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I. Abstract
Power grid analysis is becoming a very challenging circuit design problem which defies the limits 

of computational  resources – processing and memory.  Current  very large scale integration (VLSI) 

designs  have  already  exceeded  one  hundred  million  nodes  and  any  power  grid  analysis  and 

verification problem tends to get enormous. Computer resources available are already too short to 

store and process the many gigabytes (GB) of data involved in the analysis. For that reason, very 

efficient  parallelizable  strategies,  compatible  with  distributed  data,  are  absolutely needed  for  this 

problem.

Electromigration analysis is one of the most common reliability problems in the VLSI circuitry. 

Power grids supply current to integrated circuits and their metallic connections suffer while the current  

travels through them. This situation has worsened for current technology nodes given the diminutive 

dimensions used for  those connections.  To study the electromigration problem,  the  current  in  the 

power grid connections must be computed. Power grid analysis consists in computing the voltage  

values in power grid circuit nodes, which can be used to obtain the connection currents and solve the  

electromigration problem.

In this study, general-purpose and power grid specialized solvers are examined, developed and 

applied to both realistic benchmark circuits and artificially generated power grids. It will be seen that  

some of  the  solution strategies  fail  to  achieve a  good acceptance in  some of  the  most  important 

characteristics, such as parallelism and data distribution flexibility, low communication rates and result 

scalability (in terms of solution error over performance), while others succeed for the time being (since 

these  objectives  always  have  margin  for  improvement).  Furthermore,  a  parallel  solution  requires 

partitioning of power grids. As a power grid can easily be interpreted as a graph, dividing it can be  

accomplished through graph partitioning techniques. In this work, the most popular techniques will be 

applied, some relying on access to geometrical information and others that do not require it and must 

be used when such information is not available.

Block-Jacobi Preconditioned Conjugate Gradient, which is a popular solver yet to be applied to  

the power grid problem, seems to show the best results among the analysed strategies, topping about 5 

hours analysing a 7.9 million node power grid with 300 current sources on a 10 octocore cluster. While 

much seems to be still required in terms of improving computational requirements to be able to solve  

such a grid in reasonable time, the projected memory footprint seems in line with what is available 

even today, which is a good sign.

Keywords: VLSI, Electromigration, Power grid analysis, Partitioning, System of linear equations, 

Parallel and distributed computing



I. Resumo
Análise de power grids tem vindo a emergir ao longo do tempo como um problema de circuitos 

que atinge os limites dos recursos computacionais, processamento e memória. Circuitos integrados de 

grande escala (VLSI) já excedem cem milhões de nós e qualquer análise e verificação de power grids  

tende a ficar enorme. Os recursos disponíveis são já muito curtos para guardar os muitos gigabytes de 

dados  envolvidos  no  processo.  Então,  estratégias  paralelizáveis  e  eficientes,  compatíveis  com 

distribuição de dados, são necessárias para atacar este problema.

O teste de Electromigração é um dos problemas de fiabilidade mais comuns nos circuitos VLSI.  

As power grids fornecem corrente ao circuito integrado e as suas ligações degradam-se à medida que a  

corrente  passa.  Este  problema  agravou-se  com  o  avanço  tecnológico  dados  os  minúsculos 

comprimentos utilizados nas ligações. Para estudar o problema da Electromigração, a corrente que 

passa em cada uma das ligações da power grid deve ser determinada. A análise de power grids consiste 

em determinar os valores de tensão dos nós da power grid, o que pode ser utilizado para calcular as  

correntes nas ligações e resolver o problema da Electromigração.

Neste estudo, soluções de análise de power grids serão examinadas, desenvolvidas e aplicadas 

tanto a circuitos benchmark como a power grids criadas artificialmente. Algumas soluções falham em 

atingir  bons resultados em algumas  características  importantes  como paralelismo,  flexibilidade  na 

distribuição  de  dados,  baixas  taxas  de  comunicação  e  escalabilidade  no  resultado  (no  sentido  de 

margem de erro face a performance), enquanto que outras atingem até ao momento (visto que tais  

objetivos têm sempre margem para melhoria). Porém, uma solução paralela requer particionamento 

das power grids. Dado que uma power grid pode ser vista como um grafo, a sua divisão pode ser  

obtida através de técnicas de particionamento de grafos. Neste trabalho, as técnicas mais populares 

serão aplicadas,  sendo algumas dependentes do acesso a informação geométrica e outras que não  

necessitam e deverão ser utilizadas quando esse acesso não está presente.

O algoritmo de Gradiente  Conjugadocom pré-condicionamento de Bloco-Jacobi,  uma solução 

nunca antes aplicada ao problema das power grids,  mostra os melhores resultados entre as várias  

estratégias analisadas, demorando 5 horas a analisar uma power grid de 7.9 milhões de nós com 300 

fontes de corrente num aglomerado de 10 octocores. Mesmo sabendo que muito terá de ser melhorado 

para conseguir resolver uma grelha real em tempo razoável, a memória projetada está de acordo com o 

que existe hoje mesmo, o que é um bom sinal.

Palavras-chave:  VLSI; Electromigração; Análise de power grids; Particionamento; Sistemas de 

equações lineares; Computação paralela e distribuida
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 1  Introduction
Power grid analysis is becoming more and more a critical task to ensure the proper functioning of 

integrated circuits.  As the number of transistors in circuits keeps increasing,  the density of power  

distribution networks (PDN or power grids) increases manifold. As a result, analysis of current power 

grids  in  VLSI designs threatens  to  exceed the formidable  computational  power  available  and has 

developed into a considerable problem. In reality, distributed systems and modern technology take an 

important role in solving the problem, because one computing instance is not enough to support the 

computational and memory burden.

 1.1  Electromigration
This research focuses in solving the EM problem using Power grid analysis. EM is mass-electron 

movement  in  metallic  interconnects.  This  phenomena  can  cause  anomalies  such  as  connection 

disruptions  (caused  by  void  failures  and  diffusive  displacements)  and  component  failure  due  to 

heating, eventually diseasing the IC. Measurement or estimation of the current density in interconnects  

is crucial to study the EM (an empirical model developped by J. R. Black in 1960 estimates the mean 

time to failure  from the current  density)  and envision the IC lifespan.  Even though it  is  a  time-

dependent case, the interest of this study is the EM DC problem.  One way to address this problem is 

to model the power using an electric circuit equivalent where power grid connections are replaced  

with an appropriate electrical model.  Then, in order to determine the currents in the power grid and to  

determine if they exceed some safety values and could lead to EM problems, one can analyse the  

power grid, solve for the nodes voltages in the model and compute the branch currents. Solving power 

grid analysis problems is therefore an essential key for EM analysis.

 1.2  Power grids
Power grids are metallic grids that distribute the power supplied by a power supply and required 

by an integrated circuit (IC) functional blocks. The supply polarizes the grid with a fixed voltage VDD 

and functional blocks depend on a steady voltage value for a proper functioning, which would ideally 

be equal to VDD. However, due to the metallic conductor properties and current presence, the voltage  

of nodes distant  from the contact  points  (where the power  is  supplied)  may drop somewhat.  The 

voltage source attached to the power grid must ensure the circuit proper functioning, given it is lower  

on the functional block terminals.

Typically,  a  power  grid  can  be  modelled  by  an  RC  circuit  mesh  (Resistors  model  metallic 
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connections  between  two  nodes;  Capacitances  model  variations  in  loading  conditions  and 

electromagnetic field induced currents) with current sources (modelling the functional blocks) and 

voltage sources (or bias contacts, modelling the connections to the power grid to a source establishing 

its overall voltage and providing current for the underlying electronics to function), as shown in Figure

1. Power grid analysis consists in determining the values of voltage and currents in the grid nodes and 

branches (connections),  which implies simulating the system for time-constant  (DC) and transient  

responses.

Last but not least, current sources are not constant. The functional blocks demand current when 

there exists a state transition on a logical component (or port), which varies with the transition type (0  

to 1 or 1 to 0). Also, not all components change at the same time, it depends on an ongoing state and a 

new input. This will require the power grid analysis to be able to provide the branch currents given any 

possible state transition.

Knowledge of nominal value of all logic block's current demands is context dependent, meaning it 

depends on the state of the block, the sequential elements, inputs, etc. Such information is not easy to 

determine  as  it  would  require  full-chip  simulation  of  the  underlying  circuit,  a  very  expensive  

endeavour. For power grid analysis, it is sufficient to treat the circuit elements at the block level and to  

model  their  current  requirements in a global  sense.  In other words,  it  is  common for  power  grid 

analysis that a single current source represents the current requirements of a whole cell of block. The 

number of current sources to consider is therefore of the order of the number of blocks, much smaller  

than the granularity of the grid contacts. A relevant analysis is the determination of the node voltage 

(and branch currents) variation, then the block currents vary. Such analysis allows us to account for the 
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Figure 1: RC circuit mesh example with 6 nodes.



fact that within a given cell or block one might experience small peaks of increased activity. Being 

able to perform such an analysis  as a simple variation on the power grid inputs is  an interesting  

capability that can be of much use to the designer.

 1.3  Limitations of the analysis
Many manufacturers, like IBM, already routinely design power grids have reached 300 million 

nodes with 2000 current sources. They expect to be nearing designs with close to a billion nodes in the 

power grid model. A single common computing instance is hardly enough to contain the power grid  

information (300M nodes would use about 23GB just to store the power grid connection data), let 

alone memory overheads during the analysis (in fact, IBM routinely builds special purpose computers  

with vast amounts of memory in order to be able to handle such large power grid designs). As the  

power  grids  dimensions  are  extremely large,  a  distribution  of  processing  and memory utilization 

(parallelism)  through  various  computing  instances  is  necessary.  For  this  purpose,  a  set  of  tools 

implementing partitioning techniques is used to assign (distribute) the power grid nodes to computing 

instances.  The efficiency of the analysis is  strongly affected by the communication needed in the  

process, which is usually determined by the number of interconnections between the partitions (in 

other words, by the number of branches connecting a partition to other partitions). On the other hand,  

partitions must also be such that the load on various computing instances is balanced.

 1.4  Objectives
Given the exigencies of the power grid analysis problem, this work is focused on setting up the 

current  state  in  this  domain,  as  well  as  identifying  the  drawbacks  of  the  current  strategies  and 

proposing novel solutions.

 1.5  Contribution of this work
The power grid DC analysis is abstracted to a system of linear equations with a graph geometrical  

interpretation,  thus  linear  system solvers  are  applicable.  In  this  research,  a  selection  of  existing  

methods to approach the power grid DC analysis through both a graph and a linear system problem is  

studied. Given the linear nature of the problem, this work presents a comparison and development of  

the existing power grid analysis solving methods, such as Block Iterative (BI) and Locality-Driven 

Parallel State Analysis (LPSA), as well as other popular linear solvers, like Cholesky factorization,  

Domain  Decomposition  (DD)  and  Preconditioned  Conjugate  Gradient  (PCG)  with  Block-Jacobi 

Preconditioning (which is yet  to be applied to the power grid analysis).  Since the distributed data 

parallel analysis is absolutely necessary, this study will focus on these terms. In addition, partitioning 
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methods  like  Domain  Partitioning  (DP),  Geometric  partitioning  (GP)  and Ratio  cut  (an  algebraic 

method which is also going to be applied for the first time to the power grids domain) are also studied.

 1.6  Thesis structure
In Chapter 2, the power grid model and the theoretical background behind power grid analysis is 

explained.  In Chapter 3 a first  attempt  to reduce the problem size is  made using MOR reduction 

techniques. In Chapter 4, power grid analysis direct solvers like Cholesky factorization and DD and 

other iterative solutions: BI, LPSA and PCG are discussed and improved targeting a parallel solving 

using distributed data. In Chapter 5, widely known partitioning techniques and their advantages and 

disadvantages  are  shown.  In Chapter  6,  some implementation details  are  revealed.  Results  of  the 

algorithms presented in Chapters 4 and 5 are illustrated in Chapter 7. Chapter 8 concludes the thesis.
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 2  Background

 2.1  Power grid model
A power grid can be modelled by an RC mesh with current and voltage sources. Resistances  

model the metallic connections between two nodes and capacitances model electrostatic effects such 

as variations in loading conditions and electromagnetic field induced currents. Coil models are not 

required  for  frequencies  in  the  order  of  GHz.  The  most  commonly  used  model  is  a  graph 

representation  of  these  components.  As  the  focused  problem  in  this  study  is  DC  analysis,  the  

capacitances are omitted. An example of the model of the power grid in  Figure 1 is illustrated in 

Figure 2:

In real power grid circuits, there is only one voltage source connected to multiple nodes. In this 

power grid model, that will be made into multiple sources with the same amplitude and characteristic  

conductance connecting the same nodes.

 2.2  Power grid analysis
As stated  in  the  introduction,  to  study potential  EM problems,  the  branch  currents  must  be 

determined. But, for that, the voltage difference in each branch suffices. A way of solving this problem 

is to determine the voltage of each of the N nodes in a power grid [1], given M current sources and K 

voltage sources (which are replaced by Norton equivalent current sources, using their characteristic  

conductance GDD). This is called the power grid DC analysis and is obtained by solving for v in the  

following linear system:

 G v=Bi+Bv iv (1)

where:

G – a NxN matrix with NZ non-zero entries, imposed by the KCL rule for each grid node. This is 

5

Figure 2: Power grid representation example.  
Current sources are connected to nodes  

represented in green squares. Voltage sources are  
connected to nodes in white circles.



called the KCL conductance matrix

B – a NxM incidence matrix of the current sources (ie Bj,k = 1 iif current source k is connected to 
node j)

i – a Mx1 vector with current source amplitudes

Bv – a NxK incidence matrix of the Norton equivalent current sources corresponding to the voltage 
sources

iv – a Kx1 vector with Norton equivalent current sources amplitudes  corresponding to the voltage 

sources 

Note that, in the case of multiple current sources connected to the same node, they are beforehand  

merged into a single source. Consequently, the B matrix is composed by M specific identity matrix  

columns.

The equation (1) can be split into two components, leading to:

G v=Bi+Bv iv⇔G (v0+Δv )=Bviv+B i  (2)

where v0 is the solution to the biasing voltage sources and Δ v  is the voltage drop caused by the 

current requirements from the logic blocks. Equation (2) can be split by superposition into:

G v0=Bv iv  
G  v=B i

(3)
(4)

The solution to equation (3) is easily obtained by inspection if it is noted that the right-hand side 

corresponds to the biasing voltage sources. The node voltage at every grid node is therefore  equal to 

VDD. For equation (4), the voltage sources are grounded and the voltage variations is due only to the 

currents in the logic blocks. The power grid analysis problem is therefore described by equation (4), 

which will be used in the rest of this work to determined the voltage drop  v .

An example of a 12 node power grid is illustrated in  Figure 3. An example of system (4) (with 

solution) for this power grid is:

6

G=[
12.5 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−10.0 11.0 −0.5 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 −0.5 11.0 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −10.0 10.5 0.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0

−0.5 0.0 0.0 0.0 11.0 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0
0.0 −0.5 0.0 0.0 −10.0 11.5 −0.5 0.0 0.0 −0.5 0.0 0.0
0.0 0.0 −0.5 0.0 0.0 −0.5 11.5 −10.0 0.0 0.0 −0.5 0.0
0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 11.0 0.0 0.0 0.0 −0.5
0.0 0.0 0.0 0.0 −0.5 0.0 0.0 0.0 10.5 −10.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 11.0 −0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −0.5 11.0 −10.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 10.5

]



Typical power grids have single-directed connections only in each layer (meaning a node only 

connects two others on the same layer, and they form a line). In this pattern, a node only connects 4  

other nodes maximum (one in the next upper layer, one in the next lower layer and two in their layer).  

Also, upper layers are less dense than lower layers, which means not all nodes connect other layers. In  

an IBM benchmark power grid, the mean connections per node is 3.25.

It  is  well  known  that  KCL conductance  matrices  for  the  power  grid  DC analysis  have  the 

following properties:

1) Symmetry;

2) Positive Definite and Diagonally dominant;

3) NZ = c*N, with c equal to number of connections per node plus 1, typically 4.25 in the IBM 
benchmark power grids (in other words, G is very sparse, as shown in Figure 4).
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Figure 3: Power grid example with 2 layers. Conductances are marked in  
branches.

G[
0.050
0.057
0.144
0.146
0.109
0.111
0.185
0.192
0.129
0.130
0.169
0.170

]=[
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0

][0.1 ]



 2.3  Problem formulation
As stated in  Chapter  1,  current  sources model  the  functional  blocks of the  IC.  While logical 

elements of a functional block demand variable amounts of current depending on state transitions, the 

right-hand side of equation (4) is also variable. Calculating all possible state transitions is not doable, 

so  the  linear  coefficients  associated  with  each  current  source  must  be  calculated.  For  this,  two 

approaches can be used: Monte Carlo estimation (which is an approximation and typically requires a 

high amount of samples to be reliable) or the following equation (called full right-hand side):

s=G−1 B⇔ v=s i  (5)

Instead of computing the full inverse G-1, one can solve columns of B independently for a more 

efficient solution, avoiding the computation of the full inverse (since only M lines are needed). This is 

equivalent to the application of the superposition theorem. Either way, one needs to compute a high 

amount of B columns (typically 2000 for current power grids of 300 million nodes). As the Monte 

Carlo estimation requires an amount of samples comparable to the full right-hand side, it does not 

justify the use of a random process so early in the analysis.

 2.4  Considerations
Currently designed  power  grids  have  a  huge  number  of  nodes.  This  suggests  that  the  main  

difficulty to the power grid problem is a size issue. The amount of resources required are too much for  

a single computer to provide. For this reason, the following considerations should be contemplated a 

priori when approaching the power grid problem:
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Figure 4: G matrix non-zero pattern of a 62k node IBM benchmark power grid. Right figure is a zoom of the full  
pattern on the left



1) For realistic power grids in dense technology nodes, storage of the KCL conductance matrix is 

usually impossible on a singular computer.

2) Distribution of processing and data through various computing instances is required. However,  

the  communication  between  instances  will  hamper  the  performance,  so  it  should  be 

decentralized and kept at the minimum possible. In addition, distribution should only depend on 

the number of available processing instances and not on external variables.

3) Reduction of data.  Memory spent  should be reduced substantially without  conceding much 

performance.

4) Scalable solution. A user-provided maximum acceptable error for the solution will determine 

the time and/or memory spent in the whole process.

5) Structure. All structural information of the power grid must be taken advantage of. An example 

is locality: Currently used flip-chip (C4) technology provides a high density of voltage contacts 

(also called VDD bumps), which implies that a current source effect in voltage drops decreases 

over distance (Figure 5).
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Figure 5: Voltage drop along one dimension after simulating a power grid with multiple voltage sources and one  
current source. After less than 10% nodes, the drop is less than 10% of the maximum.
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 3  Model Order Reduction
Model Order Reduction (MOR) techniques address size problems, by reduction of the number of 

nodes, producing an equivalent model without degrading the information needed in the analysis. As 

the problem at hand is very much about the size of the power grids, some compression would be very 

useful to tackle the problem more efficiently.

 3.1  Node elimination
Node elimination is a MOR technique based on Gaussian elimination. The main idea of node  

elimination is to find an equivalent circuit (in terms of the voltage drop of the remaining nodes) with a  

reduced  number  of  nodes.  A  widely  known  example  of  node  elimination  is  the  star-mesh 

transformation, which is a particular case of the single node elimination. The resulting circuit of a  

general single node elimination is given by linking all adjacencies (Figure 6).

Single  node  elimination  affects  adjacencies  of  the  eliminated  node  only.  The  resulting 

interconnecting conductances are calculated using:

g jk
' =

g j g k

∑
i

g i
 (6)

where:

g'jk – additional conductance between nodes j and k, after the elimination

gi – conductance between node to eliminate and adjacency i, before the elimination
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Figure 6: Node elimination example. The circuit on the right, after the elimination of node d, is equivalent to the  
one on the left. In this example, it is seen that nodes c and e were connected before the elimination of node d,  

which results in a parallel resistor that was simplified, but the overall number of resistors grow



The multiple node elimination is given by the Schur complement algorithm for equation solving:

Nodes with sources of any type cannot be eliminated directly without changing the right-hand 

side of the system (1). In  [2], a method for source and capacitance expansion was proposed, which 

allowed the elimination of these nodes. In our case, this is a minor advantage as the number of sources  

is small compared to the total number of nodes.

This process is equivalent to iterating in a Cholesky factorization process. This and other MOR 

techniques effectively reduces the size of the problem, but the density of the reduced Gr matrix is  

generally much higher than the original if many nodes are eliminated (Figure 7), which is undesired.

Taking into account the fact that one can eliminate multiple nodes independently in any order, 

when a node with more than three adjacencies is eliminated, the total number of branches usually 

increases, and so does the number of non-zeros of G. As for nodes with less than three adjacencies, 

they are profitably eliminated one by one.
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Figure 7: Number of non-zeros of G after the elimination of  
up to 10k nodes in a 62k node IBM benchmark power grid  

circuit ordered by AMD

Algorithm 3.1: Node elimination

Inputs:  G, elim = nodes to eliminate, Outputs: Gr = Reduced G

1) keep = complementary set of elim

2) Solve for Q in G[elim;elim]*Q = G[elim;keep] ← submatrices of G, G[rows;columns]

3) Gr = G[keep;keep]-QTQ



Figure 8 shows the best case scenario for the node elimination for a particular power grid. It can  

be seen that even the best case reduction for non-zeros is unsatisfactory.

 3.2  Other MOR methods
MOR  methods  have  a  large  number  of  applications  in  the  electronics  VLSI  area,  as  they 

successfully compress the circuit to a smaller number of nodes. Very popular methods used in this  

context are PRIMA[3], SVDMOR[4], DeMOR[5], RecMOR[6], BSMOR[7] and PMTBR[8]. These methods 

make use of a projection matrix  to transform the original  model,  but  this  projection scheme will  

generate a dense[9] (Figure 9) reduced matrices (in other words, they increase the number of nonzeros 

of the KCL conductance matrix) and thus is not very useful. In addition, the larger the number of 

inputs (voltage and current source nodes), the wider the projection matrix will be which leads to larger 

reduced models.
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Figure 8: Number of non-zeros of G after the successive single  
elimination of the most profitable nodes in a 62k node IBM 

benchmark

Figure 9: Fill-in caused by matrix projection V in a typical MOR algorithm



Overall,  when applied to  power  grid systems which are  very sparse  but  have a  considerable  

number of inputs (sources), MOR techniques lead to disappointing results [9] and are not considered 

very appropriate.
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 4  System solution
As a result of the extremely large currently used power grids (some tens of million nodes), the 

computational resources needed to analyse them are enormous which quickly precludes the usage of  

methods difficult to parallelize and distribute the data used. In recent years, several strategies emerged 

to overcome these problems and tackle the power grid analysis in a more efficient way. Recognizing 

the  computational  burden  of  the  problem  leading  to  excessive  processing  times  and  memory 

overflows, these recent strategies have opted to pursue approaches where parallelism is exploited in  

some way in order  to  substantially reduce the memory used by each computing instance.  In  this 

section, some of the strategies that fall  along those lines are presented, and they often need some 

preprocessing that employ a division of the grid, which is a subject examined in Chapter 5 .

 4.1  Direct methods

 4.1.1  Cholesky factorization
The most basic direct method is triangular solving (forward and backward) of the columns of B,  

using the Cholesky factorization of G or reordered G (usually by a minimum degree ordering).

In Table 1, the time and memory complexity of the direct method is shown. The constants α, β and 

γ vary in the interval [1,2] and are strongly driven by the ordering of G (which is chosen), because of  

the  fill-in  caused  during  the  factorization  process.  For  AMD[10] (approximate  minimum  degree) 

ordering, a typical value for these constants is 1.3. The constant γ is always at least equal to β.
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Algorithm 4.1: Cholesky factorization method

Inputs:  G, B, Outputs: Solution

1) Find a minimum degree ordering of G

2) Apply ordering in G rows and columns

3) Apply ordering in B rows

4) Compute L = Cholesky factor of G

5) Solve for u in Lu = B

6) Solve for s in LTs = u

7) Apply reverse ordering in s rows



Step
Complexity

Time Memory
Store G - O(N)

Factorize G O(Nα ) O(Nγ)

Solve O(Nβ M) O(N M)

Overall O(Nα+Nβ M) O(Nγ+N M)

Table 1: Time and memory complexity of the Direct Method

Employing the Cholesky factorization method is  actually very efficient,  but  a non-distributed 

solver rapidly exceeds the memory resources, as shown by the results (using CHOLMOD library)  in 

the following table:

Grid Nodes Current Sources Time Memory peak
62k 90 1.91s 130MB

404k 120 14.4s 817MB

1.2M 180 1070s 5.59GB

Table 2: Time and Memory spent using CHOLMOD library[11] for various power grid sizes

Elimination  trees[12] have  proved  to  be  successful  in  parallelizing  the  Cholesky factorization 

solving over the years, even though it is not perfect in the sense that it does not guarantee a full  

parallelization  of  the  process.  However,  in  distributed  architectures,  the  communication  during 

factorization process is very high, heavily compromising the efficiency of the process. For instance, an  

1.5k node (very small) power grid would have to communicate 100k nodes worst case, when divided 

in 4 pieces. This precludes the application of the Cholesky factorization direct method.

 4.1.2  Domain decomposition
The Domain decomposition (DD) method (often called Traditional method) was first introduced 

to the power grid problem by Quming et.  al.[13]. The DD algorithm is based upon a divide-and-

conquer technique to solve the linear system in an exact way, with resort to the Schur complement for  

equation solving.

The circuit nodes are divided into a given number of non-overlapped sub-domains (or partitions)  

and are classified in two different types (Figure 10):

1. interior nodes: nodes that belong to one partition only and do not connect to any nodes in  
other partitions;
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2. interface nodes: nodes that connect multiple partitions.

Given the circuit divided into m sub-domains (with the node classification), the linear system (1) 

is then rewritten as[13]:

(AD E
ET AΓ

)(x
y)=( f

g) , AD=(A1 0 0
0 ... 0
0 0 Am

)  (7)

Matrices AD, AΓ and E are sub-matrices of G, corresponding to a different ordering such that: A1 to 

Am matrices  are  square  and  contain  the  connectivity  information  internal  to  each  partition;  E  is 

rectangular and stores the connectivity information between interface and interior nodes; AΓ is a square 

matrix holding the connectivity between interface type nodes only. It is easily seen that the vector 

(f,g), right-hand side of (7), is simply a reordered version of the original right-hand side of (4). The 

same is said about (x,y) in respect to the solution v. Taking for instance the example in Chapter 2  , 

dividing it in two parts (nodes 1 to 4 and  9 to 12, interface nodes 5 to 8), the reordered system will be:
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Figure 10: Interior and interface nodes example.  Yellow squares and red  
diamonds represent two partitions interior nodes and cyan diamonds are  

interface nodes. Branches are conductances.

[
12.5 −10 0 0 −0.5 0 0 0
−10 11 −0.5 0 0 −0.5 0 0

0 −0.5 11 −10 0 0 −0.5 0
0 0 −10 10.5 0 0 0 −0.5

10.5 −10 0 0 −0.5 0 0 0
−10 11 −0.5 0 0 −0.5 0 0

0 −0.5 11 −10 0 0 −0.5 0
0 0 −10 10.5 0 0 0 −0.5

−0.5 0 0 0 −0.5 0 0 0 11 −10 0 0
0 −0.5 0 0 0 −0.5 0 0 −10 11.5 −0.5 0
0 0 −0.5 0 0 0 −0.5 0 0 −0.5 11.5 −10
0 0 0 −0.5 0 0 0 −0.5 0 0 −10 11

] [
0
0
0
0
0
0
0
0

0
0
0

0.1

] g

A

ET

AD2

AD1 E

[x
y ] =

f



The definition of interior nodes suggests immediately that matrix AD is a block diagonal matrix. 

This  is  where  the  parallelism  is  set  in  motion  in  this  method.  The  DD  solver  algorithm (after  

preprocessing of partitioning and node identification) can be described in the following procedure[13]:

The system is now solved in a more parallelizable way than the direct Cholesky method. The 

block diagonal structure of AD allows the solve of step 1 to be performed in parallel in two ways: each 

block of AD and each column vector of E and f. Likewise, the AD matrix is also a sub-matrix of G, 

preserving its properties that are exploited for the solution process. This proves useful when it is well  

known that  steps 1 and 4 are the most  expensive steps of the process.  Furthermore,  basic matrix  

operations such as addition,  subtraction and multiplication can also be parallelized (see  [14]) and 

accelerated, therefore steps 2, 3 and 5 can also be parallelized. This algorithm therefore succeeds in  

distributing data in these steps and parallelizing the process.

The Schur complement matrix S can be seen as the result of node elimination of all interior nodes  

(see Section 3.1 ). For this reason, the S matrix is symmetric and positive definite but its sparsity tends 

to be very low and thus step 4 solving cost grows substantially with the number of interface nodes.  

This enforces the need for a good partitioning algorithm which keeps the number of interface nodes as 

low as possible (see Chapter 5 ). For the above example, the Schur complement matrix S results in (a 

completely dense matrix):

As a result, step 4 does not profit from parallelism, but all computing instances can solve it so  

they have their data share for step 5.

In Table 3, computational complexity of the distributed Domain Decomposition method is shown, 
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S =[ 10.7 −10.3 −0.0856 −0.0816
−10.3 11.2 −0.595 −0.0902

−0.0856 −0.595 11.1 −10.4
−0.0816 −0.0902 −10.4 10.6 ]

Algorithm 4.2: Domain decomposition

Inputs:  AD, AΓ and E = sub-matrices of G, f = reordering of B*i, Outputs: Solution

1) Solve P and q in ADP = E and ADq=f;

2) Form Schur complement matrix S = AΓ-ETP;

3) Calculate g' = g-ETq;

4) Solve y in Sy = g';

5) Calculate x = q-Py



given m even-sized partitions, Nint interface nodes and Nin interior nodes for each partition (Nin = (N-

Nint)/m).

Step
Complexity

Time Memory

Store ADi - O( N
m )

Factorize ADi O(N in
α ) O(N in

γ )

Solve Pi and qi O(N in
β (N int+M)) O(N in(N int+M))

Form and assemble S O(N int
2 ) O(N int

2 )

Form and assemble g' O(N int M) O(N int M)

Solve y O(N int
3 +N int

2 M) O(N int
2 +N int M)

Calculate x O(N in Nint M) O(N in M)

Overall O(N in
β (N int+M)+Nint

2 M+N int
3 ) O( N

m +Nin
γ+Nint M+Nin (Nint+M)+N int

2 )

Table 3: Computational complexity for distributed Domain Decomposition Method for each computing instance

Even though computational complexity has more variables, time complexity is equivalent to the  

Cholesky factorization method, but does not take full advantage from the minimum degree ordering of 

the full  matrix, but is a rather restricted one (each partition will have a minimum degree ordering 

independent from the others).

The Domain Decomposition method is the first main reference point to any power grid method 

that emerges. This is due to the great success of distributing some memory while maintaining a serial 

solution cost comparable to the Cholesky factorization method. However, due to the density of Schur 

complement matrix, it can turn into a very serious memory problem. If the number of interface nodes 

is large, the Schur matrix will contain a huge amount of nonzeros. For instance, if the number of 

interface nodes is 50k (which is not particularly high if the power grid has millions of nodes), the 

storage of a dense S requires approximately 20GB if 8 bytes per matrix entry are used (current double 

floating point precision) and it cannot be efficiently distributed.

 4.2  Iterative methods
Given the large dimension of the power grids, the exact solution might still be very expensive to  

compute even when resorting to the DD technique. Inasmuch as a good approximation is enough to 

provide the information needed for the power grid analysis, iterative schemes emerged to favour the 

scalability and runtime efficiency.
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 4.2.1  Block-Iterative
The first algorithm, employing an iterative scheme, that will be studied here is the block-iterative  

approach[15] (BI). Again, the circuit is divided into various sub-domains. The nodes no longer have two 

different categories like in the DD method, but are all internal to one partition only and may connect 

other  partitions  (nodes  that  connect  multiple  partitions  are  called  boundary  nodes,  but  are  still 

internal). The BI method is based on solving the system inside each partition using the neighbour  

solutions  as  current  sources  connected to  the  partition  border  nodes  (nodes that  connect  to  other 

partitions, a definition very similar to interface nodes), and thus modifying the right-hand side of (4).

The  BI  method  borrows  two  different  structures:  Gauss-Jordan  (GJ)  and  Successive  over-

relaxation (SOR). This governs the modification on the right-hand side of (4) previously enunciated. 

Given m partitions, the GJ modification takes the following pattern:

Aii x i
(k +1)=bi−∑

j=1
j≠i

m

Aij x j
(k)

 (8)

where Aij is a sub-matrix of G containing partition i lines and partition j columns (for example: if 

there are 3 partitions with nodes {1,2}, {3} and {4,5,6}, matrix A13 is a 2x3 matrix with the {1,2} lines 

and {4,5,6} columns of G); bi is the lines of the right-hand side of (4) that belong to partition i; xi is the 

lines of the solution that belong to partition i.

The BI GJ algorithm can be described in the following procedure:

As predictable, parallelism in the BI GJ algorithm is pretty straightforward to accomplish.
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Algorithm 4.3: Block-Iterative GJ

Inputs: Part = Partition sets, Outputs: Solution

8) for each p in Part

1) factorize G[p;p] matrix

9) set starting solution to 0

10) while not converged

1) for each set in Part

1) modify right-hand side  of  the  linear  system using  previous  iteration  solutions  of 
neighbours (8)

2) solve using previously computed factorization



On the other hand, the original BI method is based on the SOR, in which the pattern is[15]:

Aii x̌ i
(k +1)=bi−∑

j=1

i−1

Aij x j
(k+1)− ∑

j=i+1

m

Aij x j
(k)  (9)

x i
(k+1)=(1−w) xi

(k )+w x̌ i
(k +1 )  (10)

The BI SOR method turns the original SOR technique into a block strategy, in which each block  

needs some of the neighbour solutions in order to proceed and there can be no dependency cycles. It  

seems like this characteristic binds the method to serialization, but this is not the case. Once a domain 

has all the neighbour solutions that it depends for current iteration, the solution can be assembled.  

Consequently,  if  two or  more  domains  have  all  neighbour  solutions  needed,  they can  process  in 

parallel.

The parallel BI SOR algorithm can be described as[15]:

Note that only the boundary solutions need to be sent to neighbours, since others are not used. 

This is an acceptable communication rate per iteration.

In this case, one block is only allowed to begin processing after all dependencies have finished the 

current iteration, which leads to a parallelism type distinct from other algorithms. In order to capitalize 
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Algorithm 4.4: Block-Iterative SOR

Inputs: Part = Partition sets, w = relaxation factor, Outputs: Solution

1) devise dependencies between sets

2) assign sets to computing instances

3) for each set in assigned sets

1) factorize G[set;set] matrix

4) set starting solution to 0

5) while not converged

1) while any set in assigned sets did not finish current iteration

1) find an assigned set whose all dependencies have finished current iteration

2) modify right-hand side of the linear system using available solutions of dependency 
neighbours (9)

3) solve using previously computed set factorization

4) update solution using equation (10)

5) send updated solution to neighbour assigned computing instances



all the available resources, it makes sense to have a number of partitions that exceeds the number of  

computing instances  so the ones  responsible  to process some partitions are  not  idle because they 

depend on others to start, but are rather processing another partition that is independent.  This poses a 

problem in deciding how many partitions should exist in a general partitioning case (see Section 2.4 ).

The complexity of the Block-Iterative algorithm is very easy to analyse. It is determined by the 

number of iterations, complexity of solves and number of partitions and computing instances. So if  

there are C computing instances and m partitions, disregarding the dependency (in other words, all 

computing instances are always working), processing complexity is  O(( N
m )α m

C +z M(( N
m )β m

C )) , for z 

iterations. Memory complexity is  O(( N
m )γ m

C +M N
C ) .  Note that complexity is given by m Cholesky 

factorization solvers of N/m grids using C computing instances, doing one solve per each iteration.  

The α, β and γ parameters remain similar to ones described in Section  4.1.1 .

The convergence ratio of this method depends on the number of partitions. In general, a higher  

number of partitions leads to a lower convergence rate, but factorization and solving time per iteration 

decrease substantially (Figure 11).

The performance stabilizes after  about  10 partitions.  This gives a good idea of how well  the  

algorithm performs on a multiple core architecture. The relaxation factor is another parameter that  

influences the convergence rate, but not factorization and solution time, and thus the factor which  

reduces number of iterations the most also provides the least processing time.
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Figure 11: Block Iterative GS (SOR w = 1.8) method  - number of partitions (m) convergence influence on  
number of iterations and time (500k node power grid with 20 current sources) in a single core computer



The interesting thing to note here is the fact that the best relaxation factors lie in the 1.6 to 1.8 

range.

On the other hand, the number of parallel instances depends on the partitioning graph (Figure 13 a 

graph which represents the connections between partitions) and the dependency projection (usually in 

the form of a directed graph).

The partitioning used by the authors of the BI SOR algorithm[15] is block partitioning (see Section

5.2  )  and  a  cardinal-based  dependency graph is  presented.  In  this  study,  the  partition  scheduling 

problem will be further analysed. An heuristic procedure is proposed to construct a good dependency 

graph for a generic partitioning algorithm:

23

Figure 13: Partitioning graph example. Left side is a partitioned  
circuit with coloured nodes, one colour per partition. Right side is  

the equivalent partitioning graph.

Figure 12: Block iterative SOR method - relaxation factor w convergence influence on number of iterations and  
time (500k node power grid with 20 current sources, m = 8) in a single core computer



Algorithm 4.5 is  a greedy algorithm that  seeks high parallelism without  regard to number of 

dependencies between sets.  For that reason, communication and computer instance assignment are 

problems yet to be solved. Nevertheless, they are very close to one another, given that the assignment  

must minimize the communication. On the other hand, the non-dependent partitions can be processed 

first  in parallel,  and then a partition can be solved after all  its dependencies are done for current  

iteration. A good way of thinking is one that, given equal solving times for all partitions, occupies all  

the processing units during the BI algorithm execution.

The partitioning pattern favours a good result in the dependency plan algorithm application. To 

illustrate some patterns that stimulates a good dependency plan for the block partitioning strategy, an 

example of the previous algorithm application is presented for three different patterns in  Figure 14. 

For this predictable partitioning type, it becomes very easy to assign computing instances. In the first 

pattern (Figure 14a) (m by 1), a possible assignment could be uniform, so if the number of computing 

instances is 3, the assignment would be (1, 1, 1, 2, 2, 2, 3, 3, 3), and the iteration solving order will be 

partitions (2, 3, 4) in parallel,  followed by the rest.  A similar strategy would apply in  Figure 14e 

pattern ( m
2  by 2).  These patterns  are  preferable  since they fully exploit  parallelism in up to  m

2  

computing instances (and relationship between the pattern and the number of computing instances is  

important). On the other hand,  Figure 14c pattern ( √m  by √m ) is not advised, since the optimal 

assignments have, in general, much more communication than the other two.
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Algorithm 4.5: Dependency graph constructor

Inputs: Part = Partition sets, m = number of partitions, Outputs: Dependency graph

1) set all sets in Part to unmarked

2) for each set in Part

1) level(set) = 0

3) for n from 1 to m

1) find bset = min level of unmarked sets (solving ties by least neighbour unmarked sets)

2) mark bset

3) for each neigh in neighbour unmarked sets of bset

1) level(neigh) = max(level(neigh), level(bset)+1)

2) add neigh to children of bset



In the general case, the number of computing instances is known, and so are the partitions graph.  

The problem at hand is to minimize the communication between computing instances. Putting those 

together, this calls for yet another graph partitioning. That said, the partitioning should balance the size 

and minimize the communication. This is a well-known partitioning problem and there are efficient 

strategies to tackle this problem (METIS[20], a graph-partitioning and fill-reducing software, is often a 

good  choice).  Ideally,  this  would  take  into  account  the  non-dependent  nodes,  but  the  nature  of 

Algorithm 4.5 tends to disperse these nodes.

The BI algorithm is a very efficient strategy to tackle the power grid problem as an iterative  

process.  The  GJ  pattern  is  very easy to  implement  and completely distributes  the  workload  and 

memory over computing instances. On the other hand, the SOR pattern is more tricky to implement 

and parallelize, but complements by improving the convergence rate per iteration considerably.

 4.2.2  Locality-Driven Parallel Static Analysis
In the last subsection, an iterative algorithm named BI has been shown. Simple as it may be, it 

turns  out  to  be  a  very  efficient  strategy.  In  this  subsection,  a  different  iterative  scheme  will  be 

presented: the Locality-Driven Parallel Static Analysis (LPSA)[16].

Much like the BI algorithm, the LPSA also works in separated sub-domains, directly connected to 

each other.  However, this iterative process relies on the superposition theorem, by developing the 

concept to the following: one can solve the system approximately, iterate by solving residual current  

sources and then sum all  computed solutions to assemble the better  approximation. That said,  the 

LPSA method iteration has two phases: estimate boundary currents (in the branches that connect two 

partitions) and solve the system inside each partition using the estimated currents as current sources in  

the partition boundary nodes. The LPSA algorithm can be described as follows[16]:
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Figure 14: Grid possible partitions and respective dependency graphs generated by the above algorithm

e) 9 by 2 partitioningc) 3 by 3 partitioninga) 9 by 1 partitioning

b) 9 by 1 dependency graph

d) 3 by 3 dependency graph
f) 9 by 2 dependency graph



The notation Ap and Aw means submatrices of A with p or w row set and all columns

The fact that G[w,w] and G[p,p] are submatrices of G implies that outer nodes of the window and 

partitions are grounded (in other words, drop is fixed to zero) when the solution is being calculated  

inside the window or partition.

The estimation process proposed in  [16] is to solve the system within a window around each 

partition boundary (Figure 15). The window contains a few VDD bumps and the authors argue that a 

window size of 3 bumps width is enough for the algorithm to converge to the exact solution.
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Algorithm 4.6: Locality-Driven Parallel Static Analysis

Inputs: Part = Partition sets, thresh = convergence threshold, Outputs: Solution

1) Determine boundaries of partitions F

2) Create boundary windows W around boundaries in F with margins Mx and My

3) for each w in W

1) Compute Cholesky decomposition of G[w;w] matrix

4) for each p in Part

1) Compute Cholesky decomposition of G[p;p] matrix

5) Ires = I, v(0) = 0, k = 0

6) while ||Ires||∞ > thresh

1) for each w in W

1) Solve the system for nodes within window w: G[w;w]vw = BwIresw

2) Compute boundary currents IB(Fi)

2) for each p in Part

1) Solve the local system using boundary currents as current sources connected to the 
boundary nodes of p: G[p;p]Vresp = BpIresp - IBp

3) Update the solution v(k+1) = v(k)+Vres

4) Update the residual Ires by computing the difference Ires = Bi - Gv(k+1)

5) Increment k

Figure 15: Partitioned (3 by 3) circuit boundary windows (blue) example. Red  
dots represent C4 Vdd bumps.



Most of the LPSA algorithm is effortless to parallelize. In fact, pretty much every expensive part 

of  this  algorithm  is  able  to  be  distributed.  However,  there  are  downsides  to  this  algorithm 

implementation  and  paralellization  as  well.  The  most  obvious  ones  are  related  to  the  boundary 

windows. The number of boundary windows is not the same as the number of partitions, which poses a 

problem to the paralellization. Also, they are very hard to determine if the partitioning algorithm is  

generic. Once again, the partitioning algorithm proposed in [16] is the block partitioning (see Section

5.2 ), which makes this step trivial. In this work, this will also be the only partitioning algorithm used 

in conjunction with this power grid solving algorithm. The number of boundary windows is therefore 

given by n x(ny−1)+n y(n x−1) , where nx and ny are the number of divisions. For generic partitioning 

algorithms, one can use breadth-first search for each boundary node until a certain distance is reached 

and add those nodes to boundary windows. However, there will only be one boundary window for 

each of the partitions.

In the BI algorithm, partition number (or size) and the relaxation factor were important parameters 

for the convergence, even for the non-parallel case. In LPSA algorithm, there is no relaxation factor, 

but the window size is now a very important parameter for the convergence (Figure 16).

As expected,  the  number  of  partitions  still  takes  part  of  the  algorithm convergence and time 

(Figure 17).

The complexity of the LPSA algorithm is very similar to the block iterative complexity, but with 

multiple  solves  each  iteration  (for  inner-partition  and  boundary  windows)  instead  of  just  one. 

Processing  complexity  is  given  by  O(( N
m )α1 m

C +( N
nwin )

α2 nwin
C +z M(( N

m )β1 m
C +( N

nwin )
β2 nwin

C )) ,  with  m  = 

number of partitions, nwin = number of boundary windows, C = number of computing instances, z = 
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Figure 16: LPSA method  - window size convergence influence on number of iterations and time (500k nodes  
power grid with 20 current sources, m=8)



number of iterations. Memory complexity is O(( N
m )γ 1 m

C +( N
nwin )

γ2 m
C +M N

C ) .

The LPSA algorithm is very fast and has very good convergence properties, probably the best 

around in general. However, some windows are shared by two or more computing instances. In this 

case,  two strategies can be used:  either one of the computing instances process both parts  of  the  

window or both process; by distributing the factorization and solve. Unfortunately, both fail to achieve 

acceptable communication rates (order of square root of N) during the process. In the first case, half of 

the windows nodes need to be shared, which is intolerable: if a 2% of N window size is needed to 

achieve a good convergence, 2% of the power grid node values are communicated each iteration for  

each window associated  with  a  computing instance.  In  the  second case,  the  factorization  process 

demands high communication rates, as stated in Section  4.1.1 .

 4.2.3  Preconditioned conjugate gradient
The conjugate gradient algorithm is a widely known iterative algorithm for solving systems of 

linear  equations,  in  which  matrix  A in  linear  system Ax = b  is  symmetric  and positive  definite. 

Theoretically, the number of iterations needed to reach the exact solution, neutralizing the numerical 

error, is equal to the number of equations. However, it usually takes a much smaller number to reach 

an acceptable  solution in  terms  of  residue,  given by r  = b-Ax.  In order  to  accelerate  the  rate  of 

convergence,  a  technique  called  preconditioning  is  often  used.  This  technique  consists  in  a 

transformation leading to the system M-1Ax = M-1b.  The rational for this procedure is that solving this 

system is easier, i.e., requires less iterations, than solving the original system, at little additional cost  

per iteration. This results in an operation applied to the residue r that approximates a solution ϛ in Aϛ = 

r by solving Mϛ = r in a cheaper process. The ideal preconditioning operation would give the exact 
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Figure 17: LPSA method - number of partitions convergence influence on number of iterations and time (500k  
node power grid with 20 current sources, window size = 6% of grid width)



solution ϛ in Aϛ = r and the preconditioned conjugate gradient (PCG) would reach the solution in the 

first iteration. Obviously, this requires a direct solution of the original system and is therefore fruitless.

The preconditioning options studied over the years are manifold. The most natural choices and 
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Algorithm 4.7: Block-Jacobi Preconditioned Conjugate Gradient

Inputs:  Part = Partition sets, thresh = convergence threshold, Outputs: Solution

1) for each p in Part

1) factorize G[p;p] matrix for preconditioning

2) set starting solution to 0

3) r=B
4) for each p in Part

1) Let ϛ p and rp be submatrices of ϛ and r with p row set and all columns

2) Solve G[p;p]ϛ p = rp using previously computed factorization

5) q=

6) for a from 1 to M

1) let a , r a , d a  and qa  be the a columns of ϛ, r, d and q

2) d a=a
T ra

7) Loop until break

1) for a from 1 to M

1) let a , r a , qa  and xa  be the a columns of ϛ, r, q and x

2) Gqa=G qa

3) α=d a /(qa
T Gqa)

4) xa=xa+αqa , ra=r a−α qa

2) ||r||∞ < thresh

1) break

3) for each set in Part

1) Let ϛ p and rp be submatrices of z and r with p row set and all columns

2) Solve G[p;p]ϛ p = rp using previously computed factorization

4) for a from 1 to M

1) let a , r a  and qa  be the a columns of ϛ, r and q

2) d a
next=a

T r a

3) qa= a
d a

next

d a
qa

4) d a=d a
next



their application to the power grid problem will be discussed in this section. In  [14], the following 

preconditioner  options,  details  and  implementations  are  specified,  as  well  as  the  preconditioned 

conjugate gradient.

The first and most basic preconditioner is called Jacobi preconditioner. This preconditioner works  

particularly well  for  diagonally dominant  matrices,  since its  approximation grows better  the more 

preponderant the diagonal values of A are.

The SSOR (Symmetric Successive Over-Relaxation) preconditioner is a little more sophisticated 

than Jacobi. It is derived from the decomposition of the A matrix and based on the SSOR method. The 

preconditioners discussed so far are easy to parallelize and distribute in terms of both initialization and 

application. For example, the SSOR preconditioner has the same non-zero pattern as the G matrix,  

hence solve can be parallelized by recurring to a technique very similar to the distributed matrix-

matrix multiplication[14].

Next is the set of the so called incomplete factorization (ILU or IChol) preconditioners [14]. The 

IChol preconditioners are known for being volatile in structural and numerical ways, providing a good 

trade-off between initialization and convergence rate. The choices used in this work are the IChol(0) 

(no  fill-in  incomplete  factorization)  and ICholT (incomplete  factorization  with  thresholding).  The 

ICholT preconditioners  usually provide very good results,  but  are  very limited when it  comes to 

parallelism in the terms already stated. IChol PCG was applied to the power grid analysis by Chen  

and Chen[17], who had fast results in comparison to Cholesky decomposition or Conjugate gradient.

The sparse approximate inverse (SPAI) preconditioners[18] are often a good choice for parallel 

types of preconditioning. These are based on a sparse estimation of the inverse of A, called M, which 

is the minimizer to the norm ||I-M*A||F under sparse restrictions. These restrictions include dropping 

the values under some threshold or a fixed percentage of the values in each column of the estimated 

inverse amidst the process. This estimation is easily done in parallel, but requires too many matrix-

vector multiplications in the initialization process, which inhibits its use.

Last but not least, the Block Jacobi (BJ) preconditioners [14]. This type of preconditioners are the 

most flexible to distribute. The BJ preconditioner consists in subdividing the matrix into smaller parts  

with  resort  to  a  partitioning  algorithm  (in  which  the  partitioning  options  come  forward)  and 

independently computing the solution for each of the domains in parallel for each iteration. In other  

words, this preconditioner computes factorization and solution of smaller parts of the grid (just like BI 

algorithm), and uses them to approximate the whole solution, making use of the locality nature of the 

power grids. This solver is yet to be applied to the power grids and this study will make this step first.  
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The complexity of this solver is identical to the BI SOR complexity.

In Figure 18 and Figure 19, the previously stated preconditioner options for non-parallel case are 

compared. It is plain to see that Block-Jacobi performance is similar to Incomplete Cholesky. As the 

BJ provides a strong parallelization potential, it is evident that BJ is the best choice for the power grid 

analysis through the Preconditioned Conjugate Gradient method.
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Figure 19: Preconditioner comparison - Time to  
reach 10^-6 error for a 62k node IBM benchmark 

power grid with 50 current sources (MATLAB)

Figure 18: Preconditioner comparison – residual error for a 62k node IBM benchmark power grid with 50  
current sources (MATLAB)



 4.3  Final analysis
In this chapter, strategies for finding the solution of the power grid analysis problem were seen.  

The direct  methods like Cholesky factorization and DD are  very fast  and have a long history of  

improvements since the Cholesky factorization was invented. However, they very quickly meet their 

limits due to the lack of scalability, flexibility to distribute data and fill-in associated problems. On the 

other hand, iterative solutions such as BI SOR, LPSA and BJ PCG seem very promising and are worth 

comparing.
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 5  Partitioning
As described before, the power grid analysis can easily reach intolerable dimensions. In order to  

reduce the size of the problem or the intensity of the requirements, multiple techniques such as MOR 

were examined in Chapter 3 . MOR techniques reduce the size of the system matrix effectively, but are 

bound to increase the number of nonzeros in the matrix G amidst the reduction at some point. On the  

other  hand,  the  distribution of  resources to  each computing instance also deals  with the  intensity 

problem. This calls for a division that must be accomplished in some way. The method explored in this 

study is to partition the power grid, which is useful to use in conjunction with the algorithms discussed 

in Chapter  4 .

In  this  Chapter,  partitioning  (sometimes  called  clustering)  techniques  will  be  studied.  Graph 

partitioning is a NP-complete problem which consists in assigning the graph nodes to multiple sets,  

while minimizing some property, such as relationship amongst the sets. Graph partitioning application 

to power grids has two main purposes:  to distribute the data, as balanced as possible in terms of 

number of inner-partition nodes, among computing instances; to maximize the approximation of the 

inner solution (when compared to the whole system solution and obtained using only inner-partition  

nodes) and real solution (of the partition nodes, obtained by simulating the whole circuit). That said,  

the relationship between sets is often measured as the sum of the branch weights interconnecting the 

sets  (which  are  branch  conductancess  for  the  case  of  power  grids).  Also,  the  most  attractive 

partitioners are those which balance the size of each set,  avoiding very large sets that  lead some  

instances to drudge while the remaining are idle, limiting the advantages of partitioning.

Graph partitioning is an old problem and there are many of graph partitioning algorithms targeting 

different applications, as well as efficient general-purpose programs (like METIS [19] and Chaco[20]). 

Kernighan and Lin proposed a partitioning algorithm[21] which later became very important in the area 

of VLSI layouts. In this work, the most widely known partitioning algorithms that could be applied to 

the  power grid problem were examined. In this section, the presented algorithms are three, namely:

 1. Domain partitioning

 2. Geometric partitioning

 3. Ratio cut

 5.1  Domain partitioning
The domain partitioning[13] (DP) is a simple algorithm, formulated in conjunction with the DD 
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method (see Section 4.1.2 ). It is based on a fast label reproduction scheme and requires the selection 

of a fixed number of nodes for the starting domains. The method consists in expanding each domain 

until it cannot be further enlarged without colliding with other domains. The resulting domains are 

called partitions.

The DP algorithm is as follows[13]:

Note that step 3.1.1.2 answers the purpose of identifying interface nodes (see Section 4.1.2  for 

interface node definition) in case they are needed. However, that should be omitted if no identification 

is needed and all the nodes will be associated with exactly one partition. Also, convergence is not  

reached as soon as all nodes are labelled, considering that nodes might still be relabelled and become 

interface nodes.

The initial selection takes an important role in the performance of Domain Partitioning. Initial  

nodes are autonomously chosen through innumerable possibilities. The method used in this study is a 

uniform distribution along the top layer of the grid (which is the least dense). The reason behind the 

one-layer  distribution comes  from the connections  between layers.  In  fact,  conductances  between 

nodes in consecutive layers (also called vias) are very large and nodes with high connectivity should 

share the same label. This cannot be achieved perfectly without changing the algorithm process, but  

this selection method ensures a reasonable labelling based on this assumption.

Consider a 4x4 grid where domain partitioning with random initial selection is applied (Figure

20). The domains are iteratively expanded to the neighbours, and some of the interface nodes come 

from both unlabelled and labelled nodes. 
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Algorithm 5.1: Domain Partitioning

Inputs: sel = selected initial nodes, adj = node adjacencies, Outputs: Partition sets

1) Assign label 0 to all nodes

2) for each vi in sel do label(vi) = i and Si = {vi}

3) while not converged

1) for each vi in subset Si,   i = {-1, 1, 2, 3, ..., m}

1) for each vj in adj(vi)

1) if label(vj) is 0 do label(vj) = label(vi); Si = Si  {v∪ j}

2) else if label(vi) is neither label(vj) nor -1 do label(vj) = -1; S-1 = S-1  {v∪ j}



The domain partitioning algorithm is a very simple and fast approach. It focuses on fast expansion 

and, generally, balances the set sizes. However, it disregards the relationship between different sets 

and the outcome is very sensitive to initial selection of nodes.

 5.2  Geometric partitioning
The geometric interpretation is an essential procedure in graph partitioning. The power grids may 

not be regular structures, but they have geometric patterns (Figure 21). Hence, to partition the grid 

using  geometric  information  (node  position)  makes  sense  and it  turns  out  to  be  a  very effective 

strategy that provides good results.

The geometric partitioning (GP), also called area-based partitioning and block partitioning, is not 
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Figure 21: Representation of portion of an IBM benchmark power grid. Lines represent intra-layer  
(blue) and interlayer (red) conductances. Axes are Cartesian coordinates in 3D (micrometer units).

Figure 20: Domain Partitioning example. Colors: white - unlabeled; light blue, green, yellow - partitions;  
black - interface



particularly hard to achieve: Cut the grid uniformly and balance the nodes in each partition. Then  

again, the conductances between layers (also called vias) are large in comparison and thus the grid is 

cut based on the single layer directions only, x and y. Along these lines, a node in an upper layer will 

always belong to the same partition that the lower layer node it is connected to does.

The GP algorithm results in the following:

The choice of cut numbers has implications. Ideally, the cuts would be along one direction only [15], 

so  to  minimize  the  inter-partition connections  (both  in  number  of  nodes/branches  and number  of 

partitions). However, this is not always best considering that some algorithms might require at least  

one grounded resistor (resulted from the grounded voltage sources) connection inside each partition to 

work properly (since matrix can be singular if that  does not happen),  and thus compromising the 

maximum number of cuts along one direction. This is not the case for any of the algorithms applied in  

this study.

In Figure 22, an example of geometric partitioning can be seen. 
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Algorithm 5.2: Geometric Partitioning

Inputs: cd = node coordinates, nx = number of cuts x, ny = number of cuts y,  Outputs: Partition 
sets

1) xmin = min cdx, xmax = max cdx

2) ymin = min cdy, ymax = max cdy

3) width = xmax - xmin, height = ymax - ymin

4) for i from 0 to nx-1

1) xlow = xmin + i*width/nx, xhigh = xlow + width/nx

2) for j from 0 to ny-1

1) ylow = ymin + j*height/ny, yhigh = ylow + height/ny

2) Si*ny+j = cdx  [xlow, xhigh] ∩ cd∈ y  [ylow, yhigh]∈

Figure 22: Geometric partitioning example: nx = 
3, ny = 2 in a 7x5 grid. Each partition is denoted  

by a different color.



Once again, this partitioning strategy is apparently oblivious to the conductances interconnecting 

the sets. However, that is not entirely the case. The resistance values, typically obtained through an 

extraction process, are proportional to length and most nodes are equidistant, which promotes GP as a  

very efficient algorithm.

 5.3  Ratio cut
The previous graph partitioning algorithms are based on geometric postulations. However, these 

postulations might be wrong, be it in the present or in the future. Besides, geometric or functional  

block  information  might  be  inaccessible  or  inaccurate,  jeopardizing  the  partitioning  performance 

substantially. In that event, a geometrically independent approach is desired, and one that optimizes 

the size of all partitions and the interconnecting conductances. In this study, a partitioning method 

called Ratio Cut is introduced to the power grid domain and applied for the first time.

The Ratio cut is a graph partitioning strategy which targets the following optimization problem [22] 

(metric):

min
{V 1 ...V n}

1
∑

k
∣V k∣(∣V∣−∣V k∣)

∑
i∈V p

j∈V q

p≠q

W i , j
 (11)

where:

Vi – Partition set I, |Vi| is the set size

Wi,j – Weight on branch which connects node i to j

In short, Ratio cut is a strategy that attempts to optimize set partitioning such that the sum of  

interconnecting weights over the product of partition sizes is minimum. The number of partitions is  

either fixed or variable, depending on the algorithm and/or the application.

Ratio cut was introduced by Wei and Cheng[23] as a circuit partitioning subject and a preliminary 

solution based on linear programming was proposed. Hagen and Kahng[24] added an heuristic solution 

for the 2-way approximated Ratio cut: computing the eigenvector associated with the second smallest 

eigenvalue of the Laplacian of the graph, called Fiedler vector. This is cheaply computed resorting to 

the Lanczos algorithm for sparse symmetric eigenvalue problem[14]. For the multi-way cut problem, 

one can either apply the 2-way cut recursively or employ the strategy stated in  [24]: find the most 

profitable cuts in the sorted eigenvector by brute force. In  [25], the Ratio cut problem was deeply 
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studied and finer Linear (LP)  and Quadratic  programming (QP) solutions  were proposed,  but  the 

excessive  amount  of  variables  stuns  the  application  of  these  LP and  QP approaches  for  circuit 

partitioning.

The Ratio cut heuristic algorithm is described as[24]:

Note that step 5 can be very expensive, even for n = 2. Alternatively, the cuts are computed in a  

greedy way, starting with uniform cutting (m sets with the N/m size) and moving the cut left or right  

until no longer profitable. A simulated annealing helps in improving the optimization. The maxima of 

the eigenvector discrete derivative (with care to the sort direction) is also used as a fast method.

An alternative to this approach is called Normalized cut [26], in which the objective is to maximize 

the degree (sum of internal weights) of each partition rather than the size in number of nodes [26]. Since 

the  computation  complexity of  the  algorithms are  usually related  to  the  number  of  nodes  in  the 

partitions, the Ratio cut approach is more appropriate for the power grid applications.

 5.4  Interface node identification
 Some of the partitioning algorithms previously seen do not identify interface nodes, needed for  

the DD method (see Section 4.1.2  ). The method employed for this identification is to simply find 

nodes with adjacencies that belong to another partition and label them as interface nodes:
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Algorithm 5.3: Ratio cut Heuristic Partitioning

Inputs: m = number of partitions, W = weighted adjacency matrix, Outputs: Partition sets

1) Compute diagonal degree matrix D=diag
i

(∑
j=1

N

W i , j)

2) Calculate the Laplacian L = D-W

3) Estimate the Fiedler vector v using the Lanczos algorithm

4) Sort v values ascending or descending

5) Compute the most profitable m-1 cuts in v by testing all cutting possibilities and using the 
ratio metric (11)

6) Cluster the graph from the cuts found



 5.5  Final notes
In this section, different partitioning algorithms that rely on different prepositions were presented.  

These algorithms were used in conjunction with the strategies presented in the Chapter 4   and their 

results are shown in the Chapter 7 .
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Algorithm 5.4: Interface node classification

Inputs: label = partition identification, Outputs: Solution

1) for each node in grid

1) if label(node) is not interface label

1) for each nodeadj in adjacencies of node

1) if label(nodeadj) is neither interface label nor label(node)

1) set label(node) to interface label

2) break inner loop



40



 6  Implementation details
In this Chapter,  the libraries and data structures used in the implementation of the previously 

stated solutions are referenced. In addition, partitioning and solution processes are explained, as well  

as how the multithreaded communication, common to every parallel algorithm, can be achieved.

 6.1  Libraries used
The implementation of all algorithms previously discussed was written in C++ and compiled with  

GCC.  For  non-distributed  data,  matrix  Cholesky decomposition,  sparse  matrix  multiplication  and 

permutation  are  provided  by  CHOLMOD  library[11] (the  currently  fastest  sparse  Cholesky 

factorization  library  available).  For  multithreaded  processing,  pthreads  library  (IEEE  standard 

1003.1c) is used for BI algorithm and OpenMP API (version 3.0) for remaining ones. Distributed  

processing resorts to OpenMPI library[27] (version 1.4.3).

 6.2  Data Structures
The  KCL  conductance  matrix  and  its  submatrices  are  very  sparse,  so  a  sparse  matrix 

representation is appropriate for these matrices. For compatibility with the CHOLMOD library, the 

representation used is Column compressed storage. An example of the compressed column storage can 

be seen in the following scheme:

The column vector identifies the accumulated number of nonzeros at the start of each column 

(ending with the total), an information which can be used to access the rest of the data. The nonzero 

values for the c column are Values[from ColumnNonzeros[c]  to ColumnNonzeros[c+1]-1] and their 

respective rows are RowIndices[from ColumnNonzeros[c] to ColumnNonzeros[c+1]-1].

All  other matrices  are  stored in dense formats,  represented by single  arrays  (storing columns 

consecutively). Even though B matrix is a very sparse matrix, iterative algorithms use it as residue,  

which becomes dense after very few iterations. Hence, B matrix is stored in a dense format.
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[1 0 2
0 3 4
5 6 7]→columnnumber of nonzeros: [0247] (size N+1)

row indices : [0212 012] (size NZ )
non zero values : [1536247] (size NZ )



 6.3  Partitioning
Partitioning  the  grid  is  a  two-step  process  to  comply  with  the  distributed  and  shared  

(multithreading case) data types of processing, as the first requires communication that need to be 

identified, a process which becomes harder if a one-step strategy like partitioning the grid by total  

number of threads in all computers is applied.

In the first step, the grid is partitioned in C parts, where C is the number of computing instances  

and each computing instance stores the G matrix columns (or rows, since it is a symmetric matrix)  

associated  to  its  assigned  first  stage  partition.  B  and  s  matrices  share  the  same  strategy.  This 

successfully  distributes  memory  and  allows  the  algorithms  to  successfully  execute  on  multiple 

computing instances. If the implementation is multithreaded only, first step is skipped. In a second 

stage,  the  “subgrid”  is  partitioned into  the  same  number  of  pieces  as  the  number  of  threads  the  

computing instance supports, or more in the case of BI SOR algorithm (twice the amount, as it proved  

to  be  a  good  strategy in  Section 4.2.1  ).  This  number  can  also  be  user  specified,  to  exchange 

convergence rate for memory usage (the more the grid is partitioned, the less the convergence rate per 

iteration is, but the memory usage also diminishes, and the processing time may grow or decrease). 

The same flexibility exists for parameters such as the window size in LPSA and relaxation factor in BI  

SOR.

 6.4  Partition solution
In the parallel algorithms, it is often useful to solve for some specific nodes (from one partition)  

only. One way to do this is by computing the submatrices of the right-hand side for the specific nodes, 

copy them to a new matrix, find a solution and fill the general solution matrix. An example of this is:

This implies that memory used for s and r is doubled, and in a critical place (since matrices s and r  

are NxM and dominate the memory usage of every algorithm). To overcome this problem, it is a good 

choice to implement a subset solve. Since partitions have no overlap, this is very straightforward to  

accomplish:
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This will provide a solving speed very similar to CHOLMOD solving routine, and will not require 

the memory and processing overhead of copying. For this to be possible, the CHOLMOD factorization 

cannot be supernodal (must be simplical) and the factor must be converted to a regular sparse matrix 

to work with. It is trivial to use OpenMP since there are no shared nodes between multiple partitions.

 6.5  Message Passing Interface and Multithreaded data sharing
Each message shared by Message Passing Interface (MPI) must be identified with a unique tag,  

which can only be reused when the message it identifies has arrived its destination. As the algorithms  

that need to constantly share data are iterative, it is almost always possible to identify what is going to 

be shared in each iteration and synchronize what is expected to send and receive in the preprocessing.  

In this manner, the data can be buffered in an agreed order by the sender and the receiver for an  

asynchronous transference and there is no need for much overhead identifying messages. In addition, 

only a fixed amount of messages needs to be shared each iteration.

The user needs to be careful when multiple threads are responsible for generating the data that  

need to be transferred. As threads have different processing times, neither the data that is already 

processed nor the processor that has more to process need to wait. Two solutions can be employed to 

overcome this problem: an additional  thread to manage transferences;  or  there has to be multiple  

messages per iteration, at least one from one thread to each thread in any other computer. In either  
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Algorithm 6.1: Subset solve

Inputs: U = Upper factor with diagonal 0, D = Diagonal values of the upper or lower factor, r = 
right-hand side, part = partition nodes, perm = permutation, Outputs: s = solution

1) for k from 1 to M

1) let sk  and r k  be column k of s and r

2) for a from 1 to size(part)

1) let U a  be column a of U

2) sk [ part [ perm[a ]]]=r k [ part [ perm[a] ]]−sk [ part [ perm]]U a

3) for a from 1 to size(part)

1) sk [ part [ perm [a]] ]=
sk [ part [ perm [a]] ]

D [a]2

4) for a from size(part) to 1

1) let U a  be column a of U

2) sk [ part [ perm] ]=sk [ part [ perm]]−sk [ part [ perm[a ]]]U a



way, the synchronization preprocess has to assign different tags to each message according to which  

thread generated the data. The transference management must also take into account that message 

order is not guaranteed (in the case of a managing thread, this can be solved by periodically probing 

the messages with the routine provided by MPI instead of waiting for a specific one).

44



 7  Results
The  power  grid  analysis  is  a  very  expensive  process  in  terms  of  memory  and  processing 

complexities.  In  this  chapter,  a  comparison  between  the  various  strategies  will  be  made  using  a 

multithreaded architecture. The best among the previously studied strategies will be studied in terms of 

performance, memory spent and flexibility of distributing data.

 7.1  Environment
The results in this chapter obtained from running implementations of the algorithms discussed in 

Chapters  3  and  4 , using two different architectures:

1) Multithreaded architecture:

1. Multi-core processor with 4 cores – Intel Xeon E5410 2.33GHz

2. RAM Size: 24GB

3. Operative System: Linux Fedora 13

2) Distributed architecture:

1. Cluster with 10 Multi-core processors with 8 cores each – Intel Xeon E5504 2.00GHz

2. RAM Size: 32GB per computer

3. OperativeSystem: Linux CentOS 5.4 (Final)

 7.2  Power grids
The power grids used for comparison were of two types: power grid benchmarks provided by 

IBM  power  grids  (available  from http://dropzone.tamu.edu/~pli/PGBench)  and  artificially  created 

power  grids.  As  the  IBM  provided  power  grids  are  very  small  in  comparison  to  the  target  (of 

300Million nodes), artificially created power grids with similar characteristics were generated.

 7.2.1  IBM benchmark power grids
Real power grids used are IBM benchmark power grids. The VSS part is eliminated and the zero 

resistance  branches  are  simplified  (terminal  nodes  are  fused).  The  number  of  current  sources  is 

arbitrarily chosen in order to test scalability of algorithms with increasing problem size. In Table 4, the 

most relevant characteristics of the realistic benchmarks power grids are described. 
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Power grid Nodes Voltage sources Current sources
IBMPG1 6085 100 30

IBMPG2 61677 120 90

IBMPG6 403915 132 130

IBMPG6-2 403915 132 300

Table 4: Power grid IBM benchmarks

 7.2.2  Artificially created power grids
Artificial power grids have a pre-specified structure (that is user configurable). They are generated 

according to rules such as: each pair of layers (in the z-axis) has the same density, but lower layer pairs 

have an higher density than upper layer pairs; total resistance of the power grid is constant; each layer 

only has resistors in either x-axis and z-axis or y-axis and z-axis.  These rules were suggested by  

observing the IBM benchmark power grids structural information. The number of nonzeros of G is 

approximately 4.2N.

Power grid Nodes Voltage Sources Current sources
ART1 146700 120 120

ART2 782978 120 160

ART3 782978 120 300

ART4 1197252 120 300

ART5 1197252 120 500

ART6 1197252 120 750

ART7 1197252 120 1000

ART8 1197252 120 1250

ART9 1197252 120 1500

ART10 1197252 120 1750

ART11 1197252 120 2000

ART12 2918100 120 300

ART13 4998932 120 300

ART14 7982598 120 300

Table 5: Artificially created power grids

 7.3  Comparison
In this section, the various strategies previously discussed in this study will be compared. All  

partitioning possibilities previously discussed will be compared, as well as all solvers, for some power 
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grids in a multithreaded architecture (Section  7.1 ).

The conditions for the comparison are:

1) Number of partitions m = 8 (12 for LPSA)

2) LPSA window size = 2% grid width

3) BI SOR w = 1.65

4) Acceptable residue error |r|max = 10-3

Tables 6, 7, 8 and 9 show comparison among various solution and partitioning strategies.

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.009s 0.027s 16 / 0.376s 15 / 0.213s -

GP (m by 1) 0.001s 1.37s 16 / 0.448s 8 / 0.095s did not run

METIS 0.007s 0.099s 16 / 0.207s 16 / 0.159s -

Ratio Cut Multi-way 0.067s 0.026s 16 / 0.437s 11 / 0.114s -

Table 6: IBMPG1 power grid results (iterations / time)

The first  comparison show that all  partitioning algorithms show potential on different solving 

strategies. The power grid used in this first test (IBMPG1) has four connected components (sets of 

nodes with no outer connections). As the LPSA implementation did not separate these into different 

problems, one of the boundaries has no connections and its boundary window also has no nodes. This 

is  the  reason  why it  did  not  run  in  this  power  grid.  All  other  power  grids  have  one  connected  

component  only (this can be very easily attained in a multiple connected component  graph using 

breadth-first search).

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.064s 19.7s 1123 / 740s 203 / 120s -

GP (m by 1) 0.009s 15.2s 16 / 6.61s 21 / 9.25s 14 / 6.92s

METIS 0.058s 12.9s 16 / 10.2s 22 / 10.2s -

Ratio Cut Multi-way 1.38s 20.3s 17 / 15.3s 26 / 21.4s -

Table 7: IBMPG2 power grid results (iterations / time)
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Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.133s 107s 19 / 35.7s 35 / 72.9s -

GP (m by 1) 0.022s 81.7s 18 / 30.1s 33 / 56.5s 17 / 20.2s

METIS 0.152s 57.3s 28 / 132s 37 / 107s -

Ratio Cut Multi-way 14.1s 223s 48 / 198s 46 / 141s -

Table 8: ART1 power grid results (iterations / time)

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 2.76s 340s 192 / 651s 61 / 284s -

GP (m by 1) 0.066s 284s 125 / 160s 47 / 133s 21 / 91.9s

METIS 0.220s 237s 17 / 239s 24 / 140s -

Ratio Cut Multi-way 8.43s 435s 36 / 223s 24 / 68.9s -

Table 9: IBMPG6 power grid results (iterations / time)

The Geometric Partitioning is the most reliable partitioning algorithm to use in conjunction with 

most  of  the  algorithms (except  for  Domain  Decomposition,  which is  METIS),  providing the best 

results overall. There were some outliers like BJ PCG with Ratio cut partitioning on IBMPG6 power 

grid,  which did not  show good results in ART1 in comparison to any other strategy.  The domain  

decomposition method is the only one profiting with a different strategy,  but is left behind by the  

iterative methods (that is the downside of computing an exact result only and having no scalability). 

The LPSA algorithm cannot be distributed efficiently (as discussed in Section 4.2.2 ).

The  most  efficient  solvers  are  BI  SOR and BJ  PCG.  As  the  communication  per  iteration  is  

identical  in  both  strategies,  comparing  multithreaded versions  is  the  same  as  distributed.  A final  

comparison will be made to choose which strategy provides the best results. In  Table 10, BJ PCG 

proves to successfully top BI SOR. Conditions are the same except the number of partitions m is 16 

(GP pattern m x 1).

Power Grid BI SOR BJ PCG
IBMPG6 132 / 115s 51 / 145s

ART2 78 / 1650s 52 / 1235s

ART4 92 / 6888s 83 / 5242s

Table 10: Results for BI SOR and BJ PCG solvers with GP algorithm (iterations / time)

 7.4  Distributed BJ PCG results
In this section, a distributed version BJ PCG will tackle increasingly difficult power grids on a  
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distributed architecture (Section  7.1 ) using Geometric partitioning. The next table shows some quick 

examples of how much is the distributed BJ PCG worth in terms of processing (with 8 partitions per  

computer):

Number of 
computers Time (s) Memory spent 

per unit (GB) Speed-up

1 424 4.72 0%

2 381 2.37 11%

3 265 1.61 60%

4 185 1.20 129%

5 175 0.95 142%

6 155 0.79 174%

7 188 0.66 126%

8 139 0.60 205%

9 159 0.57 166%

10 125 0.52 239%

Table 11: Speed-up and memory results for distributed processing over 1 to 10 computing instances, simulating  
IBMPG6-2 power grid benchmark (404k node with 300 current sources)

It is evident that distributing the data will ease the memory burden over each computer, but the  

previous table showed that even the processing cost benefits from the distribution and provides some 

good speed-ups. Sometimes the speed-up may drop a bit  (case 7 and 9 computers in the previous 

sample) due to where the power grid was cut if it is not perfectly regular.
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The next table shows results for increasing number of nodes.

Power Grid Number
of nodes

Number of
Iterations Time (s) Memory used per

computer (GB)
IBMPG6-2 403k 80 147 0.53

ART3 783k 127 494 0.96

ART4 1.2M 160 1036 1.47

ART12 2.9M 209 4440 3.60

ART13 5M 211 8309 6.18

ART14 7.9M 248 17660 10.03

Table 12: Block-Jacobi Preconditioned Conjugate Gradient on a 10 octocore cluster results in iterations, time  
and memory peak per computer

In Figure 24, the evolution of the previous results can be seen over the number of nodes. Memory 

is heavily dominated by matrices with dimensions N*M: the solution matrix s,  the preconditioner  

solution ϛ, the projection vector q and residue matrix r = B-G*s, which become dense after just only a 

few iterations. G*q can also be preallocated. So, it is not surprising that the evolution of memory spent  

is linear with the number of nodes (and will be with the number of current sources too). The projected 
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complexity O(N1.2 + z*N*M) models the time curve fairly well.

In Table 13, the algorithm will run for increasing number of current sources:

Power Grid Number of
current sources

Number of
Iterations Time (s) Memory used per

computer (GB)
ART4 300 160 1036 1.47

ART5 500 158 2141 2.41

ART6 750 161 3589 3.48

ART7 1000 159 5062 4.61

ART8 1250 161 6266 5.71

ART9 1500 159 7838 6.84

ART10 1750 159 8911 7.95

ART11 2000 160 10660 9.06

Table 13: Block-Jacobi Preconditioned Conjugate Gradient increasing node number on a 10 octocore cluster  
results in iterations, time and memory peak per computer

As expected, the number of iterations does not vary considerably, since the grid is the same and is 

structurally regular, solving does not depend much on the chosen nodes and all pretty much take the 

same number of iterations to converge. Also, time and memory complexity are approximately linear  

with the number of current sources (since factorization times are constant). In Figure 25, the curves for 

the previous results and their linear fits can be seen.

The memory resources rise very quickly with the number of nodes and current sources. However,  

if  the  right-hand  side  is  made  in  blocks,  the  memory drops  substantially  without  increasing  the  

processing times much,  and actually decreasing for  a low number  of blocks.  The following table  
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shows the results for varying the number of blocks in ART7:

Number
of blocks Time (s) Memory used per

computer (GB)
1 5062 4.61

5 3212 0.99

10 3395 0.53

20 3870 0.31

40 5339 0.19

60 6145 0.16

100 5270 0.13

1000 40770 0.09

Table 14: Block-Jacobi Preconditioned Conjugate Gradient increasing number of blocks (of a total of 1000  
current sources) on a 10 octocore cluster results in iterations, time and memory peak per computer. Please note  

that 1000 is not dividable by 60

 7.5  Extrapolation
It is now intended to extrapolate the results and complexity of BJ PCG algorithm to solve a power 

grid of 300Million node with 2000 current sources.

The  NxM  matrices  will  use  about  24  terabytes  (TB)  total.  As  the  distributed  architecture 

employed in this study is composed of 10 computing instances, there is a theoretical need for 2.4TB 

storage in each. For that reason, 120 current source blocks will be used, which is about 20GB per  

machine for each of these matrices. For a KCL conductance matrix of this size, with a mean of 4.25  

non-zero values per column (a common value in the IBM benchmark power grids), would need a total 

of 23GB, which is 2.3GB if divided by 10 computing instances. Each computing instance will store 8 

factorizations of 3.75M nodes which contain about 73.8M nonzeros (using N^1.2) and results in about  

1.2GB size each factorization. This sums up to a memory usage of 29.2GB, a very much possible  

amount for the current machines to hold.

The  processing  is  a  little  more  tricky  to  extrapolate  because  it  depends  on  the  number  of  

iterations. Using the logarithmic fit curve, the projected number of iterations of a 300Million node 

power grid is 443 (note that it does not depend on the number of current sources). The following table  

shows some results needed for extrapolation:
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Number
of nodes

Number
of blocks

Total number of
current sources

Number of
iterations (mean) Time (s)

150k 120 2000 85 988

1.2M 120 2000 160 7070

2.9M 120 2000 210 23690

5M 120 2000 215 41890

Table 15: Block-Jacobi Preconditioned Conjugate Gradient results for 120 blocks of 2000/120 current sources  
power grids

Using the complexity of BJ PCG to estimate the time curve in Figure 26, the time needed to tackle 

a 300M power grid with 2000 sources on this distributed architecture setup is 5.213*106  seconds, or 

60.3 days.
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 8  Conclusions
In this work, the power grid analysis formulation was used to determine the voltage values of  

power grid nodes and indirectly solve the EM problem. Current power grids in aggressive designs 

build using the latest technology nodes can have on the order of 300 million nodes and 2000 current  

sources. For these cases, the problem requirements exceed the limits of what a single computer can do,  

and parallel solutions compatible with distributed data had to be developed.

A tempting way of approaching the size problem is by model data compression. It has been seen 

that  whole  Model  Order  Reduction  techniques  when applied  to  power  grids  can  produce  smaller  

systems, the level of reduction achieved is disappointing and furthermore the resulting matrices are  

dense, as opposed to the very sparse power grid conductance matrices.  The combination of these two 

facts implies that such techniques are not appropriate for the power grid analysis problem.

Several solution methods have been examined and developed. Direct solution methods have met  

limitations in terms of distributed solutions, low communication rates, low fill-in amounts and good 

result scalability. On the other hand, iterative solutions have proved to be successful in all these terms,  

and provided very satisfactory results. Block-Jacobi Preconditioned Conjugate Gradient, an algorithm 

applied in this work for the first time in the analysis of power grid, seemingly provided the best results  

in terms of convergence and performance, while keeping a communication rate and complexity very 

similar to the former best algorithm Block-Iterative.

Block-Jacobi Preconditioned Conjugate Gradient solved a 7.9M node power grid with 300 current 

sources in 5 hours in a 10 octocore cluster, shows a slightly superlinear complexity in terms of CPU 

and is therefore believed to be able to solve a 300M node power grid with 2000 current sources in 60.3  

days using 29.2GB memory per computer. It is not a fantastic result, but with dedicated architectures,  

the time spent will drop. Even though this is a projection based on benchmark and artificially created 

power grid results, it shows there is still a long way to go to completely solve a power grid problem of  

such size.

A different solving strategy is not the only way to reach a better result. Experiments show that 

some algorithms have faster convergence in the first few iterations and slower afterwards, while others  

are slower first and faster after. Hybrid strategies employing multiple algorithms (that share a similar  

preprocessing) will  improve the performance considerably.  Also,  the power grid connections have 

value and structure patterns, important properties to study in order to apply data compression and 

reduce both the memory spent storing the grid and the communication rates in the process.
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