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Abstract

The evolution and proliferation of modern smart-phones has opened a door to a new type of Wireless

Sensor Networks (WSN). While traditional WSNs consist of fixed sensor nodes, smart-phone based

ones have a large mobility factor.

Modern smart-phones also possess a respectable amount of sensors which allied with their mobility and

processing power are able to produce a large-scale Opportunistic Sensor Network (OSN). The sensors

also provide developers with the possibility to create applications that improve lifestyle by collecting

useful contextual information from the user’s lifestyle. We propose to explore both the opportunistic

and social potential by creating an application that uses an underlying OSN to improve the user’s day

to day personal and social experience.

To explore the opportunistic potential we propose a decentralized resource sharing protocol to apply to

the underlying OSN. It will provide the possibility for mobile nodes to exchange resources and supply

the necessary framework for the social sensing application.
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1 Introduction

WSN consist of sparsely distributed autonomous

sensors that in cooperation monitor the surround-

ings they’re adjacent to. WSNs have been used on a

myriad of scientific fields on all sorts of applications

but have struggled with inherent limitations com-

monly associated with the lack of resources that

characterize the majority of sensor nodes. Such
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limitations exist due to the fact that nodes that

compose these networks are usually resource lim-

ited devices, with low autonomy and also low power

and low bandwidth radio interfaces [1]. These

limitations prevent large-scale deployments of the

aforementioned networks and as such they are very

useful in research contexts on closed-door labo-

ratories and small scale experimentations. When

ported to real case scenarios that require large de-

ployments they become expensive and very high

maintenance costs but it doesn’t mean that they

have not been used and that they haven’t been ex-

tremely useful. They have been crucial on all sorts

of fields ranging from domestic to professional and

or industrial use.

Meanwhile modern wireless telecommunications

have had an observable improvement regarding the

used mobile devices. They started off with big cell

phones that had just one simple function, and that

was to make and receive calls. Later the possibil-

ity to send and receive text messages was added.

As the time went on, phones morphed into Per-

sonal Digital Assistant (PDA) that incorporated

more memory and better CPUs. This yielded a

panoply of new applications that improved their

usability. Since evolution never stops, eventually

smart-phones appeared, and today’s smart-phones

are a long way from the behemoths that their an-

cestors where.

One of the particularities of modern smart-phones

is the inclusion of an array of sensors that were at

first intended exclusively for intended purposes so

that some functionalities can be made possible [2].

A proximity sensor exists so that modern touch

screens don’t get activated when the user puts the

phone close to the face while making a call. Orien-

tation sensors and accelerometers are used to rotate

the phone’s screen every time the user rotates the

phone itself but ended up also being used on other

applications such as games. Light sensors we’re

added so that the phone could smartly manage

battery consumption by deeming the lights when

they were not necessary. Magnetometers and dig-

ital compasses were also throw into the mix. The

camera has been a part of modern phones for a

while now, and the microphone has been on phones

since their birth.

With the inclusion of these sensors, smart-phones

have become powerful mobile devices and it has not

gone unnoticed. There has already been quite a bit

of researching into the possibility of using these

devices to deploy large scale WSNs [3] [4]. Since

smart-phones are managed by their users they’re

usually kept charged and on for the majority of

the day and besides packing quite a punch perfor-

mance wise there are more than 400 million1 of

them worldwide.

Traditional WSNs are thought out before being

1http://gigaom.com/2010/03/24/mobile-milestone-data-surpasses-voice-traffic/?utm source=gigaom&utm medium=navigation
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deployed and their structures are a byproduct of

the project’s motivations. In contrast, a WSN

composed of smart-phones has no predefined struc-

ture, it’s a sort of mutating, anarchic network

where humans dictate how it morphs by mov-

ing about with their smart-phones. Smart-phone

based WSNs have a large mobility factor when

compared with the traditional WSNs composed by

fixed nodes. Most of the work done on this field,

but not all [5] [6], has been directed to the human

component, mostly the social aspect of it. Social

networks have been a growing industry and there

is already been a modicum amount of research

into the possibility of enrichment of the social net-

working experience [7] [8] [9] by introducing the

capacities of modern smart-phones and WSN com-

posed by them. This is commonly referred to as

social sensing.

What we have here is, in theory, the largest WSN

waiting to be explored like any other WSN. In [10]

this is called People-Centric Sensing since sensors

are not deployed in a traditional form, rather than

on trees or buildings, humans become the focus

area of sensing. Consequently applications thought

out for this network will also be aimed at the hu-

man kind with the goal of improving life quality on

a day to day basis by providing useful information

that would otherwise go unnoticed.

One other aspect that should also be mentioned

is opportunistic sensing. Such concept is already

very useful on typical WSN and can also be used

on the context of people centric sensor networks.

In [10] opportunistic sensing is regarded as the act

of pervasively gathering information, that is, the

phone will sense the environment without any nec-

essary input from the user. For the remainder of

this document, we will regard opportunistic sens-

ing as defined in [11], where it defines opportunistic

sensing has the act of tasking an application request

for a given sensor in a remote device within a pre-

ferred time frame. This translates to the possibility

of a less capable device tasking another device, that

has the desired sensor, in the surrounding area to

collect data from a sensor that would otherwise be

unavailable.

We propose a solution that explores the aforemen-

tioned possibilities of a smart-phone-based sensor

network. This shall be done by creating a frame-

work that exploits opportunistic connections with

other passing devices. This should help improve

sensing accuracy and in some cases, more than im-

prove since these opportunistic connections might

lead to resource sharing. A solution that over-

comes inherent limitations of less capable devices.

In order to test this framework we also propose

a possible application that will use the aforemen-

tioned framework to provide the user’s with an

improved social experience.In order for that to be

possible the devices must be able to process and

evaluate sensor data in order for it to be possible

to infer contextual information
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The remainder of this extended abstract is orga-

nized into three main sections. Section 2 provides

an overview of the implemented architecture, both

for the framework as for the social sensing applica-

tion. Section 3 details the testing process during

the resource sharing protocol development and also

the validation process of a case scenario. Last

section, section 4, summarizes and analyzes the

obtained results drawing some final conclusions.

2 Architecture

The are two different approaches for the resource

sharing protocol, centralized or decentralized. In

[12] [13] the authors propose a centralized solution

and in [14] they propose a hybrid solution but with

the main focus on a decentralized resource sharing

protocol for OSNs. We approach resource sharing

with a purely decentralized solution.

Figure 1 is an overview of the implemented ar-

chitecture. It shows the two main interest groups.

The decentralized communication between mobile

devices and the centralized communication used for

logging and result analysis.

They communicate amongst each other using blue-

tooth and with the centralized Transmission Con-

trol Protocol (TCP) server by way of Wi-Fi. Inter-

Device communications are done with Bluetooth

because it is the only resource available that allowed

ad-hoc connections. Due to driver restrictions, the

smart-phones used during the development don’t

yield Wi-Fi ad-hoc connections.

Also, using bluetooth left the Wi-Fi radio inter-

face free for the centralized communications with

the TCP server. It would have been very complex

to schedule the use of the WiFi for both protocol

communications and for logging purposes.

The application will be the tool used to prove

that the concept works. The idea behind it is a

simple application that has various configured pro-

files. Each profile is suited to a different situation,

and the sensors gather information process it, and

decide wether the surroundings are suitable for the

selected profile. This pertains to the social sensing

part of the solution.

When a device is less capable than others, and

doesn’t have a required sensor it would then use

the underlying OSN composed of other devices

running the same application, to acquired said re-

source.

The application uses a framework that consists

of functions that implement the OSN’s communi-

cation protocols. The framework can be used as

a base for any other that would find it useful to

use the resource sharing protocol to enhance it’s

capabilities.

Figure 2 shows a global view of the architecture’s

stack structure and its communication paths be-

tween modules. The Application Interface and the
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Figure 1: Architecture Overview

Application Core are relative to the social sensing

application. All other modules refer to the appli-

cation’s support framework.

The Application Core Module (ACM) sits in be-

tween the user interface and framework modules.

It has the job of orchestrating all the applications

background operations. These background opera-

tions include handling results from the Sensor Re-

quest Manager Module (SRMM), deciding what’s

the process next in the algorithm, user interface

flux and settings management.

The rest of the blocks are responsible for imple-

menting the resource sharing protocol and com-

pose the OSNs framework that the ACM will use

to enhance it’s user experience. The framework

implements a resource sharing protocol that we en-

visioned. The selected protocol was chosen as a

result of a series of tests ran on the ONE simula-

tor [15] agains two other protocols.

The goal of the protocol is to in the end receive

data from a sensor that isn’t available locally at

the device. Hence, a request reply handshake must

exist. The flux of sending a sensor request and

receiving a sensor reply is unavoidable. All three

protocols share that phase of the message exchange.

All three don’t resend requests or replies if the mes-

sage was successfully delivered. Messages are only

resent if they failed to reach the destination. They

all have a Time To Live (TTL) value associated,

this is so if a request reaches the destination and

the destination goes out of range for a long time,

the reply isn’t sent when / if they connect in the

future. None of the protocols use ACK or NACK

messages. The sender is always blind, it never

knows if the messages where successfully sent.

The one that got the best results is called Multi-

ple Active Request (MAR) protocol.The MAR pro-

tocol does not skip the handshake process. When

a device requires a sensor it does not have he sends

a Capability Response Message (CRESM) to all

neighboring devices. It then waits for a CRESM.
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Figure 2: General view of the proposed architecture

Upon receiving one it checks if the device has the

desired sensor. If this is the case, then a Sensor

Request Message (SREQM) is issued to that de-

vice. It keeps issuing SREQM for every CRESM

received.

In the case the remote device does not have the de-

sired sensor then that message is ignored, and the

device is flagged as not having the required sensor.

Other CRESM will be accepted.

The protocol converges when the device receives

the Sensor Response Message (SRESM). After

that, all other messages referring to that request

are ignored.

In order to keep exchanged messages small the

protocol uses RDL. RDL is a unified description

language for network resources. It is able to de-

scribe a resource both qualitatively as quantita-

tively [16].

The RDL API exposes two formats to describe the

resources, XML and KLV. The KLV format is very

lightweight, as a matter of fact due to it’s size it

can consume as little as 14 times less than the

counterpart format [16].

3 Tests and Validation

The tests are divided up into two parts. The first,

are the simulator tests that we the base for the pro-

tocol choice. In order to study complex scenarios

simulator tests were performed in the ONE simu-

lator. The main goal in the protocol testing is to

ascertain which of the three is the best all-rounder.

It is not required for the protocol to be the best in

all tests, but to be the one that suits the best in a

vast majority of situations. The tests were prepared

so that they represented most of the situations in

daily use.

The second, is the case study test. The main goal

behind the case study tests is to analyze how the

chosen protocol performs after it’s implementation

compared to the theoretical results ran in the sim-

ulator.

3.1 Protocols

On all test scenarios only one of the protocol

was able to perform better on every request time

completion test, and that was the MultipleAc-

tiveRequest. It was outperformed by both other

protocols when it came to the number of messages
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created and total bytes transferred. The SensorOn-

lyRequest performed very well on both those tests,

coming first on all test scenarios. It didn’t perform

so well in the tests where the nodes weren’t sta-

tionary, it was the only protocol to have request

timeouts.

The decision on which protocol to chose would al-

ways be between the SensorRequestOnly and Mul-

tipleActiveRequest, since the SingleActiveRequest

didn’t out perform any protocol. As mentioned at

the beginning of this chapter, the main choosing

criteria is the request completion times, and hence

the chosen protocol is the MultipleActiveRequest.

On another network where time wasn’t so critical,

the SensorRequestOnly would be the better choice.

Apart from the timeouts when mobility was a fac-

tor, it would still be a very good choice. Con-

vergence times when compared to the MultipleAc-

tiveRequest weren’t so different to make it an ob-

vious decision.

3.2 Case Study

The scenario reflects the underlining idea that the

PhoneSensing represents. It represents an social

sensing application that would help the user aug-

ment their activities by being aware for the sur-

roundings ate letting the user know when they are

not optima.

For example, would the user be at a coffee place

working on he’s dissertation the profile would be

setup so that it would trigger an event when the

lighting and/or conditions were not optimal. If

such an event was triggered it would try to find a

suitable place nearby using the GPS. If the GPS

was not available it would use the sensor shar-

ing framework to request it from any neighboring

devices using the same applications. Had the ap-

plication have connectivity with social networks it

could also post that the user was about to change

the location where he was studying.

The test scenario we present is the most basic

possible. It’s composed of two devices running the

phone sensing application. One has a GPS sensor

available to share, and the other has a studying

profile available with a light threshold of 90%, so

the lightest dimming of the lights will trigger an

event to change location. That will require a GPS,

which the device doesn’t have.

Figure 3 shows the duration of each process since

the device requested the GPS sensor so that he

could chose a new location to go to. It took 27s

from the discovery process until the device receiv-

ing the SRESM. The first important thing to point

out, is that each Discovery Process will take exactly

10s, to return all the available devices. This time

doesn’t include the time it takes to cycle through

every device and identify the ones that actually run

the PhoneSensing application. At a first glance it

takes much, much longer than the simulator to

handle a single request. In the first test scenario

described in the previous section, the longest re-

quest took 0.09s, and this was with other devices

requesting at the exact same time. So the first
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Figure 3: Protocol Execution Overview

ID Log Type Log Msg Device Date

3 DEBUG Starting MultipleActiveRequest protocol a5.alpha 29-04-2012 08:09:31

4 DEBUG Starting Discovery Process a5.alpha 29-04-2012 08:09:31

5 DEBUG Discovery Process Finished a5.alpha 29-04-2012 08:09:41

... ... ... ... ...

8 DEBUG Sending Capability Request Message (CREQM) to a5.beta a5.alpha 29-04-2012 08:09:57

9 DEBUG Received CREQM from a5.alpha a5.beta 29-04-2012 08:09:58

10 DEBUG Sending CRESM to a5.alpha a5.beta 29-04-2012 08:09:58

11 DEBUG Received CRESM from a5.beta a5.alpha 29-04-2012 08:09:58

... ... ... ... ...

18 DEBUG Sending SREQM to a5.beta a5.alpha 29-04-2012 08:09:58

19 DEBUG Received SREQM from a5.alpha a5.beta 29-04-2012 08:09:58

24 DEBUG Received SRESM from a5.beta a5.alpha 29-04-2012 08:09:58

Table 1: Scenario 1 Debug Table

conclusion that can be taken is that the simulator

is far from yielding realist results. But that will be

analyzed a bit more later.

Table 1 is an extract of the debug output gen-

erated by the devices during the test scenario. Has

already mentioned, the process from the discovery

until the SRESM took 27s. During the simulator

tests the time logged in didn’t count with the dis-

covery process, because there wasn’t any thing of

the sort, the devices always knew at all times the

surrounding devices. In this real world scenario,

even excluding the discovery process, the message

exchange takes much longer. In the simulator the

longest request delay was 0.09 seconds. Other re-

quests about halved that time.

Look at the table 1 another process that seems to

take along time is the filtering process. Since the

discovery process finishes until the first request is

sent takes about 16s. This filtering process was one

of the first challenges mentioned during the imple-

mentation process. This time will vary depending

on how many bluetooth devices are around. Dur-

ing this test two more devices that weren’t running

the PhoneSensing application were returned in the

discovery process. So adding up the discovery pro-

cess and filtering process take about 96% of the

duration of the process.

A big drawback to this is that during this 26s the

device is unaccessible to answer to other requests

because when it’s in Discovering mode the blue-

tooth doesn’t accept any other requests. During

the filtering process it will be establishing connec-

tions with other devices. So in a high density node
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situation devices would struggle to establish any

connection at all due to the out time that each of

them has to endure during the discovering process

and filtering process.

4 Conclusions

This project proposed a decentralized solution for

sensor sharing on a OSN. A decentralized approach

allows for large-scale OSNs that don’t require any

extra infrastructural deployment. The motivation

behind this is that by simply installing software

on a mobile device, e.g. smart-phone, they be-

come capable of sharing resources amongst them.

With such a framework it is possible to deploy So-

cial Sensing applications on mobile devices without

them having to have a minimum number of re-

quired sensors. To prove that the concept works it

was proposed to develop a Social Sensing applica-

tion.

To achieve the proposed goals we started by cre-

ating a resource sharing protocol that would fit

the project specifications. The protocol focused on

fast convergence times to ensure that the protocol

would work in scenarios where nodes were mobile

and on small messages to ensure that the medium

would not become saturated. Three different pro-

tocol’s were thought up and put through various

test scenarios using the ONE Simulator in order to

select the one that guaranteed a high success rate

in shorter time frames. To achieve small message

sizes the protocol uses RDL to describe the avail-

able resources upon a device being queried. RDL

is also used when requesting a sensor.

To test the protocol the Social Sensing application

for smart-phones was developed. The message ex-

change was done using the smart-phones bluetooth

radio interface in a P2P fashion guarantying the

decentralized architecture requirement. The appli-

cation worked as a proof of concept and also made

it possible to test the protocol and compare the

results with the previously ran simulations.

In the end the protocol was successfully imple-

mented and the original idea of a decentralized

OSN was maintained. It was shown that it is pos-

sible for such a concept to work on a real world

situation, and that it does help support a social

sensing application, or any other application that

would benefit from resource sharing. The messages

exchanged were small enough to be sent in accept-

able times frames through the bluetooth interface.

The simulation times diverged from the ones ob-

served during the real case scenario tests, but not

due to bad implementation but due to inherent

limitations to the hardware in hand.
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[15] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol Evaluation,” in

SIMUTools ’09: Proceedings of the 2nd International Conference on Simulation Tools and Techniques.

New York, NY, USA: ICST, 2009.

[16] A. C.Santos, L. D. Pedrosa, and R. M. Rocha, “RDL: A unified description language for network

resources,” RTCM seminar, March 2010.

11


