
LPGAS - Large Power Grid Analysis and Simulation

Fábio André dos Santos Barata

Master Thesis

Electrical and Computer Engineering

Juri

Presidente: Nuno Cavaco Gomes Horta

Orientador: Luis Miguel Teixeira D'Ávila Pinto da Silveira

Vogal: Jose Carlos Campos Costa

December 2011

I. Abstract
Power grid analysis is becoming a very challenging circuit design problem which defies the limits

of computational resources – processing and memory. Current very large scale integration (VLSI)

designs have already exceeded one hundred million nodes and any power grid analysis and

verification problem tends to get enormous. Computer resources available are already too short to

store and process the many gigabytes (GB) of data involved in the analysis. For that reason, very

efficient parallelizable strategies, compatible with distributed data, are absolutely needed for this

problem.

Electromigration analysis is one of the most common reliability problems in the VLSI circuitry.

Power grids supply current to integrated circuits and their metallic connections suffer while the current

travels through them. This situation has worsened for current technology nodes given the diminutive

dimensions used for those connections. To study the electromigration problem, the current in the

power grid connections must be computed. Power grid analysis consists in computing the voltage

values in power grid circuit nodes, which can be used to obtain the connection currents and solve the

electromigration problem.

In this study, general-purpose and power grid specialized solvers are examined, developed and

applied to both realistic benchmark circuits and artificially generated power grids. It will be seen that

some of the solution strategies fail to achieve a good acceptance in some of the most important

characteristics, such as parallelism and data distribution flexibility, low communication rates and result

scalability (in terms of solution error over performance), while others succeed for the time being (since

these objectives always have margin for improvement). Furthermore, a parallel solution requires

partitioning of power grids. As a power grid can easily be interpreted as a graph, dividing it can be

accomplished through graph partitioning techniques. In this work, the most popular techniques will be

applied, some relying on access to geometrical information and others that do not require it and must

be used when such information is not available.

Block-Jacobi Preconditioned Conjugate Gradient, which is a popular solver yet to be applied to

the power grid problem, seems to show the best results among the analysed strategies, topping about 5

hours analysing a 7.9 million node power grid with 300 current sources on a 10 octocore cluster. While

much seems to be still required in terms of improving computational requirements to be able to solve

such a grid in reasonable time, the projected memory footprint seems in line with what is available

even today, which is a good sign.

Keywords: VLSI, Electromigration, Power grid analysis, Partitioning, System of linear equations,

Parallel and distributed computing

I. Resumo
Análise de power grids tem vindo a emergir ao longo do tempo como um problema de circuitos

que atinge os limites dos recursos computacionais, processamento e memória. Circuitos integrados de

grande escala (VLSI) já excedem cem milhões de nós e qualquer análise e verificação de power grids

tende a ficar enorme. Os recursos disponíveis são já muito curtos para guardar os muitos gigabytes de

dados envolvidos no processo. Então, estratégias paralelizáveis e eficientes, compatíveis com

distribuição de dados, são necessárias para atacar este problema.

O teste de Electromigração é um dos problemas de fiabilidade mais comuns nos circuitos VLSI.

As power grids fornecem corrente ao circuito integrado e as suas ligações degradam-se à medida que a

corrente passa. Este problema agravou-se com o avanço tecnológico dados os minúsculos

comprimentos utilizados nas ligações. Para estudar o problema da Electromigração, a corrente que

passa em cada uma das ligações da power grid deve ser determinada. A análise de power grids consiste

em determinar os valores de tensão dos nós da power grid, o que pode ser utilizado para calcular as

correntes nas ligações e resolver o problema da Electromigração.

Neste estudo, soluções de análise de power grids serão examinadas, desenvolvidas e aplicadas

tanto a circuitos benchmark como a power grids criadas artificialmente. Algumas soluções falham em

atingir bons resultados em algumas características importantes como paralelismo, flexibilidade na

distribuição de dados, baixas taxas de comunicação e escalabilidade no resultado (no sentido de

margem de erro face a performance), enquanto que outras atingem até ao momento (visto que tais

objetivos têm sempre margem para melhoria). Porém, uma solução paralela requer particionamento

das power grids. Dado que uma power grid pode ser vista como um grafo, a sua divisão pode ser

obtida através de técnicas de particionamento de grafos. Neste trabalho, as técnicas mais populares

serão aplicadas, sendo algumas dependentes do acesso a informação geométrica e outras que não

necessitam e deverão ser utilizadas quando esse acesso não está presente.

O algoritmo de Gradiente Conjugadocom pré-condicionamento de Bloco-Jacobi, uma solução

nunca antes aplicada ao problema das power grids, mostra os melhores resultados entre as várias

estratégias analisadas, demorando 5 horas a analisar uma power grid de 7.9 milhões de nós com 300

fontes de corrente num aglomerado de 10 octocores. Mesmo sabendo que muito terá de ser melhorado

para conseguir resolver uma grelha real em tempo razoável, a memória projetada está de acordo com o

que existe hoje mesmo, o que é um bom sinal.

Palavras-chave: VLSI; Electromigração; Análise de power grids; Particionamento; Sistemas de

equações lineares; Computação paralela e distribuida

II. Acknowledgements
Thanks to Professor Luis Miguel Teixeira D'Avila Pinto da Silveira for his highly supporting

guidance throughout the whole realization of all the work related to this thesis.

Thanks to IBM and Dr. Sani Nassif for providing motivation for this work and several interesting

and insightful conversations, as well as for sharing their current strategy to approach the problem

addressed in this study.

Table of Contents
 1 Introduction...1

 1.1 Electromigration..1
 1.2 Power grids..1
 1.3 Limitations of the analysis..3
 1.4 Objectives..3
 1.5 Contribution of this work..3
 1.6 Thesis structure..4

 2 Background...5
 2.1 Power grid model..5
 2.2 Power grid analysis...5
 2.3 Problem formulation..8
 2.4 Considerations...8

 3 Model Order Reduction...11
 3.1 Node elimination...11
 3.2 Other MOR methods...13

 4 System solution...15
 4.1 Direct methods..15

 4.1.1 Cholesky factorization...15
 4.1.2 Domain decomposition..16

 4.2 Iterative methods...19
 4.2.1 Block-Iterative...20
 4.2.2 Locality-Driven Parallel Static Analysis...25
 4.2.3 Preconditioned conjugate gradient..28

 4.3 Final analysis...32
 5 Partitioning..33

 5.1 Domain partitioning..33
 5.2 Geometric partitioning..35
 5.3 Ratio cut..37
 5.4 Interface node identification..38
 5.5 Final notes...39

 6 Implementation details..41
 6.1 Libraries used..41
 6.2 Data Structures..41
 6.3 Partitioning..42
 6.4 Partition solution...42
 6.5 Message Passing Interface and Multithreaded data sharing..43

 7 Results...45
 7.1 Environment..45
 7.2 Power grids..45

 7.2.1 IBM benchmark power grids...45
 7.2.2 Artificially created power grids...46

 7.3 Comparison...46
 7.4 Distributed BJ PCG results..48
 7.5 Extrapolation...52

 8 Conclusions...55
 9 References...57

Figures
Figure 1: RC circuit mesh example with 6 nodes...2
Figure 2: Power grid representation example. Current sources are connected to nodes
represented in green squares. Voltage sources are connected to nodes in white circles.............5
Figure 3: Power grid example with 2 layers. Conductances are marked in branches.................7
Figure 4: G matrix non-zero pattern of a 62k node IBM benchmark power grid. Right figure is
a zoom of the full pattern on the left...8
Figure 5: Voltage drop along one dimension after simulating a power grid with multiple
voltage sources and one current source. After less than 10% nodes, the drop is less than 10%
of the maximum..9
Figure 6: Node elimination example. The circuit on the right, after the elimination of node d,
is equivalent to the one on the left. In this example, it is seen that nodes c and e were
connected before the elimination of node d, which results in a parallel resistor that was
simplified, but the overall number of resistors grow..11
Figure 7: Number of non-zeros of G after the elimination of up to 10k nodes in a 62k node
IBM benchmark power grid circuit ordered by AMD..12
Figure 8: Number of non-zeros of G after the successive single elimination of the most
profitable nodes in a 62k node IBM benchmark...13
Figure 9: Fill-in caused by matrix projection V in a typical MOR algorithm..........................13
Figure 10: Interior and interface nodes example. Yellow squares and red diamonds represent
two partitions interior nodes and cyan diamonds are interface nodes. Branches are
conductances...17
Figure 11: Block Iterative GS (SOR w = 1.8) method - number of partitions (m) convergence
influence on number of iterations and time (500k node power grid with 20 current sources) in
a single core computer..22
Figure 12: Block iterative SOR method - relaxation factor w convergence influence on
number of iterations and time (500k node power grid with 20 current sources, m = 8) in a
single core computer...23
Figure 13: Partitioning graph example. Left side is a partitioned circuit with coloured nodes,
one colour per partition. Right side is the equivalent partitioning graph..................................23
Figure 14: Grid possible partitions and respective dependency graphs generated by the above
algorithm...25
Figure 15: Partitioned (3 by 3) circuit boundary windows (blue) example. Red dots represent
C4 Vdd bumps...26
Figure 16: LPSA method - window size convergence influence on number of iterations and
time (500k nodes power grid with 20 current sources, m=8)...27
Figure 17: LPSA method - number of partitions convergence influence on number of
iterations and time (500k node power grid with 20 current sources, window size = 6% of grid
width)..28
Figure 18: Preconditioner comparison – residual error for a 62k node IBM benchmark power
grid with 50 current sources (MATLAB)..31
Figure 19: Preconditioner comparison - Time to reach 10^-6 error for a 62k node IBM
benchmark power grid with 50 current sources (MATLAB)..31
Figure 20: Domain Partitioning example. Colors: white - unlabeled; light blue, green, yellow -
partitions; black - interface..35
Figure 21: Representation of portion of an IBM benchmark power grid. Lines represent intra-
layer (blue) and interlayer (red) conductances. Axes are Cartesian coordinates in 3D
(micrometer units)...35
Figure 22: Geometric partitioning example: nx = 3, ny = 2 in a 7x5 grid. Each partition is

denoted by a different color...36
Figure 23: Plot results for Table 11...49
Figure 24: BJ PCG results - Number of nodes influence on number of iterations, time and
memory spent..50
Figure 25: BJ PCG – Influence of the number of current sources..51
Figure 26: Experimental results of BJ PCG for 120 blocks of 2000/120 current sources........53

Index of Tables
Table 1: Time and memory complexity of the Direct Method..16
Table 2: Time and Memory spent using CHOLMOD library[11] for various power grid sizes
...16
Table 3: Computational complexity for distributed Domain Decomposition Method for each
computing instance...19
Table 4: Power grid IBM benchmarks..46
Table 5: Artificially created power grids...46
Table 6: IBMPG1 power grid results (iterations / time)...47
Table 7: IBMPG2 power grid results (iterations / time)...47
Table 8: ART1 power grid results (iterations / time)...48
Table 9: IBMPG6 power grid results (iterations / time)...48
Table 10: Results for BI SOR and BJ PCG solvers with GP algorithm (iterations / time).......48
Table 11: Speed-up and memory results for distributed processing over 1 to 10 computing
instances, simulating IBMPG6-2 power grid benchmark (404k node with 300 current sources)
...49
Table 12: Block-Jacobi Preconditioned Conjugate Gradient on a 10 octocore cluster results in
iterations, time and memory peak per computer...50
Table 13: Block-Jacobi Preconditioned Conjugate Gradient increasing node number on a 10
octocore cluster results in iterations, time and memory peak per computer.............................51
Table 14: Block-Jacobi Preconditioned Conjugate Gradient increasing number of blocks (of a
total of 1000 current sources) on a 10 octocore cluster results in iterations, time and memory
peak per computer. Please note that 1000 is not dividable by 60...52
Table 15: Block-Jacobi Preconditioned Conjugate Gradient results for 120 blocks of 2000/120
current sources power grids..53

Acronyms and Symbols
B...Current source incidence matrix (NxM)
BI..Block-Iterative
BJ...Block-Jacobi
C4..Flip-chip or Controlled Collapse Chip Connection
DD...Domain Decomposition
DP...Domain Partitioning
EM..Electromigration
G...KCL Conductance Matrix (NxN)
GB...Gigabytes
GDD..Voltage source chatacteristic conductance
GJ..Gauss-Jordan
GP...Geometric Partitioning
i..Current source amplitude vector
IC...Integrated circuit
IChol..Incomplete Cholesky factorization
ILU...Incomplete LU factorization
LP...Linear Programming
LPSA..Locality-Driven Parallel State Analysis
K...Number of voltage sources in one power grid
m..Number of partitions
M...Number of current sources in one power grid
MOR...Model Order Reduction
N...Number of nodes in one power grid
NZ..Number of non-zeros in KCL conductance matrix, typically O(N)
PCG..Preconditioned Conjugate Gradient
PDN..Power Distribution Network or Power grid
QP...Quadratic Programming
SOR..Successive Over-Relaxation
SSOR...Symmetric Successive Over-Relaxation
 v ...Voltage drop from reference (VDD)
VDD...Nominal voltage fixed by voltage source
VLSI..Very large-scale integration
z..Number of iterations

 1 Introduction
Power grid analysis is becoming more and more a critical task to ensure the proper functioning of

integrated circuits. As the number of transistors in circuits keeps increasing, the density of power

distribution networks (PDN or power grids) increases manifold. As a result, analysis of current power

grids in VLSI designs threatens to exceed the formidable computational power available and has

developed into a considerable problem. In reality, distributed systems and modern technology take an

important role in solving the problem, because one computing instance is not enough to support the

computational and memory burden.

 1.1 Electromigration
This research focuses in solving the EM problem using Power grid analysis. EM is mass-electron

movement in metallic interconnects. This phenomena can cause anomalies such as connection

disruptions (caused by void failures and diffusive displacements) and component failure due to

heating, eventually diseasing the IC. Measurement or estimation of the current density in interconnects

is crucial to study the EM (an empirical model developped by J. R. Black in 1960 estimates the mean

time to failure from the current density) and envision the IC lifespan. Even though it is a time-

dependent case, the interest of this study is the EM DC problem. One way to address this problem is

to model the power using an electric circuit equivalent where power grid connections are replaced

with an appropriate electrical model. Then, in order to determine the currents in the power grid and to

determine if they exceed some safety values and could lead to EM problems, one can analyse the

power grid, solve for the nodes voltages in the model and compute the branch currents. Solving power

grid analysis problems is therefore an essential key for EM analysis.

 1.2 Power grids
Power grids are metallic grids that distribute the power supplied by a power supply and required

by an integrated circuit (IC) functional blocks. The supply polarizes the grid with a fixed voltage VDD

and functional blocks depend on a steady voltage value for a proper functioning, which would ideally

be equal to VDD. However, due to the metallic conductor properties and current presence, the voltage

of nodes distant from the contact points (where the power is supplied) may drop somewhat. The

voltage source attached to the power grid must ensure the circuit proper functioning, given it is lower

on the functional block terminals.

Typically, a power grid can be modelled by an RC circuit mesh (Resistors model metallic

1

connections between two nodes; Capacitances model variations in loading conditions and

electromagnetic field induced currents) with current sources (modelling the functional blocks) and

voltage sources (or bias contacts, modelling the connections to the power grid to a source establishing

its overall voltage and providing current for the underlying electronics to function), as shown in Figure

1. Power grid analysis consists in determining the values of voltage and currents in the grid nodes and

branches (connections), which implies simulating the system for time-constant (DC) and transient

responses.

Last but not least, current sources are not constant. The functional blocks demand current when

there exists a state transition on a logical component (or port), which varies with the transition type (0

to 1 or 1 to 0). Also, not all components change at the same time, it depends on an ongoing state and a

new input. This will require the power grid analysis to be able to provide the branch currents given any

possible state transition.

Knowledge of nominal value of all logic block's current demands is context dependent, meaning it

depends on the state of the block, the sequential elements, inputs, etc. Such information is not easy to

determine as it would require full-chip simulation of the underlying circuit, a very expensive

endeavour. For power grid analysis, it is sufficient to treat the circuit elements at the block level and to

model their current requirements in a global sense. In other words, it is common for power grid

analysis that a single current source represents the current requirements of a whole cell of block. The

number of current sources to consider is therefore of the order of the number of blocks, much smaller

than the granularity of the grid contacts. A relevant analysis is the determination of the node voltage

(and branch currents) variation, then the block currents vary. Such analysis allows us to account for the

2

Figure 1: RC circuit mesh example with 6 nodes.

fact that within a given cell or block one might experience small peaks of increased activity. Being

able to perform such an analysis as a simple variation on the power grid inputs is an interesting

capability that can be of much use to the designer.

 1.3 Limitations of the analysis
Many manufacturers, like IBM, already routinely design power grids have reached 300 million

nodes with 2000 current sources. They expect to be nearing designs with close to a billion nodes in the

power grid model. A single common computing instance is hardly enough to contain the power grid

information (300M nodes would use about 23GB just to store the power grid connection data), let

alone memory overheads during the analysis (in fact, IBM routinely builds special purpose computers

with vast amounts of memory in order to be able to handle such large power grid designs). As the

power grids dimensions are extremely large, a distribution of processing and memory utilization

(parallelism) through various computing instances is necessary. For this purpose, a set of tools

implementing partitioning techniques is used to assign (distribute) the power grid nodes to computing

instances. The efficiency of the analysis is strongly affected by the communication needed in the

process, which is usually determined by the number of interconnections between the partitions (in

other words, by the number of branches connecting a partition to other partitions). On the other hand,

partitions must also be such that the load on various computing instances is balanced.

 1.4 Objectives
Given the exigencies of the power grid analysis problem, this work is focused on setting up the

current state in this domain, as well as identifying the drawbacks of the current strategies and

proposing novel solutions.

 1.5 Contribution of this work
The power grid DC analysis is abstracted to a system of linear equations with a graph geometrical

interpretation, thus linear system solvers are applicable. In this research, a selection of existing

methods to approach the power grid DC analysis through both a graph and a linear system problem is

studied. Given the linear nature of the problem, this work presents a comparison and development of

the existing power grid analysis solving methods, such as Block Iterative (BI) and Locality-Driven

Parallel State Analysis (LPSA), as well as other popular linear solvers, like Cholesky factorization,

Domain Decomposition (DD) and Preconditioned Conjugate Gradient (PCG) with Block-Jacobi

Preconditioning (which is yet to be applied to the power grid analysis). Since the distributed data

parallel analysis is absolutely necessary, this study will focus on these terms. In addition, partitioning

3

methods like Domain Partitioning (DP), Geometric partitioning (GP) and Ratio cut (an algebraic

method which is also going to be applied for the first time to the power grids domain) are also studied.

 1.6 Thesis structure
In Chapter 2, the power grid model and the theoretical background behind power grid analysis is

explained. In Chapter 3 a first attempt to reduce the problem size is made using MOR reduction

techniques. In Chapter 4, power grid analysis direct solvers like Cholesky factorization and DD and

other iterative solutions: BI, LPSA and PCG are discussed and improved targeting a parallel solving

using distributed data. In Chapter 5, widely known partitioning techniques and their advantages and

disadvantages are shown. In Chapter 6, some implementation details are revealed. Results of the

algorithms presented in Chapters 4 and 5 are illustrated in Chapter 7. Chapter 8 concludes the thesis.

4

 2 Background

 2.1 Power grid model
A power grid can be modelled by an RC mesh with current and voltage sources. Resistances

model the metallic connections between two nodes and capacitances model electrostatic effects such

as variations in loading conditions and electromagnetic field induced currents. Coil models are not

required for frequencies in the order of GHz. The most commonly used model is a graph

representation of these components. As the focused problem in this study is DC analysis, the

capacitances are omitted. An example of the model of the power grid in Figure 1 is illustrated in

Figure 2:

In real power grid circuits, there is only one voltage source connected to multiple nodes. In this

power grid model, that will be made into multiple sources with the same amplitude and characteristic

conductance connecting the same nodes.

 2.2 Power grid analysis
As stated in the introduction, to study potential EM problems, the branch currents must be

determined. But, for that, the voltage difference in each branch suffices. A way of solving this problem

is to determine the voltage of each of the N nodes in a power grid [1], given M current sources and K

voltage sources (which are replaced by Norton equivalent current sources, using their characteristic

conductance GDD). This is called the power grid DC analysis and is obtained by solving for v in the

following linear system:

 G v=Bi+Bv iv (1)

where:

G – a NxN matrix with NZ non-zero entries, imposed by the KCL rule for each grid node. This is

5

Figure 2: Power grid representation example.
Current sources are connected to nodes

represented in green squares. Voltage sources are
connected to nodes in white circles.

called the KCL conductance matrix

B – a NxM incidence matrix of the current sources (ie Bj,k = 1 iif current source k is connected to
node j)

i – a Mx1 vector with current source amplitudes

Bv – a NxK incidence matrix of the Norton equivalent current sources corresponding to the voltage
sources

iv – a Kx1 vector with Norton equivalent current sources amplitudes corresponding to the voltage

sources

Note that, in the case of multiple current sources connected to the same node, they are beforehand

merged into a single source. Consequently, the B matrix is composed by M specific identity matrix

columns.

The equation (1) can be split into two components, leading to:

G v=Bi+Bv iv⇔G (v0+Δv)=Bviv+B i (2)

where v0 is the solution to the biasing voltage sources and Δ v is the voltage drop caused by the

current requirements from the logic blocks. Equation (2) can be split by superposition into:

G v0=Bv iv
G v=B i

(3)
(4)

The solution to equation (3) is easily obtained by inspection if it is noted that the right-hand side

corresponds to the biasing voltage sources. The node voltage at every grid node is therefore equal to

VDD. For equation (4), the voltage sources are grounded and the voltage variations is due only to the

currents in the logic blocks. The power grid analysis problem is therefore described by equation (4),

which will be used in the rest of this work to determined the voltage drop v .

An example of a 12 node power grid is illustrated in Figure 3. An example of system (4) (with

solution) for this power grid is:

6

G=[
12.5 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−10.0 11.0 −0.5 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 −0.5 11.0 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −10.0 10.5 0.0 0.0 0.0 −0.5 0.0 0.0 0.0 0.0

−0.5 0.0 0.0 0.0 11.0 −10.0 0.0 0.0 −0.5 0.0 0.0 0.0
0.0 −0.5 0.0 0.0 −10.0 11.5 −0.5 0.0 0.0 −0.5 0.0 0.0
0.0 0.0 −0.5 0.0 0.0 −0.5 11.5 −10.0 0.0 0.0 −0.5 0.0
0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 11.0 0.0 0.0 0.0 −0.5
0.0 0.0 0.0 0.0 −0.5 0.0 0.0 0.0 10.5 −10.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 11.0 −0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −0.5 11.0 −10.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.5 0.0 0.0 −10.0 10.5

]

Typical power grids have single-directed connections only in each layer (meaning a node only

connects two others on the same layer, and they form a line). In this pattern, a node only connects 4

other nodes maximum (one in the next upper layer, one in the next lower layer and two in their layer).

Also, upper layers are less dense than lower layers, which means not all nodes connect other layers. In

an IBM benchmark power grid, the mean connections per node is 3.25.

It is well known that KCL conductance matrices for the power grid DC analysis have the

following properties:

1) Symmetry;

2) Positive Definite and Diagonally dominant;

3) NZ = c*N, with c equal to number of connections per node plus 1, typically 4.25 in the IBM
benchmark power grids (in other words, G is very sparse, as shown in Figure 4).

7

Figure 3: Power grid example with 2 layers. Conductances are marked in
branches.

G[
0.050
0.057
0.144
0.146
0.109
0.111
0.185
0.192
0.129
0.130
0.169
0.170

]=[
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0

][0.1]

 2.3 Problem formulation
As stated in Chapter 1, current sources model the functional blocks of the IC. While logical

elements of a functional block demand variable amounts of current depending on state transitions, the

right-hand side of equation (4) is also variable. Calculating all possible state transitions is not doable,

so the linear coefficients associated with each current source must be calculated. For this, two

approaches can be used: Monte Carlo estimation (which is an approximation and typically requires a

high amount of samples to be reliable) or the following equation (called full right-hand side):

s=G−1 B⇔ v=s i (5)

Instead of computing the full inverse G-1, one can solve columns of B independently for a more

efficient solution, avoiding the computation of the full inverse (since only M lines are needed). This is

equivalent to the application of the superposition theorem. Either way, one needs to compute a high

amount of B columns (typically 2000 for current power grids of 300 million nodes). As the Monte

Carlo estimation requires an amount of samples comparable to the full right-hand side, it does not

justify the use of a random process so early in the analysis.

 2.4 Considerations
Currently designed power grids have a huge number of nodes. This suggests that the main

difficulty to the power grid problem is a size issue. The amount of resources required are too much for

a single computer to provide. For this reason, the following considerations should be contemplated a

priori when approaching the power grid problem:

8

Figure 4: G matrix non-zero pattern of a 62k node IBM benchmark power grid. Right figure is a zoom of the full
pattern on the left

1) For realistic power grids in dense technology nodes, storage of the KCL conductance matrix is

usually impossible on a singular computer.

2) Distribution of processing and data through various computing instances is required. However,

the communication between instances will hamper the performance, so it should be

decentralized and kept at the minimum possible. In addition, distribution should only depend on

the number of available processing instances and not on external variables.

3) Reduction of data. Memory spent should be reduced substantially without conceding much

performance.

4) Scalable solution. A user-provided maximum acceptable error for the solution will determine

the time and/or memory spent in the whole process.

5) Structure. All structural information of the power grid must be taken advantage of. An example

is locality: Currently used flip-chip (C4) technology provides a high density of voltage contacts

(also called VDD bumps), which implies that a current source effect in voltage drops decreases

over distance (Figure 5).

9

Figure 5: Voltage drop along one dimension after simulating a power grid with multiple voltage sources and one
current source. After less than 10% nodes, the drop is less than 10% of the maximum.

10

 3 Model Order Reduction
Model Order Reduction (MOR) techniques address size problems, by reduction of the number of

nodes, producing an equivalent model without degrading the information needed in the analysis. As

the problem at hand is very much about the size of the power grids, some compression would be very

useful to tackle the problem more efficiently.

 3.1 Node elimination
Node elimination is a MOR technique based on Gaussian elimination. The main idea of node

elimination is to find an equivalent circuit (in terms of the voltage drop of the remaining nodes) with a

reduced number of nodes. A widely known example of node elimination is the star-mesh

transformation, which is a particular case of the single node elimination. The resulting circuit of a

general single node elimination is given by linking all adjacencies (Figure 6).

Single node elimination affects adjacencies of the eliminated node only. The resulting

interconnecting conductances are calculated using:

g jk
' =

g j g k

∑
i

g i
 (6)

where:

g'jk – additional conductance between nodes j and k, after the elimination

gi – conductance between node to eliminate and adjacency i, before the elimination

11

Figure 6: Node elimination example. The circuit on the right, after the elimination of node d, is equivalent to the
one on the left. In this example, it is seen that nodes c and e were connected before the elimination of node d,

which results in a parallel resistor that was simplified, but the overall number of resistors grow

The multiple node elimination is given by the Schur complement algorithm for equation solving:

Nodes with sources of any type cannot be eliminated directly without changing the right-hand

side of the system (1). In [2], a method for source and capacitance expansion was proposed, which

allowed the elimination of these nodes. In our case, this is a minor advantage as the number of sources

is small compared to the total number of nodes.

This process is equivalent to iterating in a Cholesky factorization process. This and other MOR

techniques effectively reduces the size of the problem, but the density of the reduced Gr matrix is

generally much higher than the original if many nodes are eliminated (Figure 7), which is undesired.

Taking into account the fact that one can eliminate multiple nodes independently in any order,

when a node with more than three adjacencies is eliminated, the total number of branches usually

increases, and so does the number of non-zeros of G. As for nodes with less than three adjacencies,

they are profitably eliminated one by one.

12

Figure 7: Number of non-zeros of G after the elimination of
up to 10k nodes in a 62k node IBM benchmark power grid

circuit ordered by AMD

Algorithm 3.1: Node elimination

Inputs: G, elim = nodes to eliminate, Outputs: Gr = Reduced G

1) keep = complementary set of elim

2) Solve for Q in G[elim;elim]*Q = G[elim;keep] ← submatrices of G, G[rows;columns]

3) Gr = G[keep;keep]-QTQ

Figure 8 shows the best case scenario for the node elimination for a particular power grid. It can

be seen that even the best case reduction for non-zeros is unsatisfactory.

 3.2 Other MOR methods
MOR methods have a large number of applications in the electronics VLSI area, as they

successfully compress the circuit to a smaller number of nodes. Very popular methods used in this

context are PRIMA[3], SVDMOR[4], DeMOR[5], RecMOR[6], BSMOR[7] and PMTBR[8]. These methods

make use of a projection matrix to transform the original model, but this projection scheme will

generate a dense[9] (Figure 9) reduced matrices (in other words, they increase the number of nonzeros

of the KCL conductance matrix) and thus is not very useful. In addition, the larger the number of

inputs (voltage and current source nodes), the wider the projection matrix will be which leads to larger

reduced models.

13

Figure 8: Number of non-zeros of G after the successive single
elimination of the most profitable nodes in a 62k node IBM

benchmark

Figure 9: Fill-in caused by matrix projection V in a typical MOR algorithm

Overall, when applied to power grid systems which are very sparse but have a considerable

number of inputs (sources), MOR techniques lead to disappointing results [9] and are not considered

very appropriate.

14

 4 System solution
As a result of the extremely large currently used power grids (some tens of million nodes), the

computational resources needed to analyse them are enormous which quickly precludes the usage of

methods difficult to parallelize and distribute the data used. In recent years, several strategies emerged

to overcome these problems and tackle the power grid analysis in a more efficient way. Recognizing

the computational burden of the problem leading to excessive processing times and memory

overflows, these recent strategies have opted to pursue approaches where parallelism is exploited in

some way in order to substantially reduce the memory used by each computing instance. In this

section, some of the strategies that fall along those lines are presented, and they often need some

preprocessing that employ a division of the grid, which is a subject examined in Chapter 5 .

 4.1 Direct methods

 4.1.1 Cholesky factorization
The most basic direct method is triangular solving (forward and backward) of the columns of B,

using the Cholesky factorization of G or reordered G (usually by a minimum degree ordering).

In Table 1, the time and memory complexity of the direct method is shown. The constants α, β and

γ vary in the interval [1,2] and are strongly driven by the ordering of G (which is chosen), because of

the fill-in caused during the factorization process. For AMD[10] (approximate minimum degree)

ordering, a typical value for these constants is 1.3. The constant γ is always at least equal to β.

15

Algorithm 4.1: Cholesky factorization method

Inputs: G, B, Outputs: Solution

1) Find a minimum degree ordering of G

2) Apply ordering in G rows and columns

3) Apply ordering in B rows

4) Compute L = Cholesky factor of G

5) Solve for u in Lu = B

6) Solve for s in LTs = u

7) Apply reverse ordering in s rows

Step
Complexity

Time Memory
Store G - O(N)

Factorize G O(Nα) O(Nγ)

Solve O(Nβ M) O(N M)

Overall O(Nα+Nβ M) O(Nγ+N M)

Table 1: Time and memory complexity of the Direct Method

Employing the Cholesky factorization method is actually very efficient, but a non-distributed

solver rapidly exceeds the memory resources, as shown by the results (using CHOLMOD library) in

the following table:

Grid Nodes Current Sources Time Memory peak
62k 90 1.91s 130MB

404k 120 14.4s 817MB

1.2M 180 1070s 5.59GB

Table 2: Time and Memory spent using CHOLMOD library[11] for various power grid sizes

Elimination trees[12] have proved to be successful in parallelizing the Cholesky factorization

solving over the years, even though it is not perfect in the sense that it does not guarantee a full

parallelization of the process. However, in distributed architectures, the communication during

factorization process is very high, heavily compromising the efficiency of the process. For instance, an

1.5k node (very small) power grid would have to communicate 100k nodes worst case, when divided

in 4 pieces. This precludes the application of the Cholesky factorization direct method.

 4.1.2 Domain decomposition
The Domain decomposition (DD) method (often called Traditional method) was first introduced

to the power grid problem by Quming et. al.[13]. The DD algorithm is based upon a divide-and-

conquer technique to solve the linear system in an exact way, with resort to the Schur complement for

equation solving.

The circuit nodes are divided into a given number of non-overlapped sub-domains (or partitions)

and are classified in two different types (Figure 10):

1. interior nodes: nodes that belong to one partition only and do not connect to any nodes in
other partitions;

16

2. interface nodes: nodes that connect multiple partitions.

Given the circuit divided into m sub-domains (with the node classification), the linear system (1)

is then rewritten as[13]:

(AD E
ET AΓ

)(x
y)=(f

g) , AD=(A1 0 0
0 ... 0
0 0 Am

) (7)

Matrices AD, AΓ and E are sub-matrices of G, corresponding to a different ordering such that: A1 to

Am matrices are square and contain the connectivity information internal to each partition; E is

rectangular and stores the connectivity information between interface and interior nodes; AΓ is a square

matrix holding the connectivity between interface type nodes only. It is easily seen that the vector

(f,g), right-hand side of (7), is simply a reordered version of the original right-hand side of (4). The

same is said about (x,y) in respect to the solution v. Taking for instance the example in Chapter 2 ,

dividing it in two parts (nodes 1 to 4 and 9 to 12, interface nodes 5 to 8), the reordered system will be:

17

Figure 10: Interior and interface nodes example. Yellow squares and red
diamonds represent two partitions interior nodes and cyan diamonds are

interface nodes. Branches are conductances.

[
12.5 −10 0 0 −0.5 0 0 0
−10 11 −0.5 0 0 −0.5 0 0

0 −0.5 11 −10 0 0 −0.5 0
0 0 −10 10.5 0 0 0 −0.5

10.5 −10 0 0 −0.5 0 0 0
−10 11 −0.5 0 0 −0.5 0 0

0 −0.5 11 −10 0 0 −0.5 0
0 0 −10 10.5 0 0 0 −0.5

−0.5 0 0 0 −0.5 0 0 0 11 −10 0 0
0 −0.5 0 0 0 −0.5 0 0 −10 11.5 −0.5 0
0 0 −0.5 0 0 0 −0.5 0 0 −0.5 11.5 −10
0 0 0 −0.5 0 0 0 −0.5 0 0 −10 11

] [
0
0
0
0
0
0
0
0

0
0
0

0.1

] g

A

ET

AD2

AD1 E

[x
y] =

f

The definition of interior nodes suggests immediately that matrix AD is a block diagonal matrix.

This is where the parallelism is set in motion in this method. The DD solver algorithm (after

preprocessing of partitioning and node identification) can be described in the following procedure[13]:

The system is now solved in a more parallelizable way than the direct Cholesky method. The

block diagonal structure of AD allows the solve of step 1 to be performed in parallel in two ways: each

block of AD and each column vector of E and f. Likewise, the AD matrix is also a sub-matrix of G,

preserving its properties that are exploited for the solution process. This proves useful when it is well

known that steps 1 and 4 are the most expensive steps of the process. Furthermore, basic matrix

operations such as addition, subtraction and multiplication can also be parallelized (see [14]) and

accelerated, therefore steps 2, 3 and 5 can also be parallelized. This algorithm therefore succeeds in

distributing data in these steps and parallelizing the process.

The Schur complement matrix S can be seen as the result of node elimination of all interior nodes

(see Section 3.1). For this reason, the S matrix is symmetric and positive definite but its sparsity tends

to be very low and thus step 4 solving cost grows substantially with the number of interface nodes.

This enforces the need for a good partitioning algorithm which keeps the number of interface nodes as

low as possible (see Chapter 5). For the above example, the Schur complement matrix S results in (a

completely dense matrix):

As a result, step 4 does not profit from parallelism, but all computing instances can solve it so

they have their data share for step 5.

In Table 3, computational complexity of the distributed Domain Decomposition method is shown,

18

S =[10.7 −10.3 −0.0856 −0.0816
−10.3 11.2 −0.595 −0.0902

−0.0856 −0.595 11.1 −10.4
−0.0816 −0.0902 −10.4 10.6]

Algorithm 4.2: Domain decomposition

Inputs: AD, AΓ and E = sub-matrices of G, f = reordering of B*i, Outputs: Solution

1) Solve P and q in ADP = E and ADq=f;

2) Form Schur complement matrix S = AΓ-ETP;

3) Calculate g' = g-ETq;

4) Solve y in Sy = g';

5) Calculate x = q-Py

given m even-sized partitions, Nint interface nodes and Nin interior nodes for each partition (Nin = (N-

Nint)/m).

Step
Complexity

Time Memory

Store ADi - O(N
m)

Factorize ADi O(N in
α) O(N in

γ)

Solve Pi and qi O(N in
β (N int+M)) O(N in(N int+M))

Form and assemble S O(N int
2) O(N int

2)

Form and assemble g' O(N int M) O(N int M)

Solve y O(N int
3 +N int

2 M) O(N int
2 +N int M)

Calculate x O(N in Nint M) O(N in M)

Overall O(N in
β (N int+M)+Nint

2 M+N int
3) O(N

m +Nin
γ+Nint M+Nin (Nint+M)+N int

2)

Table 3: Computational complexity for distributed Domain Decomposition Method for each computing instance

Even though computational complexity has more variables, time complexity is equivalent to the

Cholesky factorization method, but does not take full advantage from the minimum degree ordering of

the full matrix, but is a rather restricted one (each partition will have a minimum degree ordering

independent from the others).

The Domain Decomposition method is the first main reference point to any power grid method

that emerges. This is due to the great success of distributing some memory while maintaining a serial

solution cost comparable to the Cholesky factorization method. However, due to the density of Schur

complement matrix, it can turn into a very serious memory problem. If the number of interface nodes

is large, the Schur matrix will contain a huge amount of nonzeros. For instance, if the number of

interface nodes is 50k (which is not particularly high if the power grid has millions of nodes), the

storage of a dense S requires approximately 20GB if 8 bytes per matrix entry are used (current double

floating point precision) and it cannot be efficiently distributed.

 4.2 Iterative methods
Given the large dimension of the power grids, the exact solution might still be very expensive to

compute even when resorting to the DD technique. Inasmuch as a good approximation is enough to

provide the information needed for the power grid analysis, iterative schemes emerged to favour the

scalability and runtime efficiency.

19

 4.2.1 Block-Iterative
The first algorithm, employing an iterative scheme, that will be studied here is the block-iterative

approach[15] (BI). Again, the circuit is divided into various sub-domains. The nodes no longer have two

different categories like in the DD method, but are all internal to one partition only and may connect

other partitions (nodes that connect multiple partitions are called boundary nodes, but are still

internal). The BI method is based on solving the system inside each partition using the neighbour

solutions as current sources connected to the partition border nodes (nodes that connect to other

partitions, a definition very similar to interface nodes), and thus modifying the right-hand side of (4).

The BI method borrows two different structures: Gauss-Jordan (GJ) and Successive over-

relaxation (SOR). This governs the modification on the right-hand side of (4) previously enunciated.

Given m partitions, the GJ modification takes the following pattern:

Aii x i
(k +1)=bi−∑

j=1
j≠i

m

Aij x j
(k)

 (8)

where Aij is a sub-matrix of G containing partition i lines and partition j columns (for example: if

there are 3 partitions with nodes {1,2}, {3} and {4,5,6}, matrix A13 is a 2x3 matrix with the {1,2} lines

and {4,5,6} columns of G); bi is the lines of the right-hand side of (4) that belong to partition i; xi is the

lines of the solution that belong to partition i.

The BI GJ algorithm can be described in the following procedure:

As predictable, parallelism in the BI GJ algorithm is pretty straightforward to accomplish.

20

Algorithm 4.3: Block-Iterative GJ

Inputs: Part = Partition sets, Outputs: Solution

8) for each p in Part

1) factorize G[p;p] matrix

9) set starting solution to 0

10) while not converged

1) for each set in Part

1) modify right-hand side of the linear system using previous iteration solutions of
neighbours (8)

2) solve using previously computed factorization

On the other hand, the original BI method is based on the SOR, in which the pattern is[15]:

Aii x̌ i
(k +1)=bi−∑

j=1

i−1

Aij x j
(k+1)− ∑

j=i+1

m

Aij x j
(k) (9)

x i
(k+1)=(1−w) xi

(k)+w x̌ i
(k +1) (10)

The BI SOR method turns the original SOR technique into a block strategy, in which each block

needs some of the neighbour solutions in order to proceed and there can be no dependency cycles. It

seems like this characteristic binds the method to serialization, but this is not the case. Once a domain

has all the neighbour solutions that it depends for current iteration, the solution can be assembled.

Consequently, if two or more domains have all neighbour solutions needed, they can process in

parallel.

The parallel BI SOR algorithm can be described as[15]:

Note that only the boundary solutions need to be sent to neighbours, since others are not used.

This is an acceptable communication rate per iteration.

In this case, one block is only allowed to begin processing after all dependencies have finished the

current iteration, which leads to a parallelism type distinct from other algorithms. In order to capitalize

21

Algorithm 4.4: Block-Iterative SOR

Inputs: Part = Partition sets, w = relaxation factor, Outputs: Solution

1) devise dependencies between sets

2) assign sets to computing instances

3) for each set in assigned sets

1) factorize G[set;set] matrix

4) set starting solution to 0

5) while not converged

1) while any set in assigned sets did not finish current iteration

1) find an assigned set whose all dependencies have finished current iteration

2) modify right-hand side of the linear system using available solutions of dependency
neighbours (9)

3) solve using previously computed set factorization

4) update solution using equation (10)

5) send updated solution to neighbour assigned computing instances

all the available resources, it makes sense to have a number of partitions that exceeds the number of

computing instances so the ones responsible to process some partitions are not idle because they

depend on others to start, but are rather processing another partition that is independent. This poses a

problem in deciding how many partitions should exist in a general partitioning case (see Section 2.4).

The complexity of the Block-Iterative algorithm is very easy to analyse. It is determined by the

number of iterations, complexity of solves and number of partitions and computing instances. So if

there are C computing instances and m partitions, disregarding the dependency (in other words, all

computing instances are always working), processing complexity is O((N
m)α m

C +z M((N
m)β m

C)) , for z

iterations. Memory complexity is O((N
m)γ m

C +M N
C) . Note that complexity is given by m Cholesky

factorization solvers of N/m grids using C computing instances, doing one solve per each iteration.

The α, β and γ parameters remain similar to ones described in Section 4.1.1 .

The convergence ratio of this method depends on the number of partitions. In general, a higher

number of partitions leads to a lower convergence rate, but factorization and solving time per iteration

decrease substantially (Figure 11).

The performance stabilizes after about 10 partitions. This gives a good idea of how well the

algorithm performs on a multiple core architecture. The relaxation factor is another parameter that

influences the convergence rate, but not factorization and solution time, and thus the factor which

reduces number of iterations the most also provides the least processing time.

22

Figure 11: Block Iterative GS (SOR w = 1.8) method - number of partitions (m) convergence influence on
number of iterations and time (500k node power grid with 20 current sources) in a single core computer

The interesting thing to note here is the fact that the best relaxation factors lie in the 1.6 to 1.8

range.

On the other hand, the number of parallel instances depends on the partitioning graph (Figure 13 a

graph which represents the connections between partitions) and the dependency projection (usually in

the form of a directed graph).

The partitioning used by the authors of the BI SOR algorithm[15] is block partitioning (see Section

5.2) and a cardinal-based dependency graph is presented. In this study, the partition scheduling

problem will be further analysed. An heuristic procedure is proposed to construct a good dependency

graph for a generic partitioning algorithm:

23

Figure 13: Partitioning graph example. Left side is a partitioned
circuit with coloured nodes, one colour per partition. Right side is

the equivalent partitioning graph.

Figure 12: Block iterative SOR method - relaxation factor w convergence influence on number of iterations and
time (500k node power grid with 20 current sources, m = 8) in a single core computer

Algorithm 4.5 is a greedy algorithm that seeks high parallelism without regard to number of

dependencies between sets. For that reason, communication and computer instance assignment are

problems yet to be solved. Nevertheless, they are very close to one another, given that the assignment

must minimize the communication. On the other hand, the non-dependent partitions can be processed

first in parallel, and then a partition can be solved after all its dependencies are done for current

iteration. A good way of thinking is one that, given equal solving times for all partitions, occupies all

the processing units during the BI algorithm execution.

The partitioning pattern favours a good result in the dependency plan algorithm application. To

illustrate some patterns that stimulates a good dependency plan for the block partitioning strategy, an

example of the previous algorithm application is presented for three different patterns in Figure 14.

For this predictable partitioning type, it becomes very easy to assign computing instances. In the first

pattern (Figure 14a) (m by 1), a possible assignment could be uniform, so if the number of computing

instances is 3, the assignment would be (1, 1, 1, 2, 2, 2, 3, 3, 3), and the iteration solving order will be

partitions (2, 3, 4) in parallel, followed by the rest. A similar strategy would apply in Figure 14e

pattern (m
2 by 2). These patterns are preferable since they fully exploit parallelism in up to m

2

computing instances (and relationship between the pattern and the number of computing instances is

important). On the other hand, Figure 14c pattern (√m by √m) is not advised, since the optimal

assignments have, in general, much more communication than the other two.

24

Algorithm 4.5: Dependency graph constructor

Inputs: Part = Partition sets, m = number of partitions, Outputs: Dependency graph

1) set all sets in Part to unmarked

2) for each set in Part

1) level(set) = 0

3) for n from 1 to m

1) find bset = min level of unmarked sets (solving ties by least neighbour unmarked sets)

2) mark bset

3) for each neigh in neighbour unmarked sets of bset

1) level(neigh) = max(level(neigh), level(bset)+1)

2) add neigh to children of bset

In the general case, the number of computing instances is known, and so are the partitions graph.

The problem at hand is to minimize the communication between computing instances. Putting those

together, this calls for yet another graph partitioning. That said, the partitioning should balance the size

and minimize the communication. This is a well-known partitioning problem and there are efficient

strategies to tackle this problem (METIS[20], a graph-partitioning and fill-reducing software, is often a

good choice). Ideally, this would take into account the non-dependent nodes, but the nature of

Algorithm 4.5 tends to disperse these nodes.

The BI algorithm is a very efficient strategy to tackle the power grid problem as an iterative

process. The GJ pattern is very easy to implement and completely distributes the workload and

memory over computing instances. On the other hand, the SOR pattern is more tricky to implement

and parallelize, but complements by improving the convergence rate per iteration considerably.

 4.2.2 Locality-Driven Parallel Static Analysis
In the last subsection, an iterative algorithm named BI has been shown. Simple as it may be, it

turns out to be a very efficient strategy. In this subsection, a different iterative scheme will be

presented: the Locality-Driven Parallel Static Analysis (LPSA)[16].

Much like the BI algorithm, the LPSA also works in separated sub-domains, directly connected to

each other. However, this iterative process relies on the superposition theorem, by developing the

concept to the following: one can solve the system approximately, iterate by solving residual current

sources and then sum all computed solutions to assemble the better approximation. That said, the

LPSA method iteration has two phases: estimate boundary currents (in the branches that connect two

partitions) and solve the system inside each partition using the estimated currents as current sources in

the partition boundary nodes. The LPSA algorithm can be described as follows[16]:

25

Figure 14: Grid possible partitions and respective dependency graphs generated by the above algorithm

e) 9 by 2 partitioningc) 3 by 3 partitioninga) 9 by 1 partitioning

b) 9 by 1 dependency graph

d) 3 by 3 dependency graph
f) 9 by 2 dependency graph

The notation Ap and Aw means submatrices of A with p or w row set and all columns

The fact that G[w,w] and G[p,p] are submatrices of G implies that outer nodes of the window and

partitions are grounded (in other words, drop is fixed to zero) when the solution is being calculated

inside the window or partition.

The estimation process proposed in [16] is to solve the system within a window around each

partition boundary (Figure 15). The window contains a few VDD bumps and the authors argue that a

window size of 3 bumps width is enough for the algorithm to converge to the exact solution.

26

Algorithm 4.6: Locality-Driven Parallel Static Analysis

Inputs: Part = Partition sets, thresh = convergence threshold, Outputs: Solution

1) Determine boundaries of partitions F

2) Create boundary windows W around boundaries in F with margins Mx and My

3) for each w in W

1) Compute Cholesky decomposition of G[w;w] matrix

4) for each p in Part

1) Compute Cholesky decomposition of G[p;p] matrix

5) Ires = I, v(0) = 0, k = 0

6) while ||Ires||∞ > thresh

1) for each w in W

1) Solve the system for nodes within window w: G[w;w]vw = BwIresw

2) Compute boundary currents IB(Fi)

2) for each p in Part

1) Solve the local system using boundary currents as current sources connected to the
boundary nodes of p: G[p;p]Vresp = BpIresp - IBp

3) Update the solution v(k+1) = v(k)+Vres

4) Update the residual Ires by computing the difference Ires = Bi - Gv(k+1)

5) Increment k

Figure 15: Partitioned (3 by 3) circuit boundary windows (blue) example. Red
dots represent C4 Vdd bumps.

Most of the LPSA algorithm is effortless to parallelize. In fact, pretty much every expensive part

of this algorithm is able to be distributed. However, there are downsides to this algorithm

implementation and paralellization as well. The most obvious ones are related to the boundary

windows. The number of boundary windows is not the same as the number of partitions, which poses a

problem to the paralellization. Also, they are very hard to determine if the partitioning algorithm is

generic. Once again, the partitioning algorithm proposed in [16] is the block partitioning (see Section

5.2), which makes this step trivial. In this work, this will also be the only partitioning algorithm used

in conjunction with this power grid solving algorithm. The number of boundary windows is therefore

given by n x(ny−1)+n y(n x−1) , where nx and ny are the number of divisions. For generic partitioning

algorithms, one can use breadth-first search for each boundary node until a certain distance is reached

and add those nodes to boundary windows. However, there will only be one boundary window for

each of the partitions.

In the BI algorithm, partition number (or size) and the relaxation factor were important parameters

for the convergence, even for the non-parallel case. In LPSA algorithm, there is no relaxation factor,

but the window size is now a very important parameter for the convergence (Figure 16).

As expected, the number of partitions still takes part of the algorithm convergence and time

(Figure 17).

The complexity of the LPSA algorithm is very similar to the block iterative complexity, but with

multiple solves each iteration (for inner-partition and boundary windows) instead of just one.

Processing complexity is given by O((N
m)α1 m

C +(N
nwin)

α2 nwin
C +z M((N

m)β1 m
C +(N

nwin)
β2 nwin

C)) , with m =

number of partitions, nwin = number of boundary windows, C = number of computing instances, z =

27

Figure 16: LPSA method - window size convergence influence on number of iterations and time (500k nodes
power grid with 20 current sources, m=8)

number of iterations. Memory complexity is O((N
m)γ 1 m

C +(N
nwin)

γ2 m
C +M N

C) .

The LPSA algorithm is very fast and has very good convergence properties, probably the best

around in general. However, some windows are shared by two or more computing instances. In this

case, two strategies can be used: either one of the computing instances process both parts of the

window or both process; by distributing the factorization and solve. Unfortunately, both fail to achieve

acceptable communication rates (order of square root of N) during the process. In the first case, half of

the windows nodes need to be shared, which is intolerable: if a 2% of N window size is needed to

achieve a good convergence, 2% of the power grid node values are communicated each iteration for

each window associated with a computing instance. In the second case, the factorization process

demands high communication rates, as stated in Section 4.1.1 .

 4.2.3 Preconditioned conjugate gradient
The conjugate gradient algorithm is a widely known iterative algorithm for solving systems of

linear equations, in which matrix A in linear system Ax = b is symmetric and positive definite.

Theoretically, the number of iterations needed to reach the exact solution, neutralizing the numerical

error, is equal to the number of equations. However, it usually takes a much smaller number to reach

an acceptable solution in terms of residue, given by r = b-Ax. In order to accelerate the rate of

convergence, a technique called preconditioning is often used. This technique consists in a

transformation leading to the system M-1Ax = M-1b. The rational for this procedure is that solving this

system is easier, i.e., requires less iterations, than solving the original system, at little additional cost

per iteration. This results in an operation applied to the residue r that approximates a solution ϛ in Aϛ =

r by solving Mϛ = r in a cheaper process. The ideal preconditioning operation would give the exact

28

Figure 17: LPSA method - number of partitions convergence influence on number of iterations and time (500k
node power grid with 20 current sources, window size = 6% of grid width)

solution ϛ in Aϛ = r and the preconditioned conjugate gradient (PCG) would reach the solution in the

first iteration. Obviously, this requires a direct solution of the original system and is therefore fruitless.

The preconditioning options studied over the years are manifold. The most natural choices and

29

Algorithm 4.7: Block-Jacobi Preconditioned Conjugate Gradient

Inputs: Part = Partition sets, thresh = convergence threshold, Outputs: Solution

1) for each p in Part

1) factorize G[p;p] matrix for preconditioning

2) set starting solution to 0

3) r=B
4) for each p in Part

1) Let ϛ p and rp be submatrices of ϛ and r with p row set and all columns

2) Solve G[p;p]ϛ p = rp using previously computed factorization

5) q=

6) for a from 1 to M

1) let a , r a , d a and qa be the a columns of ϛ, r, d and q

2) d a=a
T ra

7) Loop until break

1) for a from 1 to M

1) let a , r a , qa and xa be the a columns of ϛ, r, q and x

2) Gqa=G qa

3) α=d a /(qa
T Gqa)

4) xa=xa+αqa , ra=r a−α qa

2) ||r||∞ < thresh

1) break

3) for each set in Part

1) Let ϛ p and rp be submatrices of z and r with p row set and all columns

2) Solve G[p;p]ϛ p = rp using previously computed factorization

4) for a from 1 to M

1) let a , r a and qa be the a columns of ϛ, r and q

2) d a
next=a

T r a

3) qa= a
d a

next

d a
qa

4) d a=d a
next

their application to the power grid problem will be discussed in this section. In [14], the following

preconditioner options, details and implementations are specified, as well as the preconditioned

conjugate gradient.

The first and most basic preconditioner is called Jacobi preconditioner. This preconditioner works

particularly well for diagonally dominant matrices, since its approximation grows better the more

preponderant the diagonal values of A are.

The SSOR (Symmetric Successive Over-Relaxation) preconditioner is a little more sophisticated

than Jacobi. It is derived from the decomposition of the A matrix and based on the SSOR method. The

preconditioners discussed so far are easy to parallelize and distribute in terms of both initialization and

application. For example, the SSOR preconditioner has the same non-zero pattern as the G matrix,

hence solve can be parallelized by recurring to a technique very similar to the distributed matrix-

matrix multiplication[14].

Next is the set of the so called incomplete factorization (ILU or IChol) preconditioners [14]. The

IChol preconditioners are known for being volatile in structural and numerical ways, providing a good

trade-off between initialization and convergence rate. The choices used in this work are the IChol(0)

(no fill-in incomplete factorization) and ICholT (incomplete factorization with thresholding). The

ICholT preconditioners usually provide very good results, but are very limited when it comes to

parallelism in the terms already stated. IChol PCG was applied to the power grid analysis by Chen

and Chen[17], who had fast results in comparison to Cholesky decomposition or Conjugate gradient.

The sparse approximate inverse (SPAI) preconditioners[18] are often a good choice for parallel

types of preconditioning. These are based on a sparse estimation of the inverse of A, called M, which

is the minimizer to the norm ||I-M*A||F under sparse restrictions. These restrictions include dropping

the values under some threshold or a fixed percentage of the values in each column of the estimated

inverse amidst the process. This estimation is easily done in parallel, but requires too many matrix-

vector multiplications in the initialization process, which inhibits its use.

Last but not least, the Block Jacobi (BJ) preconditioners [14]. This type of preconditioners are the

most flexible to distribute. The BJ preconditioner consists in subdividing the matrix into smaller parts

with resort to a partitioning algorithm (in which the partitioning options come forward) and

independently computing the solution for each of the domains in parallel for each iteration. In other

words, this preconditioner computes factorization and solution of smaller parts of the grid (just like BI

algorithm), and uses them to approximate the whole solution, making use of the locality nature of the

power grids. This solver is yet to be applied to the power grids and this study will make this step first.

30

The complexity of this solver is identical to the BI SOR complexity.

In Figure 18 and Figure 19, the previously stated preconditioner options for non-parallel case are

compared. It is plain to see that Block-Jacobi performance is similar to Incomplete Cholesky. As the

BJ provides a strong parallelization potential, it is evident that BJ is the best choice for the power grid

analysis through the Preconditioned Conjugate Gradient method.

31

Figure 19: Preconditioner comparison - Time to
reach 10^-6 error for a 62k node IBM benchmark

power grid with 50 current sources (MATLAB)

Figure 18: Preconditioner comparison – residual error for a 62k node IBM benchmark power grid with 50
current sources (MATLAB)

 4.3 Final analysis
In this chapter, strategies for finding the solution of the power grid analysis problem were seen.

The direct methods like Cholesky factorization and DD are very fast and have a long history of

improvements since the Cholesky factorization was invented. However, they very quickly meet their

limits due to the lack of scalability, flexibility to distribute data and fill-in associated problems. On the

other hand, iterative solutions such as BI SOR, LPSA and BJ PCG seem very promising and are worth

comparing.

32

 5 Partitioning
As described before, the power grid analysis can easily reach intolerable dimensions. In order to

reduce the size of the problem or the intensity of the requirements, multiple techniques such as MOR

were examined in Chapter 3 . MOR techniques reduce the size of the system matrix effectively, but are

bound to increase the number of nonzeros in the matrix G amidst the reduction at some point. On the

other hand, the distribution of resources to each computing instance also deals with the intensity

problem. This calls for a division that must be accomplished in some way. The method explored in this

study is to partition the power grid, which is useful to use in conjunction with the algorithms discussed

in Chapter 4 .

In this Chapter, partitioning (sometimes called clustering) techniques will be studied. Graph

partitioning is a NP-complete problem which consists in assigning the graph nodes to multiple sets,

while minimizing some property, such as relationship amongst the sets. Graph partitioning application

to power grids has two main purposes: to distribute the data, as balanced as possible in terms of

number of inner-partition nodes, among computing instances; to maximize the approximation of the

inner solution (when compared to the whole system solution and obtained using only inner-partition

nodes) and real solution (of the partition nodes, obtained by simulating the whole circuit). That said,

the relationship between sets is often measured as the sum of the branch weights interconnecting the

sets (which are branch conductancess for the case of power grids). Also, the most attractive

partitioners are those which balance the size of each set, avoiding very large sets that lead some

instances to drudge while the remaining are idle, limiting the advantages of partitioning.

Graph partitioning is an old problem and there are many of graph partitioning algorithms targeting

different applications, as well as efficient general-purpose programs (like METIS [19] and Chaco[20]).

Kernighan and Lin proposed a partitioning algorithm[21] which later became very important in the area

of VLSI layouts. In this work, the most widely known partitioning algorithms that could be applied to

the power grid problem were examined. In this section, the presented algorithms are three, namely:

 1. Domain partitioning

 2. Geometric partitioning

 3. Ratio cut

 5.1 Domain partitioning
The domain partitioning[13] (DP) is a simple algorithm, formulated in conjunction with the DD

33

method (see Section 4.1.2). It is based on a fast label reproduction scheme and requires the selection

of a fixed number of nodes for the starting domains. The method consists in expanding each domain

until it cannot be further enlarged without colliding with other domains. The resulting domains are

called partitions.

The DP algorithm is as follows[13]:

Note that step 3.1.1.2 answers the purpose of identifying interface nodes (see Section 4.1.2 for

interface node definition) in case they are needed. However, that should be omitted if no identification

is needed and all the nodes will be associated with exactly one partition. Also, convergence is not

reached as soon as all nodes are labelled, considering that nodes might still be relabelled and become

interface nodes.

The initial selection takes an important role in the performance of Domain Partitioning. Initial

nodes are autonomously chosen through innumerable possibilities. The method used in this study is a

uniform distribution along the top layer of the grid (which is the least dense). The reason behind the

one-layer distribution comes from the connections between layers. In fact, conductances between

nodes in consecutive layers (also called vias) are very large and nodes with high connectivity should

share the same label. This cannot be achieved perfectly without changing the algorithm process, but

this selection method ensures a reasonable labelling based on this assumption.

Consider a 4x4 grid where domain partitioning with random initial selection is applied (Figure

20). The domains are iteratively expanded to the neighbours, and some of the interface nodes come

from both unlabelled and labelled nodes.

34

Algorithm 5.1: Domain Partitioning

Inputs: sel = selected initial nodes, adj = node adjacencies, Outputs: Partition sets

1) Assign label 0 to all nodes

2) for each vi in sel do label(vi) = i and Si = {vi}

3) while not converged

1) for each vi in subset Si, i = {-1, 1, 2, 3, ..., m}

1) for each vj in adj(vi)

1) if label(vj) is 0 do label(vj) = label(vi); Si = Si {v∪ j}

2) else if label(vi) is neither label(vj) nor -1 do label(vj) = -1; S-1 = S-1 {v∪ j}

The domain partitioning algorithm is a very simple and fast approach. It focuses on fast expansion

and, generally, balances the set sizes. However, it disregards the relationship between different sets

and the outcome is very sensitive to initial selection of nodes.

 5.2 Geometric partitioning
The geometric interpretation is an essential procedure in graph partitioning. The power grids may

not be regular structures, but they have geometric patterns (Figure 21). Hence, to partition the grid

using geometric information (node position) makes sense and it turns out to be a very effective

strategy that provides good results.

The geometric partitioning (GP), also called area-based partitioning and block partitioning, is not

35

Figure 21: Representation of portion of an IBM benchmark power grid. Lines represent intra-layer
(blue) and interlayer (red) conductances. Axes are Cartesian coordinates in 3D (micrometer units).

Figure 20: Domain Partitioning example. Colors: white - unlabeled; light blue, green, yellow - partitions;
black - interface

particularly hard to achieve: Cut the grid uniformly and balance the nodes in each partition. Then

again, the conductances between layers (also called vias) are large in comparison and thus the grid is

cut based on the single layer directions only, x and y. Along these lines, a node in an upper layer will

always belong to the same partition that the lower layer node it is connected to does.

The GP algorithm results in the following:

The choice of cut numbers has implications. Ideally, the cuts would be along one direction only [15],

so to minimize the inter-partition connections (both in number of nodes/branches and number of

partitions). However, this is not always best considering that some algorithms might require at least

one grounded resistor (resulted from the grounded voltage sources) connection inside each partition to

work properly (since matrix can be singular if that does not happen), and thus compromising the

maximum number of cuts along one direction. This is not the case for any of the algorithms applied in

this study.

In Figure 22, an example of geometric partitioning can be seen.

36

Algorithm 5.2: Geometric Partitioning

Inputs: cd = node coordinates, nx = number of cuts x, ny = number of cuts y, Outputs: Partition
sets

1) xmin = min cdx, xmax = max cdx

2) ymin = min cdy, ymax = max cdy

3) width = xmax - xmin, height = ymax - ymin

4) for i from 0 to nx-1

1) xlow = xmin + i*width/nx, xhigh = xlow + width/nx

2) for j from 0 to ny-1

1) ylow = ymin + j*height/ny, yhigh = ylow + height/ny

2) Si*ny+j = cdx [xlow, xhigh] ∩ cd∈ y [ylow, yhigh]∈

Figure 22: Geometric partitioning example: nx =
3, ny = 2 in a 7x5 grid. Each partition is denoted

by a different color.

Once again, this partitioning strategy is apparently oblivious to the conductances interconnecting

the sets. However, that is not entirely the case. The resistance values, typically obtained through an

extraction process, are proportional to length and most nodes are equidistant, which promotes GP as a

very efficient algorithm.

 5.3 Ratio cut
The previous graph partitioning algorithms are based on geometric postulations. However, these

postulations might be wrong, be it in the present or in the future. Besides, geometric or functional

block information might be inaccessible or inaccurate, jeopardizing the partitioning performance

substantially. In that event, a geometrically independent approach is desired, and one that optimizes

the size of all partitions and the interconnecting conductances. In this study, a partitioning method

called Ratio Cut is introduced to the power grid domain and applied for the first time.

The Ratio cut is a graph partitioning strategy which targets the following optimization problem [22]

(metric):

min
{V 1 ...V n}

1
∑

k
∣V k∣(∣V∣−∣V k∣)

∑
i∈V p

j∈V q

p≠q

W i , j
 (11)

where:

Vi – Partition set I, |Vi| is the set size

Wi,j – Weight on branch which connects node i to j

In short, Ratio cut is a strategy that attempts to optimize set partitioning such that the sum of

interconnecting weights over the product of partition sizes is minimum. The number of partitions is

either fixed or variable, depending on the algorithm and/or the application.

Ratio cut was introduced by Wei and Cheng[23] as a circuit partitioning subject and a preliminary

solution based on linear programming was proposed. Hagen and Kahng[24] added an heuristic solution

for the 2-way approximated Ratio cut: computing the eigenvector associated with the second smallest

eigenvalue of the Laplacian of the graph, called Fiedler vector. This is cheaply computed resorting to

the Lanczos algorithm for sparse symmetric eigenvalue problem[14]. For the multi-way cut problem,

one can either apply the 2-way cut recursively or employ the strategy stated in [24]: find the most

profitable cuts in the sorted eigenvector by brute force. In [25], the Ratio cut problem was deeply

37

studied and finer Linear (LP) and Quadratic programming (QP) solutions were proposed, but the

excessive amount of variables stuns the application of these LP and QP approaches for circuit

partitioning.

The Ratio cut heuristic algorithm is described as[24]:

Note that step 5 can be very expensive, even for n = 2. Alternatively, the cuts are computed in a

greedy way, starting with uniform cutting (m sets with the N/m size) and moving the cut left or right

until no longer profitable. A simulated annealing helps in improving the optimization. The maxima of

the eigenvector discrete derivative (with care to the sort direction) is also used as a fast method.

An alternative to this approach is called Normalized cut [26], in which the objective is to maximize

the degree (sum of internal weights) of each partition rather than the size in number of nodes [26]. Since

the computation complexity of the algorithms are usually related to the number of nodes in the

partitions, the Ratio cut approach is more appropriate for the power grid applications.

 5.4 Interface node identification
 Some of the partitioning algorithms previously seen do not identify interface nodes, needed for

the DD method (see Section 4.1.2). The method employed for this identification is to simply find

nodes with adjacencies that belong to another partition and label them as interface nodes:

38

Algorithm 5.3: Ratio cut Heuristic Partitioning

Inputs: m = number of partitions, W = weighted adjacency matrix, Outputs: Partition sets

1) Compute diagonal degree matrix D=diag
i

(∑
j=1

N

W i , j)

2) Calculate the Laplacian L = D-W

3) Estimate the Fiedler vector v using the Lanczos algorithm

4) Sort v values ascending or descending

5) Compute the most profitable m-1 cuts in v by testing all cutting possibilities and using the
ratio metric (11)

6) Cluster the graph from the cuts found

 5.5 Final notes
In this section, different partitioning algorithms that rely on different prepositions were presented.

These algorithms were used in conjunction with the strategies presented in the Chapter 4 and their

results are shown in the Chapter 7 .

39

Algorithm 5.4: Interface node classification

Inputs: label = partition identification, Outputs: Solution

1) for each node in grid

1) if label(node) is not interface label

1) for each nodeadj in adjacencies of node

1) if label(nodeadj) is neither interface label nor label(node)

1) set label(node) to interface label

2) break inner loop

40

 6 Implementation details
In this Chapter, the libraries and data structures used in the implementation of the previously

stated solutions are referenced. In addition, partitioning and solution processes are explained, as well

as how the multithreaded communication, common to every parallel algorithm, can be achieved.

 6.1 Libraries used
The implementation of all algorithms previously discussed was written in C++ and compiled with

GCC. For non-distributed data, matrix Cholesky decomposition, sparse matrix multiplication and

permutation are provided by CHOLMOD library[11] (the currently fastest sparse Cholesky

factorization library available). For multithreaded processing, pthreads library (IEEE standard

1003.1c) is used for BI algorithm and OpenMP API (version 3.0) for remaining ones. Distributed

processing resorts to OpenMPI library[27] (version 1.4.3).

 6.2 Data Structures
The KCL conductance matrix and its submatrices are very sparse, so a sparse matrix

representation is appropriate for these matrices. For compatibility with the CHOLMOD library, the

representation used is Column compressed storage. An example of the compressed column storage can

be seen in the following scheme:

The column vector identifies the accumulated number of nonzeros at the start of each column

(ending with the total), an information which can be used to access the rest of the data. The nonzero

values for the c column are Values[from ColumnNonzeros[c] to ColumnNonzeros[c+1]-1] and their

respective rows are RowIndices[from ColumnNonzeros[c] to ColumnNonzeros[c+1]-1].

All other matrices are stored in dense formats, represented by single arrays (storing columns

consecutively). Even though B matrix is a very sparse matrix, iterative algorithms use it as residue,

which becomes dense after very few iterations. Hence, B matrix is stored in a dense format.

41

[1 0 2
0 3 4
5 6 7]→columnnumber of nonzeros: [0247] (size N+1)

row indices : [0212 012] (size NZ)
non zero values : [1536247] (size NZ)

 6.3 Partitioning
Partitioning the grid is a two-step process to comply with the distributed and shared

(multithreading case) data types of processing, as the first requires communication that need to be

identified, a process which becomes harder if a one-step strategy like partitioning the grid by total

number of threads in all computers is applied.

In the first step, the grid is partitioned in C parts, where C is the number of computing instances

and each computing instance stores the G matrix columns (or rows, since it is a symmetric matrix)

associated to its assigned first stage partition. B and s matrices share the same strategy. This

successfully distributes memory and allows the algorithms to successfully execute on multiple

computing instances. If the implementation is multithreaded only, first step is skipped. In a second

stage, the “subgrid” is partitioned into the same number of pieces as the number of threads the

computing instance supports, or more in the case of BI SOR algorithm (twice the amount, as it proved

to be a good strategy in Section 4.2.1). This number can also be user specified, to exchange

convergence rate for memory usage (the more the grid is partitioned, the less the convergence rate per

iteration is, but the memory usage also diminishes, and the processing time may grow or decrease).

The same flexibility exists for parameters such as the window size in LPSA and relaxation factor in BI

SOR.

 6.4 Partition solution
In the parallel algorithms, it is often useful to solve for some specific nodes (from one partition)

only. One way to do this is by computing the submatrices of the right-hand side for the specific nodes,

copy them to a new matrix, find a solution and fill the general solution matrix. An example of this is:

This implies that memory used for s and r is doubled, and in a critical place (since matrices s and r

are NxM and dominate the memory usage of every algorithm). To overcome this problem, it is a good

choice to implement a subset solve. Since partitions have no overlap, this is very straightforward to

accomplish:

42

t=r set ,G set x=t , sset=x

This will provide a solving speed very similar to CHOLMOD solving routine, and will not require

the memory and processing overhead of copying. For this to be possible, the CHOLMOD factorization

cannot be supernodal (must be simplical) and the factor must be converted to a regular sparse matrix

to work with. It is trivial to use OpenMP since there are no shared nodes between multiple partitions.

 6.5 Message Passing Interface and Multithreaded data sharing
Each message shared by Message Passing Interface (MPI) must be identified with a unique tag,

which can only be reused when the message it identifies has arrived its destination. As the algorithms

that need to constantly share data are iterative, it is almost always possible to identify what is going to

be shared in each iteration and synchronize what is expected to send and receive in the preprocessing.

In this manner, the data can be buffered in an agreed order by the sender and the receiver for an

asynchronous transference and there is no need for much overhead identifying messages. In addition,

only a fixed amount of messages needs to be shared each iteration.

The user needs to be careful when multiple threads are responsible for generating the data that

need to be transferred. As threads have different processing times, neither the data that is already

processed nor the processor that has more to process need to wait. Two solutions can be employed to

overcome this problem: an additional thread to manage transferences; or there has to be multiple

messages per iteration, at least one from one thread to each thread in any other computer. In either

43

Algorithm 6.1: Subset solve

Inputs: U = Upper factor with diagonal 0, D = Diagonal values of the upper or lower factor, r =
right-hand side, part = partition nodes, perm = permutation, Outputs: s = solution

1) for k from 1 to M

1) let sk and r k be column k of s and r

2) for a from 1 to size(part)

1) let U a be column a of U

2) sk [part [perm[a]]]=r k [part [perm[a]]]−sk [part [perm]]U a

3) for a from 1 to size(part)

1) sk [part [perm [a]]]=
sk [part [perm [a]]]

D [a]2

4) for a from size(part) to 1

1) let U a be column a of U

2) sk [part [perm]]=sk [part [perm]]−sk [part [perm[a]]]U a

way, the synchronization preprocess has to assign different tags to each message according to which

thread generated the data. The transference management must also take into account that message

order is not guaranteed (in the case of a managing thread, this can be solved by periodically probing

the messages with the routine provided by MPI instead of waiting for a specific one).

44

 7 Results
The power grid analysis is a very expensive process in terms of memory and processing

complexities. In this chapter, a comparison between the various strategies will be made using a

multithreaded architecture. The best among the previously studied strategies will be studied in terms of

performance, memory spent and flexibility of distributing data.

 7.1 Environment
The results in this chapter obtained from running implementations of the algorithms discussed in

Chapters 3 and 4 , using two different architectures:

1) Multithreaded architecture:

1. Multi-core processor with 4 cores – Intel Xeon E5410 2.33GHz

2. RAM Size: 24GB

3. Operative System: Linux Fedora 13

2) Distributed architecture:

1. Cluster with 10 Multi-core processors with 8 cores each – Intel Xeon E5504 2.00GHz

2. RAM Size: 32GB per computer

3. OperativeSystem: Linux CentOS 5.4 (Final)

 7.2 Power grids
The power grids used for comparison were of two types: power grid benchmarks provided by

IBM power grids (available from http://dropzone.tamu.edu/~pli/PGBench) and artificially created

power grids. As the IBM provided power grids are very small in comparison to the target (of

300Million nodes), artificially created power grids with similar characteristics were generated.

 7.2.1 IBM benchmark power grids
Real power grids used are IBM benchmark power grids. The VSS part is eliminated and the zero

resistance branches are simplified (terminal nodes are fused). The number of current sources is

arbitrarily chosen in order to test scalability of algorithms with increasing problem size. In Table 4, the

most relevant characteristics of the realistic benchmarks power grids are described.

45

Power grid Nodes Voltage sources Current sources
IBMPG1 6085 100 30

IBMPG2 61677 120 90

IBMPG6 403915 132 130

IBMPG6-2 403915 132 300

Table 4: Power grid IBM benchmarks

 7.2.2 Artificially created power grids
Artificial power grids have a pre-specified structure (that is user configurable). They are generated

according to rules such as: each pair of layers (in the z-axis) has the same density, but lower layer pairs

have an higher density than upper layer pairs; total resistance of the power grid is constant; each layer

only has resistors in either x-axis and z-axis or y-axis and z-axis. These rules were suggested by

observing the IBM benchmark power grids structural information. The number of nonzeros of G is

approximately 4.2N.

Power grid Nodes Voltage Sources Current sources
ART1 146700 120 120

ART2 782978 120 160

ART3 782978 120 300

ART4 1197252 120 300

ART5 1197252 120 500

ART6 1197252 120 750

ART7 1197252 120 1000

ART8 1197252 120 1250

ART9 1197252 120 1500

ART10 1197252 120 1750

ART11 1197252 120 2000

ART12 2918100 120 300

ART13 4998932 120 300

ART14 7982598 120 300

Table 5: Artificially created power grids

 7.3 Comparison
In this section, the various strategies previously discussed in this study will be compared. All

partitioning possibilities previously discussed will be compared, as well as all solvers, for some power

46

grids in a multithreaded architecture (Section 7.1).

The conditions for the comparison are:

1) Number of partitions m = 8 (12 for LPSA)

2) LPSA window size = 2% grid width

3) BI SOR w = 1.65

4) Acceptable residue error |r|max = 10-3

Tables 6, 7, 8 and 9 show comparison among various solution and partitioning strategies.

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.009s 0.027s 16 / 0.376s 15 / 0.213s -

GP (m by 1) 0.001s 1.37s 16 / 0.448s 8 / 0.095s did not run

METIS 0.007s 0.099s 16 / 0.207s 16 / 0.159s -

Ratio Cut Multi-way 0.067s 0.026s 16 / 0.437s 11 / 0.114s -

Table 6: IBMPG1 power grid results (iterations / time)

The first comparison show that all partitioning algorithms show potential on different solving

strategies. The power grid used in this first test (IBMPG1) has four connected components (sets of

nodes with no outer connections). As the LPSA implementation did not separate these into different

problems, one of the boundaries has no connections and its boundary window also has no nodes. This

is the reason why it did not run in this power grid. All other power grids have one connected

component only (this can be very easily attained in a multiple connected component graph using

breadth-first search).

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.064s 19.7s 1123 / 740s 203 / 120s -

GP (m by 1) 0.009s 15.2s 16 / 6.61s 21 / 9.25s 14 / 6.92s

METIS 0.058s 12.9s 16 / 10.2s 22 / 10.2s -

Ratio Cut Multi-way 1.38s 20.3s 17 / 15.3s 26 / 21.4s -

Table 7: IBMPG2 power grid results (iterations / time)

47

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 0.133s 107s 19 / 35.7s 35 / 72.9s -

GP (m by 1) 0.022s 81.7s 18 / 30.1s 33 / 56.5s 17 / 20.2s

METIS 0.152s 57.3s 28 / 132s 37 / 107s -

Ratio Cut Multi-way 14.1s 223s 48 / 198s 46 / 141s -

Table 8: ART1 power grid results (iterations / time)

Part Algorithm Part Time DD time BI SOR BJ PCG LPSA
DP 2.76s 340s 192 / 651s 61 / 284s -

GP (m by 1) 0.066s 284s 125 / 160s 47 / 133s 21 / 91.9s

METIS 0.220s 237s 17 / 239s 24 / 140s -

Ratio Cut Multi-way 8.43s 435s 36 / 223s 24 / 68.9s -

Table 9: IBMPG6 power grid results (iterations / time)

The Geometric Partitioning is the most reliable partitioning algorithm to use in conjunction with

most of the algorithms (except for Domain Decomposition, which is METIS), providing the best

results overall. There were some outliers like BJ PCG with Ratio cut partitioning on IBMPG6 power

grid, which did not show good results in ART1 in comparison to any other strategy. The domain

decomposition method is the only one profiting with a different strategy, but is left behind by the

iterative methods (that is the downside of computing an exact result only and having no scalability).

The LPSA algorithm cannot be distributed efficiently (as discussed in Section 4.2.2).

The most efficient solvers are BI SOR and BJ PCG. As the communication per iteration is

identical in both strategies, comparing multithreaded versions is the same as distributed. A final

comparison will be made to choose which strategy provides the best results. In Table 10, BJ PCG

proves to successfully top BI SOR. Conditions are the same except the number of partitions m is 16

(GP pattern m x 1).

Power Grid BI SOR BJ PCG
IBMPG6 132 / 115s 51 / 145s

ART2 78 / 1650s 52 / 1235s

ART4 92 / 6888s 83 / 5242s

Table 10: Results for BI SOR and BJ PCG solvers with GP algorithm (iterations / time)

 7.4 Distributed BJ PCG results
In this section, a distributed version BJ PCG will tackle increasingly difficult power grids on a

48

distributed architecture (Section 7.1) using Geometric partitioning. The next table shows some quick

examples of how much is the distributed BJ PCG worth in terms of processing (with 8 partitions per

computer):

Number of
computers Time (s) Memory spent

per unit (GB) Speed-up

1 424 4.72 0%

2 381 2.37 11%

3 265 1.61 60%

4 185 1.20 129%

5 175 0.95 142%

6 155 0.79 174%

7 188 0.66 126%

8 139 0.60 205%

9 159 0.57 166%

10 125 0.52 239%

Table 11: Speed-up and memory results for distributed processing over 1 to 10 computing instances, simulating
IBMPG6-2 power grid benchmark (404k node with 300 current sources)

It is evident that distributing the data will ease the memory burden over each computer, but the

previous table showed that even the processing cost benefits from the distribution and provides some

good speed-ups. Sometimes the speed-up may drop a bit (case 7 and 9 computers in the previous

sample) due to where the power grid was cut if it is not perfectly regular.

49

Figure 23: Plot results for Table 11

The next table shows results for increasing number of nodes.

Power Grid Number
of nodes

Number of
Iterations Time (s) Memory used per

computer (GB)
IBMPG6-2 403k 80 147 0.53

ART3 783k 127 494 0.96

ART4 1.2M 160 1036 1.47

ART12 2.9M 209 4440 3.60

ART13 5M 211 8309 6.18

ART14 7.9M 248 17660 10.03

Table 12: Block-Jacobi Preconditioned Conjugate Gradient on a 10 octocore cluster results in iterations, time
and memory peak per computer

In Figure 24, the evolution of the previous results can be seen over the number of nodes. Memory

is heavily dominated by matrices with dimensions N*M: the solution matrix s, the preconditioner

solution ϛ, the projection vector q and residue matrix r = B-G*s, which become dense after just only a

few iterations. G*q can also be preallocated. So, it is not surprising that the evolution of memory spent

is linear with the number of nodes (and will be with the number of current sources too). The projected

50

Figure 24: BJ PCG results - Number of nodes influence on number of iterations, time and memory spent

complexity O(N1.2 + z*N*M) models the time curve fairly well.

In Table 13, the algorithm will run for increasing number of current sources:

Power Grid Number of
current sources

Number of
Iterations Time (s) Memory used per

computer (GB)
ART4 300 160 1036 1.47

ART5 500 158 2141 2.41

ART6 750 161 3589 3.48

ART7 1000 159 5062 4.61

ART8 1250 161 6266 5.71

ART9 1500 159 7838 6.84

ART10 1750 159 8911 7.95

ART11 2000 160 10660 9.06

Table 13: Block-Jacobi Preconditioned Conjugate Gradient increasing node number on a 10 octocore cluster
results in iterations, time and memory peak per computer

As expected, the number of iterations does not vary considerably, since the grid is the same and is

structurally regular, solving does not depend much on the chosen nodes and all pretty much take the

same number of iterations to converge. Also, time and memory complexity are approximately linear

with the number of current sources (since factorization times are constant). In Figure 25, the curves for

the previous results and their linear fits can be seen.

The memory resources rise very quickly with the number of nodes and current sources. However,

if the right-hand side is made in blocks, the memory drops substantially without increasing the

processing times much, and actually decreasing for a low number of blocks. The following table

51

Figure 25: BJ PCG – Influence of the number of current sources

shows the results for varying the number of blocks in ART7:

Number
of blocks Time (s) Memory used per

computer (GB)
1 5062 4.61

5 3212 0.99

10 3395 0.53

20 3870 0.31

40 5339 0.19

60 6145 0.16

100 5270 0.13

1000 40770 0.09

Table 14: Block-Jacobi Preconditioned Conjugate Gradient increasing number of blocks (of a total of 1000
current sources) on a 10 octocore cluster results in iterations, time and memory peak per computer. Please note

that 1000 is not dividable by 60

 7.5 Extrapolation
It is now intended to extrapolate the results and complexity of BJ PCG algorithm to solve a power

grid of 300Million node with 2000 current sources.

The NxM matrices will use about 24 terabytes (TB) total. As the distributed architecture

employed in this study is composed of 10 computing instances, there is a theoretical need for 2.4TB

storage in each. For that reason, 120 current source blocks will be used, which is about 20GB per

machine for each of these matrices. For a KCL conductance matrix of this size, with a mean of 4.25

non-zero values per column (a common value in the IBM benchmark power grids), would need a total

of 23GB, which is 2.3GB if divided by 10 computing instances. Each computing instance will store 8

factorizations of 3.75M nodes which contain about 73.8M nonzeros (using N^1.2) and results in about

1.2GB size each factorization. This sums up to a memory usage of 29.2GB, a very much possible

amount for the current machines to hold.

The processing is a little more tricky to extrapolate because it depends on the number of

iterations. Using the logarithmic fit curve, the projected number of iterations of a 300Million node

power grid is 443 (note that it does not depend on the number of current sources). The following table

shows some results needed for extrapolation:

52

Number
of nodes

Number
of blocks

Total number of
current sources

Number of
iterations (mean) Time (s)

150k 120 2000 85 988

1.2M 120 2000 160 7070

2.9M 120 2000 210 23690

5M 120 2000 215 41890

Table 15: Block-Jacobi Preconditioned Conjugate Gradient results for 120 blocks of 2000/120 current sources
power grids

Using the complexity of BJ PCG to estimate the time curve in Figure 26, the time needed to tackle

a 300M power grid with 2000 sources on this distributed architecture setup is 5.213*106 seconds, or

60.3 days.

53

Figure 26: Experimental results of BJ PCG for 120 blocks of
2000/120 current sources

54

 8 Conclusions
In this work, the power grid analysis formulation was used to determine the voltage values of

power grid nodes and indirectly solve the EM problem. Current power grids in aggressive designs

build using the latest technology nodes can have on the order of 300 million nodes and 2000 current

sources. For these cases, the problem requirements exceed the limits of what a single computer can do,

and parallel solutions compatible with distributed data had to be developed.

A tempting way of approaching the size problem is by model data compression. It has been seen

that whole Model Order Reduction techniques when applied to power grids can produce smaller

systems, the level of reduction achieved is disappointing and furthermore the resulting matrices are

dense, as opposed to the very sparse power grid conductance matrices. The combination of these two

facts implies that such techniques are not appropriate for the power grid analysis problem.

Several solution methods have been examined and developed. Direct solution methods have met

limitations in terms of distributed solutions, low communication rates, low fill-in amounts and good

result scalability. On the other hand, iterative solutions have proved to be successful in all these terms,

and provided very satisfactory results. Block-Jacobi Preconditioned Conjugate Gradient, an algorithm

applied in this work for the first time in the analysis of power grid, seemingly provided the best results

in terms of convergence and performance, while keeping a communication rate and complexity very

similar to the former best algorithm Block-Iterative.

Block-Jacobi Preconditioned Conjugate Gradient solved a 7.9M node power grid with 300 current

sources in 5 hours in a 10 octocore cluster, shows a slightly superlinear complexity in terms of CPU

and is therefore believed to be able to solve a 300M node power grid with 2000 current sources in 60.3

days using 29.2GB memory per computer. It is not a fantastic result, but with dedicated architectures,

the time spent will drop. Even though this is a projection based on benchmark and artificially created

power grid results, it shows there is still a long way to go to completely solve a power grid problem of

such size.

A different solving strategy is not the only way to reach a better result. Experiments show that

some algorithms have faster convergence in the first few iterations and slower afterwards, while others

are slower first and faster after. Hybrid strategies employing multiple algorithms (that share a similar

preprocessing) will improve the performance considerably. Also, the power grid connections have

value and structure patterns, important properties to study in order to apply data compression and

reduce both the memory spent storing the grid and the communication rates in the process.

55

56

 9 References
[1] Nassif, S. R., Power Grid Analysis Benchmarks, IBM Research, Austin, USA, 2008

[2] Sheehan, B., Realizable reduction of RC networks, IEEE Transactions Computer-

Aided Design of Integrated Circuits and Systems, 2007 Aug., pp. 1393-1407

[3] Odabasioglu, A., Celik, M., and Pileggi, L. T., PRIMA: passive reduced-order

interconnect macromodeling algorithm, IEEE Trans. Computer-Aided Design, August

1998, pp. 645–654

[4] Feldmann, P., Model order reduction techniques for linear systems with large number

of terminals. In DATE’2004, v. 2, 2004 Feb., Paris, France, pp. 944–947

[5] Yan, B., Zhou, L., Tan, S. X.-D., Chen, J., and McGaughy, B., DeMOR: decentralized

model order reduction of linear networks with massive ports, In ACM/IEEE DAC-08,

pages 409-414, Anaheim, CA, 2008 June

[6] Feldmann, P. and Liu, F., Sparse and efficient reduced order modeling of linear

subcircuits with large number of terminals, In IEEE/ACM International Conference on

Computer-Aided Design, 2004 Nov., pp. 88-92

[7] Yu, H., He, L. and Tan, S. X.-D., BSMOR: Block structure preserving model order

reduction, In IEEE International BMAS, Sep. 2005

[8] Phillips, J. R. and Silveira, L. M., Poor man’s TBR: A simple model reduction scheme,

In DATE’2004, 2004 Feb., Paris, France

[9] Silva, J.M. and Silveira, L.M., On the Compressibility of Power Grid Models, IEEE

ISVLSI '07, 2007 Mar., pp. 186-191

[10] Amestoy, P., Davis, T. A., and Duff, I. S., An approximate minimum degree ordering

algorithm, SIAM Journal on Matrix Analysis and Applications, v. 17, issue 4, Dec.

1996, pp. 886-905

[11] Chen, Y., Davis, T. A., Hager, W. W. and Rajamanickam, S., Algorithm 887:

CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM

Trans. Math. Software, v. 35, issue 3, 2008 Oct.

[12] Golub, G. and Loan, C., Matrix Computations, JHU Press, 1996

[13] Quming, Z., Sun, K., Mohanram, K., Sorensen, D. C., Large power grid analysis

using domain decomposition, In Proc. DATE '06, 2006, pp 27-32

[14] Saad, Y., Iterative methods for Sparse Linear Systems, 2000, Jan. 3rd

57

[15] Zhong, Y. and Wong, M.D.F., Fast Block-Iterative Domain Decomposition Algorithm

for IR Drop Analysis in Large Power Grid, In Proc. 11th ISQED, 2010 Mar., pp. 277-

283

[16] Zeng, Z., Li, P. and Feng, Z., Parallel Partitioning Based On-Chip Power

Distribution Network Analysis Using Locality Acceleration, In Proc. 10th ISQUED,

2009, pp. 776-781

[17] Chen, T. and Chen, C.C., Efficient large-scale power grid analysis based on

preconditioned krylov-subspace iterative methods, In Proc. DAC '01, 2001 June

[18] Benzi, M., Tuma, M., A comparative study of sparse approximate inverse

preconditioners, Applied Numerical Mathematics, v. 30, issue 2-3, New York, 1999

June

[19] Karypis, G. and Kumar, V., METIS, A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings

of Sparse Matrices ver. 4.0.1, 1998 Nov. (http://glaros.dtc.umn.edu/gkhome/metis)

[20] Hendrickson, B. and Leland, R., The Chaco User's Guide: Version 2.0, Sandia Tech

Report SAND94--2692, 1994 (http://www.sandia.gov/~bahendr/partitioning.html)

[21] B., Kerningan and S., Lin, An efficient heuristic procedure for partitioning graphs,

The Bell system technical journal, v. 49, 1970, pp. 291-307

[22] Chen, S. J. and Cheng, C.K., Tutorial on VLSI Partitioning, In Journal VLSI Design,

v. 11, 2000 Feb., pp. 175-218

[23] Wei, Y. C. and Cheng, C.K., Towards Efficient Hierarchical Designs by Ratio Cut

Partitioning, In Proc. ICCAD-89, 1989 Nov., pp. 298-301

[24] Hagen, L. and Kahng, A.B., New Spectral Methods for Ratio Cut Partitioning and

Clustering, IEEE Computer-Aided Design of Integrated Circuits and Systems, v. 11,

1992 Sep., pp. 1074-1085

[25] Fan, N. and Pardalos, P.M., Multi-way clustering and biclustering by the Ratio cut

and Normalized cut in graphs, In Journal of Combinatorial Optimization, Springer,

Issn 1382-6905, 2010, pp. 1-28

[26] Shi, J. and Malik, J., Normalized cuts and image Segmentation, IEEE Pattern

Analysis and Machine Intelligence, v. 22, 2000, pp. 888-905

[27] Squyres, J. M. and Lumsdaine, A., The Component Architecture of Open MPI:

Enabling Third-Party Collective Algorithms, In Proc. 18th ACM International

58

http://glaros.dtc.umn.edu/gkhome/metis
http://www.sandia.gov/~bahendr/partitioning.html

Conference of Supercomputing, Springer, pp. 167-185, 2004 July, France

59

	 1 Introduction
	 1.1 Electromigration
	 1.2 Power grids
	 1.3 Limitations of the analysis
	 1.4 Objectives
	 1.5 Contribution of this work
	 1.6 Thesis structure

	 2 Background
	 2.1 Power grid model
	 2.2 Power grid analysis
	 2.3 Problem formulation
	 2.4 Considerations

	 3 Model Order Reduction
	 3.1 Node elimination
	 3.2 Other MOR methods

	 4 System solution
	 4.1 Direct methods
	 4.1.1 Cholesky factorization
	 4.1.2 Domain decomposition

	 4.2 Iterative methods
	 4.2.1 Block-Iterative
	 4.2.2 Locality-Driven Parallel Static Analysis
	 4.2.3 Preconditioned conjugate gradient

	 4.3 Final analysis

	 5 Partitioning
	 5.1 Domain partitioning
	 5.2 Geometric partitioning
	 5.3 Ratio cut
	 5.4 Interface node identification
	 5.5 Final notes

	 6 Implementation details
	 6.1 Libraries used
	 6.2 Data Structures
	 6.3 Partitioning
	 6.4 Partition solution
	 6.5 Message Passing Interface and Multithreaded data sharing

	 7 Results
	 7.1 Environment
	 7.2 Power grids
	 7.2.1 IBM benchmark power grids
	 7.2.2 Artificially created power grids

	 7.3 Comparison
	 7.4 Distributed BJ PCG results
	 7.5 Extrapolation

	 8 Conclusions
	 9 References

