
The Friendly Blacksmith

Application of Preference Elicitation Techniques to a Computer
Game’s Synthetic Vendor

André Matias

IST - Instituto Superior Técnico
andre.matias@ist.utl.pt

Abstract Preference handling techniques have been a subject of increasing study,
as they prove as useful tools to support decision making, using a preference model
as basis. As a part of preference handling, preference elicitation arises here as the
key process of obtaining such a model, with maximal accuracy and minimal effort.
The main goal of this work is to apply preference handling techniques, with a focus
on preference elicitation, to synthetic vendors in computer games, in particular role-
playing games, to assist players in making decisions and hopefully enriching the game
experience. This document starts with a description of current role-playing game
interfaces, exposing the problem caused by the lack of customized support during
vendor interactions, followed by an explanation of the concept of preferences and how
to work with them, reviewing relevant preference elicitation techniques. The concepts
underneath the recommender system developed to test this work’s hypothesis are
formally explained, and an overview of its implementation is given. The recommender
system’s evaluation process is then described in detail and collected data is presented,
analyzed and discussed, with overall encouraging results. Finally, concluding remarks
are presented and several points for future work are suggested.

1 Introduction

In the world of fantasy computer role-playing games (CRPG), the player typically takes
control of a virtual avatar and engages in exploring fantasy worlds, interacting with a di-
verse cast of non-player characters (NPC), battling enemies, completing assigned quests and
“building” the avatar in a number of possible ways.

For this purpose, the player often has the need to acquire resources that provide valuable
aid throughout the game. Weapons and armor for use by the player’s avatar are just two
of the many types of resources usually seen in any CRPG. One way of acquiring such
resources is typically offered with the possibility of interacting with in-game NPCs with the
role of vendors, and buying them from an available collection of resources provided by such
vendors, through means of fictional in-game currency. From now on, the user (in particular,
the player) and the avatar shall be referred to as “she”, while the in-game vendor will be
treated as “he”.

In spite of what was previously stated, it’s not uncommon for the player to be presented
with a wide plethora of resource items, having little to no clue as to what to choose to satisfy
her needs. Additionally, in a way similar to what’s observed in real life, the currency used
is not unlimited and requires some kind of work to be gained. Thus, in such situations, the
player needs some kind of help to make a decision, in order to buy the items that better
suit her personal preferences and the in-game situation, assuring as much as possible that
the limited currency in her possession is not wasted in less than useful items.

As is the case of Eternal Sonata1, some CRPGs facilitate interactions with vendors by
organizing the items in several categories and providing extensive descriptions for each item,
making the decision process somewhat easier for those who may have a hard time finding

1 Eternal Sonata, 2007, developed by Tri-Crescendo, published by Namco Bandai Games.



and/or choosing what resources they need. A few CRPGs also recommend new-in-stock (for
example, Tales of Vesperia2) or generally important items to the player. Even with all this
help, the player’s personal preferences are typically not taken into account in any interaction
with the vendors and many players may find it hard to make good decisions regarding which
items they should buy in a large collection of different alternatives. Worse, a few players
may even make faulty decisions and consequently have their game experience suffer later
due to lack of proper resources in a given situation.

Since a player tends to interact repeatedly with such vendors over the full length of the
game, such difficulties may significantly hinder the player’s experience. Therefore, creating
a model which mirrors, as completely and accurately as possible, the player’s current prefer-
ences, and using it to guide interactions with a vendor, may help greatly improve the speed
and efficiency of acquiring needed resources, hopefully making the game more enjoyable.

This preference model is built actively while the player interacts with the vendor and
is maintained, even when the player has finished acquiring her resources, for use in later
interactions. Choosing a representation for this preference model, constructing a reasoning
that allows an acceptable mapping from this model to the real preferences of the player when
guiding interactions with the vendor and, mainly, selecting several elicitation techniques to
build and update such model, are the core issues of this work.

Thus work focuses mainly on studying state of the art preference elicitation techniques
and building an item recommender system that implements relevant techniques and may
be integrated into a game. The purpose of this system is to build, store and manage the
player’s preference model, allowing the game’s vendor to provide her with valuable help in
making a decision of what to buy or even allowing the storyline or generally offered quests
to depend on said model, allowing for a more customized and, hopefully, a more enjoyable
game experience.

Such a system was developed and tested, in the context of a CRPG specifically con-
structed for this work’s purpose, and results were collected, analyzed and interpreted. This
contribution marks a first approach to integrating a recommender system in a game and will
hopefully be used to further progress this work in the future.

The next section will describe in more detail describing how vendor interfaces are cur-
rently being constructed in CRPGs, and introduces the reader to the concept of preference
handling and, in particular, preference elicitation, briefly describing relevant state of the art
techniques to model and handle preferences. Section 3 will describe the conceptual model
for the recommender system developed in the context of this work. Section 4 will describe
how the recommender system was evaluated, presenting the attained results. Finally, section
5 will present the concluding remarks and suggest several points to be approached as future
work.

2 State of the Art

This section gives an introduction on how vendor interfaces are currently being designed in
games, presents the concept of preferences and briefly describes how to work with them and,
finally, describes several preference elicitation techniques.

2.1 Synthetic Vendor Interfaces in CRPGs

There is a great effort put in making good game interfaces; after all, a bad interface can be
reason enough for a player to lose interest in a game. Vendor interfaces require particular
care, as they will be used many times throughout the CRPG experience, and will determine
how prepared the player is to endure the upcoming challenges. This is because the CRPG
genre usually relies on items that are used to equip the player and, consequently, prepare
her for the virtual adventure.

2 Tales of Vesperia, 2008, developed by Namco Tales Studio, published by Namco Bandai.



Many games approach this topic by providing several tools that facilitate the process
of finding and acquiring proper equipment. Some games organize the items into categories
(Eternal Sonata) within the same vendor, or throughout different vendors, one for each item
type (Phantasy Star Online3). A few games also make non-personalized recommendations
to the player, highlighting one or more items from the set of items listed or giving this
information in some other way. Chaos Rings4, for instance, highlights new items with a
“New” label. In other cases, like in Tales of Vesperia, there is an NPC whose main raison
d’être throughout the whole game is to recommend the player some of the new and usually
best items she can acquire at vendors throughout the virtual world. There is also a general
worry of making the item names be descriptive enough so that the player quickly understands
their function.

With all this said, one can ask: what more is there to tackle in the improvement of these
interfaces? One should remember that the recommendations previously mentioned are non-
personalized, i.e., an item is recommended because the game developers thought it to be
important at some point in the game or just because it is a new item in stock, among other
potential reasons. Thus, the player may still feel overwhelmed by the great number of items
or simply not being sure about what she should get. Taking this into account, this work
will hopefully provide an answer to the previous question, showing that recommendations
based on the player’s preferences may significatively minimize the player’s time and effort
spent and, consequently, maximize her in-game performance and overall satisfaction with
the game.

2.2 Modeling Preferences

In a CRPG, every time we browse the items in a store, thoughts similar to “I prefer this
sword over that one” will probably come to mind often. If we know the game well enough,
we may even be able to order all available items according to our style of gameplay, from
most to less desirable or vice-versa. What allows us to compare one item to another and
construct such ordering are our preferences.

Semantically, preferences over some domain of possible choices allow establishing an
order to these choices so that a more desirable choice precedes a less desirable one. Hence,
preference relations establish an ordering between the elements of a set of choices. Following
the terminology in Brafman and Domshlak (2009) [5] these elements will be, from this point
on, referred to as outcomes. The aforementioned orderings, in turn, can be characterized
by at least two important criteria: firstly, an ordering is total if it is possible to compare
any pair of outcomes, or partial if it is not; secondly, an ordering is strict/strong if no two
outcomes are equally preferred, or weak if such restriction is not applied on the ordering.
It is important to note that preference relations are transitive, that is, if an outcome A is
preferred over an outcome B, and B over an outcome C, then A is preferred over C.

Although the previous concepts seem reasonably easy to grasp, it’s not always easy to
work with preferences. The easier scenario to handle is when each outcome we intend to
order, using preference relations, has only one relevant aspect or attribute which is, at the
same time, easily quantifiable. If the attribute is quantified with a value that is, say, a level
of preference (the higher the level, the more preferred it will be), one needs only to order
the outcomes by their single-attribute values to specify her preferences. However, in real
applications, preferences are usually not this easy to construct and work with. Outcomes
often have more than one relevant attribute and they’re not always easily quantifiable. There
may also arise a need to consider trade-offs and interdependencies between various attributes.

As stated in Brafman and Domshlak (2009) [5], a preference modeling task should be
approached by first asking what the model is and what questions or queries can we ask
about it. Since preferences establish an order among outcomes, a simple preference model

3 Phantasy Star Online, 2000, developed by Sonic Team, published by Sega.
4 Chaos Rings, 2010, developed by Media.Vision, published by Square Enix.



could correspond to such an ordering. As for the queries we could ask about it, they could
be, with only a mention to some, finding the most preferred outcome, comparing between
two outcomes and order the set of outcomes using all outcome attributes or just a subset
of the attributes. There is also a need for algorithms to compute each of the desired queries
given the model but they aren’t relevant to the current discussion at hand.

We can then describe a metamodel, for preference modeling, with five basic elements:
the model, which represents an ordering of possible outcomes; the language, which stores
preference statements in a compact representation that can be mapped to the model; the
interpretation function, which handles this mapping; the queries, which allow us to ask some-
thing about the model; and the algorithms, which compute answers to the aforementioned
queries. Figure 1 gives a graphical representation of how these elements are interconnected,
in which directed arcs indicate choice dependence and dotted line directed arcs indicate the
mapping of the language into a model.

Fig. 1: The metamodel used in preference modeling. Adapted from Brafman and Domshlak (2009)
[5].

The language can be either quantitative or qualitative. A quantitative language is typically
more advantageous, due to its compactness and mathematical nature.

Generalized additive independence (GAI) utility functions [8] correspond to the quanti-
tative language used in the context of this work, due to its simple, easy to understand and
flexible nature, and its support for dealing with interdependent attributes (see Chen and Pu
2004 [11] on preferential dependence). A GAI utility function is defined as:

u(x) =
∑
k≤K

fk(x[k]) =
∑
k≤K

ux[k],

where x represents an outcome consisting of N attributes X1, ..., XN , K is the number of
factors, fk, with k = 1, ...,K, are factors and x[k], with k = 1, ...,K, are sets of preferentially-
dependent attributes. The attribute subsets associated with each factor need not be disjoint.

The language of GAI utility functions assigns a value to each outcome depending on
its attribute values, and then the interpretation function in use here will dictate that an
outcome is preferred over another if it has a higher utility value.

The utility parameters x[k], with k = 1, ...,K, are acquired and updated through elici-
tation, which will be discussed in the following subsection.

2.3 Preference Elicitation

Once noted how preference information can be stored and maintained, one could ask the
following questions: How can a recommender system build the user’s preference model? How
can it elicit, from the user, the necessary information required to build her preference infor-
mation? The search for an adequate answer to these questions indeed arises as a problem.



Preference acquisition is a problem of growing importance, since people tend to rely more
and more on product recommender systems (or product search tools) to find outcomes that
best satisfy their needs and preferences [14].

This subsection focuses on two main points: “best-practice” guidelines for recommending
outcomes and state of the art techniques to work with partial preference specifications.

2.3.1 Recommendation Guidelines

As the player may not be familiarized with the full set of items in the vendor’s store and
respective attributes, it is important to make her gain such an understanding to maximize
the potential of further preference elicitation. In other words, show examples to the user so
she can gain a better understanding of the domain of possible outcomes at her disposal.
With this said, one may then ask two important questions: how many examples should be
shown and what examples should be shown.

According to Faltings et al. (2004) [12], who investigated the minimum number of exam-
ples to show so that the target choice is included even in a situation where the preference
model is inaccurate, this number should be given by the following:

t =

(
1 + ε

1 − ε

)d

,

where t is the number of shown items so that the target solution is guaranteed to be included,
d is the maximum number of stated preferences and ε is a factor that bounds, above or below,
the error of the preference function. Pu and Chen (2008) [14] note that, for a number of
preferences up to 5, the correct amount of shown items is typically between 5 and 20.

As for the question of what examples to show, the obvious answer would be: the best
examples according to the user’s preference model. However, as it was previously stated,
users may not be fully aware of all the preferences in context, and, as such, the preference
model may not yet be sufficiently complete and accurate. Also, users may be uncertain
about their own preferences and then try to construct them as they browse through the
shown examples and apply critiques to them. Because of these two facts, showing only the
best examples may prove itself insufficient to guarantee optimality. The system should then
guide the user to develop a preference model that is as complete and accurate as possible,
assuring, however, that the initiative to state more preferences remains on the user’s side.
Pu and Chen (2008) [14] call suggestions to examples chosen to stimulate preferences and
describe the diversity strategy as a possible solution for this problem.

The diversity strategy basically scores each outcome taking into account how similar it
is to the ideal outcome and how different it is from the already selected recommendations.

Define the score s(x, Y ) of an outcome x given an already selected set of recommendations
Y and the diversity degree d(x, Y ):

s(x, Y ) = αr(x) + (1 − α)d(x, Y ),

d(x, Y ) = 1 −
∑
y∈Y

sim(x, y),

r(x) = sim(x, x∗).

The similarity measure sim(x, y) quantifies the similarity between outcomes x and y.
The rank r(x) simply calculates sim(x, y), where y is the ideal outcome. The α constant
determines the trade-off between similarity and diversity; the higher α is, the more priority
is given to similarity and less priority is given to diversity. The α can vary between rec-
ommendation cycles, for example having higher values when the player is already expected
to have a reasonable knowledge of her own preferences [14]. Finally, score s(x, Y ) of an
outcome x decides how appropriate it is to recommend that outcome, given the current
recommendation set Y .



Even after a set of example items is recommended by the system, the user may still not
be able to find an outcome that sufficiently satisfies all of her preferences and may need
to choose a partially satisfying one. Also, the shown set of outcomes may have too many
possibilities, being difficult for the user to make a decision. The set should then be narrowed
down so the user can make a decision more easily. The process of preference revision [14]
arises as a possible solution to the described issues: it allows the user to change one or more
of her previous statements regarding preferred attributes and/or change the degree to which
they were previously and statedly preferred.

Lastly, in order for a product recommender system to be successful, users should be able
to put trust in it and understand it. After all, we won’t choose to follow recommendations
we don’t understand from someone we don’t trust. Thus, a recommender system should be
able to convince the users that its recommendations are best suited for them, explaining for
that purpose the reasons behind such recommendation choices. This way, recommendations
become more transparent and users can feel more confident about them. Explanation inter-
faces [15] are traditionally implemented either through the inclusion of a “why” component
associated with each recommendation or through grouping recommendations into multiple
labeled categories.

2.3.2 Working with Partial Specifications

It is not always possible, or reasonable, to get a full preference specification because it may
require considerable effort and time from the user and, in other cases, it may not even fit
into the context. For instance, a vendor asking a player to state all of her preferences the
first time they meet doesn’t seem a very natural interaction and the player may not even
be fully aware of her preferences yet. Thus, it is important to know how to work with only
partial preference specifications.

This problem is usually approached either as a computational learning theory problem
involving algorithms used in statistical machine learning (such as the Bayesian approach
[10]) or as a partially observable Markov decision process (POMDP) problem [2].

Here, the minimax regret decision criterion [1,3,4] is presented, accounting for its en-
couraging results in a recent study and testing in the UTPREF system as it is described in
Braziunas and Boutilier (2010) [9].

Minimax Regret works with partial specifications by using a set of utility functions U ,
each of which imprecisely represents the player’s preferences, and choosing an outcome taking
all of them into account. Through elicitation these utility functions are bound to converge
to the player’s true utility function.

Let us formally define minimax regret in stages. The pairwise regret of choosing outcome
x with respect to outcome x′ over the utility function set U is:

R(x, x′, U) = max
u∈U

u(x′) − u(x).

The maximum regret of choosing outcome x is:

MR(x, U) = max
x′∈X

R(x, x′, U).

The minimax regret of utility set U is:

MMR(U) = min
x∈X

MR(x, U).

Basically, the minimax regret is the minimum regret that can be achieved, by choosing a
minimax-optimal outcome x∗ instead of its adversarial witness xw, given the utility function
set U .

The use of minimax regret is simple to understand, an effective driver of preference
elicitation (as discussed on the next section), and does not require a probabilistic prior like
many statistical approaches. For a more thorough and general description of the advantages
(and disadvantages) of minimax regret, refer to Boutilier et al. (2006) [4].



3 Conceptual Model

The developed recommender system consists mainly of five modules: the Main module which
stores the full preference model and is responsible for communicating with the game; the
Minimax Regret module which is responsible for deciding which item is most appropriate for
a recommendation; the Elicitation Strategy module which will request more information from
the player when deemed necessary; the Current Solution Strategy module which decides what
to ask the player in order to maximize information gain; and finally, the Recommendation
Strategy module, responsible for constructing a list of recommendations based in the item
selected in Minimax Regret.

See figure 2 for a graphical overview of the system’s modules and, inter-module interac-
tions, and interaction with the game.

Fig. 2: Recommender system model overview and its interaction with a game.

The recommender system’s preference model uses GAI utility functions, in order to
capture attribute dependencies, as they were described in subsection 2.2. Utility parameters
are updated through replies to queries (see ahead) and whenever an item is purchased.

The Minimax Regret module uses, as its name implies, the minimax regret decision cri-
terion as it was described in subsection 2.3.2, to choose the best outcome to recommend.

The Elicitation Strategy module decides when to make recommendations, using the re-
sults computed in the Minimax Regret module. The process can be summarized as follows:

1. Compute minimax regret MMR.
2. Repeat until MMR < RegretThreshold:

(a) Ask query Q.
(b) Update utility parameters on U according to the response given to Q.
(c) Recompute minimax regret MMR with the updated U .

The Current Solution Query Strategy module implements the adopted query strategy
with the same name (CS in short), first described in Boutilier et al. (2005, 2006) [3,4] and
recently tested in the UTPREF recommender system, with encouraging results [9].

The CS strategy adopted here uses bound queries. In a bound query, the player is directly
asked if one of her utility parameters lies above a certain value q. A positive response raises
the respective utility parameters with values lower than q to value q, for every utility function
in U . A negative response lowers the respective utility parameters with values higher than q
to value q, for every utility function in U . The query is formulated using the current solution,
that is, the current minimax-optimal outcome and its adversarial witness as basis. Refer to
Boutilier et al. (2006) [4] for the complete formal definition.



Finally, Recommendation Strategy module uses the results computed in Minimax Re-
gret and decides which recommendations should be made. The adopted strategy chooses
outcomes with least maximum regret for the first half of recommendations, and uses the
diversity strategy (see subsection 2.3.1) to select the rest. The number of recommendations
to show is decided by the game.

4 Evaluation

The developed recommender system was evaluated in a CRPG made specifically for this
work’s purpose, with a total of 17 participants between ages 23 and 34 involved. Each
testing session involved playing through two different scenarios, A and B. Scenario A used
the developed recommender system as it was described in the previous section; Scenario
B uses a modified recommender system that randomly generates queries and recommends
only the outcomes with most maximum regret. Each scenario corresponds to a full run of
the CRPG.

4.1 Testing Session

Before each testing session, players were simply informed that they were going to play a
CRPG, in which they would be interacting with an intelligent vendor.

The CRPG (for either scenario) starts with an introductory phase, where the player is
given access to a few weapons to stimulate her to accurately express her preferences later on.
As soon as the player meets the vendor, initial weapons are taken away, she is given the option
to choose one of three described heroes as a role model (each of which technically translates
to a set of utility functions that will be used to initialize preference information) and from
there she has to start acquiring and upgrading her equipment on her own. Introductory
phase aside, the CRPG is made of three quests and before each of them the player has the
option to interact with the vendor. After the three quests are completed, the vendor gives
the player a final, powerful weapon, which is technically the minimax-optimal outcome, and
then asks the player to rate it.

The key interface between player consists on the following options: display all available
weapons, display only the recommendations, ask the player a query about her play style,
and, lastly, reset her initial play style information to that of a different hero, effectively
resetting the preference model to an initial utility function set.

Information was collected through a questionnaire, game logs and an open discussion at
the end of the testing session.

4.2 Results

Results collected were both quantitative and qualitative in nature. Quantitative result anal-
ysis shows that scenario A was significantly superior when compared to scenario B: generally,
in scenario A the game experience was more enjoyable, recommendations were more appro-
priate, more recommended weapons were bought, queries were observed to make more sense,
and it was noticeable how queries had a more positive effect on subsequent recommendations.

It is, however, important to note that, while scenario A was shown to be superior, the
game experience in scenario B had an average rating of 3.41, in a scale of 1 to 5, which is
above the medium value of 3 and relatively close the average of 4.12 for scenario A. This can
be explained by the fact that both scenarios had exactly the same vendor interface; even
when, for example, the recommendations proved to not be the best, the player still typically
feels that she is being supported, which improves the game experience.

Similarly, the quality of queries in scenario B was rated with an average of 3.24, as
opposed to an average of 4.00 for scenario A, in a scale of 1 to 5. This can be attributed



to the fact that queries in scenario B followed the same construction template as those of
scenario A; only the values asked were randomly generated.

Interestingly, the number of times the players asked for recommendations and the number
of times they asked to be queried were approximately the same in both scenarios. This
indicates a willingness to interact with such a vendor and use the respective services only
made possible by a recommender system.

Qualitative results confirmed that, in general, players expressed their interest in inter-
acting with an intelligent vendor, such as the one shown in the CRPG, and felt that the idea
of a well-constructed recommender system might be a very welcome and useful addition to
the world of CRPGs, not only for recommendation purposes, but also for game experience
personalization.

5 Conclusions

The act of bringing preference handling concepts and techniques, in particular preference
elicitation, to the world of CRPGs is still a novel concept, yet to be fully explored, and has
shown here to be particularly challenging. Game interaction and respective interface creation
require more care than many store applications which try to prioritize being effective and
efficient for when a customer is interested in buying something, rather than building a
more natural connection to the player, stimulating her to express her preferences and feel
compelled to buy something, not because she strictly needs it, but because she learned to
want it. Thus, implementing a recommender system within a game’s virtual world is arguably
much more of an art than implementing it on a classic web store’s artificial interface.

This work intends to give an overview of the current state of the art techniques applied
in the area of preference handling, particularly in a preference elicitation context, directs
its attention to the world of CRPGs and its current vendor mechanics and interfaces. The
primary goal of this work is to gain a better understanding of how one can build a rec-
ommender system in the context of a CRPG to help players make more accurate decisions
when interacting with vendors and, thus, achieve a better game experience.

The results obtained during the evaluation of the developed recommender system to
be integrated in a game are very encouraging, with every participant manifesting their
enthusiasm towards such an approach. Result analysis confirms their interest and willingness
to use such a system in real games.

Two scenarios, A and B, were tested. Scenario A used the recommender system as it was
described in the section 3, and scenario B used a modified version that randomly generated
queries and recommended the worst items according to the minimax regret decision criterion.
In any of the two scenarios, all players made sure they used the recommender system and
asked the vendor for recommendations, and, in consequence, the majority felt that a good
recommender system positively impacts the game experience. Overall, the recommender
system in scenario A was considered considerably better and more useful than its scenario
B counterpart.

Many players also felt interested in having the vendor knowing them better and offering
them better recommendations, and thus specifically requested the vendor to query them.

It is also worthy of notice how the recommender system in scenario B was still seen as a
real recommender system, as many players felt that the system was still trying to help them,
even though ultimately not performing as well as the recommender system in scenario A,
and thus proved to be a valuable object of comparison for this study.

Finally, even though several improvements and further study can still be achieved, one
can say that the developed recommender system met the goals of this work and is, without
a doubt, a great starting point for gaining a reasonable understanding about introducing
recommendation support systems to the world of games.



5.1 Future Work

There are several steps that naturally follow the work introduced here, be them improve-
ments to existing functionality or the introduction of new features to make the recommender
system more effective and simple to understand, from a player perspective. The suggested
points where future work should focus on are as follows:

– Allow for explanatory information within the system to be directly visible in vendor
interfaces. A player’s trust in a vendor is typically directly related to how much she
understands the vendor; if the recommender system can compute and associate a natural-
looking reason for each recommendation made, the player will feel more compelled to
believing in the system and following its advice.

– Add support for storing and managing multiple preference models, in the context of a
multiplayer game. In an age where online games of every genre are very common, it is only
a natural evolution to consider multiplayer options. Additionally, it would be interesting
to study how a player’s preference model could influence the recommendations for a
different player.

– Further study the elicitation parameters, to better understand which values they should
have in specific contexts, and, additionally, how should they change throughout elicita-
tion cycles and throughout the whole game experience.

– Add support for different types of items, with different attributes. For example, potions,
which will most likely have an entirely different attribute set than weapons, could also
be covered by the recommender system along with weapons. The current recommender
system only handles items with the same attribute set; although, admittedly, it would
be possible to run X separate instances of the developed recommender system, to ac-
commodate for X item types with different attribute sets.

– Allow the recommender system to customize attribute dependencies for each player,
through understanding her. The current system assumes a fixed GAI utility structure
for every player; utility personalization can then be considered a natural, although non-
trivial, next step for this work. This problem has already started to be approached in
Brafman and Engel (2009) [6].

– Support more powerful preference revision techniques (see subsection 2.3.1). The current
recommender system’s preference revision is mostly limited to resetting the preferences
to initial values.

– Consider formulating the recommender system logic as a constraint-based optimization
problem, as in Boutilier et al. (2006) [4], making the system more flexible to the intro-
duction of other types of queries, such as comparison queries, and other query strategies,
such as the ones presented in Braziunas and Boutilier (2010) [9].

– Use of more appropriate interfaces should be considered. Although not directly related
to the recommender system itself, the use of interfaces that allow for ordering and cate-
gorizing items displayed would be particularly helpful to avoid confusion and stimulate
trust in players (see subsection 2.3.1 on explanation interfaces).

– Improve how queries are shown to the player. While not directly related to the recom-
mender system, it is important that queries asked feel natural, not too technical, and in
context with the game’s setting.

– Consider introducing calibration across factors, to make sure the utility values used for
all factors are meaningful and consistent with each other. See Braziunas and Boutilier
(2005) [7] and Gonzales and Perny (2004) [13] for further details. The current system
simply uses utility values from 0 to 100, for all factors.

– Explore further personalization of game experience through preferences. The developed
recommender system supports the use of preferences to customize the game experience,
for example through story branching, but evaluation didn’t prioritize this idea, focusing
only on assessing the recommender system, the core of this work.



References

1. Boutilier, Patrascu, Poupart, and Schuurmans. Constraint-based optimization with the mini-
max decision criterion. In ICCP: International Conference on Constraint Programming (CP),
LNCS, 2003.

2. Craig Boutilier. A pomdp formulation of preference elicitation problems. In AAAI/IAAI, pages
239–246, Edmonton, 2002.

3. Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Regret-based utility
elicitation in constraint-based decision problems. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors, IJCAI, pages 929–934. Professional Book Center, 2005.

4. Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-based opti-
mization and utility elicitation using minimax decision criterion. Artificial Intelligence, 170(8–
9):686–713, 2006.

5. Ronen Brafman and Carmel Domshlak. Preference handling - an introductory tutorial. AI
Magazine, 30(1), 2009.

6. Ronen I. Brafman and Yagil Engel. Directional decomposition of multiattribute utility func-
tions. In Francesca Rossi and Alexis Tsoukiàs, editors, ADT, volume 5783 of Lecture Notes in
Computer Science, pages 192–202. Springer, 2009.

7. Darius Braziunas and Craig Boutilier. Local utility elicitation in GAI models. In UAI, pages
42–49. AUAI Press, 2005.

8. Darius Braziunas and Craig Boutilier. Minimax regret based elicitation of generalized additive
utilities. In Ronald Parr and Linda C. van der Gaag, editors, UAI, pages 25–32. AUAI Press,
2007.

9. Darius Braziunas and Craig Boutilier. Assessing regret-based preference elicitation with the
UTPREF recommendation system. In David C. Parkes, Chrysanthos Dellarocas, and Moshe
Tennenholtz, editors, ACM Conference on Electronic Commerce, pages 219–228. ACM, 2010.

10. Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using adaptive
utility elicitation. In Proceedings of the 7th Conference on Artificial Intelligence (AAAI-00) and
of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI-00), pages
363–369, Menlo Park, CA, July 30– 3 2000. AAAI Press.

11. L. Chen and P. Pu. Survey of preference elicitation methods. Technical report, EPFL Technical
Report IC/2004, 2004.

12. B. Faltings, P. Pu, M. Torrens, and P. Viappiani. Designing Example-Critiquing Interaction.
In Proceedings of the International Conference on Intelligent User Interface(IUI-2004), pages
22–29. ACM Press, 2004. Funchal, Madeira, Portugal.

13. Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In Didier Dubois,
Christopher A. Welty, and Mary-Anne Williams, editors, KR2004: Principles of Knowledge
Representation and Reasoning, pages 224–233. AAAI Press, Menlo Park, California, 2004.

14. Pearl Pu and Li Chen. User-involved preference elicitation for product search and recommender
systems. AI Magazine, 29(4), 2008.

15. Pearl Pu, Paolo Viappiani, and Boi Faltings. Increasing user decision accuracy using sugges-
tions. In Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems,
volume 1 of Social computing 1, pages 121–130, 2006.


