
LPGAS - Large Power Grid Analysis and Simulation
Fábio Barata fabio.barata@ist.utl.pt

IST - Technical University of Lisbon

Abstract. Power grid analysis is becoming a
very challenging circuit design problem which
defies the limits of computational resources –
processing and memory. Current very large scale
integration (VLSI) designs have already exceeded
one hundred million nodes and any power grid
analysis and verification problem tends to get
enormous. Computer resources available are already
too short to store and process the many gigabytes
(GB) of data involved in the analysis. For that
reason, very efficient parallelizable strategies,
compatible with distributed data, are absolutely
needed to solve this problem.

In this study, Block-Jacobi Preconditioned
Conjugate Gradient (BJ PCG) is proposed, a popular
linear system solver yet to be applied to the power
grid problem. BJ PCG solves a 7.9M node power
grid with 300 current sources in 5 hours in a 10
octocore cluster using 9.06GB of memory per
computer.

keywords: electromigration, power grid analysis, size
problems, distributed computing graphs

 1 INTRODUCTION

Power grid analysis is becoming more and more
a critical task to ensure the proper functioning of
integrated circuits. As the number of transistors in
circuits keeps increasing, the density of power
distribution networks (PDN or power grids)
increases manifold. As a result, analysis of current
power grids in VLSI designs threatens to exceed the
formidable computational power available and has
developed into a considerable problem. In reality,
distributed systems and modern technology take an
important role in solving the problem, because one
computing instance is not enough to support the
computational and memory burden.

The motivation for this research was in fact to
address the electromigration (EM) problem using
Power grid analysis. EM is mass-electron movement
in metallic interconnects. This phenomena can cause
anomalies such as connection disruptions (caused by

void failures and diffusive displacements) and
component failure due to heating, eventually
diseasing the IC. Measurement or estimation of the
current density in interconnects is crucial to study
the EM (an empirical model developped by J. R.
Black in 1960 estimates the mean time to failure
from the current density) and envision the IC
lifespan. Even though it is a time-dependent case,
the interest of this study is the EM DC problem.
One way to address this problem is to model the
power using an electric circuit equivalent where
power grid connections are replaced with an
appropriate electrical model. Then, in order to
determine the currents in the power grid and to
determine if they exceed some safety values and
could lead to EM problems, one can analyse the
power grid, solve for the nodes voltages in the
model and compute the branch currents. Solving
power grid analysis problems is therefore an
essential key for EM analysis.

Attempts to solve the power grid analysis
problem have brought some high quality solutions
with high performance and flexibility. In [1], a
distributable direct method was first applied to
power grids and showed very good reference results.
In [2], an iterative efficient solver based on SOR
algorithm brought a lot of flexibility in distributing
and scalability. In [3], another iterative solution
showed excelent convergence results. These
solutions make use of partitioning techniques such
as Domain partitioning[1] and Block partitioning (or
Geometric partitioning). Also, in [4], a technique
that became very popular to VLSI circuit
partitioning was presented and applied for the first
time in the power grid subject, and it turns out that it
can also be applied in conjunction with most of these
algorithms.

Preconditioned conjugate gradient algorithms
have proved to be very successful in approaching
linear system problems over the years. Given the
linear nature of the power grid analysis problem, a
Block-Jacobi Preconditioned Conjugate Gradient
algorithm is proposed in this study, a preconditioner
very flexible to parallelize, and very suited for
distributed data solutions.

mailto:fabio.barata@ist.utl.pt

2

In the next Section, the power grid model and
problem formulation will be described. It will also
be shown why non-distributed methods are useless
for anything other than benchmark results. In
Section 3, BJ PCG is shown, as well as comparison
with other types of preconditioners. In Section 4,
some partitioning strategies that can be used in
conjunction with the state of the art power grid
analysis algorithms are explained. In Section 5, the
results for time and memory performances are
illustrated. In Section 6, conclusions are presented.

 2 BACKGROUND

For the purpose of an analysis, power grids can
be modelled accurately by RC meshes connected to
an integrated circuit in multiple points, in order to
supply the power needed for functional blocks to
work. Hence, in this simplified setting, functional
blocks are modelled by current sources that demand
some current from the grid. A voltage source
supplies the current needed, through connections, in
other multiple nodes of the grid, usually uniformly
distributed along the grid. Current flip-chip (C4
bump) technology provide a large number of contact
VDD nodes, so a current demanded by a functional
block is provided by the power supply connections
in the surroundings. This is called locality.

An example of a power grid model is shown in
Figure 1.The power grid representation adopted in
this article is:

Power grid DC analysis is a linear system
problem. The voltage sources are transformed to
multiple current sources using a Norton equivalent at
the appropriate connection points. The circuit
voltage reference is the voltage source amplitude,
thus the linear system is given by:

 G v=Bi+Bv iv (1)

where: G is an NxN matrix with NZ non-zero
entries, imposed by the KCL rule for each grid node
(often called the KCL conductance matrix); B is an
NxM incidence matrix of the current sources (ie Bj,k

= 1 iif current source k is connected to node j); i is
an Mx1 vector with current source amplitudes; Bv is
an NxK incidence matrix of the Norton equivalent
current sources corresponding to the voltage sources
and finally iv is an Kx1 vector with Norton
equivalent current sources amplitudes
corresponding to the voltage sources.

The equation (1) can be split into two
components, leading to:

G v=BiBv iv⇔G v 0 v =BvivB i (2)

where v0 is the solution to the biasing voltage
sources and  v is the voltage drop caused by
the current requirements from the logic blocks.
Equation (2) can be split by interposition into:

G v0=Bv iv
G Δ v=B i

(3)
(4)

The solution to equation (3) is easily obtained by
inspection noting that the right-hand side
corresponds to the biasing voltage sources. The node
voltage at every grid node is therefore equal to VDD.
For equation (4), the voltage sources are grounded
and the voltage variations is due only to the currents
in the logic blocks. From now on, determining

Δ v is the goal of the power grid analysis.

Figure 1: RC circuit mesh example with 6 nodes.

Figure 2: Power grid representation example. Current
sources are connected to nodes represented in green

squares. Voltage sources are connected to nodes in white
circles.

3

However simple the problem might seem, the
number of nodes in a real power grid is enormous
(tens of million nodes), and memory resources are
easily exceeded in non-distributed solutions:

Grid
Nodes

Current
Sources

Time Memory
peak

62k 90 1.91s 130MB

404k 120 14.4s 817MB

1.2M 180 1070s 5.59GB
Table 1: Time and Memory spent using CHOLMOD[5]

library for various power grid sizes

 3 SOLUTION

The direct methods such as Cholesky
factorization and Domain decomposition provide
very efficient strategies to tackle the power grid
problem. However, they do not provide scalability,
and as a good approximation to the result suffices to
provide the information needed for the power grid
analysis, iterative schemes tend to be a little more
efficient in filling the needs. In this study, a very
popular linear system solver – BJ PCG – is proposed
to be applied to the power grid analysis problem.

 3.1 Block-Jacobi Preconditioned
Conjugate Gradient (BJ PCG)

The conjugate gradient algorithm is a widely
known iterative algorithm for solving systems of
linear equations, in which matrix A in linear system
Ax = b is symmetric and positive definite. In order
to accelerate the rate of convergence, a technique
called preconditioning is often used. This technique
consists in a transformation leading to the system
MAx = Mb. The rational for this procedure is that
solving this system is easier, i.e., requires less
iterations, than solving the original system, at little
additional cost per iteration. This results in an
operation applied to the residue r that approximates
a solution z in Az = r by solving Mz = r in a cheaper
process. The ideal preconditioning operation would
give the exact solution z in Az = r and the
preconditioned conjugate gradient (PCG) would
reach the solution in the first iteration. Obviously,
this requires a direct solution of the original system
and is therefore fruitless.

Over the years many preconditioners were
developed for a variety of problems. The most basic
preconditioner is perhaps the so-called Jacobi
preconditioner or diagonal preconditioner. This
preconditioner works particularly well for diagonally
dominant matrices, since its approximation grows
better the more preponderant the diagonal values of
A are. Another popular option is the SSOR
(Symmetric Successive Over-Relaxation)
preconditioner, also a relaxation-type preconditioner
that uses more of the matrix information as it is
derived from a straightforward decomposition of the
A matrix into lower, upper and diagonal blocks and
is based on the SSOR method[6]. Both
preconditioners discussed so far are easy to
parallelize and distribute in terms of both
initialization and application. For example, the
SSOR preconditioner has the same non-zero pattern
as the G matrix, hence solve can be parallelized by
recurring to a technique very similar to the
distributed matrix-matrix multiplication.

Another commonly used option is the set of the
so called incomplete factorization (ILU or IChol)
preconditioners. The IChol preconditioners consist
in computing a partial Cholesky decomposition and
keeping only a subset of the elements in the factors.
These preconditioners are known for being volatile
in structural and numerical ways, providing a good
trade-off between initialization and convergence
rate. The choices used in this work are the IChol(0)
(no fill-in incomplete factorization) and ICholT
(incomplete factorization with thresholding). The
ICholT preconditioners usually provide very good
results, but are difficult to parallelize. .

Among the widest-known preconditioners, Block
Jacobi (BJ)[6] provides very simple and effective
ways of distributing the algorithm. The BJ
preconditioner consists in subdividing the matrix
into smaller parts with resort to a partitioning
algorithm (in which the partitioning options come
forward) and computing the solution for each of the
domains in parallel for each iteration. In other
words, this preconditioner computes factorization
and solution of smaller parts of the grid (just like BI
algorithm), and uses them to approximate the whole
solution, making use of the locality nature of the
power grids.

In Algorithm 3.1, the BJ PCG algorithm pseudo-
code is presented.

4

In Figure 3, a comparison between various
widely known preconditioner options[6] is illustrated.
Only Incomplete Cholesky factorization is on par
with Block Jacobi preconditioner, but does not
provide the same distributing capabilities. In fact,

Incomplete factorization preconditioners are very
difficult to parallelize.

 4 PARTITIONING

In order to achieve parallelized solutions and
distributed data, the division of the power grid must
be accomplished. In this section, graph partitioning
(sometimes called clustering) techniques will be
studied. Graph partitioning application to power
grids has two main purposes: to distribute the
resource demands among computing instances; to
maximize the similarity of the inner solution
(obtained using only inner-partition nodes) and real
solution (of the partition nodes, obtained by
simulating the whole circuit). That said, the
relationship between sets is often measured as the
sum of the branch weights interconnecting the sets
(which are branch conductancess for the case of
power grids). Also, the most attractive partitioners
are those which balance the size of each set,
avoiding very large sets that lead some instances to
drudge while the remaining are idle, limiting the
advantages of partitioning.

 4.1 Geometric Partitioning

The geometric interpretation is an essential
procedure in graph partitioning. The power grids
may not be regular structures, but they have
geometric patterns. Hence, to partition the grid using
geometric information (node position) makes sense
and it turns out to be a very effective strategy that
provides good results.

Algorithm 3.1: Block-Jacobi
Preconditioned Conjugate

Gradient

Inputs: Part = Partition sets, thresh = convergence
threshold, Outputs: Solution

1) for each p in Part
1) factorize G[p;p] matrix for

preconditioning
2) set starting solution to 0
3) r=B
4) for each p in Part

1) Let zp and rp be submatrices of z and r
with p row set and all columns

2) Solve G[p;p]zp = rp using previously
computed factorization

5) q=z
6) for a from 1 to M

1) let za , r a , d a and qa be the
a columns of z, r, d and q

2) d a=z a
T r a

7) Loop until break
1) for a from 1 to M

1) let za , r a , qa and xa be
the a columns of z, r, q and x

2) Gqa=G qa

3) α=d a /(qa
T Gqa)

4) xa=xa+αqa , ra=r a−α qa
2) ||r||∞ < thresh

1) break
3) for each set in Part

1) Let zp and rp be submatrices of z and
r with p row set and all columns

2) Solve G[p;p]zp = rp using previously
computed factorization

4) for a from 1 to M
1) let za , r a and qa be the a

columns of z, r and q
2) d a

next=za
T ra

3) qa= za+
d a

next

d a
qa

4) d a=d a
next

Figure 3: Preconditioner comparison - Time to reach 10^-6 error
for a 62k node IBM benchmark power grid with 50 current

sources (computed using MATLAB)

5

The geometric partitioning (GP), also called
area-based partitioning and block partitioning, is not
particularly hard to achieve: Cut the grid uniformly
on the single layer directions x and y.

The GP algorithm results in the following:

Inputs: cd = node coordinates, nx = number of cuts
x, ny = number of cuts y, Outputs: Partition
sets
1) xmin = min cdx, xmax = max cdx

2) ymin = min cdy, ymax = max cdy

3) width = xmax - xmin, height = ymax - ymin
4) for i from 0 to nx-1

1) xlow = xmin + i*width/nx, xhigh = xlow
+ width/nx

2) for j from 0 to ny-1
1) ylow = ymin + j*height/ny, yhigh =

ylow + height/ny
2) Si*ny+j = cdx [xlow, xhigh] ∩ cd∈ y ∈

[ylow, yhigh]

 4.2 Ratio cut Partitioning

The previous graph partitioning algorithms are
based on geometric postulations Geometric or
functional block information might be inaccessible
or inaccurate, jeopardizing the partitioning
performance substantially. In that event, a
geometrically independent approach is desired, and
one that optimizes the size of all partitions and the
interconnecting conductances. In this study, a
partitioning algorithm, commonly used in the
various VLSI-related areas, is proposed: Ratio cut
partitioning.

The Ratio cut is a graph partitioning strategy
which targets the following optimization problem[7]

(metric):

(5)

where:

Vi – Partition set I, |Vi| is the set size

Wi,j – Weight on branch which connects node i
to j

In short, Ratio cut is a strategy that attempts to
optimize set partitioning such that the sum of
interconnecting weights over the product of partition
sizes is minimum. The number of partitions is either
fixed or variable, depending on the algorithm and/or
the application.

The Ratio-Cut Partitioning algorithm can be
described in the following procedure:

Inputs: m = number of partitions, W = weighted
adjacency matrix, Outputs: Partition sets
1) Compute diagonal degree matrix
2) Calculate the Laplacian L = D-W
3) Estimate the Fiedler vector v using the

Lanczos algorithm
4) Sort v values ascending or descending
5) Compute the most profitable m-1 cuts in v

by testing all cutting possibilities and using
the ratio metric (5)

6) Cluster the graph from the cuts found

 5 RESULTS

The power grid analysis is a very expensive
process in terms of memory and processing
complexities. In this section, BJ PCG will run for
various benchmarking and artificially created power
grids.

 5.1 Environment

The results in this sections make use of two
different architectures:

1) Multithreaded architecture:
1. Multi-core processor with 4 cores – Intel Xeon

E5410 2.33GHz
2. RAM Size: 24GB
3. Operative System: Linux Fedora 13

2) Distributed architecture:
1. Cluster with 10 Multi-core processors with 8

cores each – Intel Xeon E5504 2.00GHz
2. RAM Size: 32GB per processor
3. OperativeSystem: Linux CentOS 5.4 (Final)

 5.2 Power grids

The power grids used to test the BJ PCG
performance were of two types: IBM provided

min
{V 1 ...V n}

1
∑

k
∣V k∣(∣V∣−∣V k∣)

∑
i∈V p

j∈V q

p≠q

W i , j

6

benchmark power grids
(http://dropzone.tamu.edu/~pli/PGBench) and
artificially created power grids. As the IBM
provided power grids are very small in comparison
to the target (of 300Million nodes), artificially
created power grids with similar characteristics were
generated.

 5.2.1 IBM benchmark power grids

Real power grids used are IBM benchmark
power grids. The VSS part is eliminated and the zero
resistance branches are simplified (terminal nodes
are fused). The number of current sources is
arbitrarily chosen for problem escalation.

Power grid Nodes Current sources

IBMPG2 61677 90

IBMPG6 403915 130

IBMPG6-2 403915 300

Table 2: Power grid IBM benchmarks

 5.2.2 Artificially created power grids

Artificial power grids are structured. They are
generated according to rules such as: each pair of
layers (in the z-axis) has the same density, but lower
layer pairs have an higher density than upper layer
pairs; total resistance of the power grid is constant;
each layer only has resistors in either x-axis and z-
axis or y-axis and z-axis.

 5.3 Comparison between
partitioning algorithms

In this section, the partitioning strategies
previously discussed will be compared for some
power grids in a multithreaded architecture (Section
 5.1).

In this section, the conditions are:

1) Number of partitions m
2) BI SOR w = 1.65
3) Acceptable residue error |r|max = 10-3

Tables 4 and 5 show comparison among various
partitioning strategies.

Power grid Nodes Current sources

ART2 782978 160

ART3 782978 300

ART4 1197252 300

ART5 1197252 500

ART6 1197252 750

ART7 1197252 1000

ART8 1197252 1250

ART9 1197252 1500

ART10 1197252 1750

ART11 1197252 2000

ART12 2918100 300

ART13 4998932 300

ART14 7982598 300

Table 3: Artificially created power grids

Power Grid m BJ PCG
IBMPG1 8 8 / 0.095s
IBMPG2 8 21 / 9.25s

ART1 8 33 / 56.5s
IBMPG6 8 47 / 133s

Table 4: Results for BJ PCG solver with GP algorithm
(iterations / time)

Power Grid m BJ PCG
IBMPG1 8 11 / 0.114s
IBMPG2 8 26 / 21.4s

ART1 8 46 / 141s
IBMPG6 8 24 / 68.9s

Table 5: Results for BJ PCG solver with Ratio cut
algorithm (iterations / time)

The Geometric Partitioning is the most reliable
partitioning algorithm to use in conjunction with BJ
PCG, with the only exception being IBMPG6.

 5.4 Distributed BJ PCG results

In this section, a distributed version BJ PCG will
tackle increasingly difficult power grids on a
distributed architecture (Section 5.1).

7

 The next table shows some quick examples of
how much is the distributed BJ PCG worth in terms
of processing (with 8 partitions per computer):

Number of
computers Time (s) Memory spent

per unit (GB) Speed-up

1 424 4.72 0%

2 381 2.37 11%

3 265 1.61 60%

4 185 1.20 129%

5 175 0.95 142%

6 155 0.79 174%

7 188 0.66 126%

8 139 0.60 205%

9 159 0.57 166%

10 125 0.52 239%
Table 6: Speed-up and memory results for distributed

processing over 1 to 10 computing instances, simulating
IBMPG6-2 power grid benchmark (404k node with 300

current sources)

It is evident that distributing the data will ease
the memory burden over each computer, but the
previous table showed that even the processing cost
benefits from the distribution and provides some
good speed-ups. Sometimes the speed-up may drop
a bit (case 7 and 9 computers in the previous
sample) due to where the power grid was cut if it has
some irregularities.

Table 7 shows results for increasing number of
nodes.

Power
Grid

Number of
Iterations

Time
(s)

Memory used/
computer (GB)

IBMPG6-2 80 147 0.53

ART3 127 494 0.96

ART4 160 1036 1.47

ART12 209 4440 3.60

ART13 211 8309 6.18

ART14 248 17660 10.03
Table 7: Block-Jacobi Preconditioned Conjugate Gradient

on a 10 octocore cluster results in iterations, time and
memory peak per computer

In Figure 4, 5 and 6, the evolution of the
previous results can be seen over the number of

nodes. Memory is heavily dominated by the residue
matrix (r = B-G*s) with dimensions N*M (number
of nodes x number of current sources) and which
becomes dense after just only a few iterations. So, it
is not surprising that the evolution of memory spent
is linear with the number of nodes (and will be with
the number of current sources too). The projected
complexity models the time curve fairly well.

Figure 4: BJ PCG results: number of iterations over number of
nodes

Figure 5: BJ PCG results: memory spent over number of current
sources

Figure 6: BJ PCG results: memory spent over number of nodes

8

Next, the algorithm will run for increasing
number of current sources:

Power
Grid

Number of
Iterations

Time
(s)

Memory used/
computer (GB)

ART4 160 1036 1.47

ART5 158 2141 2.41

ART6 161 3589 3.48

ART7 159 5062 4.61

ART8 161 6266 5.71

ART9 159 7838 6.84

ART10 159 8911 7.95

ART11 160 10660 9.06
Table 8: Block-Jacobi Preconditioned Conjugate Gradient
increasing node number on a 10 octocore cluster results in

iterations, time and memory peak per computer

As expected, the number of iterations does not
vary considerably, since the grid is the same and is
structurally regular, solving does not depend much
on the chosen nodes and all pretty much take the
same number of iterations to converge. Also, time
and memory complexity are approximately linear
with the number of current sources (since
factorization times are constant). In , the curves and
linear fits can be seen.

The memory resources rise very quickly with the
number of nodes and current sources. However, if
the right-hand side is made in blocks, the memory
drops substantially without increasing the processing
times much, and actually decreasing for a low

number of blocks. The following table shows the
results for varying the number of blocks in ART7
(1.2M node power grid with 1000 current sources):

Number
of blocks

Time (s) Memory used per
computer (GB)

1 5062 4.61

5 3212 0.99

10 3395 0.53

20 3870 0.31

40 5339 0.19

60 6145 0.16

100 5270 0.13

1000 40770 0.09
Table 9: Block-Jacobi Preconditioned Conjugate Gradient

increasing number of blocks (of a total of 1000 current
sources) on a 10 octocore cluster results in iterations, time
and memory peak per computer. Please note that 1000 is

not dividable by 60

 6 CONCLUSIONS

In this work, the power grid analysis formulation
was used to determine the voltage values of power
grid nodes and indirectly solve the EM problem.
For these cases, the problem requirements exceed
the limits of what a single computer can do, and
parallel solutions compatible with distributed data
had to be applied.

Block-Jacobi Preconditioned Conjugate Gradient
solved a 7.9M node power grid with 300 current
sources in 5 hours in a 10 octocore cluster using
9.06GB of memory.

 7 REFERENCES

[1] Quming, Z., Sun, K., Mohanram, K.,
Sorensen, D. C., Large power grid analysis
using domain decomposition, In Proc.
DATE '06, 2006, pp 27-32

[2] Zhong, Y. and Wong, M.D.F., Fast Block-
Iterative Domain Decomposition Algorithm
for IR Drop Analysis in Large Power Grid,
In Proc. 11th ISQED, 2010 Mar., pp. 277-
283

Figure 7: BJ PCG results: time over number of current sources

9

[3] Zeng, Z., Li, P. and Feng, Z., Parallel
Partitioning Based On-Chip Power
Distribution Network Analysis Using
Locality Acceleration, In Proc. 10th
ISQUED, 2009, pp. 776-781

[4] Sheehan, B., Realizable reduction of RC
networks, IEEE Transactions Computer-
Aided Design of Integrated Circuits and
Systems, 2007 Aug., pp. 1393-1407

[5] Chen, Y., Davis, T. A., Hager, W. W. and
Rajamanickam, S., Algorithm 887:
CHOLMOD, supernodal sparse Cholesky
factorization and update/downdate, ACM
Trans. Math. Software, v. 35, issue 3, 2008
Oct.

[6] Saad, Y., Iterative methods for Sparse
Linear Systems, 2000, Jan. 3rd

[7] Hagen, L. and Kahng, A.B., New Spectral
Methods for Ratio Cut Partitioning and
Clustering, IEEE Computer-Aided Design
of Integrated Circuits and Systems, v. 11,
1992 Sep., pp. 1074-1085

	 1 Introduction
	 2 Background
	 3 Solution
	 3.1 Block-Jacobi Preconditioned Conjugate Gradient (BJ PCG)

	 4 Partitioning
	 4.1 Geometric Partitioning
	 4.2 Ratio cut Partitioning

	 5 Results
	 5.1 Environment
	 5.2 Power grids
	 5.2.1 IBM benchmark power grids
	 5.2.2 Artificially created power grids

	 5.3 Comparison between partitioning algorithms
	 5.4 Distributed BJ PCG results

	 6 Conclusions
	 7 References

