

Krause, J. (2003, December). Reflections: The creative process of generative design in architecture. In

C. Soddu (Ed.), GA2003 Proceedings of the 6th international conference on generative art.

Krüger, M., Duarte, J. P., & Coutinho, F. (2011). Decoding De re aedificatoria: Using grammars to trace

Alberti’s influence on Portuguese classical architecture. Nexus Network Journal, 13, 171-182.

Leitão, A., Cabecinhas, F., & Martins, S. (2010, September). Revisiting the architecture curriculum: The

programming perspective. In G. Schmitt, L. Hovestadt, & L. Van Gool (Eds.), Future cities: Proceed-

ings of the 28th conference on Education in Computer Aided Architectural Design in Europe (p. 81-88).

Zurich, Switzerland: vdf Hochschulverlag ETH Zurich.

BIBLIOGRAPHY 75

Leitão, A., & Santos, L. (2011, September). Programming languages for generative design: Visual or

textual? In Respecting fragile places: Proceedings of the 29th conference on Education in Computer

Aided Architectural Design in Europe (p. 549-557). Brussels: eCAADe (Education and Research in

Computer Aided Architectural Design in Europe) and UNI Ljubljana, Faculty of Architecture.

Leitão, A., Santos, L., & Lopes, J. (2012a, September). Collaborative digital design. In Digital physicality

— physical digitality [proceedings of the 30th conference on education in Computer Aided Architectural

Design in Europe].

Leitão, A., Santos, L., & Lopes, J. (2012b, March). Programming languages for generative design: A

comparative study. International Journal of Architectural Computing, 10(1), 139-162.

Lopes, J., & Leitão, A. (2011a). Essential language features for generative design. In Iii simpósio de in-

formática (inforum 2011). Coimbra, Portugal: Departamento de Engenharia Informática da Univer-

sidade de Coimbra.

Lopes, J., & Leitão, A. (2011b, October). Portable generative design for CAD applications. In J. Johnson,

J. Taron, V. Parlac, & B. Kolarevic (Eds.), Acadia 11: Integration through computation [proceedings of the

31st annual conference of the association for computer aided design in architecture (acadia)] (p. 196-203).

DE, USA: Association for Computer Aided Design in Architecture.

Maeda, J. (1996). Design by numbers. Cambridge, MA, USA: MIT Press.

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Measuring the effectiveness of error messages de-

signed for novice programmers. In T. Cortina, E. Walker, L. King, & D. Musicant (Eds.), Proceed-

ings of the 42nd ACM technical symposium on Computer Science education (p. 499-504). New York, NY,

USA: ACM.

McCarthy, J. (1963). A basis for a mathematical theory of computation. Computer Programming and Formal

Systems, 33-70.

Menges, A. (2006). Instrumental geometry. Architectural Design, 76(2), 42-53.

Miller, N. (2011). The Hangzhou tennis center: A case study in integrated parametric design. In J. Cheon,

S. Hardy, & T. Hemsath (Eds.), Proceedings of the 2011 Association for Computer Aided Design in Ar-

chitecture (ACADIA) Regional conference. DE, USA: Association for Computer Aided Design in

Architecture.

Moses, J. (1970, July). The function of FUNCTION in LISP or why the FUNARG problem should be called

the environment problem. SIGSAM Bulletin(15), 13-27.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Gool, L. V. (2006). Procedural modeling of buildings. In

ACM SIGGRAPH 2006 papers (p. 614-623). New York, NY, USA: ACM.

76 BIBLIOGRAPHY

Myers, B. (1990, March). Taxonomies of visual programming and program visualization. Journal of Visual

Languages and Computing, 1(1), 97-123.

Paoluzzi, A., & Pascucci, V. (2003). Geometric programming for computer aided design. England, UK: Wiley.

Paoluzzi, A., & Sansoni, C. (1992). Programming language for solid variational geometry. Computer-Aided

Design, 24(7), 349-366.

Penttilä, H. (2003, January). Architectural-IT and educational curriculums: An European overview. Inter-

national Journal of Architectural Computing, 1(1), 102-111.

Rawls, R., & Hagen, M. (1998). AutoLISP programming: Principles and techniques. IL, USA: Goodheart-

Willcox.

Reas, C., & Fry, B. (2010). Getting started with Processing. O’Reilly.

Rocker, I. (2006). When code matters. Architectural Design, 76(4), 16-25.

Rossum, G. van, & Drake, F. (2003). The Python language reference manual. UK: Network Theory Limited.

Rutten, D. (2007). RhinoscriptTM101 for Rhinoceros 4.0. Seattle, WA, USA: Robert McNeel Associates.

Shea, K., Aish, R., & Gourtovaia, M. (2005, March). Towards integrated performance-driven generative

design tools. Automation in Construction, 14(2), 253-264.

Stouffs, R., & Chang, W.-T. (2010, July). Representational programming for design analysis. In W. Tizani

(Ed.), Computing in Civil and Building Engineering: Proceedings of the international conference (p. 351-

359). Notthingham, UK: Nottingham University Press.

Sutherland, I. (1963). Sketchpad: A man-machine graphical communication system. In E. C. Johnson (Ed.),

Proceedings of the May 21-23, 1963, spring joint computer conference (Vol. 23, p. 329-346). Baltimore,

MD, USA: Spartan Books Inc.

Terzidis, K. (2003). Expressive form: A conceptual approach to computational design. London, UK and New

York, NY, USA: Spon Press.

Watson, A. (2009). GDL handbook: A comprehensive guide to creating powerful ArchiCAD objects. New

Zealand: Cadimage Solutions.

Wilkins, M., Kazmier, C., & Osterburg, S. (2005). MEL scripting for Maya animators. Morgan Kaufmann.

Author Index

Aiken, A., 8, 73
Aish, R., 1, 16, 73, 76
Autodesk, 7, 73

Backus, J., 8, 73
Bailey, M., 9, 73
Berman, M., 11, 73
Bicalho, A., 73
Burry, J., 62, 74
Burry, M., 62, 74

Cabecinhas, F., 5, 8, 10, 11, 73, 74
Chandler, R., 39, 73
Chang, W.-T., 14, 76
Chen, N., 11, 73
Chok, K., 14, 73
Coutinho, F., 1, 74
Cunningham, S., 9, 73

Davis, D., 62, 74
Deursen, A. van, 2, 74
Drake, F., 9, 76
Duarte, J. P., 1, 74

Fabri, A., 71, 74
Felleisen, M., 11, 74
Feltman, S., 73
Findler, R., 11, 74
Fisler, K., 11, 75
Flatt, M., 11, 74
Fry, B., 9, 76

Giezeman, G.-J., 71, 74

Gool, L. V., 16, 75
Gourtovaia, M., 1, 76

Haegler, S., 16, 75
Hagen, M., 76
Hudak, P., 2, 74

Jones, R., 26, 74

Kazmier, C., 16, 76
Kettner, L., 71, 74
Killian, A., 1, 74
Klint, P., 2, 74
Kolarevic, B., 1, 74
Krüger, M., 1, 74
Krause, J., 1, 74
Krishnamurthi, S., 11, 74, 75

Leitão, A., XIII, XV, 11, 14, 61,
74, 75

Lins, R., 26, 74
Lopes, J., XIII, XV, 75
Lucas, P., 8, 73

Maeda, J., 1, 75
Marceau, G., 11, 75
Martins, S., 11, 74
McCarthy, J., 54, 75
Menges, A., 16, 75
Miller, N., 14, 75
Moses, J., 5, 75
Müller, P., 16, 75
Myers, B., 12, 76

Osterburg, S., 16, 76

Paoluzzi, A., 8, 76
Pascucci, V., 76
Penttilä, H., 12, 76

Rawls, R., 76
Reas, C., 9, 76
Rocker, I., 1, 76
Rossum, G. van, 9, 76
Rutten, D., 6, 76

Sansoni, C., 8, 76
Santos, L., XIII, 14, 75
Schirra, S., 71, 74
Schönherr, S., 71, 74
Shea, K., 1, 76
Stouffs, R., 14, 76
Sutherland, I., 23, 76

Terzidis, K., 1, 76

Ulmer, A., 16, 75

Visser, J., 2, 74

Watson, A., 7, 76
Wilkins, M., 16, 76
Williams, J., 8, 73
Wimmers, E., 8, 73
Wonka, P., 16, 75
Woodbury, R., 16, 73

77

78 AUTHOR INDEX

ARosettaLang

RosettaLang1 is a website created to support Rosetta, providing documentation, tutorials, examples, and

a mailist list (Figure A.1 and Figure A.2).

Figure A.1: RosettaLang catalog

1http://code.google.com/p/rosetta-lang

http://code.google.com/p/rosetta-lang

80 APPENDIX A. ROSETTALANG

Figure A.2: RosettaLang documentation

Index

.NET, 9, 58
3ds Max, 7, 17

ACIS, 71
ArchiCAD, 7, 17
AutoCAD, 2, 5, 6, 9, 17, 20, 23,

27, 28, 31, 32, 34, 36, 38,
41, 47, 57, 70

AutoLISP, 2, 5, 6, 23, 24, 31, 37,
38, 41, 57, 61, 64, 65,
69–71

BASIC, 7
Blender, 9, 17

C, 2, 6–9, 12, 69
C++, 2, 8, 9, 69
C#, 2, 16, 24, 69
CGA, 14, 16, 17
CGAL, 71
CityEngine, 16
Common LISP, 6
CPAN, 24

DrRacket, 33, 37

FL, 8
Fortran, 6

GDL, 2, 7, 23, 69

GenerativeComponents, 5, 14,
16, 23, 58, 69

Grasshopper, 2, 5, 12, 14–16, 23,
27–29, 41, 50, 51, 58, 59,
61, 62, 64, 69

Haskell, 45
Hypergraph, 14, 16

Java, 2, 6, 8, 9, 24, 69
JavaScript, 31, 32, 37, 38, 57, 70
JIT, 33

Lego, 52, 53
LISP, 5–7

MAXScript, 7, 8
Maya, 16, 17
MEL, 16

OpenGL, 7, 9, 10, 34–37, 41, 42,
70

Pascal, 6
Perl, 9, 24
PLaSM, 5, 8, 9, 17, 23, 45
POV-Ray, 10
Processing, 9
Python, 9, 10, 16, 20

Racket, 33, 37, 38, 43, 50, 59, 61

Rhinoceros3D, 2, 6, 9, 14, 17, 23,
27, 28, 31, 34–36, 38, 41,
57, 70

RhinoScript, 2, 5, 6, 23, 24, 31, 51,
57, 69

Rosetta, 2, 3, 31–34, 36–39, 41, 43,
45–51, 57, 58, 61, 64–67,
70, 71, 77

RosettaFlow, 58–60, 71
RosettaLang, 77, 78
RosettaRacket, 34, 35, 37, 38, 43,

65, 70

Scala, 50
Scheme, 9, 11, 12, 33, 61
SDL, 10

TikZ, 10, 11, 17, 21, 58, 71
TPL, 5, 12, 14, 16, 23, 58, 61, 62,

69, 71
Turning Torso, 65, 71

VBScript, 6
VisualBasic, 7
VisualBasic .NET, 7
VisualLISP, 5
VisualScheme, 2, 11, 12, 45,

61–64
VPL, 12, 14, 16, 23, 58, 61, 69, 71

81

82 INDEX

	Generative Design
	Coding in Architecture
	Generative & Parametric Design
	Programming Languages & Environments

	Related Work
	Programming Languages & Generative Design
	Textual Programming Languages
	AutoLISP
	RhinoScript
	GDL
	MAXScript
	PLaSM
	Processing
	Python
	SDL
	TikZ
	VisualScheme
	Textual Language Analysis

	Visual Programming Languages
	Grasshopper
	GenerativeComponents
	CGA
	Hypergraph
	GD System Analysis

	Modern Programming Environment
	Design Principles
	Portability
	Parametric Elements
	Functional Operations
	Dimension Independent Operations
	Algebra of Sets
	Algebraic Equivalences
	Traceability
	Immediate Feedback

	Rosetta
	Design Requirements
	Software Architecture
	Editor
	Backends
	AutoCAD and Rhinoceros3D
	OpenGL

	Frontends
	RosettaRacket
	AutoLISP and JavaScript

	Shapes and Operations
	Traceability
	Visual Widgets

	Programming Paradigms & Techniques
	Multi-Paradigm Programming Language
	Example 1: Tessellators and Coordinate Generators
	Example 2: Automated Rendering

	Programming Techniques
	Example 1: Combination of Programming Techniques
	Example 2: Higher-Order and Anonymous Functions
	Example 3: Monads
	Example 4: Non-Deterministic Programming

	Multiple Frontends and Backends
	Portability
	TikZ
	RosettaFlow

	Practical Experiments
	TPLs vs. VPLs
	Program Conversion and Analysis

	Conclusions
	Conclusions
	Current and Future Work

	RosettaLang

