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ABSTRACT: The design of GFRP pultruded profiles is limited by deformations in service limit states (SLS) and by local and/or global buck-

ling in ultimate limit states (ULS). This work focuses on the structural behavior of GFRP pultruded I-profiles, particularly on the local 

buckling behavior. Hence, experimental studies were conducted: (i) coupon tests; and (ii) full-scale tests on short columns and three-

point and four-point bending tests on beams. Numerical models using the finite element method (FEM) were developed to analyze the 

profiles local buckling. Using these models, the influence of different cross-section shapes and members length on local buckling was 

evaluated. 

KEYWORDS: GFRP, structural behavior, beam, column, experimental tests, numerical modeling, local buckling. 

1. INTRODUCTION 

Glass Fiber Reinforced Polymers (GFRP) are composite 

materials made of glass fiber reinforced polymer matrix. 

Due to their high durability and lightweight qualities, GFRP 

profiles are a valid option as structural members. Howev-

er, they are governed by deformations (SLS) and global 

and/or local buckling (ULS). 

Local buckling of GFRP profiles has been a matter of study 

for many researchers. Both experimental and numerical 

studies were developed in order to increase the 

knowledge about the material and the local buckling phe-

nomenon. Bank and Yin [1] studied experimentally and 

numerically postbuckled failure on I-beams, Turvey and 

Zhang [2] studied the same issues, but in the scope of 

columns. Experimental tests and numerical simulations  

conducted by Kollár [3, 4] enabled the development of 

analytical calculations to obtain the critical stress. 

This work focuses on the local buckling phenomenon of 

E-glass/polyester pultruded I-profiles produced by Alto 

Pultrudidos (Figure 1). Table 1 shows the main geometrical 

properties of these I-profiles, used in the experimental 

tests. 

Two different experimental studies were developed aim-

ing to characterize the mechanical and structural behavior 

of GFRP pultruded I-profiles: (i) coupon tests in order to 

determine the GFRP’s mechanical properties; (ii) full-scale 

tests of columns and beams, which provided data to ana-

lyze local buckling behavior, namely the determination of 

the buckling loads and collapse loads. 

 

Table 1 

Geometrical properties of I-
profiles. 

 A (mm
2
) 3879.0 

 Av,y (mm
2
) 2000.0 

 Av,z (mm
2
) 1666.7 

 Iyy (mm
4
) 2.353x10

7 

 Izz (mm
4
) 1.670x10

6 

 Wyy (mm
3
) 2.353x10

5 

 Wzz (mm
3
) 3.339x10

4 

   

Figure 1 – I-profile cross-
section (unit: mm). 

  

Numerical models using the shell finite element method 

(FEM) were developed based on mechanical and geomet-

rical data obtained from the experimental tests. Column 

and beam models were developed to analyze the local 

buckling phenomenon. Calibration of those models was 

made on the basis of experimental full-scale data. Para-

metric studies were performed showing the influence of 

different cross-section shapes and structural members 

length on the buckling load of pultruded GFRP columns 

and beams. 

2. LOCAL BUCKLING 

Thin-walled GFRP profiles are sensitive to local buckling in 

compression parts due to the low elastic moduli and the 

high slenderness (width-to-thickness ratio) of plate ele-

ments (also called “walls”). In order to obtain the critical 

buckling stress, plate element analysis can be performed 

on the basis of the stiffness properties and boundary con-

ditions.  
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Table 2 shows the stiffness properties for orthotropic plate 

elements, where Ex is the flexural longitudinal modulus, Ey 

is the flexural transversal modulus, Gxy is the shear modu-

lus,  νx is the longitudinal Poisson ratio and νy is the trans-

versal Poisson ratio given by: 

      

  

  
 (1) 

Table 2 
Stiffness properties for orthotropic plate elements. 

Stiffness Expression  

   
flexural longitudinal direc-

tion 

   
 

          
 (2) 

   
flexural transversal direc-

tion 

  

  
   (3) 

    

flexural transversal direc-
tion due to longitudinal 

bending 

     (4) 

   
shear stiffness      

  
 (5) 

Figure 2 shows the cross-section of a generic I-profile, 

where bf is the flange width, tf the flange thickness, dw the 

web depth and tw the web thickness. 

Figure 3 shows a plate model simulating the boundary 

conditions of a compressed (half) flange with a half-wave 

length (a). The plate is simply supported in one of the 

longitudinal edges (due to the presence of the web) and 

free in the other, and simply supported in both transversal 

edges due to the presence of other adjacent half-waves. 

bf

d
w

tf

tf

tw

 

σcr,x

σcr,x

bf/2

a

tf

 
Figure 2 – I-profile 

generic cross-section. 
Figure 3 – Local buckling on a flange due 

to compression schematic. 

Analytical calculations developed by Kollár, based on ex-

perimental tests and numerical simulations [3, 4], con-

ducted to several equations for different types of longitu-

dinal boundary conditions. For a wall with one free edge 

and one simply supported under uniform compression 

(typically a compressed flange), the critical stress is given 

by: 

      
      

   
 

  
     (6) 

For a wall with two simply supported edges under uniform 

compression (typically a column web), the critical stress is 

given by: 

        
      

   

    
 (√            ) (7) 

For a wall with two simply supported edges under linearly 

varying compression (typically a beam web), the critical 

stress is given by: 

        
      

  

    
 (    √                   ) (8) 

Based on Kollár’s method, starting from simply supported 

plate models in order to identify which wall will buckle 

first, the critical buckling stress can be obtain using a coef-

ficient that takes into account the effect of edge restraint.  

3. COUPON TESTS 

In order to obtain stiffness and strength of the I-profiles 

material used in the experimental studies, mechanical 

characterization was carried out for both principal direc-

tions of the material (Figure 4). Thus, web and flanges 

coupons extracted from those profiles were tested to 

obtain elastic modulus and ultimate strength values. 

Longitu
dinal

Tr
an

sv
er

sa
l

Longitu
dinal

Transversal

 
Figure 4 – Principal directions of I-profile materials. 

Therefore, several coupon tests were conducted according 

with ISO and ASTM standard test methods: (i) compres-

sion (ASTM D695 [5]); (ii) tension (ISO 527 [6]); (iii) three-

point bending (ISO 14125 [7]); and (iv) interlaminar shear 

(ASTM D2344 [8]). Other coupon tests were conducted 

aiming to obtain: (i) Poisson’s ratio – tension coupon tests 

(ISO 527 [6]); and in-plane shear modulus – 10° off-axis 

tension coupon (ISO 527-5 according to [9]). 

Flange and web mechanical properties were similar, show-

ing reasonable homogeneity throughout the profile; 

hence, the material strength and stiffness results can be 

averaged and taken for the entire cross-section. Table 3 

summarizes both elastic modulus and ultimate strength 

average results for flange and web coupons, and also Pois-

son ratio and shear modulus values. Linear elastic behav-
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ior was observed for the load-displacement curves ob-

tained from coupon tests. Different results obtained for 

longitudinal and transverse material principal directions 

indicate clear orthotropic behavior, as expected. 

Table 3 
Strength and stiffness properties of the material. 

Test type 
Principal material 

direction 

Elastic 
modulus 

(GPa) 

Ultimate 
strength 

(MPa) 

Compres-
sion 

Longitudinal (σcu,x) 30.27 412.99 

Transversal (σcu,y) 5.04 80.27 

Tension Longitudinal (σtu,x) 34.51 393.50 

Bending Longitudinal (σbu,x) 24.83 493.76 

Interlaminar 
shear 

Longitudinal (FSBS) - 29.81 

Poisson 
ratio 

0.279 Shear modulus (GPa) 3.67 

Figures 3 to 8 show coupon failure mode for each test 

described above. 

4. FULL-SCALE TESTS 

Strength and stiffness properties of GRFP members, on a 

full-scale level, may not be uniform within the cross-

section due to the inhomogeneity and anisotropy of the 

material [10]. Thus, full-scale tests were conducted in 

order to obtain the member stiffnesses, such as bending 

stiffness (EI), axial stiffness (EA) and transverse shear stiff-

ness (GkAv), where E is the elastic modulus, G is the shear 

modulus, I is the inertia moment about the major-axis, A 

the cross-section area, Av is the shear area and k the Timo-

shenko shear coefficient. 

Therefore, five short columns were tested, as well as two 

beams, one subjected to three-point bending and another 

subjected to four-point bending. GFRP pultruded I-profiles 

produced by Alto Perfis Pultrudidos were used. 

4.1. Short column tests 

Aiming to obtain the axial stiffness, the buckling and ulti-

mate loads, five 600 mm columns were tested (numbered 

C1 to C5). The columns ends were restrained from rotating 

about the major and minor bending axis by 30 mm thick 

epoxy resin solid blocks. Figure 11 shows the testing 

scheme used for short columns, and Figure 12 shows col-

umn C5 test setup. 

The load was applied to the lower plate by a Enerpac hy-

draulic jack with 3000 kN load capacity and a maximum 

stroke of 400 mm; it was measured by means of a Micro-

test load cell with 3000 kN capacity. The deflections on the 

upper plate were measured by three TML-10 displacement 

transducers (10 mm range and 0.01 mm precision). The 

lower plate deflections were measured by means of two 

APEK-25 (25 mm range and 0.01 mm precision) and one 

TML-25 (25 mm range and 0.01 mm precision) displace-

ment transducers. 

   
Figure 5 – Compression coupon test 

failure mode. 
Figure 6 – Tension coupon test failure 

mode. 
Figure 7 – Three-point bending coupon 

test failure mode. 

   
Figure 8 – Interlaminar coupon test fail-

ure mode. 
Figure 9 – Tension coupon test failure 

mode to obtain Poisson’s ratio. 
Figure 10 - 10° off-axis tension coupon 

test failure mode. 
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Figure 11 – Short column test schematics with instrumentation. 

 
Figure 12 – Short column test setup for column C5 

The 450 mm height was chosen for transversal displace-

ment measuring purposes, based on preliminary numeri-

cal results that indicated the location of buckled half-wave 

maximum. Hence, the web’s half-width and the flange 

edge displacements were measured by means of two TML-

50 (50 mm range and 0.01 mm precision) displacement 

transducers (Section AA’ on Figure 11). Strain on the mid-

span section of column C5 was measured using five TML-

FLK strain gages adhesively bonded to the half-width of 

the column web and the edges interior face of both flang-

es (Section BB’ on Figure 11). Data acquisition was made 

via National Instruments SCXI-1001 board and processed 

on PC, at a rate of 1 Hz. The tests were conducted at an 

average speed of 50 kN/min. 

Figure 13 shows load-axial shortening curves for each 

column tested. Initial adjustments were corrected in order 

to obtain effective maximum axial shorting (Δmax) by con-

sidering a linear behavior based on displacement data 

from 200 kN to 400 kN. 

 
Figure 13 – Load-axial shortening curves obtain for short column 

testing. 

Column C1 was previously tested enabling to confirm the 

most probable critical buckling mode; hence, no lateral 

displacement or strain was measured on that column. 

Figure 14 shows load-lateral displacement curves for col-

umns C2 to C5. 

Graphical determination was used to obtain the critical 

buckling load. Buckling can be seen from lateral displace-

ment data, related with the point at which a sudden slope 

change occurs in the load-lateral displacement curves. 

Hence, by extending the initial linear slope and the final 

linear (post-buckled) slope, the intersection of those 

curves corresponds approximately to the buckling load. 

Table 4 shows buckling and ultimate loads, as well as max-

imum axial shortening and lateral displacements for each 

tested column. 

Table 4 
Buckling (Pcr) and ultimate load (Pmax), axial shortening (Δmax) and 
lateral displacements (D1max D2max) obtained on short column 
tests. 

Column 
Pcr 

(kN) 

Pmax  

(kN) 

Δmax  

(mm) 

D1max  

(mm) 

D2max 

(mm) 

C1 - 545.24 3.04 - - 

C2 600 593.37 5.36 2.50 1.00 

C3 550 561.32 4.90 7.45 3.74 

C4 600 611.86 4.39 2.47 1.53 

C5 630 622.24 5.11 2.05 0.98 

Average 595.0 597.2
* 

4.94
* 

- - 

Deviation 33.3 33.4
*
 0.41

* 
- - 

CV (%) 5.6 4.5 8.3
 

- - 
* 

excluding column C1 data due to excessive differences. 
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Figure 14 – Load-lateral displacement curves obtain from short column testing: C2 (a), C3 (b), C4 (c) and C5 (d). 

 

The ultimate load obtained from short column tests was 

597.2 kN ± 4.5%, with a maximum axial shortening of 

4.94 mm ± 8.3%. Those values excluded the column C1 

data. The buckling load obtain was 595 kN ± 5.6% due to 

flange local buckling (Pmax=1.004 Pcr), with a critical stress 

on the flanges of 153.4 MPa. Adopting Kollár’s analytical 

method, the critical stress is 118.5 MPa (Pcr=459.7 kN) and 

the web governs local buckling. The 30% difference is very 

significant and it can be explained by: (i) the analytical 

critical stress was obtained for the web, while the experi-

mental was obtained for the flange; (ii) low transversal 

elastic modulus (usually 9 GPa); and (iii) Kollár equations 

do not take into consideration the transversal boundary 

conditions, which can underestimate the critical stress. 

Figure 15 shows the longitudinal stress-strain curves for 

column C5, measured from the strain gages. It can be seen 

that local buckling occurs when the linear behavior is 

suddenly interrupted, changing dramatically its behavior 

in the post-buckled regime until collapse occurs. Accord-

ing with prior numerical studies, buckling occurred with a 

two half-wave configuration for all the tested columns. 

Initially one or both flanges buckled locally; the collapse 

occurred after 30 cm long cracks appeared in the web-

flange junction and the flange material failed. All the col-

umns collapsed due to local buckling of both flanges 

(Figure 16), except for column C3 that collapsed due to 

local buckling of only one flange. Such result can be ex-

plained by a non-concentrical axial load (Figure 17). 

   

Figure 15 – Longitudinal stress-strain curves for half height 
section on column C5 testing. 

Figure 16 – Column C3 buckled 
configuration after collapsing. 

Figure 17 – Column C5 buckled 
configuration after collapsing. 
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4.2. Three-point bending beam 

In order to obtain flexural and shear moduli, the EN 13706 

Annex G method [11] was followed. Thus, a simply sup-

ported beam was tested for different span lengths (L): 

1.40 m, 2.10 m, 2.80 m and 3.50 m).  

Due to typical low shear-to-elastic flexural moduli ratio, 

also called anisotropy degree, the determination of elastic 

moduli at a full-section level, both should consider the 

flexural deformation and shear deformation. Thus, the 

Timoshenko Beam Theory (TBT) should be considered 

instead of the Euler-Bernoulli Theory (EBT). The mid-span 

deflection for a three-point bending beam is given by: 

 
  

  

     
 

 

  

  

  
 (9) 

As the TBT was considered, flexural and shear moduli are 

named “effective”. On the other hand, if the EBT was 

considered, flexural modulus is named “apparent” [12] 

and is given by: 

  

  
 

 

 
(    

 
  ⁄

  ) (10) 

Figure 19 shows the testing schematics used on three-

point bending beam tests, and Figure 20 shows the test 

setup. 

The load (P) was applied at mid-span on the superior 

flange of the profile by a Enerpac hydraulic jack with 600 

kN load capacity and a maximum stroke of 250 mm; it was 

measured by means of a Novatech load cell with 100 kN 

capacity. The deflection at the mid-span (δ) was measured 

by a TML-100 displacement transducer, of 100 mm range 

and 0.01 mm precision. Data acquisition was made via 

HBM Spider8 board and processed on PC, at a rate of 

10 Hz. 

Roberts and Al-Ubaidi [13] suggest that shear stiffness and 

shear modulus show significant variation when deter-

mined by full-scale beam tests. Hence, two load cycles 

were performed on each span length tested; due to GFRP 

linear elastic behavior monotonic load was applied up to 

5 kN, and then unloaded. Prior numerical studies for 

three-point bending were developed in order to prevent 

lateral-torsional buckling (P > 14.39 kN). The tests were 

conducted at an average speed of 5 kN/min. 

Flexural and shear stiffnesses can be obtain by plotting 

the results for each span as δ/PL-L
2
 (Figure 18) and δ /PL

3
-

1/L
2
 (Figure 21) according with Method A of EN 13706 for 

flexural and shear stiffness properties. Thus, the flexural 

stiffness can be obtain from the slope on Figure 18, and 

the shear stiffness can be obtain from the slope of results 

depicted in  Figure 21. As a cross-check measure, intersec-

tion of the strength line with the y-axis in Figure 18 should 

agree with that of Figure 21, and vice-versa. 

 
Figure 18 – Plot of δ/PL versus L

2
 for three-point bending beam 

flexural and shear stiffnesses determination. 

The flexural and shear effective moduli obtained were 

37.39 GPa and 2.87 GPa, respectively, with an anisotropy 

ratio of 13.0. An expected 12% influence of shear defor-

mation on total deflection was obtained for a span length 

of 4.4 m given by: 

 

     √
      

    
 (11) 

1 23
L/2 L/2

1 Pinned end

4

2 Pinned rolled end 3 Displacement transducer

4 Load cell 5 Hydraulic jack

5

  

Figure 19 – Three-point bending beam test schematics with instrumentation. 
Figure 20 –Three-point bending beam test 

setup. 
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Thus, for the range of span lengths tested the influence of 

shear deformation on the total beam deflection was high-

er than 12%. 

 
Figure 21 – Plot of δ/PL

3
 versus 1/L

2
 for three-point bending 

beam flexural and shear stiffnesses determination. 

4.3. Four-point bending beam 

The main goal of this test was to obtain the buckling and 

ultimate load for four-point bending. The beam tested was 

simply supported with a 4.0 m span length; the load was 

applied 1.3 m from each support. As referred previously 

for the three-point bending test, TBT should be considered 

in order to predict the deflection of the beam considering 

the shear deformation. The (symmetrical) deflection (in m) 

of the beam, function of the distance (x) to the pinned 

end, is given by: 

     

{
 
 

 
   

     
 

  

   
(     

  

 
)             

     

     
 

     

   
                         

 (12) 

Figure 22 shows the scheme used for the four-point bend-

ing test. Figure 23 shows a schematic detail of the load 

application system and Figure 24 shows the four-point 

bending beam test setup. 

In order to apply the same load on two points, the load 

was applied at mid-span on an auxiliary steel beam, with 

stiffness and strength properties that enabled a correct 

load transfer to the tested beam. The auxiliary beam was 

transferred the load to two steel rollers located over the 

superior flange of the profile. The load was applied by a 

Enerpac hydraulic jack with 600 kN load capacity and a 

maximum stroke of 250 mm; it was measured by means of 

a Novatech load cell with 100 kN capacity. 
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Figure 22 – Four-point bending beam test schematics with instrumentation. 
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Figure 23 – Load application system on the four-point bending 
beam testing schematic detail. 

Figure 24 – Four-point bending beam test setup. 
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The deflection was measured in three point spaced 1.0 m 

from each other: at 1.0 m from each support (d1 and d3) 

the displacements were measured by means of two 

TML-100 displacement transducer (100 mm range and 

0.01 mm precision), and at the mid-span (d2) it was meas-

ured by a APEK-100 displacement transducer (100 mm 

range and 0.01 mm precision). A section located 1550 mm 

from the pinned end was chosen for transversal displace-

ment measuring purposes, based on prior numerical tests 

indicating where the buckled half-wave maximum would 

occur. In both edges of the top flange, vertical displace-

ments were measured and the lateral displacement of the 

web ¾ width by means of three TML-500 (500 mm range 

and 0.01 mm precision) displacement transducers (Section 

AA’ on Figure 22). Strain in the mid-span section was 

measured by nine TML-FLK strain gages adhesively bonded 

to the half-width of the web, to the edges of both flanges 

on the interior and exterior faces, and to the center of the 

top flange on the external face (Section BB’ on Figure 22). 

Data acquisition was made via HBM Spider8 data logger 

and processed on PC, at a rate of 10 Hz. The test was con-

ducted at an average speed of 5 kN/min. In order to pre-

vent the beam from buckling laterally, eight steel props 

were placed against the profile on each side; torsion on 

the supports was prevented by four steel triangular blocks, 

one on each side of both supports. The load was applied 

until the beam collapsed. 

Figure 25 shows the deflections, spaced by 1.0 m from 

each other plotted, versus the load. Linear elastic behavior 

can be seen until the beam collapses at 61.3 kN, corre-

sponding to a maximum bending moment of 39.7 kNm. 

The maximum displacement obtained was at the mid-span 

(d2) and it was 85.26 mm; d1 maximum value was 63.08 

and d3 maximum value was 61.67 mm. 

 
Figure 25 – Load-deflection curves at one meter from each sup-

port and at mid-span for the four-point bending beam test. 

By averaging the strain measured by the strain gages lo-

cated on the face of both flanges, linear elastic behavior 

can also be seen, as it is shown in Figure 26. SD strain 

gages disabled during the test, before the collapse oc-

curred. Hence, strain data for loads higher than 40 kN 

were not measured. Strain data for the top flange, com-

paring with the bottom one, indicate that it may have 

buckled locally due to compression. Thus, the strain meas-

ured in the top flange was plotted versus the bending 

moment (see Figure 27). The observed divergent strains 

indicate that local buckling of the top flange occurred 

when the maximum bending moment is reached. 

 
Figure 26 – Load-average strain curves at mid-span on both 

flanges for the four-point bending beam test. 

 
Figure 27 – Bending moment-strain curves on the top flange at 

mid-span for four-point bending beam test. 

Figure 28 shows the load versus vertical displacement in 

the top flange measured in section AA’ (Figure 22). The 

displacement transducer D3 obtained improper data re-

sults due to the bad connection to the data logger, hence 

it was not considered. For loads higher than approximately 

55 kN, a small divergence can be seen. Therefore, the 

difference between those displacements was plotted ver-

sus the load, as shown on Figure 29. Buckling is related 

with the point at which a sudden slope change occurs on 

load-displacement curve. Thus, by plotting a linear regres-

sion for the initial slope and for the final linear (post-

buckled) slope, the intersection of those curves is the 

buckling load, approximately 55 kN, corresponding to a 

bending moment of 35.80 kNm and a critical stress in the 

top flange of 152.2 MPa. However, due to the fact that the 

vertical displacements of the top flange were measured 

near the inflection point between two half-waves, the 

buckling load may have been misinterpreted. 
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Figure 28 – Load-vertical displacement curves on the top flange 

at section AA’ for the four-point bending beam test. 

 
Figure 29 – Load-differential vertical displacement curve on the 

top flange at section AA’ for four-point bending beam test. 

Strain data for incremental values of bending moment are 

plotted along the web height (Figure 30). The uniform 

evolution of those strains, obtaining zero strain at the 

center of gravity, suggests that the section was kept plane 

at mid-span, implying that the EBT may be considered on 

this beam segment, in other words, shear deformation can 

be neglected. Hence, the flexural effective modulus was 

obtained by plotting the curvature at mid-span versus the 

bending moment as shown on Figure 31, considering that 

shear deformation had no influence. A 37.93 GPa flexural 

modulus was obtained, similar to the one obtained from 

the three-point bending tests (-1%). 

 
Figure 30 – Evolution of strain data for incremental values of 

bending moment on the cross-section height. 

Adopting Kollár’s analytical method, the critical stress in 

the compressed flange was 159.8 MPa, leading to a 

39.4 kNm bending moment. This value is lower than the 

one obtained experimentally. Such difference (-10%) can 

be explained by the fact that material transverse failure 

occurred at the web-flange junction, followed by immedi-

ate buckling of the top flange that lowered its critical 

stress to 29.4 MPa. 

 
Figure 31 – Bending moment-curvature curve at the mid-span 

section for the four-point bending beam. 

Figure 32 shows the buckled four-point bending beam top 

flange. It can be seen that the web-flange junction was 

crushed, triggering the flange buckling. 

 
Figure 32 – Four-point bending beam buckled configuration after 

collapsing. 

5. NUMERICAL MODELLING 

The finite element method (FEM) using Abaqus software 

was applied in order to model the short columns and the 

four-point bending beam, and to analyze their local buck-

ling susceptibility. Those models were calibrated based on 

the experimental data obtained from coupon and full-

scale tests in order to perform parametric studies with 

different cross-section shapes and span lengths. 

Linear buckling analysis was conducted in order to obtain 

the buckling load (Pcr) and the buckling mode configura-

tion. Then, a nonlinear analysis was performed in order to 

obtain the ultimate load (Pu) of the model, using Tsai-Wu 

failure criterion. 

A 23-noded generic cross-section was defined in order to 

generate four-noded rectangular shell elements that were 

used to model the short column and the beam. The ele-

ment strength properties were considered to be those 
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obtained from coupon tests, and the stiffness properties 

were considered to be those obtained from short column 

and three-point bending beam full-scale tests. 

In these numerical studies, progressive failure of the 

members was not considered due to the complexity of the 

process and absence of available procedures in Abaqus to 

take into account these effects. Hence, the ultimate 

load/stress was considered to be the one related with the 

first point to exceed the failure index of Tsai-Wu, given by: 

   
   

  

    
  (

 

    
      )    

   
   

  

    
      (13) 

where σ11 is the stress in direction 1, σ22 is the stress in 

direction 2, τ12 is the shear stress and F12 is given by: 
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5.1. Short column model 

The short column was modeled with 660 elements and the 

aspect ratio of the finite elements was 2:1, sufficiently 

small in order to not affect the calculations accuracy. To 

simulate the column supports, both ends were restrained 

at the profile centroid by rigid shell elements. Both ends 

were totally restrained, except for the v displacement (in y 

direction) at the top end section. A concentric load was 

applied to the top end centroid, as shown on Figure 33. 

x,u
y,v

z,w

t r

s

 
Figure 33 – Short column numerical model 

The buckling load obtained from the linear buckling analy-

sis was 531.77 kN, associated to a local buckling configura-

tion with two half-waves. Figure 34 shows the buckling 

mode for the short column model. 

The nonlinear analysis aimed to predict the pre- and post-

buckling responses. Based on the buckling mode obtained 

from the previous analysis, a 0.1 mm imperfection was 

considered.  

 
Figure 34 – Short column model’s buckling mode. 

Following the procedure used by Turvey and Zhang [2] to 

analyze postbuckling of columns, small load steps were 

considered to analyze variation of the top and bottom 

surface longitudinal stress (Figure 35) and shear stress 

(Figure 36) along the finite elements located along the 

web-flange junction.  

 
Figure 35 – Postbuckled surface longitudinal stress along the 

web-flange junction. 

 
Figure 36 – Postbuckled surface shear stress along the web-

flange junction. 

The constant variation on both stresses along the web-

flange junction suggests that no mode change occurred. 

Thus, failure index for Tsai-Wu criterion (IF,Tsai-Wu) was used 

to the web-flange junction elements. 
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Figure 37 shows the load-axial shortening curve for the 

nonlinear analysis of short column model. The unit failure 

index was exceeded for a axial shortening of 2.79 mm 

corresponding to a ultimate load of 562.85 kN. The nodes 

in failure were located at the half height of the column, in 

both web-flange junctions. 

 
Figure 37 – Load-axial shortening curve for the short column 

model nonlinear analysis. 

Lateral displacement data for the numerical model were 

plotted versus the load, as shown on Figure 38. 

 
Figure 38 – Load-lateral displacement curves for the short col-

umn nonlinear analysis. 

The shear stress in the nodes that first exceeded the fail-

ure index was 90% of the material interlaminar shear re-

sistance, thus contributing the most for the web-flange 

junction failure. 

Calibration was performed based on the change of the 

elastic moduli and measuring their influence on the axial 

shortening, buckling load and ultimate load. The calibra-

tion of the elastic moduli is shown on Table 5. 

Relative differences between the calibrated model and the 

experimental results were below 0.5%. Axial shortening 

was 4.41 mm, the buckling load was 615.12 kN and the 

ultimate load was 624.19 kN. However, the elastic moduli 

were remarkably changed (roughly 50%): one increased 

and the other two decreased. This fact can be explained 

by: (i) the relative independence of the behavior parame-

ters from the elastic moduli; (ii) having considered a 600 

mm column length instead of 660 mm, the total length 

including the part confined by the epoxy resin blocks; (iii) 

dependency of the elastic moduli on the resin used to 

produce GFRP; (iv) low Eyy value comparing with usual 

values; and (v) the possible (most likely) material crushing 

on the ends of the column. 

Table 5 
Elastic moduli calibration for the short column model. 

Model 
Exx (GPa) Eyy (GPa) Gxy (GPa) 

Value Dif. Value Dif. Value Dif. 

Initial 31.95 - 5.03 - 3.67 - 

Calibrated 17.30 -45.9% 10.0 98.8% 5.50 49.9% 

Figure 39 shows the experimental and calibrated results 

for the load-axial shortening curves. The lateral displace-

ment was calibrated with the imperfection. A 0.021 mm 

value was considered due to the Abaqus limitation on 

choosing the minimum value. Figure 40 shows load- lateral 

displacement curves for experimental and calibrated re-

sults. 

 
Figure 39 – Load-axial shortening curve for experimental and 

calibrated results for the short column model. 

 
Figure 40 – Load-lateral displacement for experimental and 

calibrated results for the short column model. 

Parametric studies were conducted for different column 

span lengths (from 300 mm to 4000 mm). Two cross-

sections were considered, the “I” section and a “H” section 

with a flange width equal to the web depth. Figure 41 

shows the buckling load versus the span length. 

The “I” cross-section is more susceptible to global buckling 

due to its lower inertia about the minor axis, comparing 

with the “H” cross-section. On the other hand, the “H” 
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cross-section is more sensitive to local buckling due to the 

fact that its flanges are wider, and so more sensitive to 

local buckling than “I” cross-section columns. 

 
Figure 41 – Buckling load for different span length for “I” and “H” 

sections. 

5.2. Four-point bending beam model 

The beam was modeled with 2420 elements and the as-

pect ratio of the finite elements was 1:2, sufficiently small 

not to affect the calculations’ accuracy. To simulate the 

beam supports, the nodes of the lower flange, located at 

200 mm from both ends (five elements), were restrained 

for the u and v displacements (in x and y directions) and s 

and t rotations (in y and z directions). The left support also 

restrained the w displacement (in z direction). To model 

the local restraints (Figure 22), the web-flange junction 

nodes had their u displacement blocked, in order to avoid 

local crushing on the transversal material direction of the 

flanges. The web-top flange junction nodes in the support 

section had also their u displacement restrained. 

The load was applied at approximately 1/3 and 2/3 of the 

span length by means of 10 concentrated loads (five on 

each side) applied on the web-top flange junction. Figure 

43 shows the boundary conditions and loading of the 

beam model. 

The buckling load obtained from the linear buckling analy-

sis was 80.80 kN for a local buckling configuration with six 

half-waves. It corresponds to a 57.72 kNm maximum 

bending moment. Figure 44 shows the buckling mode for 

the four-point bending beam model. 

The nonlinear analysis aimed to predict the pre- and post-

buckling responses. Unlike the short column model, the 

imperfection sensitivity should be studied before the per-

formance of nonlinear analysis. Thus, several values of 

initial imperfection were tested in order to find the one 

that would fit better its behavior to the experimental re-

sults. Figure 42 plots the differential vertical displacement 

of the top flange edges at section AA’ (Figure 22) versus 

the load, for different values of imperfection and the ex-

perimental results. 

 
Figure 42 – Load-differential vertical displacement of the top 

flange experimental and numerical curves. 

 

y,v

s

x,u
z,w

r

t

 
Figure 43 – Four-point bending beam numerical model. 

 
Figure 44 – Four-point bending beam model’s buckling mode 
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Therefore, a buckling mode shape imperfection with a 

2.0 mm amplitude was included in the nonlinear analysis. 

Figure 45 shows the load-deflection curves of the beam 

model. The unit failure criterion (Tsai-Wu) was exceeded 

for a load level lower than the buckling load (62.79 kN). In 

other words, the beam collapsed before it buckled, as it 

was seen during the experimental test. 

 
Figure 45 – Load-deflection curves for the four-point bending 

beam model nonlinear analysis. 

Figure 46 shows the differential vertical displacement of 

the top flange edges versus the load. 

 
Figure 46 – Load-differential vertical displacement curve for the 

four-point bending beam model nonlinear analysis. 

Calibration was performed based on the change of the 

elastic moduli at a first stage, and measuring their influ-

ence on the mid-span deflection. The calibration of elastic 

moduli is shown in Table 6. 

Table 6 
Elastic moduli calibration for the beam model. 

Model 
Exx (GPa) Eyy (GPa) Gxy (GPa) 

Value Dif. Value Dif. Value Dif. 

Initial 37.39 - 5.03 - 2.87 - 

Calibrated 45.00 20.4% 5.03 0.0% 3.67 27.9% 

The deflection at the mid-span section for the calibrated 

model was 84.40 mm, less than 1% error comparing with 

experimental data. For the experimental load correspond-

ing to the collapse, the calibrated model already had 13 

nodes exceeding the Tsai-Wu unit failure index. Hence, 

strength properties were also calibrated in order to match 

the ultimate load of the calibrated model and the experi-

mental beam results. Transversal tensile strength (σtu,y) 

and interlaminar shear strength (FSBS) were calibrated to 

80.27 MPa (+45.9%) and 38.00 MPa (+27.5%), respectively. 

Figure 47 shows deflection versus load results for experi-

mental and calibrated results. 

 
Figure 47 – Load-deflection curves for experimental and calibrat-

ed results for the four-point bending beam model. 

In order to calibrate the differential vertical displacement 

of section AA’, the imperfection was changed to 5.0 mm, 

as shown on Figure 48. 

 
Figure 48 – Load-differential vertical displacement on the top 

flange for experimental and calibrated results for the four-point 
bending beam model. 

Cross-section shape sensitivity was studied comparing the 

“I” with a “H” cross-section. The buckling load for the “I” 

shape (104.97 kN) was twice that for the “H” cross-section 

(55.55 kN). This can be explained by the wider flanges of 

the “H” shape. Thus, this cross-section may allow to exper-

imentally observing elastic local buckling mode easier than 

with an “I” cross-section.  

6. CONCLUSIONS 

This dissertation provided a better knowledge about GFRP 

general structural behavior, namely deflections (SLS) and 

local buckling (ULS) of columns and beams. 



M. M. Correia / Instituto Superior Técnico (2012) 

14 

Mechanical properties obtained from experimental cou-

pon tests were consistent with the manufacturer data. 

Short column full-scale tests enabled to observe local 

buckling. On the other hand, the four-point bending beam 

test showed one of the major disadvantages of GFRP, the 

transversal material strength. The beam material failed 

before local buckling occurred. 

Numerical models predicted accurately GFRP member 

behavior, namely the buckling mode shape. Calibrated 

models enabled to understand “I” profiles general greater 

sensitivity to global buckling and that “H” profiles are 

more sensitive to local buckling. 

The results obtained in this dissertation should be com-

pared with those obtained by Francisco Nunes [15] in 

order to compare the influence of CFRP (Carbon Fiber 

Reinforced Polymers) strip in the deflection and local 

buckling of GFRP pultruded profiles. 
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