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Abstract.  Power  grid  analysis  is  becoming  a 
very  challenging  circuit  design  problem  which 
defies  the  limits  of  computational  resources  – 
processing  and  memory.  Current  very  large  scale 
integration  (VLSI)  designs  have  already  exceeded 
one  hundred  million  nodes  and  any  power  grid 
analysis  and  verification  problem  tends  to  get 
enormous. Computer resources available are already 
too short  to  store and process  the many gigabytes 
(GB)  of  data  involved  in  the  analysis.  For  that 
reason,  very  efficient  parallelizable  strategies, 
compatible  with  distributed  data,  are  absolutely 
needed to solve this problem.

In  this  study,  Block-Jacobi  Preconditioned 
Conjugate Gradient (BJ PCG) is proposed, a popular 
linear system solver yet to be applied to the power 
grid problem. BJ PCG solves  a  7.9M node power 
grid  with  300 current  sources  in  5  hours  in  a  10 
octocore  cluster  using  9.06GB  of  memory  per 
computer.

keywords: electromigration, power grid analysis, size 
problems, distributed computing graphs

 1 INTRODUCTION

Power grid analysis is becoming more and more 
a  critical  task  to  ensure  the  proper  functioning  of 
integrated circuits. As the number of transistors in 
circuits  keeps  increasing,  the  density  of  power 
distribution  networks  (PDN  or  power  grids) 
increases manifold. As a result, analysis of current 
power grids in VLSI designs threatens to exceed the 
formidable  computational  power  available and  has 
developed  into  a  considerable  problem.  In  reality, 
distributed systems and modern technology take an 
important role in solving the problem, because one 
computing  instance  is  not  enough  to  support  the 
computational and memory burden.

The motivation for this research was in fact  to 
address  the  electromigration  (EM)  problem  using 
Power grid analysis. EM is mass-electron movement 
in metallic interconnects. This phenomena can cause 
anomalies such as connection disruptions (caused by 

void  failures  and  diffusive  displacements)  and 
component  failure  due  to  heating,  eventually 
diseasing the IC. Measurement or estimation of the 
current  density in  interconnects  is  crucial  to study 
the  EM (an  empirical  model  developped  by  J.  R. 
Black  in  1960  estimates  the  mean  time  to  failure 
from  the  current  density)  and  envision  the  IC 
lifespan.  Even though it  is  a  time-dependent  case, 
the  interest  of  this  study is  the  EM DC problem. 
One way to  address  this  problem is  to  model  the 
power  using  an  electric  circuit  equivalent  where 
power  grid  connections  are  replaced  with  an 
appropriate  electrical  model.   Then,  in  order  to 
determine  the  currents  in  the  power  grid  and  to 
determine  if  they  exceed  some  safety  values  and 
could  lead  to  EM  problems,  one  can  analyse  the 
power  grid,  solve  for  the  nodes  voltages  in  the 
model  and  compute  the  branch  currents.  Solving 
power  grid  analysis  problems  is  therefore  an 
essential key for EM analysis.

Attempts  to  solve  the  power  grid  analysis 
problem have brought  some high  quality solutions 
with  high  performance  and  flexibility.  In  [1],  a 
distributable  direct  method  was  first  applied  to 
power grids and showed very good reference results. 
In  [2],  an  iterative  efficient  solver  based  on  SOR 
algorithm brought a lot of flexibility in distributing 
and  scalability.  In  [3],  another  iterative  solution 
showed  excelent  convergence  results.  These 
solutions make use of partitioning techniques such 
as Domain partitioning[1] and Block partitioning (or 
Geometric  partitioning).  Also,  in [4],  a  technique 
that  became  very  popular  to  VLSI  circuit 
partitioning was presented and applied for the first 
time in the power grid subject, and it turns out that it 
can also be applied in conjunction with most of these 
algorithms.

Preconditioned  conjugate  gradient  algorithms 
have  proved to be  very successful  in  approaching 
linear  system  problems  over  the  years.  Given  the 
linear nature of the power grid analysis problem, a 
Block-Jacobi  Preconditioned  Conjugate  Gradient 
algorithm is proposed in this study, a preconditioner 
very  flexible  to  parallelize,  and  very  suited  for 
distributed data solutions.
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In  the next  Section,  the power grid model  and 
problem formulation will be described. It  will also 
be shown why non-distributed methods are useless 
for  anything  other  than  benchmark  results.   In 
Section 3, BJ PCG is shown, as well as comparison 
with  other  types  of  preconditioners.  In  Section  4, 
some  partitioning  strategies  that  can  be  used  in 
conjunction  with  the  state  of  the  art  power  grid 
analysis algorithms are explained. In Section 5, the 
results  for  time  and  memory  performances  are 
illustrated. In Section 6, conclusions are presented.

 2 BACKGROUND

For the purpose of an analysis, power grids can 
be modelled accurately by RC meshes connected to 
an integrated circuit in multiple points, in order to 
supply  the  power  needed  for  functional  blocks  to 
work.  Hence,  in  this  simplified  setting,  functional 
blocks are modelled by current sources that demand 
some  current  from  the  grid.  A  voltage  source 
supplies the current needed, through connections, in 
other multiple nodes of the grid, usually uniformly 
distributed  along  the  grid.  Current  flip-chip  (C4 
bump) technology provide a large number of contact 
VDD nodes,  so a current  demanded by a functional 
block is provided by the power supply connections 
in the surroundings. This is called locality.

An example of a power grid model is shown in 
Figure 1.The power grid representation adopted in 
this article is:

Power  grid  DC  analysis  is  a  linear  system 
problem.  The  voltage  sources  are  transformed  to 
multiple current sources using a Norton equivalent at 
the  appropriate  connection  points.  The  circuit 
voltage  reference  is  the  voltage  source  amplitude, 
thus the linear system is given by:

 G v=Bi+Bv iv (1)

where:  G  is  an  NxN  matrix  with  NZ  non-zero 
entries, imposed by the KCL rule for each grid node 
(often called the KCL conductance matrix); B is an 
NxM incidence matrix of the current sources (ie Bj,k 

= 1 iif current source k is connected to node j); i is 
an Mx1 vector with current source amplitudes; Bv is 
an NxK incidence matrix of the Norton equivalent 
current sources corresponding to the voltage sources 
and  finally  iv is  an  Kx1  vector  with  Norton 
equivalent  current  sources  amplitudes 
corresponding to the voltage sources.

The  equation  (1) can  be  split  into  two 
components, leading to:

G v=BiBv iv⇔G v 0 v =BvivB i  (2)

where  v0 is  the  solution to  the biasing  voltage 
sources and   v  is the voltage drop caused by 
the  current  requirements  from  the  logic  blocks. 
Equation (2) can be split by interposition into:

G v0=Bv iv  
G Δ v=B i

(3)
(4)

The solution to equation (3) is easily obtained by 
inspection  noting  that  the  right-hand  side 
corresponds to the biasing voltage sources. The node 
voltage at every grid node is therefore equal to VDD. 
For equation  (4), the voltage sources are grounded 
and the voltage variations is due only to the currents 
in  the  logic  blocks.  From  now  on,  determining 

Δ v  is the goal of the power grid analysis.

Figure 1: RC circuit mesh example with 6 nodes.

Figure 2: Power grid representation example. Current 
sources are connected to nodes represented in green 

squares. Voltage sources are connected to nodes in white 
circles.
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However  simple  the  problem  might  seem,  the 
number of nodes in a real power grid is enormous 
(tens of million nodes),  and memory resources  are 
easily exceeded in non-distributed solutions:

Grid
Nodes

Current
Sources

Time Memory
peak

62k 90 1.91s 130MB

404k 120 14.4s 817MB

1.2M 180 1070s 5.59GB
Table 1: Time and Memory spent using CHOLMOD[5] 

library for various power grid sizes

 3 SOLUTION

The  direct  methods  such  as  Cholesky 
factorization  and  Domain  decomposition  provide 
very  efficient  strategies  to  tackle  the  power  grid 
problem. However, they do not provide scalability, 
and as a good approximation to the result suffices to 
provide the information needed for the power grid 
analysis,  iterative schemes tend to be a little more 
efficient  in filling the needs.  In  this  study,  a  very 
popular linear system solver – BJ PCG – is proposed 
to be applied to the power grid analysis problem.

 3.1 Block-Jacobi Preconditioned 
Conjugate Gradient (BJ PCG)

The  conjugate  gradient  algorithm  is  a  widely 
known  iterative  algorithm  for  solving  systems  of 
linear equations, in which matrix A in linear system 
Ax = b is symmetric and positive definite. In order 
to  accelerate  the  rate  of  convergence,  a  technique 
called preconditioning is often used.  This technique 
consists  in  a  transformation  leading  to  the  system 
MAx = Mb.  The rational for this procedure is that 
solving  this  system  is  easier,  i.e.,  requires  less 
iterations, than solving the original system, at little 
additional  cost  per  iteration.  This  results  in  an 
operation applied to the residue r that approximates 
a solution z in Az = r by solving Mz = r in a cheaper 
process. The ideal preconditioning operation would 
give  the  exact  solution  z in  Az =  r  and  the 
preconditioned  conjugate  gradient  (PCG)  would 
reach  the solution in the first  iteration. Obviously, 
this requires a direct solution of the original system 
and is therefore fruitless.

Over  the  years  many  preconditioners  were 
developed for a variety of problems.  The most basic 
preconditioner  is  perhaps  the  so-called  Jacobi 
preconditioner  or  diagonal  preconditioner.  This 
preconditioner works particularly well for diagonally 
dominant  matrices,  since  its  approximation  grows 
better the more preponderant the diagonal values of 
A  are.   Another  popular  option  is  the  SSOR 
(Symmetric  Successive  Over-Relaxation) 
preconditioner, also a relaxation-type preconditioner 
that  uses  more  of  the  matrix  information  as  it  is 
derived from a straightforward decomposition of the 
A matrix into lower, upper and diagonal blocks and 
is  based  on  the  SSOR  method[6].  Both 
preconditioners  discussed  so  far  are  easy  to 
parallelize  and  distribute  in  terms  of  both 
initialization  and  application.  For  example,  the 
SSOR preconditioner has the same non-zero pattern 
as the G matrix, hence solve can be parallelized by 
recurring  to  a  technique  very  similar  to  the 
distributed matrix-matrix multiplication.

Another commonly used option is the set of the 
so  called  incomplete  factorization  (ILU  or  IChol) 
preconditioners.  The  IChol  preconditioners  consist 
in computing a partial Cholesky decomposition and 
keeping only a subset of the elements in the factors. 
These preconditioners are known for being volatile 
in structural and numerical ways, providing a good 
trade-off  between  initialization  and  convergence 
rate. The choices used in this work are the IChol(0) 
(no  fill-in  incomplete  factorization)  and  ICholT 
(incomplete  factorization  with  thresholding).  The 
ICholT  preconditioners  usually  provide  very  good 
results, but are difficult to parallelize. .

Among the widest-known preconditioners, Block 
Jacobi  (BJ)[6] provides  very  simple  and  effective 
ways  of  distributing  the  algorithm.  The  BJ 
preconditioner  consists  in  subdividing  the  matrix 
into  smaller  parts  with  resort  to  a  partitioning 
algorithm (in  which  the  partitioning  options  come 
forward) and computing the solution for each of the 
domains  in  parallel  for  each  iteration.  In  other 
words,  this  preconditioner  computes  factorization 
and solution of smaller parts of the grid (just like BI 
algorithm), and uses them to approximate the whole 
solution,  making  use  of  the  locality  nature  of  the 
power grids.

In Algorithm 3.1, the BJ PCG algorithm pseudo-
code is presented.
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In  Figure  3,  a  comparison  between  various 
widely known preconditioner options[6] is illustrated. 
Only  Incomplete  Cholesky  factorization  is  on  par 
with  Block  Jacobi  preconditioner,  but  does  not 
provide  the  same  distributing  capabilities.  In  fact, 

Incomplete  factorization  preconditioners  are  very 
difficult to parallelize.

 4 PARTITIONING

In  order  to  achieve  parallelized  solutions  and 
distributed data, the division of the power grid must 
be accomplished. In this section, graph partitioning 
(sometimes  called  clustering)  techniques  will  be 
studied.  Graph  partitioning  application  to  power 
grids  has  two  main  purposes:  to  distribute  the 
resource  demands  among  computing  instances;  to 
maximize  the  similarity  of  the  inner  solution 
(obtained using only inner-partition nodes) and real 
solution  (of  the  partition  nodes,  obtained  by 
simulating  the  whole  circuit).  That  said,  the 
relationship between sets is  often measured  as  the 
sum of the branch weights interconnecting the sets 
(which  are  branch  conductancess  for  the  case  of 
power grids).  Also, the most attractive partitioners 
are  those  which  balance  the  size  of  each  set, 
avoiding very large sets that lead some instances to 
drudge  while  the  remaining  are  idle,  limiting  the 
advantages of partitioning.

 4.1 Geometric Partitioning

The  geometric  interpretation  is  an  essential 
procedure  in  graph  partitioning.  The  power  grids 
may  not  be  regular  structures,  but  they  have 
geometric patterns. Hence, to partition the grid using 
geometric information (node position) makes sense 
and it turns out to be a very effective strategy that 
provides good results.

Algorithm 3.1: Block-Jacobi 
Preconditioned Conjugate 

Gradient

Inputs:  Part = Partition sets, thresh = convergence 
threshold, Outputs: Solution

1) for each p in Part
1) factorize  G[p;p] matrix  for 

preconditioning
2) set starting solution to 0
3) r=B
4) for each p in Part

1) Let  zp and rp be submatrices of z and r 
with p row set and all columns

2) Solve G[p;p]zp =  rp using  previously 
computed factorization

5) q=z
6) for a from 1 to M

1) let za , r a , d a and qa be  the 
a columns of z, r, d and q

2) d a=z a
T r a

7) Loop until break
1) for a from 1 to M

1) let za , r a , qa and xa be 
the a columns of z, r, q and x

2) Gqa=G qa

3) α=d a /(qa
T Gqa)

4) xa=xa+αqa , ra=r a−α qa
2) ||r||∞ < thresh

1) break
3) for each set in Part

1) Let zp and rp be submatrices of z and 
r with p row set and all columns

2) Solve G[p;p]zp = rp using previously 
computed factorization

4) for a from 1 to M
1) let  za , r a and qa be  the  a 

columns of z, r and q
2) d a

next=za
T ra

3) qa= za+
d a

next

d a
qa

4) d a=d a
next

Figure 3: Preconditioner comparison - Time to reach 10^-6 error 
for a 62k node IBM benchmark power grid with 50 current 

sources (computed using MATLAB)
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The  geometric  partitioning  (GP),  also  called 
area-based partitioning and block partitioning, is not 
particularly hard to achieve: Cut the grid uniformly 
on the single layer directions x and y.

The GP algorithm results in the following:

Inputs: cd = node coordinates, nx = number of cuts 
x,  ny = number  of  cuts  y,  Outputs: Partition 
sets
1) xmin = min cdx, xmax = max cdx

2) ymin = min cdy, ymax = max cdy

3) width = xmax - xmin, height = ymax - ymin
4) for i from 0 to nx-1

1) xlow = xmin + i*width/nx, xhigh = xlow 
+ width/nx

2) for j from 0 to ny-1
1) ylow = ymin + j*height/ny, yhigh = 

ylow + height/ny
2) Si*ny+j = cdx  [xlow, xhigh] ∩ cd∈ y ∈ 

[ylow, yhigh]

 4.2 Ratio cut Partitioning

The  previous  graph  partitioning  algorithms  are 
based  on  geometric  postulations  Geometric  or 
functional  block information might  be inaccessible 
or  inaccurate,  jeopardizing  the  partitioning 
performance  substantially.  In  that  event,  a 
geometrically independent approach is desired, and 
one that optimizes the size of all partitions and the 
interconnecting  conductances.  In  this  study,  a 
partitioning  algorithm,  commonly  used  in  the 
various  VLSI-related  areas,  is  proposed:  Ratio cut 
partitioning.

The  Ratio  cut  is  a  graph  partitioning  strategy 
which targets the following optimization problem[7] 

(metric):

(5)

where:

Vi – Partition set I, |Vi| is the set size

Wi,j – Weight on branch which connects node i 
to j

In short, Ratio cut is a strategy that attempts to 
optimize  set  partitioning  such  that  the  sum  of 
interconnecting weights over the product of partition 
sizes is minimum. The number of partitions is either 
fixed or variable, depending on the algorithm and/or 
the application.

The  Ratio-Cut  Partitioning  algorithm  can  be 
described in the following procedure:

Inputs: m = number  of  partitions,  W = weighted 
adjacency matrix, Outputs: Partition sets
1) Compute diagonal degree matrix 
2) Calculate the Laplacian L = D-W
3) Estimate the  Fiedler vector  v  using  the 

Lanczos algorithm
4) Sort v values ascending or descending
5) Compute the most profitable m-1 cuts in v 

by testing all cutting possibilities and using 
the ratio metric (5)

6) Cluster the graph from the cuts found

 5 RESULTS

The  power  grid  analysis  is  a  very  expensive 
process  in  terms  of  memory  and  processing 
complexities.  In  this section,  BJ PCG will  run for 
various benchmarking and artificially created power 
grids.

 5.1 Environment

The  results  in  this  sections  make  use  of  two 
different architectures:

1) Multithreaded architecture:
1. Multi-core processor with 4 cores – Intel Xeon 

E5410 2.33GHz
2. RAM Size: 24GB
3. Operative System: Linux Fedora 13

2) Distributed architecture:
1. Cluster  with  10  Multi-core  processors  with  8 

cores each – Intel Xeon E5504 2.00GHz
2. RAM Size: 32GB per processor
3. OperativeSystem: Linux CentOS 5.4 (Final)

 5.2 Power grids

The  power  grids  used  to  test  the  BJ  PCG 
performance  were  of  two  types:  IBM  provided 

min
{V 1 ...V n}

1
∑

k
∣V k∣(∣V∣−∣V k∣)

∑
i∈V p

j∈V q

p≠q

W i , j
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benchmark  power  grids 
(http://dropzone.tamu.edu/~pli/PGBench)  and 
artificially  created  power  grids.  As  the  IBM 
provided power grids are very small in comparison 
to  the  target  (of  300Million  nodes),  artificially 
created power grids with similar characteristics were 
generated.

 5.2.1 IBM benchmark power grids

Real  power  grids  used  are  IBM  benchmark 
power grids. The VSS part is eliminated and the zero 
resistance  branches  are  simplified  (terminal  nodes 
are  fused).  The  number  of  current  sources  is 
arbitrarily chosen for problem escalation.

Power grid Nodes Current sources

IBMPG2 61677 90

IBMPG6 403915 130

IBMPG6-2 403915 300

Table 2: Power grid IBM benchmarks

 5.2.2 Artificially created power grids

Artificial  power  grids  are  structured.  They  are 
generated  according to  rules  such as:  each  pair  of 
layers (in the z-axis) has the same density, but lower 
layer pairs have an higher density than upper layer 
pairs; total resistance of the power grid is constant; 
each layer only has resistors in either x-axis and z-
axis or y-axis and z-axis.

 5.3 Comparison between 
partitioning algorithms

In  this  section,  the  partitioning  strategies 
previously  discussed  will  be  compared  for  some 
power grids in a multithreaded architecture (Section 
 5.1 ).

In this section, the conditions are:

1) Number of partitions m
2) BI SOR w = 1.65
3) Acceptable residue error |r|max = 10-3

Tables 4 and 5 show comparison among various 
partitioning strategies.

Power grid Nodes Current sources

ART2 782978 160

ART3 782978 300

ART4 1197252 300

ART5 1197252 500

ART6 1197252 750

ART7 1197252 1000

ART8 1197252 1250

ART9 1197252 1500

ART10 1197252 1750

ART11 1197252 2000

ART12 2918100 300

ART13 4998932 300

ART14 7982598 300

Table 3: Artificially created power grids

Power Grid m BJ PCG
IBMPG1 8 8 / 0.095s
IBMPG2 8 21 / 9.25s

ART1 8 33 / 56.5s
IBMPG6 8 47 / 133s

Table 4: Results for BJ PCG solver with GP algorithm 
(iterations / time)

Power Grid m BJ PCG
IBMPG1 8 11 / 0.114s
IBMPG2 8 26 / 21.4s

ART1 8 46 / 141s
IBMPG6 8 24 / 68.9s

Table 5: Results for BJ PCG solver with Ratio cut 
algorithm (iterations / time)

The Geometric  Partitioning is the most reliable 
partitioning algorithm to use in conjunction with BJ 
PCG, with the only exception being IBMPG6.

 5.4 Distributed BJ PCG results

In this section, a distributed version BJ PCG will 
tackle  increasingly  difficult  power  grids  on  a 
distributed architecture (Section  5.1 ).
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 The next table shows some quick examples of 
how much is the distributed BJ PCG worth in terms 
of processing (with 8 partitions per computer):

Number of 
computers Time (s) Memory spent 

per unit (GB) Speed-up

1 424 4.72 0%

2 381 2.37 11%

3 265 1.61 60%

4 185 1.20 129%

5 175 0.95 142%

6 155 0.79 174%

7 188 0.66 126%

8 139 0.60 205%

9 159 0.57 166%

10 125 0.52 239%
Table 6: Speed-up and memory results for distributed 

processing over 1 to 10 computing instances, simulating 
IBMPG6-2 power grid benchmark (404k node with 300 

current sources)

It  is evident that distributing the data will ease 
the  memory  burden  over  each  computer,  but  the 
previous table showed that even the processing cost 
benefits  from  the  distribution  and  provides  some 
good speed-ups. Sometimes the speed-up may drop 
a  bit  (case  7  and  9  computers  in  the  previous 
sample) due to where the power grid was cut if it has 
some irregularities.

Table 7 shows results for increasing number of 
nodes.

Power
Grid

Number of
Iterations

Time
(s)

Memory used/
computer (GB)

IBMPG6-2 80 147 0.53

ART3 127 494 0.96

ART4 160 1036 1.47

ART12 209 4440 3.60

ART13 211 8309 6.18

ART14 248 17660 10.03
Table 7: Block-Jacobi Preconditioned Conjugate Gradient 

on a 10 octocore cluster results in iterations, time and 
memory peak per computer

In  Figure  4,  5 and  6,  the  evolution  of  the 
previous  results  can  be  seen  over  the  number  of 

nodes. Memory is heavily dominated by the residue 
matrix (r = B-G*s) with dimensions N*M (number 
of  nodes x number  of  current  sources)  and which 
becomes dense after just only a few iterations. So, it 
is not surprising that the evolution of memory spent 
is linear with the number of nodes (and will be with 
the number of  current  sources  too).  The projected 
complexity models the time curve fairly well.

Figure 4: BJ PCG results: number of iterations over number of 
nodes

Figure 5: BJ PCG results: memory spent over number of current 
sources

Figure 6: BJ PCG results: memory spent over number of nodes
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Next,  the  algorithm  will  run  for  increasing 
number of current sources:

Power
Grid

Number of
Iterations

Time
(s)

Memory used/
computer (GB)

ART4 160 1036 1.47

ART5 158 2141 2.41

ART6 161 3589 3.48

ART7 159 5062 4.61

ART8 161 6266 5.71

ART9 159 7838 6.84

ART10 159 8911 7.95

ART11 160 10660 9.06
Table 8: Block-Jacobi Preconditioned Conjugate Gradient 
increasing node number on a 10 octocore cluster results in 

iterations, time and memory peak per computer

As expected, the number of iterations does not 
vary considerably, since the grid is the same and is 
structurally regular,  solving does not depend much 
on the chosen  nodes and all  pretty  much take the 
same number of iterations to converge.  Also, time 
and  memory  complexity  are  approximately  linear 
with  the  number  of  current  sources  (since 
factorization times are constant). In , the curves and 
linear fits can be seen.

The memory resources rise very quickly with the 
number of nodes and current  sources.  However,  if 
the right-hand side is made in blocks, the memory 
drops substantially without increasing the processing 
times  much,  and  actually  decreasing  for  a  low 

number  of  blocks.  The  following table  shows the 
results for varying the number of blocks in ART7 
(1.2M node power grid with 1000 current sources):

Number
of blocks

Time (s) Memory used per
computer (GB)

1 5062 4.61

5 3212 0.99

10 3395 0.53

20 3870 0.31

40 5339 0.19

60 6145 0.16

100 5270 0.13

1000 40770 0.09
Table 9: Block-Jacobi Preconditioned Conjugate Gradient 

increasing number of blocks (of a total of 1000 current 
sources) on a 10 octocore cluster results in iterations, time 
and memory peak per computer. Please note that 1000 is 

not dividable by 60

 6 CONCLUSIONS

In this work, the power grid analysis formulation 
was used to determine the voltage values of power 
grid  nodes  and  indirectly  solve  the  EM  problem. 
For  these  cases,  the  problem requirements  exceed 
the  limits  of  what  a  single  computer  can  do,  and 
parallel  solutions  compatible  with  distributed  data 
had to be applied.

Block-Jacobi Preconditioned Conjugate Gradient 
solved  a  7.9M node  power  grid  with  300  current 
sources  in  5  hours  in  a  10  octocore  cluster  using 
9.06GB of memory.
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