
Parallelization of DNA alignment algorithms using GPUs

Gustavo Encarnação

INESC-ID / IST-TU Lisbon

Portugal

gpfe@sips.inesc-id.pt

ABSTRACT

Since the discovery of Deoxyribonucleic Acid

(DNA) significant technological advances were

made, leading to very large amounts of data

gathered for analysis. The tools for this analysis

however have advanced at a slower pace and have

become one of the limiting factors of new

discoveries in this field of research.

Recently, from the 3D game market, a new

generation of hardware has emerged. This

hardware known as Graphics Processing Units

(GPUs) has the capability for general purpose

computing. With this new hardware high

performance computing has become possible on

cheap and readily available hardware which

creates new opportunities to study and improve

current tools and algorithms used for the study of

DNA.

A study of sequence matching techniques using

indexes and their adaptation to the DNA

alignment problem is presented. The indexes used

were suffix trees and suffix arrays. A heuristic

DNA alignment algorithm which runs on the GPU

was developed based on the indexes studied.

Tests conducted showed that the work lead to the

creation of an algorithm that is capable of

competing with current day techniques in both

performance and quality of results.

Keywords: GPGPU, Indexed Search,

Approximate Search, DNA Alignment,

Bioinformatics

1. INTRODUCTION

Since the model for DNA was initially proposed

in the early 20th century great advances have been

made in the area, including the unveiling of new

areas of scientific research such as genetics.

Nowadays, the ability to completely sequence the

DNA of any organism is real and the methods for

such task are constantly improving. As a result of

these new and faster methods there are large

amounts of data being generated [1]. The study

and analysis of this data is mainly done by

comparing very large numbers of DNA

sequences, which is only possible through the use

of computers and specialized algorithms. These

algorithms however have not improved at the

same rate as the sequencing platforms have.

The developed work is part of the growing focus

on parallel processing as a means to solve time

consuming problems in the shortest amount of

time possible. It is also part of the growing

interest in GPUs as platforms for efficient and

affordable parallel processing.

One of the most used algorithms to extract

information from biological sequences is the

Smith-Waterman (S-W) algorithm. It is capable of

finding the optimal local alignment between any

two sequences with sizes n and m in O(nm)

runtime. For large sequences, such as the human

genome (with about 3 × 109 base pairs), this

runtime can be extremely large which led to the

development of other suboptimal algorithms that

typically start by finding an exact match between

small sub-sequences of the query and the

reference sequences (a seed). Afterwards, if such

seed fulfills a given set of conditions, the

alignment is extended to the sides. To accelerate

the search of the initial match, many of these

heuristics make use of a pre-prepared index of the

reference sequence. Such index can be built using

different data structures, such as the hash tables of

q-mers (substrings of pre-defined length q) used

in BLAST [3] or the suffix trees used in

MUMmer [4].

Even though these index structures significantly

accelerate the search for the initial match, these

algorithms still present a high computational

demand, mainly due to the large amount of data

they must process. As such, several parallelization

techniques have been considered to accelerate

these algorithms [5]. On the other hand, with the

recent developments on high-performance

computer architectures, a vast set of inexpensive

parallel processing structures has emerged, such

as multi-core CPUs with 4 or even more

homogeneous processors or Graphics Processing

Units (GPUs) with general purpose computation

capabilities that have as many as 512 processing

cores. As a consequence, it has become

imperative to adapt the implementation of the

most demanding algorithms in order to take the

maximum advantage of such processing

capabilities.

Some previous work, focused on the

parallelization of the alignment algorithms in the

several platforms has already been presented

[6,7,8]. The algorithm proposed by Farrar et al.

[7] is integrated in the SSEARCH35 application

of the FASTA framework and uses Single

Instruction Multiple Data (SIMD) instructions to

parallelize the S-W algorithm on the CPU at the

algorithm level. Other programs, like MUMmer

[4] and Bowtie [9], are also targeted at the CPU

but mainly take advantage of data-level

parallelism. While MUMmer [4] uses a suffix tree

as its index data structure, Bowtie [9] uses the

Burrows–Wheeler transform to reduce the

memory footprint of its index structure.

One common observation that has been retained is

that the great number of processors that are

present in the GPU devices make them ideal for

computationally intensive applications, like

bioinformatics algorithms. Nevertheless, the

inherent GPU restrictions on synchronous

execution and on memory access often impose a

significant constraint on the adopted programming

model and limit the type of algorithms that can be

efficiently parallelized on these devices.

Nevertheless, independently of the set of

constraints imposed by the target architecture, it is

still necessary to find, among the several available

algorithms for a given application, which is the

best suited for parallelization.

The work presented in this paper focuses on two

sequence indexing techniques, their use to solve

sequence matching problems and how they can be

adapted to be used in a GPU. From these two

indexes a heuristic algorithm for DNA alignment

was developed and compared against common

DNA alignment tools.

2. INDEXED SEARCH

To accelerate string matching problems, it is

common to create an index of the reference string

and then use it to accelerate the match with a

given query string. Several different data

structures are currently available to build such

index, according to the specific requirements of

the application.

In the case of DNA alignment, the use of an index

capable of finding the match location of a given

query of size n in linear time (O(n)) is highly

desirable. The well known MUMmer framework

[4] makes use of an index with such

characteristics based on suffix trees. It uses this

index to determine the Maximal Unique Matching

subsequences (MUMs) between any two

sequences.

2.1. Suffix Trees

A suffix tree is a data structure that represents all

the suffixes of a given sequence [10, 11]. It is

composed of a root node, several internal nodes

and leafs. Each node is connected, by an edge, to

at least two child-nodes or leafs and every edge is

labeled with a subsequence of the original

sequence. The sequence that results from

concatenating all the edge labels in the path from

the root node to a leaf represents a single suffix of

the original sequence. Typically, the original

sequence is padded with a special symbol ($) to

assure that no suffix of the original sequence is a

prefix of another suffix. An n character sequence

has n suffixes and the corresponding suffix tree

has n leafs. An internal node of the suffix tree

represents a repeated subsequence of the original

sequence and the number of occurrences of this

subsequence equals the number of leafs below

that node.

Figure 1. Example of a suffix tree for the string
"mississippi", including the suffix links (dashed lines)

By using suffix trees, it is possible to discover

whether a particular query string exists within a

larger reference string in O(n), where n is the size

T

2

4 5

61

3

$

S I P

SI
I

SSI

SSIPPI$ PPI$

PPI$ $
PI$ I$

SSIPPI$

SSIPPI$
PPI$

PPI$

MISSISSIPPI$

of the query string. This is achieved by first

creating a suffix tree that represents the reference

sequence and then by following the tree edges that

match the query string. If it is possible to match

all query sequence characters with the characters

encountered at an edge path while navigating

down the tree, then the query exists somewhere in

the reference. Furthermore, by performing a

depth-first search from the point where the search

stopped and finding all the leafs nodes from that

point onwards, it is possible to exactly know how

many times and where the query occurs in the

reference in linear time. Nevertheless, all the

significant features provided by suffix trees are

offered at the cost of an important drawback,

related to the amount of space that is required to

store this index structure, which can be as high as

20 times the initial reference size.

2.2. Suffix Arrays

When compared to suffix trees. suffix arrays [12]

are regarded as a more space efficient structure

typically requiring three to five times less space.

This structure (illustrated in Fig. 2) can be seen as

an array of integers representing the start position

of every lexicographically ordered suffix of a

string. The improvement that allows suffix arrays

to use less space than suffix trees come from the

fact that the array simply needs to hold a pointer

to the start of the suffix (or an index of the

corresponding text) to store each of these suffixes.

This means that the element of the suffix array

that holds the value ’0’ points to the first character

of the text (assuming the text is a zero indexed

array of characters) and the suffix it represents

corresponds to the whole text.

Suffix Index

i 10

ippi 7

issippi 4

ississippi 1

mississippi 0

pi 9

ppi 8

sippi 6

sissippi 3

ssippi 5

ssissippi 2
Figure 2. Suffix array for the string "mississippi".

The most straightforward way to construct such

data structure is to simply create an array with all

the suffix elements placed in ascending order and

then apply a sorting algorithm to properly sort the

suffixes. A more complex alternative is to start by

creating a suffix tree and then find all the leafs in

the tree. This approach, although being faster than

the direct sorting method, has the important

drawback of requiring much more space to hold

the initial suffix tree.

The usage of a suffix array for string matching (in

this case for DNA sequence alignment) is similar

to using any other sorted array to search for a

given element. The only difference is the way that

two items are compared with each other. Since the

values in the suffix array are not strings but

indexes (pointer) of a string, it is not the values

themselves that must be compared but the text

they point to. Hence, when comparing two

elements of the suffix array, not only the character

they point to must be compared but, if they are

equal, the subsequent characters must also be

compared. The overall performance of the

alignment function will reflect the efficiency of

the search algorithm used in the array.

By using a binary search algorithm the array is

repeatedly divided in half until the desired

element is reached. Hence, suffix arrays solve the

string matching problem with an O(n log(m))

complexity, where n is the length of the query and

m the length of the reference.

3. GPU PROGRAMMING MODEL

The basic building blocks in NVIDIA’s Fermi

architecture [13] are the Streaming

Multiprocessors (SMs). Each SM contains 32

processing cores and two warp schedulers. A

warp is a set of 32 parallel threads which are

concurrently executed in sets of 16 threads (a

half-warp) on the same SM. The most important

characteristic of these SMs is that they follow a

Single Instruction Multiple Thread (SIMT)

paradigm, which means that the processing cores

executing a half-warp always execute the same

instruction on the different threads. Hence, if a

thread within a warp performs a different branch,

the processing of the several threads of such warp

will be serialized, thus presenting a major

challenge to optimize the GPU code and avoid a

significant loss of efficiency.

Besides providing a large number of processing

elements, this GPU also offers a high capacity

main memory with a high bandwidth access (six

64-bit wide memory interfaces).However, each

access to this memory bank incurs in a high

latency (in the order of hundreds of clock cycles).

As a consequence, whenever possible the memory

management unit of the GPU tries to coalesce

(join together 32 individual memory requests), in

order to improve the performance. Therefore,

threads in the same warp should access

neighboring memory positions so that a single

memory transaction is capable of providing data

to several threads of an individual warp.

Moreover, the new Fermi architecture provides an

unified 768kB L2 cache for accessing the entire

main memory, which might significantly improve

the memory access time for memory access

patterns which cannot be efficiently coalesced.

4. EXACT SEQUENCE MATCHING

4.1. Suffix Trees

The first step in the search procedure for DNA

sequences is to build the suffix tree of the

reference sequence. This step is usually performed

in the CPU, since it is an inherently sequential

process. The suffix tree is then transferred to the

GPU to be accessed by the several concurrent

threads, each aligning a different query sequence

to the same reference sequence.

The suffix tree is constructed from the reference

string and is afterwards transformed into a

flattened tree consisting of an array of edges. Each

node is represented in the flattened tree by its set

of outgoing edges, where each edge contains: i) its

starting index in the reference sequence, ii) the

edge length and iii) the index (in the array) of the

first edge of its destination node. Thus, each edge

can be represented using 3 integers. However, to

allow a perfect alignment of the memory accesses,

the representation of a single edge is padded to

hold exactly 4 integers. Furthermore, each node

always contemplates space for its 4 possible edges

(representing an A, C, G or T symbol), although it

is possible that some of these may be filled out as

fake edges. The need for flattening the tree arises

from the fact that array indexes are more

conveniently addressed in the memory space of

the GPU than memory pointers. Furthermore, the

traversal of the tree leads to an unpredictable

access pattern that may significantly affect the

performance of memory accesses due to the

inability to coalesce them.

Since the suffix tree only includes references to

the original sequence, besides transferring the

flattened tree to the GPU it is also necessary to

transfer the original reference sequence. To save

space and to optimize certain parts of the

alignment function, the reference string is stored

as a second array of integers. Each of these

integers holds 16 nucleotides from the original

sequence, each one represented using two bits.

The original DNA query sequences are stored in

the GPU global memory in their string format.

However, to maximally exploit the available

memory bandwidth, each set of 16 nucleotides is

packed into a single 32-bit integer and the

symbols of the different query sequences are

interleaved. Due to the particular way query

characters are accessed using suffix trees (single

character comparison, instead of 16 characters)

these characters are stored in reverse order in each

integer cell: the first character corresponding to

the lowest order bits and the later characters are

mapped in the highest order bits. Such reverse

order is preferred since it allows obtaining the

various characters by using a shift right

instruction followed by a binary AND always

with the same mask (’11’).

Due to the adopted encoding of the queries by

using only two bits, it might happen that the last

memory position represents less than 16

nucleotides. This particularity and the fact that the

queries might differ in size, makes it necessary to

create an auxiliary structure that specifies how

many symbols each query actually has, so that

their end can be determined during the matching

process.

The implemented alignment algorithm, is

executed by each thread in the GPU. The first step

in the matching process consists of reading the

query sequence data. The first 16 nucleotides are

read into a buffer and the number of valid

nucleotides (in case the query is less than 16

nucleotides long) is calculated. After filling the

query buffer, the first character is extracted from

it and assigned to a ’test character’. Afterwards

the whole buffer is shifted two bits, to prevent the

same character from being used again.

Then, the test character is used to read the first

edge that needs to be checked, by calculating its

position in the flattened tree using the character as

an offset. Considering that the algorithm starts

navigating the tree from the root node and the

edges of the root node start at index 0, the edge

leading out of the root node by ’test character’

will be at position tree[0 + test char].

Once the query buffer is filled and there is an

edge to follow, the alignment becomes a cycle of

comparisons. The cycle begins by comparing two

characters, the test character and the first character

in the edge. As soon as there is a mismatch, it is

known that the query under processing does not

exist within the reference sequence. On the other

hand, if a point is reached where the query buffer

is empty and there are no more characters to read,

then the end of the alignment has been reached,

the query exists within the reference sequence and

all the leafs that can be reached from the

destination node of the current edge represent one

match.

4.2. Suffix Arrays

When compared to suffix trees, the suffix arrays

are usually regarded as a more space-efficient

implementation of the index structure. Although

their search time is asymptotically higher than

suffix trees, in many applications their smaller

size leads to similar or even better performance

levels [14, 15], due to the attainable better cache

performances.

The suffix array is a one-dimensional array of

integers and its access pattern is usually as

unpredictable as in the case of suffix trees.

Therefore, similar problems are encountered in

terms of coalescing the memory accesses. Just

like in the case of the suffix tree implementation,

it is also necessary to transfer the original

reference sequence as well as the query sequences

to the GPU memory. The data structure is the

same as the one that was adopted to hold the

query sequences for the suffix tree

implementation.

The alignment algorithm in the GPU was

implemented by conducting a binary search in the

pre-processed array. In each step, the whole query

is compared against one entire suffix, contrasting

to what happens in the suffix tree implementation,

where a single edge is compared. The main

consequence of this improved approach is that

once the suffix to be considered is determined, the

memory accesses become sequential until it

becomes necessary to re-pick the suffix.

Therefore, by transforming the original reference

sequence representation (8-bit characters vector)

to an array of integers where, just as in the

queries, each integer holds 16 2- bit nucleotides,

the memory accesses can be reduced by 16 times.

One additional (but also important) advantage that

also arises is concerned with the possibility to

simultaneously compare, in the best case scenario,

16 characters in a single instruction, leading to a

rather efficient combination of the SIMD parallel

programming model with the SIMT model,

natively exploited by the GPU architecture.

The proposed matching algorithm, which is

executed by each of the GPU threads, consists of

two nested loops. The first loop is executed until

all possible search options have been exhausted.

Since this implementation is based on a binary

search algorithm, such situation happens

whenever the left and right pointers are adjacent

(right - left = 1). The first task of this loop is to

pick the next suffix array element to be

considered. This is done by calculating the mid-

point between the left and right pointers. After

picking which suffix to use, it is necessary to read

the query and suffix sequences into a buffer. The

read of the first is straightforward, since it is

always aligned. Nevertheless, a special care must

be taken when reading the suffix, since it might

not be aligned and thus the higher bits of the

memory position will be invalid.

Before the comparison cycle begins, it is

necessary to assure that the query buffer and the

suffix buffer hold the same number of packed

characters, since 16 symbols are compared at

once.

The inner loop, is the comparison cycle (’==’)

which runs while the sequences are equal and

there are more symbols to be compared in the

sequences. When the algorithm enters the inner

loop, the buffers hold the same number of valid

symbols. However, it is not required that the

number of symbols in the buffers is always the

maximum buffer capacity. Consequently, the

smaller buffer will empty sooner than the larger

one, which will still have some data waiting to be

compared. The main task of the inner cycle is to

read data into any of the buffers that might have

become empty after the last comparison, in order

to discard any previously used data and to make

sure that both buffers always contain the same

amount of symbols.

An interesting side-effect that arises from using

this comparison method is that the kernel is more

computationally intensive, with more logic-

arithmetic operations than memory accesses,

which significantly benefits the parallel execution

in the GPU.

5. APPROXIMATE SEQUENCE

MATCHING

Approximate matching is closely related to exact

matching. While in the later the sequence must

matched completely, in the former a partial match

or a match containing small differences is

allowed.

As the problem becomes more complex the

solutions used for exact matching are no longer

suitable. The reference sequence index however,

can still be applied to the problem.

Matching sequences with differences is a complex

problem to address using indexed reference

sequences. However, finding partial matches can

be achieved with small changes to the search

algorithms.

5.1 Suffix Trees

Suffix trees nodes represent a subsequence of the

reference sequence the tree indexes. Each of this

nodes possesses a connection to another node that

represents the largest suffix of the subsequence

represented (the sequence minus the first

character). This connection is called the suffix

link.

Using the suffix link it is possible to continue the

matching effort even after a mismatch is found.

When a mismatch is found, the search continues

from the destination node of the suffix link. If the

algorithm cannot match the sequence aNc it will

try to match the sequence Nc by removing the

first character.

Using the above method, a partial match is found

for every mismatch encountered.

5.2 Suffix Arrays

Exact matching using suffix arrays uses binary

search. Since suffix arrays do not possess any

kind of additional information relating the array

entries between them, performing approximate

matching using these types of indexes relies on re-

starting the search algorithm for each mismatch

found.

One alternative would be to use auxiliary

structures to hold the necessary information to

reduce the amount of steps the binary search

algorithm would have to do.

The simplest approach is to generate a hash table,

using as hash key the first characters of the query

sequence. Every entry in the table will hold the

array index of the first element beginning with

hash key. When a mismatch is found and the first

character of the sequence is removed, the new

hash value is computed and the appropriate entry

(and the next one) in the hash table retrieved. This

allows the algorithm to immediately reduce the

search space to only the suffix array entries that

begin with the same subsequence as the query.

The size of the hash key determines how large the

search space for the binary search algorithm will

be. A long hash key allows for a faster search at

the cost of more memory and longer times to copy

the auxiliary structure from the host memory to

the device.

6. DNA ALIGNMENT

The optimal local alignment algorithm presented

by Smith and Waterman is a dynamic

programming algorithm with a runtime

complexity of O(nm), where n and m represent

the sizes of the sequences being aligned.

However, with the huge amount of sequencing

data that is currently available, the runtime of this

algorithm quickly becomes a bottleneck. A way of

using the Smith-Waterman algorithm for DNA

sequence alignment is to reduce the size of the

sequences being aligned. Therefore, other

heuristic algorithms, such as BLAST [3], have

been proposed to significantly reduce the

alignment time.

The heuristic algorithms typically operate in three

phases: i) an initial approximate match phase; ii) a

filtering phase of the potential alignment

locations; and iii) a refinement of the obtained

score by considering gaps in the alignment.

6.1 Filtering the seeds

The initial approximate match phase might return

a very high number of results (seeds) and these

will be passed to the slower gapped alignment

phase. It is important that the results computed in

the first phase be filtered so that only the relevant

ones be considered in the final phase.

One way of filtering the results is to merge seeds

close together into a single seed. This will allow

the reduction of the total number of seeds while at

the same time preserving all the information

gathered from the matching phase.

To consider which seeds to merge it is important

that they are sorted by starting location so as not

to induce the algorithm in error. If one query

sequence yields two different partial matches it is

crucial that the order by which these appear in the

query sequence and in the reference sequence be

the same.

To sort the seeds, an insertion-sort algorithm [16]

is used with binary search trees. Since the smaller

the tree the faster the algorithm is, multiple trees

are used and the seeds are assigned a tree based

on the seed’s starting position.

Also, to ensure the trees are as balanced as

possible an initial dummy node is inserted into the

tree, representing the average value the tree can

hold. If a tree is assigned to hold the seeds that

begin in positions 0 through 1000 then the dummy

node will have the value 500.

Once the seeds have been sorted, the trees are

traversed and converted into a linked list of seeds.

The final step of the filtering algorithm is to walk

the list and merge any seeds that are not spaced

apart more than a specified number of positions.

6.2 Gapped alignment

Once the seeds have been filtered they are passed

to the final phase that consists of a modified

version of the Smith-Waterman algorithm.

The version of the Smith-Waterman algorithm

used, is based on CUDA SW++[2]. The algorithm

was modified and optimized for DNA alignment,

using a simplified scoring matrix (holding only

four values: match, mismatch, gap open, gap

extend) and using 2-bit encoding for the query

and reference sequences.

All the subsequences sent to the Smith-Waterman

algorithm have the same length. This length is

specified by a parameter. After the seeds have

been filtered a location is created for each seed.

This location is created by extracting a

subsequence of the query that contains the seed.

The exact start position of this subsequence

depends on the specified length for the location,

the start position of the seed and is restrained to

positions that are multiples of 16.

The locations are aligned to 16 characters to

ensure that, using 2-bit encoding, all the elements

are fully used (the elements are integers which

hold 16 bases).

7. RESULTS

The tests conducted with the algorithms

developed were done using real DNA data. The

reference sequence was extracted from the Homo

Sapiens Chromosome 1 (NT_167186.1). The

query sequences were extracted from the Homo

Sapiens Chromosome 1 (NT_167186.1) and from

the Mus Musculus Chromosome 1

(NT_039170.7). The query sequences were

grouped into sets of 1024 to 4194304 queries

where half the sequences came from Homo

Sapiens and half from Mus Musculus.

Figure 3. Performance evaluation of suffix tree and
suffix array index based search algorithms in multi-

core CPUs.

The previously described algorithms were

evaluated in a computational system composed of

an Intel Core i7 950 quad-core processor, running

at 3GHz, with 6GB of RAM. This platform also

includes a NVIDIA GeForce GTX 580 GPU, with

512 processing cores running at 1.54GHz and

1.5GB of RAM.

To evaluate the performance provided by the

indexing methods on exact matching problems the

algorithms developed were compared in a

homogeneous multi-core CPU by making use of

POSIX threads.

From the obtained results (see Fig. 3) it can be

observed that although the asymptotic runtime

corresponding to the suffix arrays is slightly

greater than that of the suffix trees, in practice the

performance of both implementations is quite

similar. This result was already observed in [14,

15], and is mainly due to a more efficient usage of

the cache memory by the suffix array, which is

achieved due to its smaller and more regular

structure. Furthermore, by comparing the

execution time results with the Bowtie and

SSEARCH35 programs, it is possible to observe

that the implemented suffix tree and suffix array

algorithms are significantly faster, thus plenty

justifying their adoption whenever high

performance DNA alignment is required.

Figure 4. Performance evaluation of the considered
index based search algorithms in the GPU.

Then, the performance of the conceived

concurrent algorithms was assessed in a GPU

platform, namely the NVIDIA GeForce GTX 580.

The obtained results are presented in Fig. 4. This

chart also includes a comparison with another

DNA alignment framework, based on suffix trees,

executed in the GPU: MUMmerGPU [5]. These

results correspond to the total execution time of

the algorithms, while searching for the

corresponding number of query sequences in the

reference sequence. The total execution time

considers all the required data transfers (host to

GPU and GPU to host), as well as the kernel

execution time. As it is possible to observe in Fig.

5, the data input time is very significant in all

these index-based search algorithms, since the

large index data structure must always be

transferred to the GPU device memory. In fact,

when the number of query sequences to be

searched is very small, this data input time is the

main responsible for the modest performance

values provided by the GPU implementations,

when compared to the corresponding CPU

implementations. However, for a larger number of

query sequences (commonly adopted by this

application domain), the GPU implementations

offer a significantly better performance, with

speedup values as high as 85 for the suffix array

implementation and 25 for the suffix tree

implementation.

Figure 5. Communication and kernel execution times
for the implementations in the GeForce GTX580 GPU.

These observations reveal that contrary to what is

stated by the asymptotical complexity analysis of

these algorithms (and unlike the obtained CPU

performance results), the GPU implementation

clearly favors the suffix array index structure. The

justification for this fact is not only the more

regular execution flow of this algorithm and its

more efficient use of the cache memory, but is

also the fact that the space occupied by the suffix

array index is much smaller than that of the suffix

tree index, which makes the suffix array

implementation to always present a much lower

transfer time from the host to the GPU device.

Since the algorithm developed for DNA

alignment would be an heuristic algorithm with

the first phase being approximate matching, the

two possible indexes were compared when

solving the approximate matching problem.

The results show, that suffix trees with the use of

the suffix link have the best performance when

large number of query sequences are matched.

This is due to the fact that, unlike the binary

search algorithm used by suffix arrays, the search

using suffix trees does not need to start from the

beginning for every mismatch found. Even when

using auxiliary structures, the suffix array cannot

outperform suffix trees.

Finally, the implemented DNA alignment solution

was compared with other DNA alignment tools

(BLAST). The execution time was measured as

well as the error (difference between the score

reported by the algorithm and the score calculated

by the Smith-Waterman algorithm) for BLAST.

Table 1. Comparison between BLAST and the GPU
algorithm using a reference sequence with 1.000.000 BP.

Alignment tool

Seed size 5 8 10 default 5 8 10

Time 416.93 220.94 140.06 3.62 36.27 3.09 2.58

alignments 1000 986 890 226 869 973 1000

Sum of errors (BLAST subset) 1920 1934 1934 4917 2083 2808 5473

Sum of errors (reported) 25817 32062 47904 4917 35466 64847 84068

GPU algorithmBLAST

The results in Table 1 show that the GPU

algorithm executed with a seed of size 8 has a

smaller error than BLAST with the default

parameters, a smaller execution time (considering

the larger reference) and a much higher number of

query sequences for which an alignment is

reported.

The presented results allow to conclude that the

new algorithm is capable of outperforming

BLAST both in terms of speed and quality of

results. Furthermore, the developed algorithm also

allows the user to select the parameters to exploit

the balance between quality of results and

execution time, thus being flexible enough to be

used in a wide range of scenarios.

8. CONCLUSIONS

After comparing the two index data structures

especially suited for accelerating DNA sequence

alignment in bioinformatics it was observed that

the optimal index varied with the problem and the

platform used. While exact matching problems

can be efficiently solved by suffix arrays,

approximate matching problems cannot. As such,

in exact matching suffix arrays based algorithms

designed to run on GPUs have the advantage of

the index structure being smaller and requiring

less time to copy to the device memory. On the

other hand, the solution to approximate matching

is more complex and requires more information

which is readily available for suffix trees but not

for suffix arrays.

From the results obtained with the heuristic

algorithm for DNA alignment it was observed that

GPUs present a practical and efficient platform

for high performance computing and algorithms

optimized for these platforms can obtain better

perform than current options for the same problem

that run on the CPU.

ACKNOWLEDGMENTS

This research was performed in the scope of

project “HELIX: Heterogeneous Multi-Core

Architecture for Biological Sequence Analysis”,

funded by the Portuguese Foundation for Science

and Technology (FCT) with reference

PTDC/EEA-ELC/113999/2009, and project

“TAGS: The power of the short - Tools and

Algorithms for next Generation Sequencing

applications”, funded by FCT with reference

PTDC/EIA-EIA/112283/2009.

REFERENCES

[1] J. Shendure and H. Ji, “Next-generation DNA

sequencing,”Nature Biotechnology, vol. 26, no. 10, pp.

1135–1145, October 2008.

[2] Y. Liu, B. Schmidt, and D. Maskell, “Cudasw++

2.0: enhanced smith-waterman protein database search

on cuda-enabled gpus based on simt and virtualized

simd abstractions,”BMC Research Notes, vol. 3, no. 1,

p. 93, 2010.

[3] S. Altschul, W. Gish, W. Miller, E. Myers, and D.

Lipman, “Basic local alignment search tool,” Journal

of Molecular Biology, vol. 215, no. 3, pp. 403–410,

1990.

[4] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M.

Shumway, C. Antonescu, and S. Salzberg, “Versatile

and open software for comparing large genomes,”

Genome Biology, vol. 5, no. 2, p. R12, 2004.

[5] M. Schatz, C. Trapnell, A. Delcher, and A.

Varshney, “Highthroughput sequence alignment using

Graphics Processing Units,” BMC Bioinformatics, vol.

8, no. 1, p. 474, 2007.

[6] T. Rognes and E. Seeberg, “Six-fold speed-up of

Smith-Waterman sequence database searches using

parallel processing on common

microprocessors,”Bioinformatics, vol. 16, no. 8, pp.

699–706, 2000.

[7] M. Farrar, “Striped Smith-Waterman speeds

database searches six times over other SIMD

implementations,” Bioinformatics, vol. 23, no. 2, pp.

156–161, 2007.

[8] Y. Liu, B. Schmidt, and D. Maskell,

“CUDASW++2.0: enhanced Smith-Waterman protein

database search on CUDAenabled GPUs based on

SIMT and virtualized SIMDabstractions,” BMC

Research Notes, vol. 3, no. 1, p. 93, 2010.

[9] B. Langmead, C. Trapnell, M. Pop, and S.

Salzberg, “Ultrafast and memory-efficient alignment of

short DNA sequences to the human genome,” Genome

Biology, vol. 10, no. 3, p. R25, 2009.

[10] P.Weiner, “Linear pattern matching algorithms,”

in Proceedings 14th Annual Symposium on Switching

and Automata Theory. SWAT ’08., October 1973, pp.

1–11.

[11] E. Ukkonen, “On-line construction of suffix

trees,” Algorithmica, vol. 14, no. 3, pp. 249–260,

September 1995.

[12] U. Manber and G. Myers, “Suffix arrays: a new

method for on-line string searches,” in Proceedings

First annual ACMSIAM Symposium on Discrete

algorithms, ser. SODA ’90, Philadelphia, PA, USA,

1990, pp. 319–327.

[13] J. Nickolls and W. Dally, “The GPU Computing

Era,” IEEE Micro, vol. 30, no. 2, pp. 56–69, March

2010.

[14] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch,

“Replacing suffix trees with enhanced suffix arrays,”

Journal of Discrete Algorithms, vol. 2, no. 1, pp. 53 –

86, 2004.

[15] G. Navarro and R. Baeza-yates, “A hybrid

indexing method for approximate string matching,”

Journal of Discrete Algorithms, vol. 1, p. 2000, 2000.

 [16] N. Sebastião, G. Encarnação, and N. Roma, “A

New Seed Filtering Approach for Heuristic DNA

Alignment using GPUs,” INESC-ID, Tech. Rep.

44/2011, October 2011.

