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ABSTRACT 

Since the discovery of Deoxyribonucleic Acid 

(DNA) significant technological advances were 

made, leading to very large amounts of data 

gathered for analysis. The tools for this analysis 

however have advanced at a slower pace and have 

become one of the limiting factors of new 

discoveries in this field of research. 

 

Recently, from the 3D game market, a new 

generation of hardware has emerged. This 

hardware known as Graphics Processing Units 

(GPUs) has the capability for general purpose 

computing. With this new hardware high 

performance computing has become possible on 

cheap and readily available hardware which 

creates new opportunities to study and improve 

current tools and algorithms used for the study of 

DNA. 

 

A study of sequence matching techniques using 

indexes and their adaptation to the DNA 

alignment problem is presented. The indexes used 

were suffix trees and suffix arrays. A heuristic 

DNA alignment algorithm which runs on the GPU 

was developed based on the indexes studied. 

 

Tests conducted showed that the work lead to the 

creation of an algorithm that is capable of 

competing with current day techniques in both 

performance and quality of results. 

 

Keywords: GPGPU, Indexed Search, 

Approximate Search, DNA Alignment, 

Bioinformatics 

 

1. INTRODUCTION 

Since the model for DNA was initially proposed 

in the early 20th century great advances have been 

made in the area, including the unveiling of new 

areas of scientific research such as genetics. 

Nowadays, the ability to completely sequence the 

DNA of any organism is real and the methods for 

such task are constantly improving. As a result of 

these new and faster methods there are large 

amounts of data being generated [1]. The study 

and analysis of this data is mainly done by 

comparing very large numbers of DNA 

sequences, which is only possible through the use 

of computers and specialized algorithms. These 

algorithms however have not improved at the 

same rate as the sequencing platforms have. 

 

The developed work is part of the growing focus 

on parallel processing as a means to solve time 

consuming problems in the shortest amount of 

time possible. It is also part of the growing 

interest in GPUs as platforms for efficient and 

affordable parallel processing. 

 

One of the most used algorithms to extract 

information from biological sequences is the 

Smith-Waterman (S-W) algorithm. It is capable of 

finding the optimal local alignment between any 

two sequences with sizes n and m in O(nm) 

runtime. For large sequences, such as the human 

genome (with about 3 × 109 base pairs), this 

runtime can be extremely large which led to the 

development of other suboptimal algorithms that 

typically start by finding an exact match between 

small sub-sequences of the query and the 

reference sequences (a seed). Afterwards, if such 

seed fulfills a given set of conditions, the 

alignment is extended to the sides. To accelerate 

the search of the initial match, many of these 

heuristics make use of a pre-prepared index of the 

reference sequence. Such index can be built using 

different data structures, such as the hash tables of 

q-mers (substrings of pre-defined length q) used 

in BLAST [3] or the suffix trees used in 

MUMmer [4]. 

 

Even though these index structures significantly 

accelerate the search for the initial match, these 

algorithms still present a high computational 

demand, mainly due to the large amount of data 

they must process. As such, several parallelization 

techniques have been considered to accelerate 

these algorithms [5]. On the other hand, with the 

recent developments on high-performance 

computer architectures, a vast set of inexpensive 

parallel processing structures has emerged, such 

as multi-core CPUs with 4 or even more 



homogeneous processors or Graphics Processing 

Units (GPUs) with general purpose computation 

capabilities that have as many as 512 processing 

cores. As a consequence, it has become 

imperative to adapt the implementation of the 

most demanding algorithms in order to take the 

maximum advantage of such processing 

capabilities. 

 

Some previous work, focused on the 

parallelization of the alignment algorithms in the 

several platforms has already been presented 

[6,7,8]. The algorithm proposed by Farrar et al. 

[7] is integrated in the SSEARCH35 application 

of the FASTA framework and uses Single 

Instruction Multiple Data (SIMD) instructions to 

parallelize the S-W algorithm on the CPU at the 

algorithm level. Other programs, like MUMmer 

[4] and Bowtie [9], are also targeted at the CPU 

but mainly take advantage of data-level 

parallelism. While MUMmer [4] uses a suffix tree 

as its index data structure, Bowtie [9] uses the 

Burrows–Wheeler transform to reduce the 

memory footprint of its index structure. 

 

One common observation that has been retained is 

that the great number of processors that are 

present in the GPU devices make them ideal for 

computationally intensive applications, like 

bioinformatics algorithms. Nevertheless, the 

inherent GPU restrictions on synchronous 

execution and on memory access often impose a 

significant constraint on the adopted programming 

model and limit the type of algorithms that can be 

efficiently parallelized on these devices. 

Nevertheless, independently of the set of 

constraints imposed by the target architecture, it is 

still necessary to find, among the several available 

algorithms for a given application, which is the 

best suited for parallelization. 

 

The work presented in this paper focuses on two 

sequence indexing techniques, their use to solve 

sequence matching problems and how they can be 

adapted to be used in a GPU. From these two 

indexes a heuristic algorithm for DNA alignment 

was developed and compared against common 

DNA alignment tools.  

 

2. INDEXED SEARCH 

To accelerate string matching problems, it is 

common to create an index of the reference string 

and then use it to accelerate the match with a 

given query string. Several different data 

structures are currently available to build such 

index, according to the specific requirements of 

the application. 

 

In the case of DNA alignment, the use of an index 

capable of finding the match location of a given 

query of size n in linear time (O(n)) is highly 

desirable. The well known MUMmer framework 

[4] makes use of an index with such 

characteristics based on suffix trees. It uses this 

index to determine the Maximal Unique Matching 

subsequences (MUMs) between any two 

sequences. 

 

2.1. Suffix Trees 

A suffix tree is a data structure that represents all 

the suffixes of a given sequence [10, 11]. It is 

composed of a root node, several internal nodes 

and leafs. Each node is connected, by an edge, to 

at least two child-nodes or leafs and every edge is 

labeled with a subsequence of the original 

sequence. The sequence that results from 

concatenating all the edge labels in the path from 

the root node to a leaf represents a single suffix of 

the original sequence. Typically, the original 

sequence is padded with a special symbol ($) to 

assure that no suffix of the original sequence is a 

prefix of another suffix. An n character sequence 

has n suffixes and the corresponding suffix tree 

has n leafs. An internal node of the suffix tree 

represents a repeated subsequence of the original 

sequence and the number of occurrences of this 

subsequence equals the number of leafs below 

that node. 

 

Figure 1. Example of a suffix tree for the string 
"mississippi", including the suffix links (dashed lines) 

 

By using suffix trees, it is possible to discover 

whether a particular query string exists within a 

larger reference string in O(n), where n is the size 
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of the query string. This is achieved by first 

creating a suffix tree that represents the reference 

sequence and then by following the tree edges that 

match the query string. If it is possible to match 

all query sequence characters with the characters 

encountered at an edge path while navigating 

down the tree, then the query exists somewhere in 

the reference. Furthermore, by performing a 

depth-first search from the point where the search 

stopped and finding all the leafs nodes from that 

point onwards, it is possible to exactly know how 

many times and where the query occurs in the 

reference in linear time. Nevertheless, all the 

significant features provided by suffix trees are 

offered at the cost of an important drawback, 

related to the amount of space that is required to 

store this index structure, which can be as high as 

20 times the initial reference size. 

 

2.2. Suffix Arrays 

When compared to suffix trees. suffix arrays [12] 

are regarded as a more space efficient structure 

typically requiring three to five times less space. 

This structure (illustrated in Fig. 2) can be seen as 

an array of integers representing the start position 

of every lexicographically ordered suffix of a 

string. The improvement that allows suffix arrays 

to use less space than suffix trees come from the 

fact that the array simply needs to hold a pointer 

to the start of the suffix (or an index of the 

corresponding text) to store each of these suffixes. 

This means that the element of the suffix array 

that holds the value ’0’ points to the first character 

of the text (assuming the text is a zero indexed 

array of characters) and the suffix it represents 

corresponds to the whole text.  

 

Suffix Index 

i 10 

ippi 7 

issippi 4 

ississippi 1 

mississippi 0 

pi 9 

ppi 8 

sippi 6 

sissippi 3 

ssippi 5 

ssissippi 2 
Figure 2. Suffix array for the string "mississippi". 

 

The most straightforward way to construct such 

data structure is to simply create an array with all 

the suffix elements placed in ascending order and 

then apply a sorting algorithm to properly sort the 

suffixes. A more complex alternative is to start by 

creating a suffix tree and then find all the leafs in 

the tree. This approach, although being faster than 

the direct sorting method, has the important 

drawback of requiring much more space to hold 

the initial suffix tree. 

 

The usage of a suffix array for string matching (in 

this case for DNA sequence alignment) is similar 

to using any other sorted array to search for a 

given element. The only difference is the way that 

two items are compared with each other. Since the 

values in the suffix array are not strings but 

indexes (pointer) of a string, it is not the values 

themselves that must be compared but the text 

they point to. Hence, when comparing two 

elements of the suffix array, not only the character 

they point to must be compared but, if they are 

equal, the subsequent characters must also be 

compared. The overall performance of the 

alignment function will reflect the efficiency of 

the search algorithm used in the array. 

 

By using a binary search algorithm the array is 

repeatedly divided in half until the desired 

element is reached. Hence, suffix arrays solve the 

string matching problem with an O(n log(m)) 

complexity, where n is the length of the query and 

m the length of the reference. 

 

3. GPU PROGRAMMING MODEL 

The basic building blocks in NVIDIA’s Fermi 

architecture [13] are the Streaming 

Multiprocessors (SMs). Each SM contains 32 

processing cores and two warp schedulers. A 

warp is a set of 32 parallel threads which are 

concurrently executed in sets of 16 threads (a 

half-warp) on the same SM. The most important 

characteristic of these SMs is that they follow a 

Single Instruction Multiple Thread (SIMT) 

paradigm, which means that the processing cores 

executing a half-warp always execute the same 

instruction on the different threads. Hence, if a 

thread within a warp performs a different branch, 

the processing of the several threads of such warp 

will be serialized, thus presenting a major 



challenge to optimize the GPU code and avoid a 

significant loss of efficiency. 

Besides providing a large number of processing 

elements, this GPU also offers a high capacity 

main memory with a high bandwidth access (six 

64-bit wide memory interfaces).However, each 

access to this memory bank incurs in a high 

latency (in the order of hundreds of clock cycles). 

As a consequence, whenever possible the memory 

management unit of the GPU tries to coalesce 

(join together 32 individual memory requests), in 

order to improve the performance. Therefore, 

threads in the same warp should access 

neighboring memory positions so that a single 

memory transaction is capable of providing data 

to several threads of an individual warp. 

Moreover, the new Fermi architecture provides an 

unified 768kB L2 cache for accessing the entire 

main memory, which might significantly improve 

the memory access time for memory access 

patterns which cannot be efficiently coalesced. 

4. EXACT SEQUENCE MATCHING 

4.1. Suffix Trees 

The first step in the search procedure for DNA 

sequences is to build the suffix tree of the 

reference sequence. This step is usually performed 

in the CPU, since it is an inherently sequential 

process. The suffix tree is then transferred to the 

GPU to be accessed by the several concurrent 

threads, each aligning a different query sequence 

to the same reference sequence. 

The suffix tree is constructed from the reference 

string and is afterwards transformed into a 

flattened tree consisting of an array of edges. Each 

node is represented in the flattened tree by its set 

of outgoing edges, where each edge contains: i) its 

starting index in the reference sequence, ii) the 

edge length and iii) the index (in the array) of the 

first edge of its destination node. Thus, each edge 

can be represented using 3 integers. However, to 

allow a perfect alignment of the memory accesses, 

the representation of a single edge is padded to 

hold exactly 4 integers. Furthermore, each node 

always contemplates space for its 4 possible edges 

(representing an A, C, G or T symbol), although it 

is possible that some of these may be filled out as 

fake edges. The need for flattening the tree arises 

from the fact that array indexes are more 

conveniently addressed in the memory space of 

the GPU than memory pointers. Furthermore, the 

traversal of the tree leads to an unpredictable 

access pattern that may significantly affect the 

performance of memory accesses due to the 

inability to coalesce them.  

Since the suffix tree only includes references to 

the original sequence, besides transferring the 

flattened tree to the GPU it is also necessary to 

transfer the original reference sequence. To save 

space and to optimize certain parts of the 

alignment function, the reference string is stored 

as a second array of integers. Each of these 

integers holds 16 nucleotides from the original 

sequence, each one represented using two bits. 

The original DNA query sequences are stored in 

the GPU global memory in their string format. 

However, to maximally exploit the available 

memory bandwidth, each set of 16 nucleotides is 

packed into a single 32-bit integer and the 

symbols of the different query sequences are 

interleaved. Due to the particular way query 

characters are accessed using suffix trees (single 

character comparison, instead of 16 characters) 

these characters are stored in reverse order in each 

integer cell: the first character corresponding to 

the lowest order bits and the later characters are 

mapped in the highest order bits. Such reverse 

order is preferred since it allows obtaining the 

various characters by using a shift right 

instruction followed by a binary AND always 

with the same mask (’11’). 

Due to the adopted encoding of the queries by 

using only two bits, it might happen that the last 

memory position represents less than 16 

nucleotides. This particularity and the fact that the 

queries might differ in size, makes it necessary to 

create an auxiliary structure that specifies how 

many symbols each query actually has, so that 

their end can be determined during the matching 

process. 



The implemented alignment algorithm, is 

executed by each thread in the GPU. The first step 

in the matching process consists of reading the 

query sequence data. The first 16 nucleotides are 

read into a buffer and the number of valid 

nucleotides (in case the query is less than 16 

nucleotides long) is calculated. After filling the 

query buffer, the first character is extracted from 

it and assigned to a ’test character’. Afterwards 

the whole buffer is shifted two bits, to prevent the 

same character from being used again. 

Then, the test character is used to read the first 

edge that needs to be checked, by calculating its 

position in the flattened tree using the character as 

an offset. Considering that the algorithm starts 

navigating the tree from the root node and the 

edges of the root node start at index 0, the edge 

leading out of the root node by ’test character’ 

will be at position tree[0 + test char].  

Once the query buffer is filled and there is an 

edge to follow, the alignment becomes a cycle of 

comparisons. The cycle begins by comparing two 

characters, the test character and the first character 

in the edge. As soon as there is a mismatch, it is 

known that the query under processing does not 

exist within the reference sequence. On the other 

hand, if a point is reached where the query buffer 

is empty and there are no more characters to read, 

then the end of the alignment has been reached, 

the query exists within the reference sequence and 

all the leafs that can be reached from the 

destination node of the current edge represent one 

match. 

4.2. Suffix Arrays  

When compared to suffix trees, the suffix arrays 

are usually regarded as a more space-efficient 

implementation of the index structure. Although 

their search time is asymptotically higher than 

suffix trees, in many applications their smaller 

size leads to similar or even better performance 

levels [14, 15], due to the attainable better cache 

performances. 

The suffix array is a one-dimensional array of 

integers and its access pattern is usually as 

unpredictable as in the case of suffix trees. 

Therefore, similar problems are encountered in 

terms of coalescing the memory accesses. Just 

like in the case of the suffix tree implementation, 

it is also necessary to transfer the original 

reference sequence as well as the query sequences 

to the GPU memory. The data structure is the 

same as the one that was adopted to hold the 

query sequences for the suffix tree 

implementation.  

The alignment algorithm in the GPU was 

implemented by conducting a binary search in the 

pre-processed array. In each step, the whole query 

is compared against one entire suffix, contrasting 

to what happens in the suffix tree implementation, 

where a single edge is compared. The main 

consequence of this improved approach is that 

once the suffix to be considered is determined, the 

memory accesses become sequential until it 

becomes necessary to re-pick the suffix. 

Therefore, by transforming the original reference 

sequence representation (8-bit characters vector) 

to an array of integers where, just as in the 

queries, each integer holds 16 2- bit nucleotides, 

the memory accesses can be reduced by 16 times. 

One additional (but also important) advantage that 

also arises is concerned with the possibility to 

simultaneously compare, in the best case scenario, 

16 characters in a single instruction, leading to a 

rather efficient combination of the SIMD parallel 

programming model with the SIMT model, 

natively exploited by the GPU architecture.  

The proposed matching algorithm, which is 

executed by each of the GPU threads, consists of 

two nested loops. The first loop is executed until 

all possible search options have been exhausted. 

Since this implementation is based on a binary 

search algorithm, such situation happens 

whenever the left and right pointers are adjacent 

(right - left = 1). The first task of this loop is to 

pick the next suffix array element to be 

considered. This is done by calculating the mid-

point between the left and right pointers. After 

picking which suffix to use, it is necessary to read 

the query and suffix sequences into a buffer. The 

read of the first is straightforward, since it is 



always aligned. Nevertheless, a special care must 

be taken when reading the suffix, since it might 

not be aligned and thus the higher bits of the 

memory position will be invalid.  

Before the comparison cycle begins, it is 

necessary to assure that the query buffer and the 

suffix buffer hold the same number of packed 

characters, since 16 symbols are compared at 

once. 

The inner loop, is the comparison cycle (’==’) 

which runs while the sequences are equal and 

there are more symbols to be compared in the 

sequences. When the algorithm enters the inner 

loop, the buffers hold the same number of valid 

symbols. However, it is not required that the 

number of symbols in the buffers is always the 

maximum buffer capacity. Consequently, the 

smaller buffer will empty sooner than the larger 

one, which will still have some data waiting to be 

compared. The main task of the inner cycle is to 

read data into any of the buffers that might have 

become empty after the last comparison, in order 

to discard any previously used data and to make 

sure that both buffers always contain the same 

amount of symbols. 

An interesting side-effect that arises from using 

this comparison method is that the kernel is more 

computationally intensive, with more logic-

arithmetic operations than memory accesses, 

which significantly benefits the parallel execution 

in the GPU. 

5. APPROXIMATE SEQUENCE 

MATCHING 

Approximate matching is closely related to exact 

matching. While in the later the sequence must 

matched completely, in the former a partial match 

or a match containing small differences is 

allowed. 

As the problem becomes more complex the 

solutions used for exact matching are no longer 

suitable. The reference sequence index however, 

can still be applied to the problem. 

Matching sequences with differences is a complex 

problem to address using indexed reference 

sequences. However, finding partial matches can 

be achieved with small changes to the search 

algorithms. 

5.1 Suffix Trees 

Suffix trees nodes represent a subsequence of the 

reference sequence the tree indexes. Each of this 

nodes possesses a connection to another node that 

represents the largest suffix of the subsequence 

represented (the sequence minus the first 

character). This connection is called the suffix 

link. 

Using the suffix link it is possible to continue the 

matching effort even after a mismatch is found. 

When a mismatch is found, the search continues 

from the destination node of the suffix link. If the 

algorithm cannot match the sequence aNc it will 

try to match the sequence Nc by removing the 

first character. 

Using the above method, a partial match is found 

for every mismatch encountered. 

5.2 Suffix Arrays 

Exact matching using suffix arrays uses binary 

search. Since suffix arrays do not possess any 

kind of additional information relating the array 

entries between them, performing approximate 

matching using these types of indexes relies on re-

starting the search algorithm for each mismatch 

found. 

One alternative would be to use auxiliary 

structures to hold the necessary information to 

reduce the amount of steps the binary search 

algorithm would have to do. 

The simplest approach is to generate a hash table, 

using as hash key the first characters of the query 

sequence. Every entry in the table will hold the 

array index of the first element beginning with 

hash key. When a mismatch is found and the first 

character of the sequence is removed, the new 

hash value is computed and the appropriate entry 

(and the next one) in the hash table retrieved. This 



allows the algorithm to immediately reduce the 

search space to only the suffix array entries that 

begin with the same subsequence as the query. 

The size of the hash key determines how large the 

search space for the binary search algorithm will 

be. A long hash key allows for a faster search at 

the cost of more memory and longer times to copy 

the auxiliary structure from the host memory to 

the device. 

6. DNA ALIGNMENT 

The optimal local alignment algorithm presented 

by Smith and Waterman is a dynamic 

programming algorithm with a runtime 

complexity of O(nm), where n and m represent 

the sizes of the sequences being aligned. 

However, with the huge amount of sequencing 

data that is currently available, the runtime of this 

algorithm quickly becomes a bottleneck. A way of 

using the Smith-Waterman algorithm for DNA 

sequence alignment is to reduce the size of the 

sequences being aligned. Therefore, other 

heuristic algorithms, such as BLAST [3], have 

been proposed to significantly reduce the 

alignment time. 

 

The heuristic algorithms typically operate in three 

phases: i) an initial approximate match phase; ii) a 

filtering phase of the potential alignment 

locations; and iii) a refinement of the obtained 

score by considering gaps in the alignment. 

6.1 Filtering the seeds 

The initial approximate match phase might return 

a very high number of results (seeds) and these 

will be passed to the slower gapped alignment 

phase. It is important that the results computed in 

the first phase be filtered so that only the relevant 

ones be considered in the final phase. 

One way of filtering the results is to merge seeds 

close together into a single seed. This will allow 

the reduction of the total number of seeds while at 

the same time preserving all the information 

gathered from the matching phase. 

To consider which seeds to merge it is important 

that they are sorted by starting location so as not 

to induce the algorithm in error. If one query 

sequence yields two different partial matches it is 

crucial that the order by which these appear in the 

query sequence and in the reference sequence be 

the same. 

To sort the seeds, an insertion-sort algorithm [16] 

is used with binary search trees. Since the smaller 

the tree the faster the algorithm is, multiple trees 

are used and the seeds are assigned a tree based 

on the seed’s starting position. 

Also, to ensure the trees are as balanced as 

possible an initial dummy node is inserted into the 

tree, representing the average value the tree can 

hold. If a tree is assigned to hold the seeds that 

begin in positions 0 through 1000 then the dummy 

node will have the value 500. 

Once the seeds have been sorted, the trees are 

traversed and converted into a linked list of seeds. 

The final step of the filtering algorithm is to walk 

the list and merge any seeds that are not spaced 

apart more than a specified number of positions. 

6.2 Gapped alignment 

Once the seeds have been filtered they are passed 

to the final phase that consists of a modified 

version of the Smith-Waterman algorithm. 

The version of the Smith-Waterman algorithm 

used, is based on CUDA SW++[2]. The algorithm 

was modified and optimized for DNA alignment, 

using a simplified scoring matrix (holding only 

four values: match, mismatch, gap open, gap 

extend) and using 2-bit encoding for the query 

and reference sequences. 

All the subsequences sent to the Smith-Waterman 

algorithm have the same length. This length is 

specified by a parameter. After the seeds have 

been filtered a location is created for each seed. 

This location is created by extracting a 

subsequence of the query that contains the seed. 

The exact start position of this subsequence 

depends on the specified length for the location, 



the start position of the seed and is restrained to 

positions that are multiples of 16. 

The locations are aligned to 16 characters to 

ensure that, using 2-bit encoding, all the elements 

are fully used (the elements are integers which 

hold 16 bases). 

7. RESULTS 

The tests conducted with the algorithms 

developed were done using real DNA data. The 

reference sequence was extracted from the Homo 

Sapiens Chromosome 1 (NT_167186.1). The 

query sequences were extracted from the Homo 

Sapiens Chromosome 1 (NT_167186.1) and from 

the Mus Musculus Chromosome 1 

(NT_039170.7). The query sequences were 

grouped into sets of 1024 to 4194304 queries 

where half the sequences came from Homo 

Sapiens and half from Mus Musculus. 

 

Figure 3. Performance evaluation of suffix tree and 
suffix array index based search algorithms in multi-

core CPUs. 

The previously described algorithms were 

evaluated in a computational system composed of 

an Intel Core i7 950 quad-core processor, running 

at 3GHz, with 6GB of RAM. This platform also 

includes a NVIDIA GeForce GTX 580 GPU, with 

512 processing cores running at 1.54GHz and 

1.5GB of RAM. 

To evaluate the performance provided by the 

indexing methods on exact matching problems the 

algorithms developed were compared in a 

homogeneous multi-core CPU by making use of 

POSIX threads.  

From the obtained results (see Fig. 3) it can be 

observed that although the asymptotic runtime 

corresponding to the suffix arrays is slightly 

greater than that of the suffix trees, in practice the 

performance of both implementations is quite 

similar. This result was already observed in [14, 

15], and is mainly due to a more efficient usage of 

the cache memory by the suffix array, which is 

achieved due to its smaller and more regular 

structure. Furthermore, by comparing the 

execution time results with the Bowtie and 

SSEARCH35 programs, it is possible to observe 

that the implemented suffix tree and suffix array 

algorithms are significantly faster, thus plenty 

justifying their adoption whenever high 

performance DNA alignment is required. 

 

Figure 4. Performance evaluation of the considered 
index based search algorithms in the GPU. 

Then, the performance of the conceived 

concurrent algorithms was assessed in a GPU 

platform, namely the NVIDIA GeForce GTX 580. 

The obtained results are presented in Fig. 4. This 

chart also includes a comparison with another 

DNA alignment framework, based on suffix trees, 

executed in the GPU: MUMmerGPU [5]. These 

results correspond to the total execution time of 

the algorithms, while searching for the 

corresponding number of query sequences in the 

reference sequence. The total execution time 

considers all the required data transfers (host to 

GPU and GPU to host), as well as the kernel 

execution time. As it is possible to observe in Fig. 

5, the data input time is very significant in all 

these index-based search algorithms, since the 

large index data structure must always be 

transferred to the GPU device memory. In fact, 



when the number of query sequences to be 

searched is very small, this data input time is the 

main responsible for the modest performance 

values provided by the GPU implementations, 

when compared to the corresponding CPU 

implementations. However, for a larger number of 

query sequences (commonly adopted by this 

application domain), the GPU implementations 

offer a significantly better performance, with 

speedup values as high as 85 for the suffix array 

implementation and 25 for the suffix tree 

implementation. 

 

Figure 5. Communication and kernel execution times 
for the implementations in the GeForce GTX580 GPU. 

These observations reveal that contrary to what is 

stated by the asymptotical complexity analysis of 

these algorithms (and unlike the obtained CPU 

performance results), the GPU implementation 

clearly favors the suffix array index structure. The 

justification for this fact is not only the more 

regular execution flow of this algorithm and its 

more efficient use of the cache memory, but is 

also the fact that the space occupied by the suffix 

array index is much smaller than that of the suffix 

tree index, which makes the suffix array 

implementation to always present a much lower 

transfer time from the host to the GPU device. 

Since the algorithm developed for DNA 

alignment would be an heuristic algorithm with 

the first phase being approximate matching, the 

two possible indexes were compared when 

solving the approximate matching problem. 

The results show, that suffix trees with the use of 

the suffix link have the best performance when 

large number of query sequences are matched. 

This is due to the fact that, unlike the binary 

search algorithm used by suffix arrays, the search 

using suffix trees does not need to start from the 

beginning for every mismatch found. Even when 

using auxiliary structures, the suffix array cannot 

outperform suffix trees. 

Finally, the implemented DNA alignment solution 

was compared with other DNA alignment tools 

(BLAST). The execution time was measured as 

well as the error (difference between the score 

reported by the algorithm and the score calculated 

by the Smith-Waterman algorithm) for BLAST. 

Table 1. Comparison between BLAST and the GPU 
algorithm using a reference sequence with 1.000.000 BP. 

Alignment tool

Seed size 5 8 10 default 5 8 10

Time 416.93 220.94 140.06 3.62 36.27 3.09 2.58

# alignments 1000 986 890 226 869 973 1000

Sum of errors (BLAST subset) 1920 1934 1934 4917 2083 2808 5473

Sum of errors (reported) 25817 32062 47904 4917 35466 64847 84068

GPU algorithmBLAST

 

The results in Table 1 show that the GPU 

algorithm executed with a seed of size 8 has a 

smaller error than BLAST with the default 

parameters, a smaller execution time (considering 

the larger reference) and a much higher number of 

query sequences for which an alignment is 

reported. 

The presented results allow to conclude that the 

new algorithm is capable of outperforming 

BLAST both in terms of speed and quality of 

results. Furthermore, the developed algorithm also 

allows the user to select the parameters to exploit 

the balance between quality of results and 

execution time, thus being flexible enough to be 

used in a wide range of scenarios. 

8. CONCLUSIONS 

After comparing the two index data structures 

especially suited for accelerating DNA sequence 

alignment in bioinformatics it was observed that 

the optimal index varied with the problem and the 

platform used. While exact matching problems 

can be efficiently solved by suffix arrays, 

approximate matching problems cannot. As such, 



in exact matching suffix arrays based algorithms 

designed to run on GPUs have the advantage of 

the index structure being smaller and requiring 

less time to copy to the device memory. On the 

other hand, the solution to approximate matching 

is more complex and requires more information 

which is readily available for suffix trees but not 

for suffix arrays. 

From the results obtained with the heuristic 

algorithm for DNA alignment it was observed that 

GPUs present a practical and efficient platform 

for high performance computing and algorithms 

optimized for these platforms can obtain better 

perform than current options for the same problem 

that run on the CPU. 
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