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1Modern Programming for

Generative Design

1.1 Generative Design

Throughout architecture history, coding has been a means of expressing rules, constraints, and systems,

that are relevant for the architectural design process. Among other meanings (e.g., statutory, represen-

tation, and production codes), coding in architectural design can be understood as the representation of

algorithmic processes that express architectural concepts or solve architectural problems. Even before

the invention of digital computers, algorithms were applied and incorporated in the design process, as

documented in the De re aedificatoria (Krüger, Duarte, & Coutinho, 2011).

Computers popularized and extended the notion of coding in architecture (Rocker, 2006) by sim-

plifying the implementation and computation of algorithmic processes. As a result, increasingly more

architects and designers are aware of digital applications and programming techniques, and are adopt-

ing these methods as generative tools for the derivation of form (Kolarevic, 2000). Even though the

improvements of direct manipulation in CAD applications led many to believe that programming was

unnecessary, the work of Maeda shows the exact opposite (Maeda, 1996).

Computational design methods allow automation of the design process and extension of the stan-

dard features of CAD applications (Killian, 2006), thus transcending their limitations (Terzidis, 2003).

As a result, CAD software shifts from a representation tool to a medium for algorithmic computation,

from which architecture can emerge.

The application of computational methods to design architectural structures or objects is called

Generative Design (Krause, 2003). In other words, in Generative Design (GD), designers write programs

that when executed produce geometric models.

However, in some cases, GD programs have little correlation between inputs and outputs. As a

result, it is difficult, and in some cases impossible, to predict which inputs produce the desired out-

puts. This can be overcome by introducing constraints and parameters in GD programs, resulting in

a constrained form of GD called parametric design (Shea, Aish, & Gourtovaia, 2005). Having stronger

correlation between program inputs and outputs means that designers can search for a particular output

simply by adjusting the input parameters, without modifying the program.

To apply computational methods, one must first translate the thought process into a computer pro-

gram by means of a Programming Language. A Programming Language (PL) is composed of (1) prim-
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itives, (2) combination mechanisms, and (3) abstraction mechanisms. The most used PLs, such as, C,

Cpp, Java, and Cs, are general purpose languages: they provide few predefined abstractions that are

not specific to any particular domain. On the other hand, domain-specific languages (Hudak, 1998;

Deursen, Klint, & Visser, 2000) provide several primitives and abstractions tailored to a given domain,

which together with adequate combination mechanisms can dramatically simplify the programming

effort.

Unfortunately, several of the most used languages for GD (GD languages), such as, AutoLISP,

RhinoScript, and GDL, provide little domain-specific features and make it difficult to define them. As a

result, these PLs are difficult to use for GD. PLs that provide domain-specific features can more closely

match the human thinking process and, therefore, are easier to use. Nevertheless, there are other con-

tributing factors, such as, the learning curve and the required amount of background knowledge, that

affect the success of a given PL within the GD community. And, ultimately, it is important to remember

that designers do not have the same programming skills as software engineers, therefore, GD languages

must be simple to learn and use.

Programming environments are equally important because they provide the tools necessary for

developing programs, namely, editors, compilers, debuggers, and interpreters. Without the proper sup-

port from the programming environment, a good PL is still difficult to use.

1.2 Related Work

In order to design a successful programming environment for GD, it is first necessary to understand

the features and limitations of current systems. To this end, a study was devised to analyze the most

used PLs for GD, including Textual PLs, namely, AutoLISP, RhinoScript, GDL, MAXScript, PLaSM,

Processing, Python, SDL, TikZ, and VisualScheme, and Visual PLs, namely, Grasshopper, Generative-

Components, CGA, and Hypergraph.

The study showed that the most popular TPLs for GD, such as, AutoLISP, RhinoScript, and GDL, are

old, obsolete, provide little domain-specific features, and make it difficult to define them. As a result,

they are also inadequate choices for GD. On the other hand, VPLs for GD, such as, Grasshopper and

GenerativeComponents, enforce a very restricted programming paradigm and programs scale poorly

with size and complexity, making them suitable mainly for small throwaway prototypes.

Table 1.1 summarizes the distinguishing features of the most used TPLs for GD. This table shows

that most TPLs are imperative, statement based, lexically scoped, dynamically typed, and function

based with higher-order functions. Iteration is performed mostly with loops and array indexes.

Table 1.3 and Table 1.4 summarize the geometric features supported by the most used CAD appli-

cations. Legend for these tables is in Table 1.2.
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Paradigm
Functional ! ! ! !

Imperative ! ! ! ! ! ! ! ! !

Object based !

Object oriented ! ! ! !

Declarative !

Syntax
Expression ! ! ! ! ! ! ! ! ! !

Statement % ! ! ! ! % ! ! ! %

Scope
Lexical ! ! ! ! ! ! ! !

Dynamic ! ! !

Type checking
Static !

Dynamic ! ! ! ! ! ! ! ! !

Eval ! ! % ! ! ! % ! ! !

Data structures
Lists ! % % % % ! ! ! % !

Arrays % ! ! ! ! ! ! ! % !

Tuples % % % % % ! % ! % !

Control structures
Case % ! % ! ! % ! % ! !

Repeat ! % ! % % % % % % %

For % ! ! ! ! % ! ! ! !

While ! ! ! ! ! % ! ! % %

Do while % ! ! ! % % % % % %

For-each ! ! % % % % % ! ! !

Return % ! ! ! % % ! ! % %

Break % ! % ! % % ! ! % %

Continue % % % ! % % ! ! % %

Iterators
Internal ! ! % ! % % ! ! ! !

External % % % % % % ! ! % %

Subroutine
Macro % % % % ! % % % ! !

Function ! ! % ! ! ! % ! % !

Procedure % ! ! % % % % % % %

Higher-order ! % % ! ! ! % ! % !

Table 1.1: Distinguishing features of GD languages
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Symbol Description
blank No match
X Match
≈ Partial match
∼ Possible match
≈ Partial match

Table 1.2: Survey legend
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2D shapes
Arc X X X X X
Elliptical arc X X X
Circle X X X X
Donut X
Ellipse X X X
Helix 2D [6] X X
Line segment X ∼ X X X
NGon X X ∼ X X
NURBS X X X X X
Rectangle X X X X X X
Spline X X ∼ X
Star
Text X X X X X

3D shapes
Box X X X X X X
Cone X X X X X
Cut cone X X
Cylinder X X X X X X X
Elliptical cone X X
Gengon [23] X
Helix 3D X
Mesh X X X X X X
Paraboloid [37] ≈ ≈ X X
Pipe [5] X X
Platonic solids ≈
Pyramid X X X X
Sphere X X X X
Spindle [16] X
Superellipsoid
Torus X X X X X
T. icosahedron X ≈
Wedge X X X

Table 1.3: Survey of shapes
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Operations
Bend X X X X X
Bevel X X X
Cross section X ≈ X
Extrusion X X X X X X X
Guided loft X X X
Intersection X X X X X X X
Lattice [19] X
Loft X X X
Mirror X X X X
Move X X X X X X X X
Offset X X X X
Path loft X X
Revolution X X X X X
Rotation X X X X X X X X
Scale X X X X X X X X
Skew X X
Slice X X X
Subtraction X X X X X X X
Sweep X X X X X
Thicken X X ∼ ≈
Union X X X X X X X

Other Objects
Particle systems X X X
Doors X ≈ X
Windows X ≈ X
Stairs X ≈
Railing X ≈
Wall X ≈ X
Foliage X ≈

Table 1.4: Survey of operations and other GD objects
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1.3 Design Principles

To overcome the problems of current GD systems, this thesis proposes to design and implement a pro-

gramming environment for GD that is pedagogic, with domain-specific features for GD, capable of

interacting with the most used CAD applications, and capable of supporting multiple PLs. This pro-

gramming environment should be simple to use in the sense that advanced programming concepts,

such as memory management, should be handled automatically by the environment so that designers

can focus on the design task and do not become distracted with implementation details. Moreover, a

successful programming environment for GD must meet a number of proposed design principles, in-

cluding (1) portability, (2) parametric elements, (3) functional operations, (4) dimension independent

operations, (5) algebra of sets, (6) algebraic equivalences, (7) traceability, and (8) immediate feedback.

The rest of this section details each design principle.

Programs written in the PLs provided by CAD applications are not portable because they execute

only in the family of CAD applications for which they were originally written. As a result, users are

locked-in to one family of CAD applications and they cannot reuse programs written for other families.

Reusability is also important because it allows software to adapt to new environments. Finally, unless

there is a portable programming environment tailored for GD that enables collaborative development

and allows the large number of existing GD programs to be reused, the GD community might never

grow.

GD languages support few parametric elements but they work mainly with geometric shapes. The

difference is that geometric shapes have a visual representation, whereas parametric elements can be

described mathematically by functions. Because CAD applications cannot handle functions directly,

designers must first convert the parametric elements used in their programs to geometric shapes. In

some cases, this requires implementing sophisticated interpolation algorithms, thus distracting them

from the essence of the design task and making the problem unnecessarily complex.

Another problem of current CAD applications is that, in some cases, objects are consumed by geo-

metric operations to create other objects. Even though this behavior might make sense in the interaction

between a human and a CAD application, it makes GD algorithms produce wrong results on even abort

with an error. To overcome this problem, all geometric operations must be functional, in the sense that

they should not consume their arguments.

Moreover, in most GD languages, there is no uniform treatment for one-, two-, and three-dimensional

shapes. As a result, user-defined operators must make a large case-based analysis or comprehend sev-

eral different definitions, thus aggravating the non-uniform treatment of shapes. In either case, the

operator implementation might be incomplete. Similar to this problem is the insufficient support for

shapes that can parametrically morph between different space dimensions. For example, a cylinder can

morph into a circle, line, or a point, if the radius or height are either or both zero. For mathematical (and



1.4. ROSETTA 7

computational) correctness, it is important that all operations accept and properly handle morph cases.

Another case in which mathematical correctness is important is in the calculation of shapes. Shapes

are mathematically described as sets of points in space. Therefore, Boolean operations, namely, intersec-

tion, subtraction, and union, are merely operations on sets. These operations have well defined identity

and absorbing elements, such as, the universal and empty sets. Unfortunately, CAD applications do not

implement them. As a result, even the most basic operations are not properly defined.

While sets allow understanding shapes from their mathematical point of view, algebraic equiva-

lences are important to understand operations. These equivalences give the designer freedom of choice

and are fundamental when writing a program because (1) the actual performed combination of Boolean

operations can be difficult to predict; (2) a program that only runs in the CAD application that supports

one particular combination is not portable; and (3) adapting a program to use only the combinations of

Boolean operations supported by a CAD application might require extensive changes.

As mentioned before, in GD designers interact with a program that creates a model. Because they

do not interact directly with the model, it becomes difficult to understand the relationship between the

parts of the program and those of the model. Traceability overcomes this problem by allowing designers

to (1) point to a program element and immediately identify the corresponding elements of the model;

and (2) point to an element of the model and immediately identify the corresponding elements of the

program.

Traceability allows a designer to understand the correlation between his GD program and the gen-

erated model. However, it does not allow the designer to easily understand the correlation between the

program inputs and that model (output). To this end, the program must be re-executed when the input

changes and the model re-visualized, a slow-pace process that will tire even the most patient designer.

Immediate feedback attempts to solve this problem, by allowing the designer to continuously adjust the

program inputs and immediately visualize the generated model until it reflects his intentions.

1.4 Rosetta

Because currently there are no GD systems that implement these principles with the proper support for

GD, a new programming environment, called Rosetta, was created. This section explains the features of

Rosetta.

Rosetta overcomes the portability problem by providing (1) multiple PLs as frontends, from which

users can choose to write their GD programs; and (2) multiple CAD applications as backends, which

are used to display the geometric models. With Rosetta, users can explore different frontends and

backends in order to find a combination that is most suitable for the design task. Moreover, users have

access to different PLs which can be used interchangeably to write portable GD programs. Furthermore,

a single program creates identical geometry in different CAD applications. This approach promotes the
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development of programs that are portable across the most used CAD applications, thus facilitating the

dissemination of those programs and of the underlying ideas. Finally, providing multiple PLs not only

overcomes the portability problem but also creates an easy migration path for users of other PLs, such

as, AutoLISP and JavaScript, who can find these languages available in Rosetta.

Currently, Rosetta implements three backends, namely, (1) AutoCAD and Rhinoceros3D are two of

the most used CAD applications and they provide enough functionality to design a portable platform;

and (2) OpenGL does not provide as much functionality as the previous backends, but rendering is

considerably faster; Moreover, Rosetta overcomes several limitations of these backends. For example,

Rhinoceros3D cannot model hollow shapes or calculate Boolean operations of non-intersecting shapes.

But Rosetta explores algebraic rules for circumvent these limitations.

Currently, Rosetta implements three frontends, namely, AutoLISP, JavaScript, and RosettaRacket.

Racket, the PL of DrRacket, provides several tools that simplify the design and implementation of new

PLs. For example, macros simplify the implementation of compilers because they allow the definition

of syntactic forms that expand to Racket code. As a result, different PLs can interoperate because they

are part of the same ecosystem. Similarly to the backends, Rosetta overcomes the limitations of the fron-

tends. For example, the AutoLISP frontend has a syntax checker that is capable of detecting undeclared

names at compiled time, even though the original AutoLISP cannot.

Rosetta implements most geometric shapes and operations provided by the most used CAD appli-

cations. However, Rosetta overcomes the limitations of these CAD applications to provide shapes and

operations with mathematical and geometric correctness. Moreover, it implements also the empty and

universal sets as special geometric shapes. Boolean operation automatically recognize and handle these

shapes, implementing the identity and absorbing elements of the intersection, subtraction, and union,

operations.

Operations are also functional, meaning that designers do not have to worry whether or not shapes

are consumed and shapes can be shared by all parts of a program and freely used as arguments to op-

erations. In order to provide the correct mathematical semantics, Rosetta programs do not compute the

geometric shapes and transformations described in the program. Instead, these elements are composed

in a scene graph. When evaluated, the scene graph produces shapes and applies the transformations in

the selected CAD tool.

Moreover, operations accept also parametric elements, meaning functions that describe shapes cou-

pled with intervals that specify their domain. If necessary, these elements are automatically interpolated

using an adaptive sampling strategy (Chandler, 1990) that minimizes the interpolation error.

Because several operations in Rosetta are dimension independent, user-defined operators are generic,

meaning that they can be applied to shapes of different dimensions. Naturally, the internal implemen-

tation of each predefined operation might require several specific CAD procedures. But this is hidden
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from the designer, who only has to know one generic operator.

Finally, Rosetta provides sliders which can be connected to program inputs. When designers change

a slider, Rosetta automatically recomputes the model. This re-computation process operates in real time,

for simple GD programs, being a form of immediate feedback. However, complex programs can take

significant time to recompute and the interactive use of widgets can become annoying, a problem that

affects both Grasshopper and Rosetta. Unfortunately, immediate feedback can never scale to arbitrar-

ily large programs because each operation that is added to a program increases the total amount of

time needed to compute it. Moreover, some operations have an intrinsic complexity, such as, linear,

quadratic, or exponential, that cannot be avoided.

1.5 Evaluation

Rosetta and the implemented design principles were evaluated in three parts.

The first part evaluated the multitude of programming paradigms supported by Rosetta, show-

ing several examples of GD programs that explore the advantages of the functional and imperative

paradigms, as well as many programming techniques, such as, higher-order and anonymous, functions,

monads, and non-deterministic programming.

The second part presented a discussion the portability and the advantages of Rosetta over other GD

systems. Moreover, it showed how to introduce a new backend for TikZ and a new frontend for a VPL

called RosettaFlow, which was inspired in Grasshopper and GenerativeComponents.

Finally, the third part completed this evaluation with practical experiments, namely, a comparison

of TPLs and VPLs, as presented in Leitão et al. (Leitão, Santos, & Lopes, 2012), and conversion and

analysis of AutoLISP programs.

1.6 Conclusion

Coding has always been present in the architectural design process. Computers popularized and ex-

tended the notion of coding in architecture, suggesting that coding could be used to represent algorith-

mic processes that express architectural concepts or solve architectural problems. As a result, increas-

ingly more architects and designers are aware of digital applications and programming techniques, and

are adopting these methods in a modern architectural form called Generative Design (GD). In GD, de-

signers write programs that when executed produce geometric models. These programs are usually

controlled by a large set of parameters, such that designers can experiment with different variations of

a geometric model simply by changing those parameters and without modifying the program.

The choice of a good Programming Language (PL) reduces dramatically the effort in writing GD

programs. However, the most used PLs, such as, C, Cpp, Java, and Cs, are inadequate because they
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general purpose languages, providing few predefined abstractions for GD.

Moreover, the survey of the most used GD systems showed that the most popular TPLs for GD,

such as, AutoLISP, RhinoScript, and GDL, are old, obsolete, provide little domain-specific features, and

make it difficult to define them. As a result, they are also inadequate choices for GD. On the other hand,

VPLs for GD such as, Grasshopper and GenerativeComponents, enforce a very restricted programming

paradigm and programs scale poorly with size and complexity, making them suitable mainly for small

throwaway prototypes. And CAD applications are based on interactive technology and impose their

own programming environments and languages, making users locked-in to specific CAD families and

introducing portability problems. This scenario clearly shows that even though there is a great need for

a modern programming environment for GD, the current and most used tools are unsuitable choices.

In order to overcome this problem, this thesis argued that a modern programming environment

should (1) be pedagogic; (2) provide domain-specific features; (3) provide multiple PLs; and (4) provide

of multiple CAD applications. Moreover, this thesis proposed a set of design principles, which include,

(1) portability, (2) parametric elements, (3) functional operations, (4) dimension independent operations,

(5) algebra of sets, (6) algebraic equivalences, (7) traceability, and (8) immediate feedback. Finally, this

thesis argued that a successful programming environment for GD must implement these principles.

Because currently there are no GD systems that implement these principles with the proper support for

GD, a new programming environment, called Rosetta, was created.

Rosetta is modern programming environment designed to overcome the problems of current GD

systems. To this end, Rosetta provides (1) multiple frontends PLs, which can be used interchangeably

to write portable GD programs and to reuse existing software; (2) multiple CAD applications, which

generate identical geometry, thus freeing designers from vendor lock-in, allowing the Rosetta programs

to be used as an alternative to the file formats of these applications, and allowing students to learn

more than one CAD package; (3) multiple programming paradigms, which allow designers to more

closely match the computational method with the design task, thus simplifying the implementation

effort, as shown in the examples of coordinate generators and tessellators design pattern and auto-

mated rendering; (4) modern linguistic features and programming techniques, such as, higher-order

and anonymous functions (balcony example), monads (Lego panda example), and non-deterministic

programming (pipes inside a sphere example); (5) visual input widgets that make it simple to adjust

GD programs interactively and in real-time. Moreover, Rosetta was designed to be a pedagogic pro-

gramming environment, providing a choice of simple and advanced programming concepts, making it a

suitable platform for designers to study programming in a controlled environment, with the additional

advantage that geometric concepts are independent of the chosen PL.

Finally, Rosetta overcomes several limitations of current CAD technology, most of which arise from

the fact that CAD applications were designed for the interaction between a human and a computer.

These limitations are overcome by implementing well defined mathematical rules in the programming
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environment. Moreover, Rosetta programs have a strong correlation between the program and the

model, providing traceability mechanisms that establish a relationship between the elements of the pro-

gram and those of the model and allow the designer to navigate in both directions, and immediate

feedback via the OpenGL backend and visual widgets.

To evaluate these design principles, several GD programs were written that explore the multitude

of programming paradigms and techniques, showing the advantages of Rosetta over GD systems that

enforce a particular programming approach. Moreover, a discussion was presented that focused on the

advantages of a portable programming environment that supported multiple frontends and backends.

To prove this point, the TkZ backend and the RosettaFlow frontend were implemented. Finally, this

evaluation was complete with practical experiments, namely, a comparison of TPLs and VPLs, and

conversion and analysis of AutoLISP programs, which include large and complex projects, namely, the

TurningTorso.

In summary, Rosetta is a modern programing environment for GD, designed to implement and

evaluate several design principles that this thesis argues as fundamental for successful GD. In seek of

this goal, current CAD technology has always been a difficult obstacle but Rosetta is the proof that

these problems have been overcome in a number of ways. In the end, Rosetta is merely a computational

manifestation of the principles and ideas argued in this thesis, and if the GD community and GD system

developers follow these principles, it is possible for GD to evolve in a successful and effective fashion

with good support from Computer Science and software.
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