
Smart Cards:

Remote Authentication using Biometrics

Filipe Alexandre Ricardo Marques

Dissertação para obtenção do Grau de Mestre em

Engenharia de Redes de Comunicac ões

Júri
Presidente: Prof. Doutor Paulo Ferreira
Orientador: Prof. Doutor Ricardo Chaves
Co-orientador: Eng. Carlos Lima
Vogal: Prof. Doutor Carlos Ribeiro

Outubro de 2011

Acknowledgments

I thank my family for all the support provided throughout all my life.

My parents for the emotional support given through motivation and values, indispensable for

my personal development, which allowed me to consolidate attributes such as persistence and a

good sense of responsibility that have been essential in moments of discouragement.

To my godmother and my sister for all the affection and motivation they gave me during the

course of my personal evolution.

A big acknowledgment to all my friends for making my life a better life, giving me joy and

making me laugh every day, and for always being there for me in tough times.

I would also like to thank my friend Fábio Constantino in particular, for his dedication in revising

the English in my thesis, demonstrating great camaraderie and spirit of sacrifice, making his time

available to help me in a crucial time.

A big acknowledgement is also in order for my supervisor, Ricardo Chaves, for all his help and

accompaniment given throughout the development of my thesis, through his sound advice and

guidance, always pointing me in the right direction when facing difficulties.

Last but not least, I would like to thank the company Zetes Burótica for all the material provided.

I thank in particular, Eng. Carlos Lima and Eng. Nuno Boavida for being serviceable in the

enlightenment of technical issues, making the resolution of some problems easier.

This thesis is dedicated to my parents,

Amadeu Figueiredo Marques,

and

Maria do Céu Pires Ricardo Marques,

for making my education one of their lives’ most important priorities,

enduring sacrifices for which I will be eternally grateful.

My thesis is also dedicated to my late grandfather that throughout all

his life thought me many important values.

He was an example of integrity, and a great human being.

iii

iv

Abstract

This thesis proposes an architecture for a secure and reliable remote authentication system,

based on local biometric signature validation. Biometric systems are a more secure and reliable

authentication mechanism than those that use PIN and passwords. This authentication is based

on something that is unique to each person and cannot be borrowed, ensuring the presence of

the specific person during the authentication process. Additionally, biometric systems are a more

elegant approach to authentication, eliminating the need for the user to memorize any secret

information, protecting him against the theft of his secret.

Despite the advantages of biometric systems, they are not used in remote authentication ap-

plications, given that it is not viable to send the biometric template via remote connections.

The solution herein proposed is based on the utilization of Smart Cards in a PKI structure, in

order to perform a remote authentication. The private key of the user is thus used by the Smart

Card to sign a challenge sent by the remote server, proving his identity. This key is protected by a

local biometric authentication, ensured by the Smart Card.

The proposed system uses available technology and aims to be compatible with existent solu-

tions.

Keywords

Smart Cards, Java Cards, Biometrics, Fingerprints, Match-On-Card, Remote Authentication

v

Resumo

Esta tese propõe uma arquitectura para um sistema de autenticação remota seguro e fidedigno

baseado numa validação biométrica local. Sistemas biométricos representam um mecanismo de

autenticação mais seguro e fiável do que os que utilizam PIN e passwords. Esta autenticação

é baseada em algo que é único para cada pessoa e não pode ser perdido ou emprestado, as-

segurando a presença fı́sica do utilizador durante o processo de autenticação. Adicionalmente,

sistemas biométricos são uma abordagem mais elegante para a autenticação, eliminando a ne-

cessidade do utilizador de memorizar qualquer informação secreta, protegendo-o contra o roubo

do seu segredo.

Apesar das vantagens dos sistemas biométricos, estes não são utilizados em aplicações de

autenticação remota, dado não ser viável enviar o modelo biométrico do utilizador através de

uma conexão remota.

A solução proposta nesta tese utiliza Smart Cards numa estrutura PKI, de forma a ser possı́vel

realizar uma autenticação remota. Como tal a chave privada do utilizador é utilizada pelo Smart

Card para assinar um desafio enviado pelo servidor remoto, provando assim a sua identidade.

Esta chave é protegida por uma autenticação biométrica local, assegurada pelo Smart Card.

O sistema proposto utiliza tecnologia disponı́vel e tem como objectivo ser compatı́vel com

soluções existentes.

Palavras Chave

Smart Cards, Java Cards, Biometria, Impressão digital, Match-On-Card, Autenticação remota

vii

Contents

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Proposed Work Goals and Contributions . 4

1.3 Document Structure . 5

2 State of the art 7

2.1 Authentication . 9

2.1.1 Overview . 9

2.1.2 Evolution of Authentication . 10

2.1.3 PKI . 12

2.1.4 Biometric Authentication . 13

2.1.4.A Biometric Features . 13

2.1.4.B Authentication Flow . 13

2.1.4.C Error Analysis . 14

2.1.4.D Fingerprints . 16

2.1.4.E Remote Authentication Scenarios 17

2.2 Smart Cards . 18

2.2.1 Overview . 18

2.2.2 Technology Specifications . 19

2.2.3 Communication . 20

2.2.4 Operating Systems . 21

2.2.5 Java Card . 25

2.2.5.A Platform Structure . 26

2.2.5.B Applets . 28

2.2.5.C Middleware . 29

2.2.5.D Biometric Support . 31

2.3 Existent Solutions . 32

2.4 Conclusion . 34

ix

Contents

3 Proposed Solution 35

3.1 Authentication Scheme . 37

3.2 Architecture . 38

3.2.1 Smart Card Layer . 40

3.2.2 Middleware Layer . 44

3.3 Conclusion . 46

4 Prototype Implementation 49

4.1 Java Card Applets . 52

4.2 Middleware . 55

4.3 Enrollment Process . 58

4.4 Conclusion . 60

5 Assessment of the Solution 63

5.1 Test Environment . 64

5.2 Test Results and Analysis . 67

5.3 Security Analyses . 69

5.4 Conclusion . 72

6 Conclusions 75

6.1 Overview . 76

6.2 Contributions . 78

6.3 Future work . 79

A BioServer Applet Manual 85

B IAS Applet Manual 89

C Proxy Applet Manual 93

D Load Applets in a Java Card 97

E PKCS#11 Implementation List 101

F Test Environment 103

x

List of Figures

3.1 Authentication scheme of the proposed solution. 37

3.2 Scheme of remote authentication of the proposed solution. 38

3.3 Scheme of biometric local authentication of the proposed solution. 38

3.4 Architecture of the proposed solution. 39

3.5 Smart Card layer of the proposed solution. 40

3.6 Smart Card architecture of existing solutions. 41

3.7 Smart Card architecture of the proposed solution. 42

3.8 Middleware layer of the proposed solution. 45

3.9 Middleware architecture of the proposed solution. 45

3.10 Readers layer of the proposed solution. 46

4.1 Architecture scheme of the prototype implementation. 51

4.2 Java Card structure of the implemented prototype. 53

4.3 Middleware structure of the implemented prototype. 57

4.4 Enrolment process scheme. 59

5.1 Environment test. 65

5.2 Technology used in the environment test. 66

5.3 Test the direct access to the Identification, Authentication, and Signature (IAS) applet. 68

5.4 Protected environment for biometric data in the biometric match process. 71

A.1 Internal structure of the BioServer. 86

B.1 Internal structure of the IAS. 91

C.1 Internal structure of the Proxy. 94

D.1 Scheme for loading an applet into a Java Card. 98

F.1 Login web page. 104

F.2 Requesting the user fingerprint. 104

F.3 User web page. 105

xi

List of Figures

xii

List of Acronyms

MOC Match-On-Card

GUI Graphical User Interface

JNI Java Native Interface

SCP Secure Channel Password

ISO/IEC International Organization for Standardization / International Electrotechnical Commis-

sion

ITSEC Information Technology Security Evaluation Criteria

CC Common Criteria

EAL Evaluation Assurance Level

PIN Personal Identification Number

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

PHP Hypertext Preprocessor

IDE Integrated Development Environment

PKCS#11 Public-Key Cryptography Standards

PC/SC Personal Computer/Smart Card

MUSCLE Movement for the Use of Smart Cards in Linux Environment

RMI Remote Method Invocation

OCF OpenCard Framework

API Application Programming Interface

JC-BioAPI Java Card Biometric Application Programming Interface

xiii

List of Figures

SIO Shareable Interface Object

PKI Public Key Infrastructure

CA Certification Authority

APDU Application Protocol Data Unit

TPDU Transport Protocol Data Unit

eID Electronic Identity

e-service Electronic Service

POS Point Of Sale

ICC Integrated Circuit Card

IAS-ECC Identification Authentification Signature - European Citizen Card

IAS Identification, Authentication, and Signature

SDK Software Development Kit

JCDK Java Card Development Kit

JCWDE Java Card Workstation Development Environment

C-JCRE C language Java Card Runtime Environment

JCRE Java Card Runtime Environment

JCVM Java Card Virtual Machine

CAD Card Acceptance Device

CPU Central Processing Unit

NPU Numeric Coprocessor

SPU Standard or Proprietary Use

GND Ground

Vcc Common-Collector Voltage

I/O Input/Output

CLK Clock

RST Reset

xiv

List of Figures

RFU Reserved For Future Use

CAP Converted Applet

RAM Random-Access Memory

ROM Read-Only Memory

EEPROM Electrically-Erasable Programmable Read-Only Memory

RF Radio Frequency

ATR Answer To Reset

SCOS Smart Card Operating System

FMR False Match Rate

FNMR False Non Match Rate

FTE Failure To Enroll

FTA Failure to Acquire

JCRMI Java Card Remote Method Invocation

MF Master File

DF Dedicated File

EF Elementary File

FID File Identifier

AID Application Identifier

SFI Short File Identifier

RID Registered Application Provider Identifier

PIX Proprietary Application Identifier Extension

VB Visual Basic

JML Java Modeling Language

TLS Transport Layer Security

SSL Secure Sockets Layer

xv

List of Figures

xvi

1
Introduction

Contents
1.1 Background and Motivation . 2
1.2 Proposed Work Goals and Contributions . 4
1.3 Document Structure . 5

1

1. Introduction

The fast growth of networks and remote services available every day, trigger the spotlight over

public networks such as the Internet. However, the expansion of this virtual world is not only com-

posed of business and convenience opportunities, since such as in a real physical environment,

it grows with an ample opportunity for profitable exploitation of vulnerabilities by malicious users.

Therefore, the need for security mechanisms protecting the online services, and the information

stored by them against informatics attacks emerges. Only with efficient and convenient security

mechanisms it is possible to provide the necessary trust, for the sustained development of this

emerging world.

The security in computational systems is concerned with the defense, among other areas such

as natural disasters and predictable failures, against unauthorized activities. The unauthorized ac-

tivities can affect the proper control of information access, or allow its alteration by unauthorized

users, as well as compromise the adequate usage of the available resources. In a network en-

vironment, the information can be stored in a remote server or be in transit over a network link.

Therefore, the illegal access to private information, and the possibility for an unauthorized user to

edit or delete reserved data are some of the issues that the existent security mechanisms try to

solve[45].

The Network security is mostly composed by the policies and measures taken in order to pre-

vent and monitor unauthorized access, misuse, modification, or denial of network resources. The

efficient implementation of an access control mechanism can avoid the unauthorized disclosure,

destruction, alteration, or copy of private digital information. Since the access control mechanisms

require a previous authentication of the user in order to identify who is trying to execute a specific

operation or gain access to a particular resource, it is indispensable, among other measures, to

ensure ever more secure and reliable user authentication mechanisms in remote scenarios[45].

This chapter is intended to introduce the remote authentication solution proposed on this the-

sis. There are three main aspects being covered by this chapter. The first section, 1.1, presents

the motivation for the development of this thesis, and an overview of the developed research. An

overview of the proposed solution, covering the goals that the solution proposes to achieve, and

the main contributions to the current authentication systems, are presented in section 1.2. The

final section of this chapter, 1.3, presents the structure of this document.

1.1 Background and Motivation

Password authentication schemes are the best-known, and still one of the most used authen-

tication mechanisms in contemporary computer systems [4]. In these authentication schemes,

the user has to present the correct secret for his specific identity. The first authentication system

required a verification table, on the server side. This table had each user ID linked with his cor-

respondent password. During the authentication, the remote server would consult the verification

2

1.1 Background and Motivation

table to check if the received password is equal to that linked with the ID claimed. This solution is

both not scalable and insecure, since the verification table grows with the increase of users, and

the user’s password is sent over an unsafe network link.

Lamport improved this system in 1981 at [21], by proposing a mechanism in which the pass-

word of the user is used to generate a sequence of secrets through hash chaining, such as used

by the S/Key OTP (One-Time Passwords) application [16]. However, this system also required

a verification table entry for each user, which is not scalable. Besides that, if the server was

compromised, and the entry for a user was changed with malicious intent, all the security of the

system would be compromised too.

In order to solve both problems, the lack of scalability from the verification table and the need

for the server to keep sensitive data from the users, new authentication solutions were developed.

On these newer solutions, the user authenticates locally on a trusted token, using his Personal

Identification Number (PIN) or Password, having this token perform the remote authentication

afterwards, usually using asymmetric cipher operations. An identity token, security token, access

token, or simply token, is a physical device that performs or aids authentication. This token

can be a secure storage device containing passwords, such as a bank card, remote garage door

opener, or even a Smart Card [30]. Due to their design and architecture, Smart Cards can provide

identification, authentication, secure data storage, and application processing [34]. These trusted

devices can securely store crucial information such as user identification and private keys, and

provide the necessary computation to perform security algorithms such as digital signing and

cipher operations.

Many authentication mechanisms using Smart Cards and the user password have been devel-

oped [6, 7, 20, 22, 23, 29, 39]. Some of these mechanisms allow the user to choose his password

freely, while others force the user to use a password generated during the registration process.

Usually, this password is then used in the authentication operations carried out by the Smart Card,

generating cryptograms that can be authenticated by the remote server.

However, the use of passwords and PIN in remote user authentication systems is not a per-

fectly reliable solution, since they cannot ensure the presence of the user being authenticated.

This happens since most of the available mechanisms for the user to insert his password are

not safe, allowing the theft of his secrets with simple techniques such as shoulder surfing. The

passwords can even be susceptible to dictionary attacks, and are easily transmitted to a friend,

lost, forged or stolen, thereby being unable to provide non-repudiation of the user.

Therefore, the development of the authentication mechanisms and techniques, over the years,

has lead to the use of the human biometric characteristics to perform the authentication. The

biometric authentication provides great benefits, making the authentication mechanisms more

reliable and easy to use by the users, being a good approach to replace the password-based

authentication systems [42]. Some of the above referred solutions, [6, 7, 22, 23] also use the user

3

1. Introduction

biometric verification in their systems, to ensure the presence of the user during the authentica-

tion, while not dismissing the password as a key component of the authentication.

In all the previous approaches, the local authentication of the user requires his password, forc-

ing him to memorize it. This can be a problem mainly for elderly people, having memory problems.

The basic issues with passwords can be easily understood, since they are related with the fact

that a memorable password can often be guessed or searched by an attacker, and also with the

fact that a long, random, or changing password is difficult to remember by the user [1, 23, 30]. A

biometric authentication system, on the other hand, is based on a person’s physiological and be-

havioral characteristics, being intrinsically related to a specific user. As such, biometric systems

have good advantage on commodity for the users, removing the need for the user to memorize

any additional information. Furthermore, since they are specific, unique and non transferable for

each individual, they improve the security of the authentication, and can be used to assure that

the user being authenticated corresponds to the person performing the authentication, since no

one else can insert his biometric data [14].

In an authentication system that exclusively uses biometrics, it is not safe to send the biometric

data of the user over a communication channel on an unsecure Network. There are also no

security mechanisms for the remote server to trust in a remote biometric matcher. Therefore, the

above referred systems using biometrics such as [22], use the user biometric data to generate

random information useful for the cryptographic systems, but still requiring a user password for the

generation of the cryptogram sent to the server. This password is generated by the server side,

usually using signatures created with its private secret. At the authentication time, the server will

then validate the user password through the sent cryptogram.

Even though the Smart Card performs a local user biometric authentication, ensuring his pres-

ence during this process, in the remote authentication part of the referred solutions, the biometric

data is merely used as a random number generator, having the security and authenticity of the

remote authentication procedure ensured with the user password.

1.2 Proposed Work Goals and Contributions

In this work we propose a biometric remote authentication system, which only requires the

biometric data of the user in the authentication process, discarding the need for the use of pass-

words. This solution overcomes all the issues regarding the security of the biometric template of

the user, and the confidence in a remote biometric matcher.

One of the goals of the proposed solution is to use existing technologies, thereby ensuring low

development costs, and a high compatibility with existing remote authentication systems. This

solution is therefore designed to be considered as a reliable possibility to integrate the future

authentication mechanisms in already existent remote scenarios. The proposed solution is based

4

1.3 Document Structure

on the use of Smart Cards, in which the private key and biometric template of the user are stored.

The Smart Card of the user is afterwards deployed in a Public Key Infrastructure (PKI) [32].

There are similar solutions in which the Smart Card is deployed in a PKI, being able to perform

the remote authentication, authenticating the user with his PIN. The Smart Card possesses the

private key of the user, as well as a public digital certificate signed by a trusted Certification

Authority (CA). The remote authentication process is based on a challenge response, in which

the response corresponds to the digital signature of the challenge, signed with the private key of

the user performed by the Smart Card. Not even the user has access to this private key, ensuring

that only the Smart Card knows it. The user authentication is performed locally in the Smart Card,

via his PIN.

One of the real applications using this remote authentication approach are the Electronic Iden-

tity (eID) cards. These cards are responsible for the cryptographic computations required for the

identification and authentication of a citizen. An example of this solution is the Portuguese citi-

zen card, where a Java Card stores the user information, fingerprint templates, PIN, private keys

and public certificates signed by a CA. The applet installed to perform remote authentications

follows the Identification Authentification Signature - European Citizen Card (IAS-ECC). These

Smart Cards also possess the capability to manage biometric templates, and to perform Match-

On-Card (MOC) operations.

The solution herein presented consists of replacing the local PIN authentication, in systems

such as the Portuguese citizen card, for a local biometric authentication. This is achieved by

only allowing a remote authentication after a biometric authentication is also performed. In this

solution, an applet implementing the IAS standard is responsible for the remote authentication of

the user. The IAS only has the private key released to sign the challenges from the remote server,

after a successful user biometric authentication in the MOC applet.

The obtained results show that it is possible to use biometric authentication in remote sce-

narios, taking advantages of their potential as a more secure and easy to use authentication

mechanism. It also eliminates the need for users to have different passwords in different sys-

tems.

1.3 Document Structure

This document consists of five additional chapters.

Chapter 1.3 presents the research performed during the development of this thesis, with an

analysis of the current state of the art. It presents the evolution of the authentication mechanisms

and the challenges of dealing with biometric authentication systems. It also covers the Smart

Card technology, the benefits of using the Java Card Platform, and also presents an overview of

existent solutions.

5

1. Introduction

In Chapter 2.4 the proposed remote authentication system is described. The authentication

scheme and the proposed architecture of the solution are presented, covering the needed Smart

Card modules and Middleware functionalities.

The implementation of the prototype of the proposed solution is described in chapter 3.3.

This section covers the challenges found in the different phases of the implementation, and the

technologies used in the development of the proposed solution.

Chapter 4.4 contains the assessment of the proposed solution. Here, the developed test envi-

ronment and results obtained during the evaluation process are described. The security analysis

of the proposed solution and implemented prototype is also performed.

The main conclusions obtained with the developed work are presented in chapter 5.4. This

chapter contains an overview of the developed work on this thesis, as well as the enumeration of

the main contributions of the work herein presented.

6

2
State of the art

Contents
2.1 Authentication . 9
2.2 Smart Cards . 18
2.3 Existent Solutions . 32
2.4 Conclusion . 34

7

2. State of the art

This chapter presents the research performed during the development of this thesis. The

current state of the art covering existent technologies and techniques used on the development of

the proposed solution are presented. This chapter also addresses the existing solutions providing

features similar to those that serve the purpose of the proposed solution.

The proposed solution requires the development of a remote authentication system capable

of using the user biometrics, taking advantage of the biometric authentication benefits. The state

of the art describes the existing systems and technologies supporting the current authentication

systems, in order to understand what can be exploited from the available solutions. Therefore,

the research herein presented, covers the authentication mechanisms used in remote scenarios

showing their benefits, but also analysing the problems that currently are preventing the secure

and efficient use of biometrics in current remote authentication systems.

The biometric authentication is analysed, describing the required processes for the develop-

ment of an authentication system using biometrics. The wide variety of biometric types is ap-

proached, giving a bigger emphasis to the fingerprint biometric, since it is the trait used in the

implemented prototype. A remote authentication overview is also performed, describing the Pub-

lic Key Infrastructure (PKI), used to manage and distribute the public keys of the users, and the

asymmetric cipher, playing a key role in the signing of challenges.

Smart Cards are electronic devices used in current authentication systems. They are also

used in the proposed solution, reason why they are described and analysed in this chapter. This

technology is used in the proposed solution to solve the main problems regarding the use of

biometrics in remote authentication scenarios, once they are secure and reliable devices capable

of providing crucial biometric operations, such as the match on card. Their main advantages are

presented, and the existent platforms discussed. It is given more emphasis to the Java Card

platform, since it is the Smart Card platform used in the implemented prototype.

The existent solutions presented in this chapter are intended to show the current implemented

systems, and their weaknesses. Therefore, they serve as a starting point to help understand what

needs to be improved and guaranteed by the proposed solution, taking into account what is used

in existent scenarios. The pros and cons of each solution are analysed, being given detail to the

requirements defined by the proposed solution that are not supported by them.

The current chapter is organized in 4 sections. Section 2.1 describes the state of the art of

the current technologies and mechanisms used by authentication in general. The Smart Card

technology is presented in section 2.2, where the Smart Card structure, the main benefits of

this technology, and the existent platforms with their added value for the proposed solution are

analysed. Section 2.3 covers the research of the existent technologies, performing authentication

using biometrics, where the main aspects that differentiate them from the presented solution are

analysed. To finalize, the main conclusions described on the state of the art developed in this

chapter are presented in section 2.4.

8

2.1 Authentication

2.1 Authentication

This section presents the state of the art on the technologies used to authenticate the user

in remote scenarios. The importance of the authentication in the current systems is described,

given the rapid growth of insecure computer networks, leaving users vulnerable to attacks. The

benefits of the current mechanisms are also discussed in order to understand what needs to be

improved in future work.

The authentication of the user in remote systems has not always been a big concern, given

that the networks were initially created in a trusted environment, where the goal of all users was

just the proper operation of services. However, the development of networks, and the use of

online services by a wide range of users on a variety of services, has led to the emergence of

malicious users, with the intention of violating the privacy and security of other’s information. The

authentication of a user before a remote server is a way for the server to know who is interacting

with it, in order to personalize the interaction, but also to be sure that it is not giving information

or access to a wrong user. Therefore, the development of secure and reliable authentication

mechanisms has been a major concern for researchers in the area of computer security, in recent

times.

2.1.1 Overview

The typical authentication process of the user in a remote scenario is performed by the user

sending his identity, and proving it to the remote server. To prove the identity of the user, some

information has to be sent to the remote server that only the user being authenticated is able to

know or generate. Therefore, the authentication mechanisms are highly dependent on security

functions related to the cipher of information and generation of random numbers, as well as hash

functions.

Given the development of the authentication mechanisms there are different types of authen-

tications. Therefore, the authentication factors are usually grouped into three categories related

to what the user knows (e.g., passwords), what the user has (e.g., tokens), and who the user is

(e.g., biometrics).The first, regarding what the user knows, deals with the need for the user to

memorize his secret, and becomes less secure each time they are used since it produces more

samples for the attackers to study. The second, is related with what the user has, forces the user

to keep a physical token such as a Smart Card in order to perform the authentication and in some

cases, the authentication system can be compromised if the user loses his token, and an attacker

finds out how to use it. The third type of authentication takes into account what the user is, con-

sidering something that is part of his identity such as his biometrics. This authentication factor

looks for unique features in each person, becoming a more difficult to copy or forge mechanism.

However, if the security of a biometric template is compromised, it is not easily replaced. These

9

2. State of the art

three authentication factors can be used alone, or be grouped, in order to create a multi-factor

authentication system where each authenticator factor has to be satisfied, in order for the user to

be correctly authenticated [30].

2.1.2 Evolution of Authentication

The initial authentication mechanisms were based on the presentation of a password in plain

text, to the remote server. In this context a password can be the definition of single words, phrases,

or Personal Identification Number (PIN). After receiving the user password, the remote server

compares it with the one stored in a password table, linked to the identification of the user. How-

ever, since the techniques of the attackers have been evolving, the need for the protection of the

user password during the authentication process arose [21].

Lamport proposed a method of user password authentication over insecure channels, in 1981

at [21]. The main challenges that the author intended to address were the gain of access to

the password stored on the system by an attacker, and the resilience to the interception of the

communications between the user’s terminal with the system, or against the observation of the

execution of the password checking program. The author also had identified the problem of the

inadvertent use of the user password, for example being guessed by an attacker, but described it

as a problem that could not be prevented by any password protocol. The proposed authentication

mechanism bases its security in the one-way encryption functions, and it is designed to prevent

replay attacks. However, this solution uses a password table to ascertain the legitimacy of the

user login, which can cause problems if the attackers are able to modify it. The use of that kind of

tables has other inherent problems such as its growth with the increase of users on the system.

To improve the security of the existent remote authentication systems, the Hwang, Chen, and

Laih have proposed a non-interactive password authentication system without password tables,

in 1990 at [39]. The proposed authentication system is based on Shamir’s ID-based signature

[41], being easy to verify the authentication of a user by anyone inside the system. This system

discards the use of password verification tables by using Smart Cards, and a public key cryp-

tosystem [37], and at the same time ensures the resilience to the personification of a user even

if an attacker is able to capture the messages sent during previous authentications. However,

this system keeps forcing the user to use a password, and moreover, the user is forced to use

a password that is assigned to him by the system. This password is used as a parameter in the

cryptographic operations performed by the Smart Card during the remote authentication process.

Jan and Chen proposed a practical system to solve the authentication problems, existent at the

time, with the concept of public key distribution, in 1998 at [20]. This system is based on the Diffie

Hellman public key distribution system [17], and uses Smart Cards. It provides the possibility for

users to change their passwords freely. However, the security of this system is strongly linked to

the protection of the private key of the remote server, and continues to require the user password

10

2.1 Authentication

in the login process.

Hwang and Li have also proposed a remote user authentication scheme using Smart Cards

in 2000 at [29]. However, this system is based on ElGamal’s public key cryptosystem [12]. The

scheme is divided in three phases, the registration where the user receives his password, the login

in which the user inserts his password to the Smart Card in order to perform the remote authenti-

cation, and the authentication corresponding to the remote server validation of the cryptographic

operations performed by the user’s Smart Card. Although its security is based on a private secret

of the remote server, this system could not withstand attacks by user impersonation.

In order to improve the security on the authentication mechanism proposed in [29], Lee, Ryu,

and Yoo proposed a fingerprint-based remote user authentication scheme using Smart Cards, in

2002 at [22]. This system is also based on ElGamal’s public key cryptosystems [12], however

the authentication requires the user identification, password, biometrics, and Smart Card. This

system was designed to resist replay attacks, and impersonation of the user. It uses two private

secret on the server side, and the Smart Card of the user keeps the public information needed

during the authentication process, and also provides the local biometric authentication of the user.

The biometric map of the user fingerprint is also used to generate the random numbers needed

for the ElGamal’s operations. Even with all the improvements of this system, it cannot withstand

masquerade attacks, since a legitimate user who registers a legal pair of identity and password

can pass the fingerprint verification of his/her own Smart Card, and easily masquerade another

valid pair of identity and password without knowing the two secret keys of the remote system [7].

Chen, Jan, and Tseng have also proposed in the same year, 2002, an efficient and practical

solution to remote authentications using Smart Cards at [6]. This solution bases its security on the

one-way hash functions. Its supports the mutual authentication between the user and the remote

server, and the user can freely choose his password. However it uses timestamps in order to avoid

replay attacks, which forces the clock synchronization between the entities using the system.

Lin and Lai have proposed a flexible biometric remote user authentication scheme, in 2004 at

[7]. This system is an improvement of the authentication system proposed in [22], covering its

vulnerability to masquerade attacks. Furthermore, this system enables the users to conveniently

choose and change their passwords. This scheme is also based on the ElGamal’s cryptosystem,

fingerprint verification, and Smart Cards. However, despite all the benefits in security brought by

this system, it is susceptible to the server spoofing attack [23].

[23] presents an authentication mechanism proposed in 2010 by Li and Hwang as an efficient

biometric-based remote user authentication scheme, using Smart Cards. This solution bases

the security of the authentication mechanism in one-way functions, biometric verification, and

Smart Cards. This system still relies on user passwords; however enabling the users to change it.

Another advantage comes from the fact that this system does not require synchronization of the

system’s clock.

11

2. State of the art

As it can be seen by the presented evolution of the authentication mechanisms, at least since

1990 the benefits of Smart Card shave been widely adopted. Therefore, many e-commerce appli-

cations, network security protocols, and also remote authentication schemes have been designed

to use Smart Cards [6].This happens since they can compute asymmetric cryptography opera-

tions, being able to authenticate the user remotely. The proposed solution improves the authen-

tication mechanisms already developed, since it releases the user from the obligation of using a

password during the authentication. This feature can be achieved by integrating the Smart Card

of the user in a PKI [32], and combining the system with a local biometric authentication of the

user. The PKI system and the biometric authentication mechanism are described in the following

section.

2.1.3 PKI

The goal of a PKI is to enable secure, convenient, and efficient discovery of public keysused

in asymmetric cryptographic systems [32]. The asymmetric cryptographic systems imply the use

of a public and a private key for each user, unlike symmetric cryptographic systems where each

connection between two users requires a shared private secret. In asymmetric cryptographic sys-

tems, the private key of a user is only known by him, while the public key, as the name suggests,

can be known and used by any user of the system. The use of asymmetric ciphers in authenti-

cation systems requires fewer cryptographic keys shared by the users of the system comparing

with those using symmetric ciphers, since for N different users it is just needed to share their re-

spectively public keys, i.e. N keys. Although asymmetric cipher is a more effective cryptographic

mechanism, providing non repudiation and requiring fewer keys shared among the users, it re-

quires more computational power than symmetric cipher [45].Thus, asymmetric encryption is only

used in the process of user authentication and symmetric key exchange and not in the cipher of

data during communications.

The main issues regarding the use of asymmetric cipher in remote authentications are related

with the restriction of access to the private key of the user only to himself, with the reliable public

key distribution, and with the management of the life time of each key pair [45]. A Smart Card

electronic device can assure the confinement of the private key of the user, as it will be shown

later in section 2.2. The other two concerns can be solved using a PKI, and public certificates.

The user public key can be distributed by hand, by the user personally delivering his public

key to the other entity. They can also be embedded in programs such as in the case of the web

browsers. Another way to distribute the public key of the users is to use a certificate chain, where

each public key is associated with a public digital certificate signed by a Certification Authority (CA)

(Certification Authority). Each certificate has the user information, and his public key. If an entity

trusts in the CA, will also trusts in the digital certificate signed by the CA, and thus can be sure

from who is the public key stored inside. These digital certificates have the validation time of the

12

2.1 Authentication

public key, from which ceases to have effect. The chaining of certification composed by the CA,

and all the software and hardware components used in the management and distribution of public

keys and digital certificates, constitute the PKI [32, 45].

2.1.4 Biometric Authentication

”Biometric recognition is the use of distinctive anatomical and behavioral characteristics or

identifiers, to automatically recognize a person” [25]. The anatomical properties are related to

the shape of the body, while behavioral properties are related to the behavior of a person. A

biometric authentication system can provide security, efficiency, reliability, and convenience for

the users [25]. These advantages come from the fact that biometric characteristics are part of

each individual, and specific to each one. In this sense, no one can share their biometrics with

a friend, or even lose them. The biometrics are, thus, more difficult to abuse than traditional

methods of identification and extremely difficult to guess, share, misplace, copy, or forge [33].

2.1.4.A Biometric Features

The main characteristics desired in a biometric feature are universality, distinctiveness, per-

manence, and collectability. The universality feature ensures that all people have the biometric,

thereby avoiding that the biometric authentication can only serve one group of people. The dis-

tinctiveness is the property to ensure that for any two different biometric samples (of different

people), there are no two equals. The permanence of a biometric is based on the fact that this

feature is time-invariant and thus, an individual can be identified through a biometric sample col-

lected a long time ago. The collectability ensures that biometrics can be taken from their carrier

and quantified. The possibility to quantify the biometric traits ensures the ability for an automatic

system to perform a biometric authentication of a person [33].

To evaluate biometrics, in order to enable the comparison between them, some characteristics

should be taken into account: performance, acceptability and circumvention. Performance mea-

sures the accuracy, speed, and resource requirements to perform an authentication based on

that biometric. Acceptability relies on the availability of the submission of the biometric collection,

presented by the people to be authenticated. Circumvention is the characteristic that makes the

comparison of biometrics possible, in terms of immunity to fraudulent methods and attacks [33].

2.1.4.B Authentication Flow

The first requirement of a biometric system is the enrollment phase. In this phase a new entity

is registered in the system. Information about the identity of a person is stored associated with its

biometric template in a remote data base, or in tokens such as Smart Cards. The enrolment phase

is divided into the capture step, feature extraction step, template creation step, and data storage

step [33]. In the capture step the capture of the user’s biometric characteristics is performed,

13

2. State of the art

where each type of biometric requires its own type of capture mechanism. Normally in this phase,

a quality analysis is done in order to determine if the capture made has reached a certain level

of quality. This analysis assures that the biometric capture can be used in the later stages, with a

high degree of reliability, or determine that another capture has to be made [1].

After the capture step, comes the feature extraction, in which the capture previously done

is analyzed. This step consists on the creation of the biometric representation, resultant from

the computing of the biometric particularities. This step ends with the creation of the biometric

template. The template is the final result of the biometric trait representation, and contains the

extracted features in a specific format. The template is, thus, the raw material used in the matching

phase of recognition [25].

In a recognition biometric system, two modes are possible: the identification and the verifica-

tion. The identification is based on the identification of a person in the system, by comparing their

biometric sample with all biometrics templates stored in the system database, until one matches.

This process can take more time and be more inaccurate than verification, since the match pro-

cess is done more than once. The verification module, on another hand, corresponds to the

comparison between the biometric sample with the biometric template stored in the system data

base, associated with the id claimed by the person [33].

Traditional authentication methods work for positive recognition only, while biometrics can be

used for negative recognition too. This happens in the identification module, when it is possible to

detect that a person is who it denies to be. This feature can prevent that multiple identities of the

same person are registered in the system [33].

The recognition phase follows a protocol very similar to the enrolment. First a capture of

the user biometric is done, followed by a feature extraction step. The difference is on the final

steps, where the template creation and data base storage are replaced by the matching stage.

The capture follows the same quality analysis, to provide a reliable biometric data to the feature

extraction step. The match module depends on what module the biometric system is. If it is the

verification module, the features extracted from the capture are compared with the template stored

with the identification of the claimed user. If it is the identification module, the features extracted

are compared with all the templates in the system, in order to determine who is the person, or if

the person is not registered in the system [25].

2.1.4.C Error Analysis

The most common errors in biometric systems are derived from imperfect image capture con-

ditions, changes in the users physiological or behavior traits, ambient conditions on the capture

phase, or by the interactions between the user and the sensor [33]. These type of situations can

introduce errors in the biometric data captured, due to the useful information lost in the process.

Due to the need for computation and automation of the biometric authentication systems, each

14

2.1 Authentication

biometric must have its corresponding digital representation. Since a characteristic of biomet-

rics is its individuality among each individual, typically the space needed to store the biometric

information has to be big enough. However, in the process of a digital representation, there are

limitations inherent to the technology, and to the algorithms used, which results in errors of limited

representation. In some biometrics, such as face analysis, there are also errors associated with

its variance, which can have influence on the applicability of this type of biometrics in some types

of applications [25].

The degree of reliability of a biometric authentication system can be measured by the False

Match Rate (FMR) and False Non Match Rate (FNMR) (False Non Match Rate) [33]. These mea-

surements are associated with the final result of a biometric system, and with their assertiveness.

In this sense, the FMR is the rate of biometric measurements and analysis saying that the bio-

metrics of two different persons, belong to the same. By the other hand, the FNMR is the rate of

biometric measurements and analyses saying that two biometric measurements from the same

person belong to two different persons. The accuracy of the biometric systems also takes into

account the Failure To Enroll (FTE) errors, and the Failure to Acquire (FTA) errors, coming from

failures in detection, capture or processing of the biometric traits [25].

Due to the errors and limitations inherent to the biometric systems, the matching module can-

not be based on a rigid scheme or algorithm. Thus, the result of the comparison between the

template storage in the enrollment phase, and the biometric sample, is a matching score. This

score is then compared with a threshold defined on the system, in order to determine the final

result [33]. Because of the errors caused in the capture, features extraction, and matching pro-

cess, biometrics technology cannot be used to establish an absolute identification of a person.

However, the positive and negative identification error rate is very small, making the biometric

systems sufficiency reliable to be used in the highest security systems in the world [19].

There are a large collection of biometric technologies types that can be used for authentication

and identification of an individual, like facial feature, voice print, fingerprint, iris scan, retina scan,

hand geometry, written signature, keystroke dynamics, lip movement, thermal face image, thermal

hand image, gait style, body odor, DNA scan, ear geometry, finger geometry, palm geometry, vein

pattern [9]. All these biometric features have their advantages, disadvantages and different types

of error rate. However, the fingerprint is the most widely used biometric feature. In fact, some

times, people confuse biometrics with fingerprint. This is because fingerprints have the distinct,

and persist features of a biometric, and have been used for over 100 years [25]. With such time,

and impact in society, fingerprint technology has reached a high maturity, and there are many low

cost equipment available [25]. For these reasons, fingerprint biometrics is analyzed next.

15

2. State of the art

2.1.4.D Fingerprints

Fingerprints are one of the most used body characteristics in biometric systems. They have the

main features to be considered a very useful and reliable source of authentication, and are already

a mature technology. The main biological principles of fingerprints are their individual epidermal

ridges, and furrows in each person, and despite the existence of a wide range of characteristics to

analyze in fingerprints, they are within limits that allow their classification. Another characteristic

lays on their invariance, making the configurations and minutiae, permanent and unchanged in a

person life, unless a person has a cut or a burn on his finger [19].

A biometric authentication system based on fingerprints basically follows the structure of a

normal biometric system, where the enrollment is an important and indispensable phase. This

phase can have errors associated with the capture of the biometric traits, caused by the different

positions of the finger on the sensor, or by the low quality of the fingerprint image, among other

problems surrounding biometrics capture. However, once this branch of biometrics has been stud-

ied for over 100 years, it has a high maturity. Besides the maturity in the analysis of this biometric,

the low cost of their capture equipment, and the global knowledge about it, make fingerprints one

of the most currently used biometrics [25].

The capture of a fingerprint can be performed in two main different ways. The goal is the

same, scan an image of the finger to be analyzed by a computer. Therefore, the capture can be

done through the scan of an image in which an inked finger is marked, or through the direct scan

of the fingerprint by a sensor connected to a computer [42]. There are various types of fingerprint

sensors. Among them are electronic field sensors, optical sensors, thermal sweeping sensors,

and synthetic generators [3]. Each one of these capturing techniques has their own technologies,

price, and error percentage, therefore providing different performances.

After the capture of the fingerprint, comes the feature extraction part, corresponding to the

analysis of the image scanned. This analysis tries to extract useful information about the fin-

gerprint, in order to get authentication data from it. This process is not always done in perfect

conditions due to the errors in the previews capture phases [33]. Apart from this fact, it has to be

considered the fact that the space to store the template is limited, creating the need to filter the

information collected. Therefore, the distinctive information available in a fingerprint is not totally

utilized sometimes [25].

The feature extraction and analysis phase consider two levels of information on each finger-

print image. In a first level the ridge line flow is considered, ranging between left and right loop,

whorl, arch and tented arch. These features are not enough to reliably identify a person, however,

they could be useful to eliminate some candidates and accelerate the match process. The second

level of the analysis could get up to 150 different ridge local characteristics between bifurcation,

ridge ending, dot, ridge crossing, etc. All these features are collected with their type and reference

location, to be stored in a biometric template. This template is much more accurate than the result

16

2.1 Authentication

of the first analysis, and thus, may provide enough information to reliably identify a person [25].

2.1.4.E Remote Authentication Scenarios

Despite the fingerprint biometric systems being a secure and reliable system, comparing with

the usual security systems based only in passwords, the consequences of a forged biometric are

a bigger issue. In a password based system the password is changed and the problem is solved,

on the other hand when a biometric system is compromised, the template forged cannot be used

again. Forging a fingerprint is difficult, being necessary expertise and laboratory equipment to

create a fake finger, and there are no economies of scale to repeat easily this attack [33]. More-

over, it is possible that some biometric sensors have protection mechanisms such as verification

of blood pressure, conductivity, temperature, and detection of the human skin [24]. Beyond that,

some systems use the combination of more than one biometric system in order to increase levels

of security in the authentication systems [33].

Despite all the advantages in the use of biometric authentication, this approach is not usually

used in remote authentication systems. The reason behind the reluctance in the use of biometrics

in remote systems is related with the concern regarding the protection of the biometric template.

As seen previously, once compromised, the biometric template may not be able to be used again.

There are two main concerns for the usage of the biometrics in remote authentication systems,

who captures the biometric data, and who perform the match operation.

The biometric capture has to be performed by a biometric sensor placed where the user is

during the authentication process, once it has to have direct access to him. Therefore, the remote

server has to trust in this entity as a reliable biometric sensor, which is one of the bigger concerns.

Apart from this, it is necessary to perform the match of the user biometric data, against the

previous enrolled template. If it is the remote server performing the biometric match, it raises the

issue of having the biometric template being sent to the server over an insecure network link.

Even if the template is sent over the protection of a secure channel, if the security of the channel

is compromised in the future, the template is also compromised, and thus can never be used

again[42]. The alternative would be for the server to trust in another entity to perform the local

biometric authentication of the user, and then inform the server if the biometric authentication of

the user was successfully performed. This option also requires the server to trust in a remote

entity, responsible for performing the match operation. Moreover, the biometric sample captured

of the biometrics of the user has to be fresh, meaning that it has to be done during the capture of

the user’s biometric information, ensuring that the biometric template used in the match operation

was really captured in the moment of the authentication [Republic].

Some solutions have been studied lately, in order to try solving these issues, and allowing the

use of biometrics in remote authentication systems. One of the solutions presented by Dodis,

and Reyzin and Smith in [11], showed how to use biometric data to securely derive cryptographic

17

2. State of the art

keys, being then used for the purposes of authentication. These solutions are based on the

generation of public information from the biometric template, bearing in mind that this is not exactly

reproducible. This public information may be subject to modification by an attacker. In addition,

errors associated with existing tolerance guaranteed by these systems, can generate a large

number of false negatives. This solution maintains the need for the remote server to trust in an

entity that captures the user’s biometric data.

The proposed solution in this thesis is based on the use of a Smart Card, to perform the local

biometric authentication of the user. The next section 2.2 presents the Smart Cards as a reliable

source, able to perform the required security operations.

2.2 Smart Cards

This section has the purpose of resume an overview about the current state of the art of the

Smart Cards. The main benefits and utility of the Smart Cards in current society are presented. It

is also showed the main characteristics of the Smart Cards, as well as some operating systems

and platforms developed to run on these electronic devices. It is given more detail on the Java

Card platform, once it is the smart Card platform used in the implementation of the prototype of

the proposed solution.

The Smart Card technology is used in the proposed solution, enabling the securely use of

the biometric authentication in remote scenarios. In the proposed system, Smart Cards are re-

sponsible for storing the user biometric template, and for computing the match on card operation.

This section describes the importance of these devices in current days, and the main benefits

that makes them so popular and used. It is shown how Smart Cards are a very useful instrument

in people lives, protecting against attacks on information security, being at the same time small,

portable, and secure electronic devices [26].

2.2.1 Overview

In general, cards can be divided into cards with chips, and cards without chips such as the

magnetic cards. The chip cards, or Integrated Circuit Card (ICC) can be considered memory cards

or processor cards, depending on their chip structure and features. The processor cards have the

ability to store information, and also to process it. This type of cards can be further subdivided into

processor cards with or without coprocessors. The coprocessors are responsible for the execution

of the asymmetric cryptographic algorithms. The cards with a chip usually communicate through

the use of contact pads. However, these cards can contain an embedded antenna to perform

the communication with the host side, instead of using the contact pads attached to the chip

[5, 34]. The cards with antenna and contact pads can be called by combined or hybrid cards,

depending on the amount of chips that they have. The combined cards contain one chip that can

18

2.2 Smart Cards

be accessed through either contact pads, or an embedded antenna, while hybrid cards contain

two or more embedded chips, such that some communicate through the antenna and others

through its contact pads.

The development and functionality of Smart Cards are strongly driven by international stan-

dards. Therefore, the International Organization for Standardization / International Electrotech-

nical Commission (ISO/IEC) 7816 is the standard for contact Smart Cards, defining the physical

characteristics of the integrated circuit cards, their dimensions and the location of the contact

pads, as well as specifying the electronic signals and transmission protocols used in the commu-

nication with the host side. Likewise, the ISO/IEC 14443 is the standard for contactless Smart

Cards, specifying their physical characteristics, the radio frequency power and signal interface

used for the communication with the host side, as well as defining the initialization requirements,

the anti-collision mechanisms, and the transmission protocol specifications.

Despite the existence of various types of cards, to be considered a Smart Card, a card has

to respect some important requirements, such as those defined in [26]. By definition, a Smart

Card is an electronic device that can participate in an automated electronic transaction, with

security, and is not easily forged or copied. In this sense, a Smart Card must have memory

and a microprocessor, to be able to store and compute data, and to assure the execution of

some security algorithms and protocols. A Smart Card has also to be a tamper-resistant system,

in order to resist to the physical attacks made directly to the chip [26]. This definition makes

impossible for the magnetic stripe cards to be considered Smart Cards, once they do not have

processing power, and they can be easily copied or forged [5]. Even some chip cards cannot be

considered Smart Cards, if they are only memory cards without a microprocessor to ensure the

requirements defined above [26].

2.2.2 Technology Specifications

A contact Smart Card can have six or eight visible contacts points: Common-Collector Volt-

age (Vcc), Reset (RST), Clock (CLK), Ground (GND), Standard or Proprietary Use (SPU), In-

put/Output (I/O) and 2 Reserved For Future Use (RFU). The Vcc is used to supply voltage to the

chip, the RST is used to reset the microprocessor, the clock supplies the external clock signal to

derive the internal signal of the chip, the GND is the reference zero voltage, the SPU is for stan-

dard or proprietary use and is optional, the I/O is used to transfer data and commands between

Smart Card and the host side in an half-duplex mode, and the two RFU points are reserved for

future use, being considered auxiliary points [34, 35].

The efficiency of a Smart Card is largely determined by its microcontroller. The microcon-

troller’s chips are specially adapted for each Smart Card, in terms of electrical and physical pa-

rameters, such as the maximum current consumption, the range of allowed clock frequencies, and

the allowable temperature range. Smart Card microcontrollers are especially hardened against

19

2. State of the art

attacks, including the detection of under voltage or over voltage conditions, and the detection of

clock frequencies outside the specified range. Therefore, the microcontrollers usually incorporate

light and temperature sensors, in order to recognize the attacks, and respond accordingly [34].

Typically, the internal structure of a Smart Card microcontroller is composed by the Central

Processing Unit (CPU), the Random-Access Memory (RAM), the Read-Only Memory (ROM) and

the Electrically-Erasable Programmable Read-Only Memory (EEPROM). The CPU can be an

8-bit, 16-bit or 32-bit processor, and the clock speeds up to 5MHz. If the card clock is multiplier

by 2, 4 or 8, the speed up can reach 40MHz. Some Smart Cards are design to have a built-in

coprocessor Numeric Coprocessor (NPU), for processing cryptography operations [5]. In terms

of memory, the ROM is where the operating system is placed, while some operating system

components and the running applications among with their persistent associated data are stored

in the EEPROM. The RAM is used as working memory to hold data during computation, likewise

it happens in computers. The ROM capacity of the Smart Card microcontrollers typically ranges

from 16 KB to 400 KB, while the EEPROM ranges from 1 to 500 KB, and the RAM from 256 Bytes

to 16 KB [34].

2.2.3 Communication

The communication with Smart Cards is defined in standards, in order to be assured the

interoperability between different Smart Cards, and the terminals. The specifications for the com-

munications with the contact Smart Cards are specified in the ISO/IEC 7816, while for the con-

tactless Smart Cards the communication is defined by the ISO/IEC 14443 standard. Typically, in

the contact Smart Cards, the communication is done over a half-duplex bit-serial link. To prevent

collisions, the communication follows the master and slave principle, in which the Smart Card is

the slave, while the terminal plays the master. The communication starts always on the master

side. In the beginning of the communication, the terminal sends a reset signal, for which the card

responds with an Answer To Reset (ATR), optionally followed by the protocol parameter selection.

After the initialization, all the communication is based on the responses of the Smart Card to the

commands sent by the terminal. The communication procedure for contactless Smart Cards is

similar, however deal with more difficult conditions given the increased likelihood of interference,

and data loss, in wireless communications [34].

The transport layer incorporates several protocols to transfer the Transport Protocol Data

Unit (TPDU). The most used transport layer protocols in the contact Smart Cards are the T=0

(byte-oriented), and T=1 (block-oriented) protocols. The USB protocol, is widely used in the PC

environment, and can achieve great improvements in the rate of communications, from the 115

kbps in T = 0 and T = 1, to 1.5Mbps in low-speed USB, or 12Mbps in full-speed USB. The most

widely used transport protocols in contactless Smart Cards are the ISO/IEC 14443 Type A, and

Type B. Both protocols are half-duplex, and strongly based on T=1. The main differences between

20

2.2 Smart Cards

them are based on modulation, coding and protocol initialization [34]. The communication with

the contact Smart Card is done through a Card Acceptance Device (CAD). The CAD can be

either a reader or a terminal. A reader is considered a slot, where the Smart Card is entered, able

to perform the communication between the Smart Card and the host side by serial, parallel, or

even through a USB port of a computer. On the other hand, a terminal integrates a Smart Card

reader as one of its components, but also have the ability to process data [5]. The communica-

tion with the Smart Cards contactless are over the air, however they usually have a maximum

distance of 10 cm from a terminal. Derived from the limitations on communication distance, they

are considered proximity cards, and operate on the principle of inductive coupling via an Radio

Frequency (RF) magnetic field with a frequency of 13.56 MHz, that is generated by the terminal

or PCD (Proximity Coupling Device) [34].

The communication at the application layer is defined in the ISO/IEC 7816-4. The commands

and responses exchanged between the Smart Card and the host side are encapsulated over

Application Protocol Data Unit (APDU) messages. The APDU commands have their structure

defined by a mandatory header followed by an optional body, while the APDU responses are

constituted by an optional body followed by a mandatory trailer. The fields of the mandatory

command header are CLA, INS, P1 and P2, which correspond respectively to the class of the

instruction, the specification of the instruction to call in the context of the previously selected

application, and two input parameters. The optional body of the command is composed by Lc,

data field, and Le, in which the Lc corresponds to the data field length, while the Le corresponds

to the length expected in the response. In the optional body of the response comes the data field,

while the mandatory trailer response is composed by SW1 and SW2, representing the status word

reporting the success of the execution, or a specific code with the meaning of the error occurred

[5, 34].

2.2.4 Operating Systems

The operating system running on the Smart Card is an important requirement, determining the

behavior of the card by providing a dedicated Application Programming Interface (API) specific for

the chip; therefore, considering the hardware that is below it. The API determines the usability of

the card by providing higher level functions used by the applications satisfying the user’s needs.

However, some Smart Cards operating systems are not robust and flexible, making life difficult

for the application developers. Due to this fact, some platforms and specifications have been cre-

ated, providing an abstraction layer between the Smart Card native system, and the applications,

through an common and useful API [26].

Likewise computer operating systems, the Smart Card operating systems have to provide

the resource sharing management, and an environment in which the applications may run [26].

Therefore, the main principles of a Smart Card operating system are to provide the control of the

21

2. State of the art

communications between the Smart Card and the host side, ensure proper and effective execution

of the received commands, manage the file system, manage and execute the program code of

the applications previously installed, and handle all encryption operations [35].

The structure of the Smart Card file system is defined in the ISO/IEC 7816-4. It is based

on a tree structure, with a root directory called Master File (MF). Each file system can only

have one MF. From the MF derive various Dedicated File (DF) and/or Elementary File (EF),

corresponding respectively to directories and binary files to store data [34]. Each DF can have

DF or EF inside. The standard for file system names in Smart Cards requires that each EF, DF,

or MF has a File Identifier (FID) of 2 Bytes. Each DF has a supplementary name, in addition to

its FID, with a length between 1-16 Bytes, including an Application Identifier (AID) between 5-16

Bytes. The AID consists of the combination of the Registered Application Provider Identifier (RID)

with the Proprietary Application Identifier Extension (PIX). Each EF has an additional Short File

Identifier (SFI) with 5 bit in addition to the FID [34].

The two most relevant standards, to base the development of the Smart Cards operating sys-

tems are the ITSE EN 726-3, and the ISO/IEC 7816-4 [35]. Smart Card operating systems can

be classified, according to the methods used to download and execute applications, in native op-

erating systems, or interpreter-based operating systems [34]. The native Smart Card operating

systems are able to execute applications written in the native machine language of the micropro-

cessor. These systems do not need to use an interpreter or compiler to run the application code,

therefore achieving a faster response time, once the applications run at the full speed supported

by the processor. However, this gain in computational efficiency costs an increase of complexity,

and raises the extension of code [35].

The interpreter-based Smart Card operating systems incorporate an interpreter, responsible

for translate the applications into the machine language of the processor [34]. This interpreter al-

lows developers to program in high-level programming languages, abstracting memory manage-

ment concerns. However, these advantages come at the cost of performance, since the executed

code does not run directly on top of the card microprocessor, being the overall execution time

worsened relative to the performance of the interpreter on the card [26]. The implementation of a

full compiler, and interpreter, inside a Smart Card requires a lot of memory, reason why others im-

plementations are also considered. On implementation consists on the interpretation of a pseudo

code similar to the machine code of the microprocessor. Nevertheless, others solutions can split

the interpreter in two modules, one executed by the Smart Card, and the other by the host side.

These modules split the complexity and the effort of the system, between the Smart Card and the

host side, where the computation capacity is much bigger [5].

As mentioned earlier, the core code of the Smart Card operating system is placed on the ROM

memory. In fact, there are some operating systems that keep the application code in the ROM

memory too. This type of Smart Card operating systems are typically design to be single appli-

22

2.2 Smart Cards

cation oriented. In this sense, the application installed during the issue of the Smart Card, define

exclusively its purpose [26]. However, the need to maintain a dynamic and updated system by the

companies, led to the need for creation of smart cards capable of withstand multiple applications,

and manage its installation and life cycle after the card has been issued [43].

There are different implementations of Smart Card operating systems. These operating sys-

tems have different goals, achieving different levels of complexity and security. Besides the de-

veloped Smart Card operating systems, also platforms to run on top of them were developed, in

order to achieve portability. Therefore, the developed platforms were intended to execute appli-

cations running on a Smart Card produced by a specific manufacturer, in smart cards from other

manufacturers [26]. A brief resume of some operating systems and platforms are described next.

The MPCOS (Gemplus)1 is a multi-application payment operating systems, for Smart Cards

[28]. This Smart Card system was not developed to independently provide an installation process

of applications, reason why it is considered a native system [26]. However, their compatibility with

the Java Card platform gives to developers the possibility to create and install their own applica-

tions after the card has been issued [28].

The STARCOS (Giesecke Devrient)2 Smart Card Chip Operating System, was a native and

monolithic operating system.[26] However, the new versions are developed to support several ap-

plications in the card, introducing the functionality of multi-application. They also support several

hierarchical file structures, and various access controls [15]. Therefore, it is now possible to install

more than one application in the EEPROM of a single STARCOS card. The STARCOS provides a

Toolkit composed by tools and libraries (API) useful in the development of the applications. How-

ever, the definition of the security level of an application is a concern that is left to the designer.

This operating system support also Java Card technology, with all inherent advantages of this

platform [15].

MultOS (Multiple Operating System)3 is an operating system for smart cards that provides the

highest level of security. It has an Information Technology Security Evaluation Criteria (ITSEC) E6

certification, which corresponds to an Evaluation Assurance Level (EAL)7 from Common Crite-

ria (CC). As the name suggests is a multi-application operating system, and is capable of handling

with the deployment of applications after the card has been issued [26]. This system provides,

beyond the features of a normal operating system, an API for application developers. Therefore,

the installed applications run on top of the MultOS Virtual Machine. The development of appli-

cations has to be performed using a specific programming language, MEL (MULTOS Enabling

1http://www.gemalto.com/
2http://www.gdai.com/
3http://www.multos.com/

23

2. State of the art

Language). MEL is a Smart Card - optimized language for MultOS systems, and is basically com-

posed by assembly instructions and primitives [38]. To provide more flexibility and acceptance

in the programmer’s world, were created tools and platforms to compile C, Java, and Visual Ba-

sic applications into the MEL language. This improvement makes these languages compatible

with MultOS, until a certain level [14]. The MultOS includes the specification and support for the

download and deletion of applications, ensuring a certificated and secure process. Therefore, the

applications have to be certificated by the MultOS CA before being installed in the MultOS system

[18, 26].

Java Card technology4 is an open source Java Card platform, able to be loaded into a wide

range of Smart Cards from different manufactures. Unlike the systems previously discussed, the

Java Card is not an operating system but a platform [26]. This platform allows programmers to

develop applets in a constrained Java code language, due to the hardware limitations of the Smart

Cards. Therefore, this language is simpler than the original Java, although keeping a subset of the

popular Java language API [38]. The Java Card is a security and reliable platform, which makes it

one of the most used technologies. This platform is embedded on top of the Smart Card operating

systems, and is composed by the Java Card Runtime Environment providing an abstraction layer

to the applications. The applets run on top of the Java Card Virtual Machine [5]. The Java Card

platform is detailed in section 2.2.5.

GlobalPlatform 5 defines a set of specifications for multi-application Smart Card systems [26].

It also provides specific configurations and supporting documents for market and application pur-

poses. The GlobalPlatform is agnostic regarding the underneath Smart Card architecture. The

purpose of GlobalPlatform is to provide security, interoperability, flexibility, multiple suppliers, in-

dependence of technology vendors, and future-proofing. Due to this goals, the GlobalPlatformm

provides an open and interoperable infrastructure for Smart Cards, devices, and systems [26].

Some Java Card implementations rely on the GlobalPlatform specifications for the secure man-

agement of applications creation, deployment and deletion.

Windows for Smart Card (WfSC)6 was created by Microsoft to directly compete with the

multi-applications operating systems available. For some sources like, [26], this system almost

disappeared. One justification is based on the strong, secure, and efficient performance of the

current available implementations, and standards. Although the project was never abandoned,

and likewise it may disappear, it can become a success. Their design aims to achieve low re-

sources cost, and to extend the pc environment into the Smart Card. Microsoft claims that WfSC

4http://www.oracle.com/
5http://www.globalplatform.org
6http://www.microsoft.com

24

2.2 Smart Cards

will be less expensive (by a factor of 2 to 3) than either Java Card, or MULTOS [18]. WfSC is

a customizable Smart Card Operating System (SCOS). Therefore, the decision to add specific

components like runtime environment to run applications being installed, the EMV functionality, or

cryptographic functions is left to the Smart Cards provider [18]. Apart from implementing the op-

erating system features, this system also provides a high-level API for the applications. Therefore,

this system allows for the development of applications in Visual Basic (VB) or C++, and ensures

the execution of the compiled byte code in its on-card virtual machine [38].

Smart-Card.NET 7 is a multi-application platform on top of a specific operating system. Since

this platform inherits the advantages of the .NET framework, the developers are allowed to de-

velop applications in multiple programming languages like Charp, C++, VB, JCharp, or JavaScript

[26]. The .NET platform is composed by an on-card and an off-card module. On the card is placed

the .NET Operating System, and the Card Module Assembly, while out of card are placed the cre-

dentials Graphical User Interface (GUI) for the user authentication, and the mini-driver ”.dll”. The

applications also run on top of a virtual machine, offering resources management and security, as

well as a garbage collection mechanism [26].

BasicCard 8 is developed and controlled by ZeitControl. This operating system has a virtual

machine responsible to run the applications installed after the card has been issued. These

applications have to be compiled into a byte-code called P-Code [18]. The programmers have to

develop their own applications in the ZeitControl Basic language. Furthermore, they can use the

Windows-based development kit to install and download their applications. In the development

of applications for this system it is not needed to be aware of the complexity to deal with APDU

commands, once the platform provides an abstraction layer to these mechanisms. The platform

also enables the use of the cryptographic functions, in order to introduce security and consistency

to the developers applications [26]. Even with the development kit, this system is not really a

multi-application card, since is just possible to install one application. BasicCard has three states,

LOAD, TEST, and RUN. If it is currently in the RUN state, there are no more possibility to exchange

or update applications [18].

2.2.5 Java Card

Today, Java Card is one of the most supported and respected Smart Card platforms in the

world, when productivity and security are the main requirements [10]. Java Card is a Smart

Card platform, on which applications written in a constrained Java programming language run.

This platform provides the separation between the Smart Card system, and the applications,

by implementing a Runtime Environment. The Runtime Environment supports the Smart Card
7http://www.gemalto.com
8http://www.zeitcontrol.de/

25

2. State of the art

memory, communication, security, and application execution model [5]. This section contains an

overview about this platform architecture, and presents its components.

2.2.5.A Platform Structure

The Java Card Runtime Environment (JCRE) runs on top of the Smart Card hardware, and

native system. This module is intended to abstract the operating systems of the card, by imple-

menting a common API layer. The abstraction of the native methods makes possible the interop-

erability amount various Smart Cards devices, and systems. The JCRE can be described as an

on-card system module, and divided in three main layers. The first, and lower one, is composed

by the Java Card Virtual Machine (JCVM), and the native system methods. The second corre-

sponds to the system classes, and are composed by applets and transmission management, I/O

network communication, applets installer, among others services. The highest layer, groups the

installer, the framework classes (API), and industry specifications libraries [5].

The JCVM is split into two modules. One runs inside the card, the interpreter, and the other

outside the card, the converter. With this separation is possible to remove from the card the effort

of class loading, byte code verification, resolution and linking, and instructions optimization [5].

The converter is, thus, responsible for loading and processing the class files from a package,

creating the Converted Applet (CAP) file, as well as creating the export file with the applet public

API. On the other hand, the interpreter is responsible for the execution of the CAP file in the Smart

Card environment [5].

The installer is a component responsible for receiving safety the CAP file of an applet, and

proceeds with their installation in the Smart Card. The framework classes are packages, providing

the API for the development of Smart Card applets. The industry specifications are a set of extra

libraries, providing additional features directed towards to the purpose of the specific needs of

an industry. JCRE system classes are the core of the operating system abstraction, and are

responsible for managing applets, transactions, communications and other services. This classes,

normally invoke directly native methods of the Smart Card [5].

Due to the resource constraints of Smart Cards, the implementation of the Java platform on

these electronic devices is not equal to that used in normal computers. This implementation

incorporates only a subset of features of the Java language, and some additional mechanisms

that provide specific support for the Java applets inside the Smart Card [34]. These extra features,

implemented by the Java Card Runtime Environment, consists on the definition of persistent and

transient objects, the specification of atomic operations and transactions, the creation of the applet

firewall, and the introduction of sharing mechanisms [5].

The objects can be persistent in memory, or be clean across CAD sections. In fact the space

allocated to an object is reserved while it is referenced, so an applet should create just one

transient object of each type during its lifetime, and save the object reference in a persistent field.

26

2.2 Smart Cards

By default, all the objects instantiated are persistent. The atomicity in Java Cards ensures that

any update to a single field, in a persistent object or class, is atomic. Java Card technology also

supports a transactional model, in with a set of updates can be done inside a transaction. In

this case, each and all of the updates are successfully executed, or all the fields return to their

previous states [5].

The Java Card platform is a multi-application environment, so, the applet firewall divide into

separate and protected spaces the contexts of each applet. Because of this mechanism, Java

Card applets are executed in a sandbox, like applets in a web browser. To allow applets to share

data across contexts, the Java Card technology has some shared mechanisms like privileges,

entry point objects, global arrays, and shareable interfaces [5].

With the restriction policy imposed by the applet firewall, applets out of the context of other

applets cannot have access to their methods or attributes, even if they are public. This security

measure is intended to prevent attacks to the applets. However, in some cases it is useful for an

applet to share its data and methods with applets from other contexts. One of the mechanisms

available in Java Card technology to enable this exchange, overcoming the restrictions of the

applet firewall, is the Shareable Interface. The object of a class implementing the shareable

interface is called Shareable Interface Object (SIO). The applets wanting to call at least one of the

methods of a SIO have to declare an object with the type of its interface, and get a reference to

it, on the JCRE. Whenever an applet calls a method from a SIO, the JCRE switches the context

of the applet to the context of the SIO. The result is then returned to the caller applet, after its

context becomes activate again. With this mechanism, applets out of the context of the SIO are

allowed to access the methods defined in its shareable interface.

During a CAD section, the JCRE has a typical Smart Card behavior with the host. The Java

Cards are constantly waiting for APDU commands, notifying a specific applet to execute a specific

instruction on the card. When a command arrives to the card, the applet is selected, to run the

specific instruction called. After the applet has executed of the received command, the card sends

the APDU response to the host [5]. The JCRE supports the communication over the T=0, T=1 and

contactless transport protocols. It also supports the APDU format defined in the ISO/IEC 7816-4

standard [18].

Some limitations of the Java card version 2.2 were overcome in the new version 3.0. The most

important implemented updates consist on the extension of almost all Java data types, except float

and double, on the possibility for the use of multiple threads, on the extension of the API support

with java.lang and java.util packages, on the direct handle of class files with all loading and linking

process made inside the card, on the all new Java language syntax constructs such as enums

and generics, on the enhanced for loops and auto boxing/unboxing, and on the introduction of the

automatic garbage collection mechanism [31].

With all these new features, the Java Card technology can now handle with three application

27

2. State of the art

models: the classic applets from the previews 2.2 version, the extended applets that can proofed

from all the new API, and the servlet applications using HyperText Transfer Protocol (HTTP) or

HyperText Transfer Protocol Secure (HTTPS) [31]. Despite all this new advantages in the use of

the updates available in the 3.0 version of the Java card, this new system has to run on a much

more powerful and expensive Smart Card. Since that all security and internal structure are the

same that on the 2.2 version, the use of version 3.0 has to be justified by the target application

requirements.

2.2.5.B Applets

The development of an applet requires a set of conventions rules and steps, allowing the

applets to run properly on the JCRE. In first place, it is necessary to carefully design the require-

ments of the system. After that, comes the implementation part with the decision of the technology

to use. The implementation part is followed by the important phase of tests to the requirements

and security of the system. The Java Card system security depends on the security of the applet,

and on the security of the Smart Card platform. Therefore, in all development phases, the security

of the system has to be an important issue [34].

Each applet is a persistent object in the Java Card. Therefore, unless the Java Card makes

possible the deletion of applets, after installed the applet lives out the entire lifetime of the card [5].

In fact, the new version of the Java Card technology, 3.0, ensures the possibility for the deletion

of applets, although in older versions be optional. Any applet is identified by its AID (see 2.2.4),

defined in the registration step. All the applets have to extend from the javacard.framework.Applet

class, to implement some of the crucial methods, such as the Install, the Register, the Select, the

Process, and the Deselect methods [5].

The life-cycle of an applet starts with its installation and registration on the card. After that,

each applet switches is state between inactive and active. This happens, at least in version 2.2,

because the JCRE is an single thread environment, which means that at each moment just one

applet can be active while the others stays inactive [5]. In the installation process, an instance

of the applet is created, so, each applet must implement in their constructor all the necessary

initializations. Due to the fact that not all implementations of the Java Card have a garbage

collection available, it is useful to instantiate each application just one time in the life time if the

card, in order to conserve resources. The register method should be the last instruction called by

the installation method, once it allows the applet to be selected, and set to run, by the JCRE [5].

In a communication with a Java Card, the first APDU command has to be a SELECT com-

mand. Whenever the JCRE receives a SELECT command, it selects the specified applet in the

command. Therefore, all the APDU commands following received by the JCRE are redirect inter-

nally to the previously selected applet. When a new SELECT command is received, the current

selected applet is deselected, and the new one owns the context, by being selected. The select

28

2.2 Smart Cards

and deselect methods make an applet exchange from an active to an inactive state, and vice

versa. When an applet is successfully selected, its textitprocess() method is executed, where the

instructions and arguments are passed by the JCRE [5].

The development and installation of an applet implies a strong test process. Likewise in the

normal Java programs, the developed Java Card source code has to be compiled in to class files.

However, to be loaded into the Java Card, these class files have now to be compiled into a CAP

file. Before the creation of the CAP file, the class files should be tested in a JCRE simulator.

This simulator runs the applets on a normal Java Virtual Machine. This mechanism is a quickly

source for testing the functionality of the developed code, but at same time a not efficient error

reporter, once some runtime features of a real Java Card are not being tested. After this process,

the applet can be converted in a CAP file, and tested in a Java Card emulator. The applet runs in

a Java Card Virtual Machine emulator, in order to be tested before being installed in a real device.

Therefore, the applet is soaked in a real environment of an Java Card, without being on a real

Java Card. [5]. Only after all this tests, the application becomes ready to be loaded, and installed,

into a real Java Card.

There are tools available to assist the programmers in the creation and development of applets

for Java Cards. Sun has created the Java Card Development Kit (JCDK). This toolkit allows the

programmers to write Java Card applets, and test them, without a physical Java Card, neither a

Smart Card reader. The JCDK is composed by the simulator Java Card Workstation Development

Environment (JCWDE), a Java Card converter tool, a Java Card verifier, an APDU tool, a CAP

dump tool, a script generation tool, and some supporting extra libraries [27, 31, 40].

The simulator JCWDE can be integrated with a debugger and Integrated Development Envi-

ronment (IDE), and it does not support some features of a real Java Card, such as the package

installation, the applet instance creation, the firewalls, and the transactions. The C language Java

Card Runtime Environment (C-JCRE) is a C programming language implementation of the Java

Card API, JCVM, and JCRE, providing real code test conditions to the programmers. The Java

Card converter tool is intended to generating the CAP files, while the Java Card verifier is in-

tended to check the validity of CAP and export files. The APDU tool is used to send and receive

APDU during tests, while the CAP dump tool is used to show the contents of CAP and EXP files.

The script generation tool is the off-card installer, and basically converts CAP files into script files

composed by APDU commands to be loaded to the Java Card. The supporting extra libraries are

class and export files of the Java Card API implementation [31].

2.2.5.C Middleware

The development of an applet entails the development of some Middleware running on the

host side, and which encapsulates the complexity of the communication with the Java Card, and

with the Smart Card reader. The Middleware should also be robust and interoperable, in order to

29

2. State of the art

provide platform independence, and a useful API to the highest level applications. The software

usually resides on a terminal such as a workstation, a Point Of Sale (POS), a mobile phone, or a

host application [31].

There are several ways of implementing a Middleware. In order to develop an applet with the

purpose of remote authentication, one of the best interfaces to provide is the Public-Key Cryptog-

raphy Standards (PKCS#11). The PKCS#11: Cryptographic Token Interface Standard specifies

an API implemented by devices holding cryptographic information, and performing cryptographic

operations. The main purpose of the PKCS#11 standard interface is to encapsulate the complex-

ity of the communication with the Java Card, and with the applet. This allows the implementation

of the same standard methods, by different vendors in a wide variety of devices. The user appli-

cations use the Middleware providing this standard interfaces, having a common and logical view

of a device, called cryptographic token.

The Middleware is usually developed using one of the follow API: the Java Card Remote

Method Invocation (RMI) [31], the OpenCard Framework (OCF) API, the Personal Computer/S-

mart Card (PC/SC) or the Movement for the Use of Smart Cards in Linux Environment (MUSCLE).

Currently, the more used ones are the OCF and PC/SC, for windows environment. The goal of

all this libraries is to introduce high level API to encapsulate low level communication between the

Java Card and the smart Card reader device [18].

PC/SC is an industry standard implemented by Microsoft defining an API for communication

with Smart Cards. A wide number of the available device readers for PC already support these

libraries. The central component of its architecture is the ICC Resource Manager, responsible for

controlling all the interface devices and service providers. The OCF and PC/SC addresses similar

concerns by providing similar functionalities. However, the main goal of PC/SC is to provide

access for the cryptographic functionality in Smart Cards [18].

The OCF has appeared after the PC/SC from Microsoft, and took advantage of some already

available features. This two technologies try to define a standard way to integrate Smart Cards

with computers and terminal systems [13]. The main differences between these two approaches

are based on the fact that OCF takes into account the access concurrency, the support for multiple

applications, the portability, and the card issuer’s transparency [18]. The OCF is composed by set

of Java-based API, establishing a common communication base for different Smart Card readers,

of different vendors. Furthermore, given that it is an open source library is easy to find the support

documentation and code libraries. However, the OCF has no continuation since 2004, once the

development team gave the project as finished. Therefore, despite being a very used technology

and being stable, it has not updates since that time.

MUSCLE is an implementation of PC/SC for Linux. The PC/SC resource manager of the

MUSCLE allows multiple-application to get access to the card, however just one at the time [18].

The Java Card RMI Client API uses a card-terminal and libraries such as the OCF, and has

30

2.2 Smart Cards

been only available after the Java Card Version 3.0. This technology allows the host application

to get access to some of the applet’s methods [31]. The Java Card Remote Method Invocation

(JCRMI) provides an abstraction layer, in order to avoid the low-level communication using the

APDU package. The stubs generated to the client, provide a way to interact with the remote object.

In order to develop the interface for the JCRMI, can be used Java Modeling Language (JML).

This language specify the remote interface using model fields, and serve as a contract to the

communication [44]. The JCRMI client API uses the OCF for card management, and to assure

the communications.

2.2.5.D Biometric Support

As seen previously in the section 2.1.4, a biometric authentication system is a secure and

reliable mechanism to identify a person. Considering the safety and convenience of Smart Cards

becomes interesting to join these two technologies, in order to develop a system with the advan-

tages of both. A Smart Card, being a secure and reliable device to store private and sensitive

data, can be seen as a platform for the secure storage of the biometric template. In order to pro-

tect the stored biometric template of the user, the Smart Card also implements the match on card

operation. Therefore, no external entity can have access to the user biometric template. When a

biometric authentication has to be performed, is the Smart Card executing the match of the user

biometric data, captured in the authentication phase, against his biometric template, stored on the

Smart Card during the enrollment process [9].

With the match on card module, the Smart Cards are able to perform local biometric authenti-

cations of the user. The biometric authentication involves an inicial enrolment process of the user

biometric template. In systems using Smart Cards, the enrollment phase of the biometric template

is stored in the Smart Card, instead of being used a central data base. Thus, when a user wants

to perform an authentication before the system, the biometric data is not sent via the Intrnet. Typ-

ically, after the successful match inside the Smart Card a cryptographic key is released, and used

to perform the remote authentication using cryptographic operations over a challenge sent by the

remote server. Usually, in cryptosystems, the biometric authentication is performed locally, and is

used as a key release mechanism. The cryptographic key is also stored inside the Smart Card as

part of the users private data, and usually cannot be accessed by any external entity [33].

The existent matches on card modules are proprietary, once the mathematic algorithms sup-

porting these solutions are also proprietary. This happens once the biometric technology is not

yet very mature, and only relatively recently arises to the world of smart cards. In order to create

interoperability in the use of biometrics at the Java Card applet level, the Java Card Forum 9 has

proposed the Java Card Biometric Application Programming Interface (JC-BioAPI) [9]. Therefore,

the applets inside the Java Card can use any match algorithm provided by any entity, without

9http://www.javacardforum.org/

31

2. State of the art

having access to proprietary details, since it respects the JC-BioAPI. The Java Card technology

already ensures the interoperability between Smart Card operating systems, thus, this API can be

used in a wide range of different cards. This API supports the enrolment phase of the biometric

template into the Java Card, as well as a secure biometric validation, avoiding that sensitive data

to be exposed outside of the card. Besides this, the JC-BioAPI also supports multiple biometrics

on a single card [9].

The JC-BioAPI is design to use limited amounts of the Java Card memory, and as few com-

putational cycles as possible. This API provides the necessary abstraction for the development

of the Java Card applets, and biometric algorithms, independently from each other. Therefore,

the architecture of the JC-BioAPI consists on the server and client applets. The server applet is

intended to manage the enrolment and configuration of the biometric on the Java Card, as well

as to provide the shareable interfaces to the client applets. The client applets use the services of

the server applets. Therefore, the client applets have to contact the server applet in order to ob-

tain access to the biometric operations performed to the biometric template [9]. When the server

applet is initialized, it creates an instance of a BioTemplate, that is responsible for providing the

interfaces to the clients, and to the server. Once the match on card module is developed in the

native system of the card, only this library can get access to the biometric template of the user [9].

Besides the use of the biometric template by the card there are others approaches such as

the template on card. In the template of card approach, the template is release every time the

authentication is request, in opposition to the match on card approach where the template never

leaves the card [2]. The match on card approach can specifically protect the system against

substitution or modification of the matcher, since nobody can get access to the biometric template

of the user. Besides this, it protects against the tampering of templates, and once the verification

decision is internally used by the card, the match result cannot be intercepted, or replaced from

an outside entity [2].

2.3 Existent Solutions

This section presents authentication solutions currently implemented in the market and ex-

ploring the same or a similar concept than the one used by the proposed solution. Therefore,

concrete solutions performing user remote authentication are explored, describing their benefits,

and the main advantages that the proposed solution has compared to them.

The authentication evolution was described previously, where the clear preference for the use

of Smart Cards and the tendency of most current systems to the use of biometrics can be noticed.

Although some of the currently most used remote authentication solutions do not use the user

biometrics, even though there is some reluctance to rely on the use of this technology in remote

systems, some solutions already do it. This section describes two solutions currently used to

32

2.3 Existent Solutions

perform user remote authentication, one using the user biometrics and the other only based on the

user PIN. The presented solutions are the Portuguese citizen card, and a product implemented

by Gemalto10 that arose during the developed of this thesis.

The Portuguese citizen card is a solution that exists since 2007, used as the official ID docu-

ment for Portuguese citizens. This Electronic Identity (eID) document incorporates a Smart Card

enabling the users to communicate with their government administrations such as the Ministry

of Interior, Finance, Health and Justice, as well as to perform remote authentications in com-

mon systems supporting this mechanism. This identification document is based on Identification,

Authentication, and Signature (IAS) specifications, to among other things perform the user re-

mote authentication, and is deployed in a PKI system. To identify and authenticate themselves,

cardholders enter a secret pin code and the card then generates a digital signature to sign the

challenge sent by an authenticator entity.This electronic document also includes biometric fea-

tures, being able to store the user fingerprint biometric template, and perform his local biometric

authentication [8].

The Smart Card solution was developed by Gemalto, while the Middleware was developed by

Zetes Burótica11 [8]. Although this solution is a reliable source to authenticate the users, it does

not use the biometric features during the remote authentications. Therefore, this system can-

not ensure that the person performing the authentication is really the user being authenticated,

since the PIN authentication cannot ensure the presence of the user during the authentication.

Non-repudiation is also susceptible of being questioned since the PIN of the user can be stolen

or borrowed. The proposed solution on this thesis intends to enable solutions, such as the Por-

tuguese citizen card, to take advantage of the biometric technology inside, adding the biometric

authentication feature securely to the remote authentication.

The Gemalto .Net Bio solution was placed in the market during the period of development

of this thesis.It is an innovative software solution that provides fingerprint biometric support for

Gemalto .NET Smart Cards, and is integrated with Microsoft Windows XP, Vista and Windows

7. This solution enables fingerprint user authentication as an alternative or complement to Smart

Card PIN verification. In short, it performs the requirements of the system proposed in this thesis.

It also gives access to the digital certificates on the card, performs digital signatures, can be used

to encrypt files and even to allow secure VPN access. This solution is compatible with the Smart

Card security components of Windows and with the vast majority of fingerprint sensors.

However, this solution is exclusive for Windows environments, and .Net smart Card platforms.

The main advantage of the proposed solution in this thesis relies on the fact that the proposed

solution aims to be implemented in current existent solutions containing biometric authentication

technology, but not using it in remote scenarios. Therefore, the proposed solution is generic and

can be implemented in a wide range of existent solutions, improving their level of security and

10http://www.gemalto.com
11http://www.zetes.pt/

33

2. State of the art

efficiency.

2.4 Conclusion

This section describes a brief summary of the presented state of the art. An overview of

techniques and technologies supporting the development of the proposed solution on this thesis

is presented.

The state of the art presents the motivation for the development of remote authentication

mechanisms, given the growing need to protect online services and information access, from

malicious users. This chapter presents the evolution of the authentication mechanisms during the

development of the Internet, demonstrating the considerable adhesion to the use of Smart Cards

as secure, and indispensable devices to create a reliable authentication process. In addition it is

evident the gradual adoption of biometrics in the recent authentication mechanisms.

Nowadays a wide range of authentication systems based on something that the user knows,

such as their passwords, still exist. This type of security can easily be transmitted to a friend,

lost, forged, or stolen. Therefore, password systems cannot proof on the on-site presence of the

user being authenticated. A biometric authentication system, on the other hand, is based on a

person’s physiological and behavioral characteristics, being intrinsically related to a specific user.

The benefits of biometric authentication systems make this approach a good replacement for the

PIN-based authentication systems, in order to provide a more reliable and secure authentication

mechanism [42].

The substitution of password based authentication systems for biometric ones can be sup-

ported by the use of Smart Cards. The proposed solution suggests the deployment of the Smart

Card in a PKI system, in order to enable the non-dependence on passwords.

Smart cards are an indispensable component in a reliable authentication system using bio-

metrics. They are small, portable, and secure devices, capable of offering the protection of the

user’s private information, such as cryptographic private keys and biometric templates. The Java

Card platform makes it possible to develop applications able to run on Smart Cards issued by

different providers, being a source of interoperability and physical platform independence. Fur-

thermore, they are able to perform critical operations such as digital signatures, and the biometric

Match-On-Card (MOC), using the private information of the user. That way they can assure the

exclusivity to the user’s private data, since it never leaves the Smart Card. The existent solutions

do not include all the new features brought by the proposed solution, since they are not able to

completely release the user from using passwords. Therefore, the proposed solution is an asset

in today’s world, contemplating a solution to a remote authentication mechanism that can take ad-

vantage of existent technologies and from the development of authentication systems developed

to date. The proposed solution is presented in the following chapter.

34

3
Proposed Solution

Contents
3.1 Authentication Scheme . 37
3.2 Architecture . 38
3.3 Conclusion . 46

35

3. Proposed Solution

In this chapter, a mechanism to provide secure user remote authentication, using biometric

data, is proposed. The presented solution is intended to be generic, and easy to deploy in current

solutions.

One of the currently most used remote authentication systems is based on Smart Cards and

asymmetric cipher. Smart Cards are simple and trustworthy devices. As stated in the previous

chapter, they have storage capacities, an internal secure architecture to prevent the disclosure of

private information, and also perform cryptographic operations. The Smart Card system is seen

by the remote side as a trusted platform, being the security bases of the authentication process.

In fact, the entity being remotely authenticated is the Smart Card itself, since the user private key

is unique, and the Smart Card has exclusive and controlled access to it. In these systems, the

Smart Card ensures to the remote server that the user performs a local authentication, using a

private secret. However, in these systems the actual presence of the user being authenticated

is not assured, only the knowledge of the Personal Identification Number (PIN) or password is

verified. The secret can also be susceptible to dictionary attacks, or be easily stolen, guessed, or

borrowed, by other people.

The biometric authentication can replace the user local authentication using PIN, since it has

advantages in convenience and security. The biometric data are specific, unique and not transfer-

able among users. As seen in the previous chapter, this authentication mechanism ensures the

presence of the user being authenticated, and eliminates the need for the user to memorize his

private secret. Thus, it improves the convenience of the users, as well as making life more difficult

for the attackers.

The proposed solution appears as a consequence of the need to improve the existing re-

mote authentication systems. This solution is based on the existence of remote authentication

schemes, using Smart Cards providing asymmetric cipher operations, and assuring the user local

authentication. However, the local user authentication is based on his biometric data. With this

solution it is possible to have a remote user authentication system, using his biometrics, overcom-

ing the main obstacles that currently are blocking the use of biometrics in remote authentication

schemes.

To adequately describe the proposed solution, this chapter is divided into 3 sections. Section

3.1 describes the authentication scheme of the proposed solution, presenting the participating en-

tities and the authentication flow. The following section 3.2 presents an overview of the proposed

architecture and its components. This section has 2 subsections, describing the architecture

and functionality of each component needed inside the Smart Card and the relationship between

them, and presenting the impact and importance of the Middleware in the proposed solution, as

well as the composing modules. This chapter is concluded by presenting the main advantages of

the solution.

36

3.1 Authentication Scheme

3.1 Authentication Scheme

The authentication scheme of the proposed solution is divided in two phases: i) the remote

authentication between the Smart Card and the remote server; and ii) the local authentication

between the Smart Card and the user being authenticated. Figure 3.1 depicts this authentication

scheme.

Remote Server

User
Smart Card

User Private Key

User Biometric
Template

Remote Authentication

Local Authentication

Figure 3.1: Authentication scheme of the proposed solution.

The remote authentication is performed by the Smart Card through asymmetric cipher, using

the user private key that only the card knows. The remote server can authenticate the Smart Card

using asymmetric cryptography, and trust the Smart Card to locally authenticate the user using

the card’s biometric Match-On-Card (MOC) operation to validate the biometric signature. This

authentication scheme requires each Smart Card to securely store the private key of the user, as

well as his biometric template.

For the remote authentication, the user private key is used to sign a challenge sent by the

remote server to the Smart Card. The authentication is successfully executed, if the remote

server validates that the challenge previously sent, was in fact signed using the private key of the

user being authenticated.

The user public key is encapsulated in a public digital certificate sent to the remote server

during the authentication process. The digital certificate containing the public key, along with

other public information of the user, also contains its own digital signature. The signature of the

public certificate is performed with the private key of a trusted Certification Authority (CA). To

check the validity of the user public digital certificate, the server uses the public key of the CA.

After receiving the public digital certificate of the user, the server verifies if it actually belongs

to the user being authenticated, and, if it does, obtains the user public key from it. After getting the

user public key, the server sends the challenge to be signed to the Smart Card. The Smart Card

receives this challenge, and signs it with the on chip private key, and sends the result to the remote

server. The remote server validates the received signature, to check if the Smart Card properly

signed the challenge, and with the correct private key. Figure 3.2 details the main components

and interactions necessary for the remote authentication used in the proposed system.

After a successfully remote authentication has been completed, the server is assured that it

37

3. Proposed Solution

Remote Server
Smart Card

Challenge
Sign challenge using

user private key

Challange SignCertification
Authority

Verify
Public Certificate

User Public Certificate

Verify signature using
user public key

Figure 3.2: Scheme of remote authentication of the proposed solution.

is communicating with the Smart Card of the user being authenticated. However, the described

remote authentication scheme is not enough to prove to the remote server, the presence of the

user during the authentication process. The presence of the user is assured by the local biometric

authentication, performed by the Smart Card.

The Smart Card ensures the presence of the user being authenticated by prompting his bio-

metric signature when using his private key. The scheme of the biometric local authentication

used in the proposed system is depicted in Figure 3.3.

Smart Card

User

Request biometric authentication

Biometric data to be authenticatedMatch On Card

Unlock user
private key

Figure 3.3: Scheme of biometric local authentication of the proposed solution.

The local biometric authentication is performed in the Smart Card, comparing his signature

with the stored biometric template, using the MOC operation. The server trusts in the authenti-

cation system, by trusting in the CA and in the Smart Card. With this scheme, biometric data is

never sent over unsecure networks, and the server does not have to trust in insecure biometric

matchers.

The next section describes the proposed architecture to implement this authentication scheme,

and provides a detailed explanation on each component.

3.2 Architecture

The architecture of the proposed solution depicts the needed structure to implementation the

authentication scheme presented in previous section 3.1. The design of this architecture is in-

38

3.2 Architecture

tended to allow the deployment of the biometric authentication feature in existent systems using

the PIN to locally authenticate the user.

Old standards and implemented solutions were designed to perform local authentication of

the users only using PIN. New solutions can take advantages of the recent biometric Application

Programming Interface (API) and developed standards, to simply embed in its initial architecture,

the biometric authentication feature. However, the proposed solution is intended to be deployed

in already existent solutions, using PIN. The goal is to create a solution that can easily, and with

a low cost, add biometric authentication to these systems.

To assure the authentication scheme previously presented in section 3.1, the proposed solu-

tion requires the use of Smart Cards with in a Public Key Infrastructure (PKI), a Middleware to

ensure the communication between the Smart Card and the user side applications. Figure 3.4

depicts the layers of the proposed architecture, and the components that compose it.

Middleware

Application

Smart Card

Embedded Device

Smart Card
Reader

Biometric
Sensor

Figure 3.4: Architecture of the proposed solution.

The main requirements of the Smart Card layer consider its capability to store the private

key of the user, to internally perform the biometric verification, and to execute the necessary

cryptographic operations. The embedded device layer is intended to capture the biometric data

of the user, and enable the communication with the Smart Card. The purpose of the Middleware

layer is to ensure the communication with the Smart Card reader and the biometric sensor, and

to provide an API to be used by the application layer.

In current existing solutions, the Smart Card layer is composed of a Smart Card with an

authentication module inside. This authentication module already has the ability to satisfy the

requirements of the remote authentication, storing securely the user private key of the user to

perform the needed cryptographic operations, ensuring the local authentication of the user with

his PIN. Some solutions even have the ability to perform user biometric authentication, using the

MOC module. However, the module performing the biometric authentication has no connection

with the remote authentication module, only allowing local biometric authentications.

In Smart Cards where modules can be deployed after the card has been issued, the module

39

3. Proposed Solution

able to perform local biometric authentication can be easily loaded, independently of the already

installed authentication module. In order to exploit the capability of the co-existence of these

two modules, the proposed solution suggests the development of a proxy module. This module

is capable of managing the remote authentication inside the Java Card, ensuring the biometric

local authentication of the user in the MOC module, before the use of the user private key in the

authentication module.

The Middleware used in existent implementations already has the capability to satisfy the re-

mote authentication requirements, using the local authentication with PIN. It has the ability to

communicate with the Smart Card, and to encapsulate the complexity of the local user authenti-

cation process. The Middleware of the proposed solution uses all the functionalities of the existent

systems; however it also requires the capability to interact with the biometric sensor. This new

feature allows the capture of the user biometric data being matched on the card during the bio-

metric local authentication of the user. The Smart Card reader and the biometric sensor have

to be a single embedded device, to ensure that the biometric data sent to the MOC module is

captured in the moment of the authentication, and is protected from external entities.

The following sections detail the structure of the Smart Card and Middleware layers.

3.2.1 Smart Card Layer

The Smart Card layer in the proposed architecture, represents the lowest level layer as de-

picted in the Figure 3.5.

Middleware

Application

Smart Card

Embedded Device

Smart Card
Reader

Biometric
Sensor

Figure 3.5: Smart Card layer of the proposed solution.

The Smart Card layer is responsible for storing the user information, and to process the critical

operations of the authentication. The user information stored in the Smart Card can be public,

protected, or private.

The public data can be easily accessed without security requirements, such as the certificate

containing the public key of the user, the user name, age, and picture. The access to information

such as the user address, or other private information, is protected by a biometric local authen-

tication of the user. The information that is crucial to the correct operation of the authentication

system, and that cannot be accessed by any external entity is also kept in the Smart Card. This

40

3.2 Architecture

private and sensitive information is also protected by the biometric local authentication of the user,

but it can never leave the card, so it can only be used by operations performed inside it, being

this way protected against external attacks. This data is mainly the private key of the user, used

in remote authentication, and the biometric template.

In the existent solutions the main operations needed to assure the user authentication are

divided in those used for the remote authentication, and those used in the local authentication.

The remote authentication requires cryptographic operations such as digital signatures using the

user private key. The local authentication requires the ability to perform biometric match opera-

tions in order to compare the biometric data of the user, captured in the authentication process,

against the private biometric template of the user, stored in the Smart Card during the enrollment

process. The structure of the already implemented solutions, performing remote authentication

and assuring the user local authentication using the PIN is depicted in Figure 3.6.

Fingertip
Matc On Card

Applet
(Biometric Template)

Authentication
Applet

(RSA1024)

Challenge

Authentication
(Sign challenge)

User
PIN

Is the User?

Yes/No
Authentication

(Sign challenge)

Challenge

Authentication
Applet

(RSA1024)

User
PIN

Figure 3.6: Smart Card architecture of existing solutions.

In the proposed solution, this Smart Card layer performs the remote authentication towards

the remote server, and at the same time assures the local biometric authentication of the user.

As seen in the Figure 3.6, the existing solutions require an authentication module, responsible

for the remote authentication, which stores the data of the user and performs the cryptographic

operations. This module uses the user PIN authentication, to unblock the user private key in the

remote authentication process, before it signs the challenge sent by the remote server.

Some existent solutions already have the biometric MOC module, capable of executing the

user biometric local authentication, by comparing the stored biometric template of the user against

the user biometric data. However, this module can only be used in local authentications, when the

user can be seen during the authentication process. This ensures that the biometric data being

verified is derived from a local biometric capture during the local authentication.

Although these solutions apparently contain all the necessary technology to perform remote

authentications using biometrics that does not occurs. The authentication and the biometric MOC

modules do not communicate with each other. Thus, they cannot directly take advantage of

41

3. Proposed Solution

each other’s capabilities. The communication between these two modules does not exist in the

current systems, due to security restrictions in the communication of different modules inside a

Smart Card. Another reason for this comes from the fact that the older authentication modules

were developed during a time where Smart Cards made local authentication solely by using PIN.

Therefore, given that biometric standards are more recent; when these older authentication mod-

ules were developed they were not prepared to communicate with the biometric modules. Apart

from these issues, there are some global security concerns that needed to be ensured by the

system, and that are not ensured with the simple aggregation of these two modules, as will be

analyzed ahead.

Using the new biometric standards and API for Smart Cards, the newest remote authentication

solutions can contain a more evolved authentication module, integrating the ability for the local au-

thentication to be performed using biometrics instead of PIN. The proposed solution, however, is

intended to be totally compatible with existent solutions, to take advantage of the existent tech-

nologies and their benefits, since they are widely tested and implemented. Thus, the proposed

solution aims to create an add-on, easily deployed in existent systems. The proposed solution

is designed to be ported into existent remote authentication systems, with low cost and code al-

teration, adding the biometric local authentication feature to the authentication module already

existent inside the Smart Card, by taking advantage of the MOC module.

To provide the ability of the authentication module to interact with the MOC module, the pro-

posed solution requires the addition of a new module, the proxy module. The new structure

proposed for the Smart Card layer is depicted in Figure 3.7, which includes the proposed proxy

module.

Fingertip
Matc On Card

Module
(Biometric Template)

Authentication
Module

(Private key)

Challenge

Authentication
(Sign challenge)

Is the User?

Yes/No

Proxy
Module
(User PIN)

User PIN

Is the User?
(Fingerprint)

Yes/No
Fingertip

Figure 3.7: Smart Card architecture of the proposed solution.

The proxy module is responsible for assuring the communication between the authentica-

tion and MOC modules. The needed alterations to the existing modules are slim to none. The

42

3.2 Architecture

MOC module has to provide a standard or pre-known biometric API, to be used internally by the

other modules inside the Smart Card. Usually this module already comes with such an interface.

Identically, the authentication module has to enable the communication with internal modules, by

providing a public API to be used by the proxy. The alterations required in the authentication

module do not change its internal structure or operating mechanism, since they merely consist on

a publication of a public interface.

As shown in the Figure 3.7, the proxy module acts as a bridge between the authentication

and MOC modules. This way, the authentication module can use the biometric authentication

technology inside the Smart Card, to perform the user local authentication without resorting to a

profound change in its structure.

However, if the authentication module keeps the communication channel with the external

world outside the card, the migration of the system to ensure the local biometric authentication

cannot be guaranteed. The user could keep using directly the authentication module, with his old

PIN, which compromises the goal for the assurance of the biometric authentication. Therefore, it

is possible to notice in the Figure 3.7, that the direct communication between the host side and

the authentication module no longer exists. On another hand, the MOC module can maintain a

communication channel with the external world. This happens, since the MOC module requires

a biometric data enrollment of the user, and its normal behavior as a local matcher does not

compromise the security of the system.

There are two main ways to prevent the direct interaction of the authentication module with

the external world outside the card. One way to perform this is to change the status of the

authentication module, and turn it into a built-in library on the Smart Card. This way, no entity

outside the card can directly communicate with it. The other way, is for the proxy to change the

user PIN directly in the authentication module. Thus, after the user PIN changes, only the proxy

will know the PIN required by the authentication module to perform the local PIN authentication.

If an external entity would try to communicate directly with the authentication module, it will not

know the correct user PIN, and after three wrong PIN entries, the authentication module would

block.

The proxy module is responsible for managing and controlling the execution flow of the au-

thentication process, inside the Smart Card. With the deployment of the proxy depicted in Figure

3.7, the three modules (authentication, proxy, and MOC), are seen by the outside world of the

Smart Card, as an unique module, capable of ensuring the authentication with the remote server,

and the user local biometric authentication.

When a challenge is received by the application layer in the user side, it is sent through the

Middleware to the Smart Card, over a specific command that it is received by the proxy module.

The proxy module checks if it’s a command to be executed by the authentication module, and

redirects it internally. The authentication module receives the command as if it was sent directly

43

3. Proposed Solution

to it, by the host side, and normally executes the command. If it is the command requesting the

signature of the remote challenge, the authentication module first checks if the user is already lo-

cally authenticated. If it is, the authentication module processes the digital signature of the remote

challenge, using the user private key, and returns the result of the challenge signature to the host

side. Otherwise, it throws the requiring user PIN exception, requesting the user local authentica-

tion. If this exception was thrown directly to the host side, a user local PIN authentication would

take place. However, the proxy module catches this exception and throws the requiring biometric

user authentication exception, to the upper layer.

Out of the Smart Card, the Middleware knows that a local biometric authentication is needed.

This initializes the user local authentication process, after what the Middleware sends the sign

command again. In this local biometric authentication, the proxy module is the front end of the

MOC module too, since the biometric authentication process also passes through it. The Middle-

ware has to send the user biometric data to be matched by the MOC module, to the proxy module.

The proxy module internally calls the MOC module, sending the biometric data generated by the

biometric reader. At this point, the MOC module verifies if this biometric data matches the stored

user biometric template.

After a successful user biometric authentication, the proxy module will automatically perform

a user PIN authentication, in the authentication module. Thus, when the signature command, to

sign the challenge, is called again, the user is already authenticated in the authentication module.

The signature command, to sign the challenge sent by the remote server, can now be called

again. The proxy sends it to be executed by the authentication module, and the result is sent to

the Middleware layer.

3.2.2 Middleware Layer

The user authentication, in a remote server, is usually performed in the context of an applica-

tion. However, the Smart Card is the layer executing the critical and sensitive required operations

to authenticate the user. The application layer does not communicate directly with the Smart

Card, due to physical and complexity limitations, reason why the Middleware layer is necessary.

Therefore, the Middleware layer is responsible for the outside management of the authentication

process, and for providing a standard and easy interaction with the lower layers of the architecture,

through a standard API.

As depicted in Figure 3.10, the Middleware is the software component placed in the user side,

between the application and the Smart Card reader layers. This layer abstracts all the complexity

of the external user authentication management, as well as the communication with the Smart

Card reader and the biometric sensor.

The existent solutions, performing remote authentications using Smart Cards with PIN, already

have a Middleware layer providing an API for the host side applications. This Middleware encap-

44

3.2 Architecture

Middleware

Application

Smart Card

Embedded Device

Smart Card
Reader

Biometric
Sensor

Figure 3.8: Middleware layer of the proposed solution.

sulates the command structure needed to be sent to the Smart Card, as well as the particularities

of the Smart Card protocols and command formats. Therefore, a programmer developing a user

application can use the standard Middleware API, not needing to worry with the complexity of

directly interacting with the Smart Card, and its reader.

In addition to the requirements of the existent solutions, the Middleware of the proposed so-

lution has to be prepared to interact with the biometric sensor, in order to manage the biometric

local authentication of the user. The Middleware is the component that coordinates and guides

the user in the host side, during the whole authentication process. As depicted in Figure 3.9, the

Middleware architecture is divided in three main sections, the application API, the Smart Card

reader library, and the biometric sensor library.

Middleware

Application API

Smart Card
Reader Library

Biometric Sensor
Library

Figure 3.9: Middleware architecture of the proposed solution.

The API module represents the interface provided by the Middleware to the user applica-

tions, in the host side. This module can be generic, respecting Smart Card standards and rec-

ommendations such as the Public-Key Cryptography Standards (PKCS#11). The Smart Card

reader libraries are responsible for the communication with the Smart Card. They encapsulate

the complexity of choosing the Smart Card reader, as well as of creating the commands respect-

ing standard formats and the Smart Card module requirements. The biometric sensor libraries

are responsible for requesting the user to insert his biometrics in the sensor, as well as to request

the sensor to collect the biometric data of the user, and to send them to the Smart Card, where

they will be matched.

45

3. Proposed Solution

The requests of the server, during a remote authentication, pass through the Middleware, be-

fore reaching the Smart Card. Whenever a request is made by the remote server, the Middleware

keeps it, and sends it to the proxy module in the Smart Card. If it is a private operation requiring lo-

cal user authentication, the proxy requests the user biometric authentication. This authentication

process is coordinated by the Middleware layer.

The Middleware prepares the biometric sensor to receive the biometric data of the user, and

informs the user to put his biometric trait in the biometric sensor. After the sensor has captured

the biometric signature of the user, and generated the data to be compared, it sends it to the

proxy module, in order to perform the local biometric MOC. After a successful authentication of

the user, making sure that the user being authenticated is authorizing the authentication, the state

of the authentication module in the Smart Card is updated. The Middleware re-sends to the Proxy

module the previous request, without the need for the user application or the remote server to

repeat it. Therefore, the Middleware encapsulates all the process of the user local authentication,

requesting the user biometrics and managing the required commands to be sent to the Smart

Card.

The architecture layer between the Middleware and the Smart Card is the embedded device

reader, as depicted in Figure 3.10. Here is represented one of the most important requirements

of the proposed solution, the need for the Smart Card reader and the biometric sensor to be in a

single embedded device.

Middleware
Application

Smart Card

Embedded Device

Smart Card
Reader

Biometric
Sensor

Figure 3.10: Readers layer of the proposed solution.

The purpose of this requirement is to assure a secure and exclusive environment between the

biometric data captured by the biometric sensor, and the match process of this biometric data

against the biometric template stored in the Smart Card.

3.3 Conclusion

In this chapter an overview of the proposed solution, and its architecture, is presented. The

proposed solution is intended to be easily deployed in existent authentication solutions using

Smart Cards, and PIN to locally authenticate the user, providing a remote authentication system

46

3.3 Conclusion

using biometric signatures. The presented architecture has three main layers, the Middleware,

the embedded device reader, and the Smart Card layer.

The Smart Card layer is responsible for storing the sensitive data of the user, and to protect

it against unauthorized accesses, as well as to perform the needed cryptographic operations.

This layer is also responsible for ensuring the local authentication of the user, and to perform

the biometric MOC operation. The Middleware layer is responsible for simplifying the use of the

authentication system, providing a standard API to the user applications, which encapsulates

the complexity of the communication with the embedded reader device, and the commands ex-

changed with the Smart Card.

The main advantage of the proposed solution, compared with current remote authentication

systems, is the assurance of a secure remote authentication based on the biometric authentication

of the user. With biometric authentication the presence of the person being authenticated is

assured, in the local authentication process. This solution also increases the convenience of the

users during the authentication process, given it eliminates the need for the user to memorize any

information, such as his PIN.

In the next chapter, a prototype for the proposed solution is presented. This prototype is

based on the architecture described in this chapter, and aims to be a proof of concept of the

proposed solution. Technologies used in the implementation of each component, and technical

considerations are detailed.

47

3. Proposed Solution

48

4
Prototype Implementation

Contents
4.1 Java Card Applets . 52
4.2 Middleware . 55
4.3 Enrollment Process . 58
4.4 Conclusion . 60

49

4. Prototype Implementation

This chapter describes the implementation of the prototype based on the proposed solution

described in the previous chapter. With this prototype a user holding a Smart Card can be re-

motely authenticated by his biometric signature.

The implemented prototype is a proof of concept of the proposed solution, demonstrating how

generic the developed architecture is, and proving that secure remote authentication of users

by using his biometric signature can be implemented. The developed prototype is compatible

with solutions, taking advantage of existent technologies. As described by the architecture of the

proposed solution, the authentication process requires the use of a Smart Card, and an embedded

device reader capable of capturing the biometric information of the user.

The development of the prototype is based on the architecture proposed and depicted in Fig-

ure 3.4. The architecture is composed by three main layers, the Smart Card internal structure,

the embedded reader device, and the Middleware. Therefore, the implementation of the proto-

type consists on the implementation of the Smart Card and Middleware layers, since the correct

functionality of the embedded reader device is assumed and out of the scope of this thesis. The

Smart Card layer is responsible for storing the private data of the user, and for computing the

security operations needed during the remote authentication process, while the Middleware layer

is responsible for providing a generic Application Programming Interface (API) easy to be used

by the user applications, encapsulating the complexity on the use of the developed authentication

solution.

The architecture scheme of the implemented prototype is depicted in Figure 4.1, giving an

overview of the different layers of the architecture, with their internal modules and the main used

technologies. The Smart Card layer was implemented using a Smart Card with Java Card tech-

nology, fitted with an embedded Match-On-Card (MOC) library provided by Precise Biometrics.

Inside the Java Card three applets were developed, the Identification, Authentication, and Signa-

ture (IAS), the Proxy, and the BioServer, implementing the authentication, the proxy, and the MOC

modules respectively, as defined in the proposed architecture depicted in Figure 3.6. The architec-

ture of the Middleware layer, depicted in Figure 3.9, implies the development of three components.

The API provided by the Middleware layer to be used by the user applications was implemented

accordingly to the Public-Key Cryptography Standards (PKCS#11) standard, the communication

with the Java Card through the embedded device is assured by the Personal Computer/Smart

Card (PC/SC) libraries, while the management of the biometric data between the user and the

Java Card is performed using the Precise Biometric Software Development Kit (SDK).

The usage of the implemented prototype requires the enrolment of the user private data into

the Java Card. A process to load the initial information of the user, and private data to be used

during the authentication process was also developed, which led to the need for the development

of an application where the user inserts his personal data, and an application where the user

loads his biometric template.

50

BioServer
Applet

JC-BioAPI

Legend:

PC/SC: Personal Computer / Smart Card
IAS: Identification Authentication Signature
MOC: Match-On-Card
SIO: Shareable Interface Object

Java Card

Smart Card
Reader

Fingerprint
Reader

Embedded Reader

APDU

IAS
Applet

Proxy
AppletSIO

PIN

RSA Keys ...

Template 1

Template n

PIN’

PKCS#11
Middleware

Precise
Biometrics

Toolkit
PC/SC

Middleware

Figure 4.1: Architecture scheme of the prototype implementation.

The following sections detail the implementation and the development of each component of

the prototype. Therefore, this chapter is divided in the main development phases, corresponding

to the implemented software modules. The first section, 4.1, is intended to address the tech-

nologies chosen, as well as the implementation details of the internal required modules of the

Smart Card layer. Section 4.2 describes the used technology and the implementation details of

the developed Middleware components. The enrolment process and the developed applications

including its structure and details are described in section 4.3. Section4.4 concludes the presen-

tation of the implemented prototype.

51

4. Prototype Implementation

4.1 Java Card Applets

The development of a prototype for the proposed solution implies the implementation of the

Java Card layer components. This section is intended to present the Java Card components re-

sponsible for securely storing the user information, and performing the security operations needed

for the remote and local authentication. The details, the main used technologies, and the major

problems found during the implementation of the Smart Card layer are also described.

As described in the proposed architecture, the main components of the Smart Card layer

are the authentication module, the MOC module, and the Proxy module. This architecture was

designed to be easily deployed in existent remote authentication solutions using Smart Cards

combined with Personal Identification Number (PIN). Therefore, it is necessary to use an already

implemented remote authentication system to serve as the base of the prototype. The system

being used has to have an authentication module assuring the remote authentication procedures,

being able to securely store the user private key, and perform the digital signature of the challenge

sent by the server, after authenticating the user locally with his PIN. Moreover, it also have also

a MOC module, capable of executing the local biometric authentication of the user, and securely

store his biometric template.

One of the most current used solutions satisfying the mentioned above requirements are the

Electronic Identity (eID) cards. The Portuguese citizen card, for instance, carries an authentication

module performing the remote authentication, and a MOC module assuring the local biometric

authentication of the user. The Smart Card platform used on this card is the Java Card, and its

internal structure contains, among others, the modules depicted in Figure 3.6.

In the Portuguese citizen card, the authentication module was designed according to the

Identification Authentification Signature - European Citizen Card (IAS-ECC) recommendation [8].

Therefore, the authentication module is an IAS Java Card applet developed by Gemalto, provid-

ing all the necessary requirements to integrate the eID card in a public key infrastructure system,

able to remotely identify the user. It is also useful to store information about the card holder, and

other sensitive data. The MOC module in the Portuguese citizen card is also a Java Card applet.

This applet was developed by the Precise Biometrics, and is used to perform the biometric local

authentication of the user, by matching his biometric fingerprint template.

The eID cards, as is the case of the Portuguese card, are equipped with all the necessary

technology required by the proposed architecture, since they can perform the remote authentica-

tion of the user with his PIN, and are able to execute his local biometric authentication. Therefore,

the implementation of the prototype for the proposed solution is based on the deployment of a

proxy applet on an eID card, as the Portuguese citizen card. The deployment of the proxy applet,

along with the necessary alterations defined in the proposed solution chapter, makes it possible to

adapt the eID card, making it capable of executing the remote authentication of the user, ensuring

52

4.1 Java Card Applets

Java Card v 2.2.1

Java Card Applet
Proxy

Java Card Applet
BioServer

Java Card Applet
IAS

Precise Biometrics library
BioMatch v J3.0

JC-BioAPI

Proxy SIO JC-BioAPI

Figure 4.2: Java Card structure of the implemented prototype.

his local biometric authentication first.

The implementation of the proposed solution is based on the eID card technology; however,

since all the software of these solutions is proprietary, it was not possible to have access to any

existent versions. Consequently, to develop the prototype of the proposed solution it was first

created a replica of an eID card, implementing both, the IAS and the BioServer applets. Only

after this replica had been created, was the Proxy applet developed and loaded into the Java

Card. The design of the developed software inside the Java Card is depicted in Figure 4.2.

Following the Portuguese citizen card example, a Smart Card with the Java Card platform was

used. The Java Card is a secure and reliable solution, given that it provides a trusted environment

for applications that run on. Multiple applications can be deployed on a single Java Card, and new

ones can be added to it, even after it has been issued to the end user. This platform also assures

that the applets written in the Java Card programming language can be executed, securely, on

Java Cards from different vendors. Therefore, the Java Card platform assures the security and

reliability needed by solution.

The Java Card used was supplied by the Precise Biometrics, using Java Card version 2.2.1,

and a biometric MOC library, called BioMatch vJ3.0. This library is able to provide the secure

storage of biometric fingerprint templates, and perform the biometric fingerprint match operation

inside the card. The MOC algorithm of the BioMatch library is proprietary, and it is only possible

to access it through internal applets using the Java Card Biometric Application Programming

Interface (JC-BioAPI) .

The used Java Card contains a BioManager applet, providing an external interface to be used

by the host side through Application Protocol Data Unit (APDU) commands, and also providing an

internal proprietary interface to be used by internal applets through a Shareable Interface Object

53

4. Prototype Implementation

(SIO). The BioManager applet in the used Java Card is intended to execute the management of

the biometric data inside the card, by being able to communicate with the BioMatch library inside.

Since this BioManager is proprietary, not being possible to get access to its code, and since its

internal API does not implement the JC-BioAPI standard recommendation, a new applet, named

BioServer, was developed.

The developed BioServer applet takes advantage of the available BioMatch library inside the

Java Card, in order to use the proprietary MOC algorithm from Precise Biometrics. It implements

an external API respecting the same API provided by the Precise Biometrics BioManager applet;

however its internal interface implements the JC-BioAPI. Therefore, any internal applet, as is the

case of the Proxy applet, can communicate with it using the JC-BioAPI. Even though fingerprints

are used as the biometric authentication mechanism, the generic architecture proposed in this

thesis, and the wide coverage of biometrics by the JC-BioAPI, allows for the use of other biometric

technologies. The fingerprint was used since it is the key technology provided by the Pricise

Biometrics, and since it is one of the most used and accepted biometrics in current days by

the Portuguese society. A manual with the implementation overview of the developed BioServer

applet is attached in A.

The IAS applet present in the Portuguese citizen card is also proprietary, and it was not pos-

sible to get access to its code, or any trial version. Therefore, a Java Card applet ensuring the

required operations, and designed according to the IAS-ECC standard was also developed. The

IAS applet was developed in a way that it can assure the crucial methods required for the remote

authentication herein proposed, such as cryptographic and storage operations. Therefore, an ap-

plet was developed with the external interface defined on the IAS-ECC standard, able to securely

store the user private key, and implementing a binary file system according to the International

Organization for Standardization / International Electrotechnical Commission (ISO/IEC) 7816, to

store the public certificates and personal information of the user. In order to equip the IAS with

all the requirements that the system imposes, an internal interface was added, given it the capa-

bility to communicate with the Proxy applet. A manual with the implementation overview of the

developed IAS applet is attached in B.

With the development and loading of the developed IAS and BioServer applets, the Java Card

used is able to emulate the Portuguese citizen card, and become a prototype base of current

solutions. It can be used to perform remote authentications with the user private key, protected

by a local PIN authentication, and can also be used to locally authenticate the user through his

biometric signature, independent of the IAS applet. To create the prototype of the proposed

solution it is now necessary to develop the Proxy applet according to the specifications defined in

the proposed solution, and load it into the Java Card.

The developed Proxy applet is intended to manage the authentication process inside the Java

Card, ensuring the remote authentication of the user with his private key using the IAS applet, just

54

4.2 Middleware

after a successful biometric local authentication of the user at the BioServer applet. The Proxy

applet works as the front end of the entire system inside the card. When a command arrives

to the Proxy applet, it first verifies if it is a specific command to be processed directly by it, or

by the BioServer applet. If the command is specific for the Proxy, it executes it, and returns the

response; otherwise, if the command is specific for the BioServer applet, it redirects it to the

BioServer applet. If the command it is not specific for the Proxy nor to the BioServer applet, the

Proxy applet forwards it to the IAS applet.

During the authentication process only the Proxy applet is called by the Middleware, where the

three applets are seen from the outside as one single applet. To communicate with the BioServer

and the IAS, the Proxy applet uses the JC-BioAPI and the IAS SIO respectively. A manual with

the implementation overview of the developed Proxy applet, and the internal interface used by the

IAS applet, is present in appendix C.

The three Java Card applets were developed using the Java Card Development Kit (JCDK) of

the Oracle. The JCDK offers the needed Java Card libraries for the development of the applets,

and the needed tools for the compilation, and testing of its code. It also provides the tools for the

generation of the applet’s installation byte-code, needed to be loaded into the Java Card. The

Integrated Development Environment (IDE) used to aid in the development of the software, and

the integration with the JCDK, was Eclipse, with the JCDK plug-in installed.

The Java Card technology does not define the load mechanism of the applets into a Java

Card. Therefore, an application implementing the Global Platform recommendation was used to

load the developed applets into the Java Card. This Global Platform implementation is capable

of interacting with the Applet manager of the Java Card, and after performing the needed au-

thentication over the required Secure Channel Password (SCP), it sends to the Java Card the

JCDK generated code, needed to install the applet. The APDU commands are sent directly to the

manager applet of the card, following the structure defined by the Global Platform. A manual with

a tutorial for the installation of a Java Card applet, using the Global Platform implementation, is

attached in D.

Using the Portuguese citizen card as the existent solution to base the development of the pro-

totype, demonstrates that the proposed solution can be deployed in large-scale solutions, allowing

the use of biometrics in remote authentications. The next section describes the development of

the Middleware layer and its particularities.

4.2 Middleware

The Smart Card layer implements the crucial operations of the authentication process. How-

ever, the implementation of the prototype implies the development of a Middleware to provide a

standard interface to be used by the applications. This section presents the details and technolo-

55

4. Prototype Implementation

gies used in the implementation of the developed Middleware.

The Middleware layer of the proposed solution’s architecture aims to provide an API for the

user applications, in order to encapsulate the complexity of the communications with the Smart

Card reader, and the biometric sensor. Therefore, the Middleware has to provide the necessary

requirements to enable an easy integration of the developed solution in existing systems and

applications, in a way that they can benefit from the authentication mechanism implemented in

the Smart Card layer. One of the main functions of the Middleware layer is the management of

the local biometric authentication process, transparently to the applications using it.

The layout architecture of the developed Middleware follows the specifications defined in the

proposed solution chapter. The main structure of the Middleware is divided in three main com-

ponents (depicted in Figure 3.9), the public API provided for the user applications, the library to

deal with the Smart Card communication, and the libraries to deal with the biometric capture and

match.

Existing solutions, as the Portuguese citizen card, already have a Middleware providing the re-

quired features to easily use of the security authentication mechanism provided by the Java Card.

However, the Middleware of the current solutions is merely prepared to deal with cryptographic

operations requiring the user local authentication to be performed with PIN. On these Middleware

implementations, when the card requests the user PIN authentication, the Middleware manages

the local authentication process by requesting the user to insert his PIN, and sending it to the

Smart Card encapsulated in the Verify APDU command. The requirements of the proposed sys-

tem imply the addition of the capacity to deal with biometric authentication of the user. The user

has to be informed by the Middleware that he has to proceed with a local biometric authentication,

by putting his fingerprint in the biometric sensor. Therefore, the Middleware has to manage all the

process of the biometric authentication, encapsulating its complexity to the user applications.

The Zetes company developed the Middleware to interact with the Portuguese citizen card.

Given that this Middleware is proprietary, and it was not possible to have access to it, a Middle-

ware to interact with the developed Java Card solution was developed, including the necessary

components for the execution of the biometric authentication of the user, when requested by the

Java Card.

The Middleware code was developed using C++ programming language, since it contains

some language extensions over C, which makes object oriented programming more convenient.

Furthermore, its code is easy to export to .dll or .so libraries files. Once the performance of a

program developed in C++ is close to performance obtained by a program developed in C, many

software libraries to interact with Smart Cards are also developed in C++ language. Figure 4.3

depicts the main modules that constitute the developed Middleware.

The API provided by the developed Middleware is the PKCS#11. The PKCS#11 is an open

source standard API for cryptographic tokens as Smart Cards, being supported by open source

56

4.2 Middleware

Middleware

Qt FrameworkOpenSSL

Precise Biometric
SDK Toolkit

PC/SC

PKCS#11
API

C++
Programming

language

Figure 4.3: Middleware structure of the implemented prototype.

applications as the web browser Mozilla Firefox, in a wide variety of operating systems. Since

the PKCS#11 standard interface has a wide range of methods, only the necessary methods were

implemented. However, to use the cryptographic methods necessary to the interaction with the

Smart Card layer, it was necessary to implement almost every function related with the general

purpose usage, the slot and token management, the session management, and the object man-

agement. A list with all the implemented functions of the PKCS#11 is available at E.

The interaction with the user has forced the development of two window applications. One

to request the user to input his PIN, and the other to request the user to insert is finger in the

biometric sensor. Both windows were developed in order to be possible to test the IAS applet

alone, requesting the user PIN before the proxy applet was installed, and requesting the biometric

local authentication after. The applets were developed using the Qt framework developed by

Nokia. Since it uses c++ programming language, and is a cross platform, it becomes easy to

use in a wide variety of operating systems, and is easily integrated with the developed PKCS#11

Middleware.

The PKCS#11 Middleware needs to read the user public certificate, which lead to the need to

use the OpenSSL software library. This software is open source, and is also implemented to be

used in a wide range of operating systems. In the current Middleware implementation it provides

the possibility for PKCS#11 to access the variables and components of the user public certificate.

Therefore, the Java Card stores the user public certificate as a binary file, and does not need to

keep separately all its components and variables.

The communication with the Smart Card reader was performed using the PC/SC software

libraries. This software was chosen since it can be used it in a wide range of operating sys-

tems, and is compatible with a wide range of Smart Card readers from different manufactures, by

respecting the main standards in Smart Card communications.

57

4. Prototype Implementation

The interaction with the biometric sensor component in the embedded reader device, implied

the use of the Precise Biometric SDK toolkit. This toolkit was used to capture the user fingerprint

image, and convert this image into biometric data to be matched against the biometric template of

the user, stored in the Java Card. This SDK is optimized to communicate with the used biometric

sensor, and is easy to use.

The embedded device used for the communication with the Smart Card and the capture of the

biometric data of the user was the Precise Biometric 250. This embedded device has the capacity

to read and communicate with Smart Cards, as well as to capture the biometric fingerprint of the

user. It is a requirement of the proposed architecture the usage of an embedded device to capture

the user biometrics and to communicate with the Smart Card, in order to ensure a protected

environment for the biometric template.

The developed Middleware provides an easy way of using the developed prototype, by the

user applications. The next section presents the enrolment process, needed for the authentication

system to receive the user private data.

4.3 Enrollment Process

The implementation of a prototype for the proposed solution consists of the development of

the Smart Card and Middleware layers. Nevertheless, the development of these layers is generic,

being necessary to personalize each Java Card for each user, through an enrolment process.

This section describes the details of the developed enrolment process, including the implemented

applications and the used technologies.

The proposed architecture includes the necessary modules to run on the host side, allowing

an easy interaction with the authentication system. In addition to the developed applets and

Middleware, an enrolment process was developed, in order to initialize and personalize the user

Smart Card. The enrolment process consists on the initialization of the IAS applet with the user

personal information and private keys, and in the loading of the user biometric template into the

BioServer applet.

The enrolment process of the user, into the Java Card is divided in three main phases. First,

the user private keys and public certificates are generated. Second follows the phase where the

user name, id, photo, private keys and public certificates are loaded into the IAS applet, on the

Java Card. The latest phase consists on capturing the user biometric template, and afterwards,

loading it into the BioServer applet, inside the Java Card. In the end of this process, the Java

Card is personalized with the user information, and is ready to be used in a real authentication

scenario. The three main modules needed for the enrolment process are depicted in Figure 4.4,

where the main components involved in the enrolment stage are depicted.

The first phase of the enrolment process consists on the generation of the user private keys

58

4.3 Enrollment Process

User
Name

User
Id

User
Photo

Private
Keys

Public
Certificates

OpenSSL

GUI
Application

Precise Biometric
Toolkit

Adaptated

Embeded Reader

Smart Card
Reader

Biometric
Sensor

Java Card

Middleware

IAS BioServer

Proxy

Figure 4.4: Enrolment process scheme.

and public certificates using OpenSSL software. OpenSSL is an Open Source toolkit implement-

ing the Secure Sockets Layer (SSL) v2/v3 and Transport Layer Security (TLS) v1 protocols, as

well as a full-strength general purpose cryptography library. It can be used in a wide range of

operating systems, being easily handled and well documented. Any other technology or method

can be used to generate this security information, as long as it is ensured that no external entity

can access it.

After the generation of the security data, the private information of the user such as name, id,

photo, private keys, and public certificates in the IAS applet, are inputted through an application

developed in JAVA. This application has a Graphical User Interface (GUI) developed to guide the

user during the enrolment process. This interface is a user friendly way to request all the needed

information to the user.

The JAVA application behind the GUI validates the entire data insert by the user, in order to

eliminate the error during the enrolment process. Its main function is to manage the execution

flow of the commands sent to the IAS applet into the Java Card, transparently to the user. Thus, it

assures the creation and space allocation of the files storing the user data inside the IAS applet.

In order to encapsulate the communication with the Smart Card reader, and the low level spec-

ifications during the communication with the Java Card, a specific Middleware was developed.

The JAVA application communicates with the Middleware through the Java Native Interface (JNI)

technology. The Middleware provides a JNI, and is developed using C++ programming language.

In the Middleware, the communication with the Smart Card reader is also assured by the use of

59

4. Prototype Implementation

PC/SC libraries.

The third phase of the enrolment process is responsible for the loading of the user biometric

template into the BioServer applet. The Toolkit of the precise biometrics already has a biometric

template enrolment example. Since the developed BioServer applet follows exactly the same

external interface as the BioManager applet, the Precise Biometric Toolkit was used, with some

adaptations. The adaptations required on the Precise Biometric Toolkit consist on the alteration of

the destination address in the commands sent, in order to redirect them to the BioServer instead

of the BioManager.

In short, the enrolment process required the development of an application to initialize and

load the user private data into the IAS applet, and an adaptation of the existing precise biometric

toolkit example to load the user biometric template into the BioServer applet. The application

developed to perform the enrolment of the user information into the IAS applet enables the Java

Card to be used as the source of the remote authentication system, since it is loaded with the user

private and crucial information. This application is easy to use, enabling the loading of the user

information without the need to know the details, and the complexity of the enrolment process

specifications. Since it validates the data, and formats the commands to be sent to the Java

Card, it encapsulates all the complexity of the process. The biometric data is enrolled by using

tested software, adapted to communicate directly with the developed BioServer applet, in this way

assuring an easy and reliable loading process.

4.4 Conclusion

This chapter describes the development of a prototype for the proposed solution. The solution

presented on this thesis is an authentication mechanism capable of assuring the biometric au-

thentication of the user in a remote authentication scenario. The developed prototype follows the

specifications and architecture described in the previous chapter, proving all the functionalities for

the proposed solution.

The architecture of the solution implies the implementation of two main layers. The first one

is the Smart Card layer, responsible for the storage of the private data of the user, and for the

computation of the security operations needed in the remote and local authentication process.

The second is the Middleware layer, responsible for providing an abstraction for the complexity of

the interaction with the Smart card layer and with the Smart Card reader and biometric sensor.

The Smart Card layer was developed using a Java Card. Three applets were developed to

run on the Java Card: the IAS applet, the Proxy applet, and the BioServer applet. These three

applets are the security source of the proposed system, providing the needed storage and security

processing operations. Even though three different applets exist, they are seen by the outside

entities as one single applet, capable of performing the user remote biometric authentication.

60

4.4 Conclusion

The Middleware layer implements a generic API used by the applications that need the pro-

vided authentication mechanism. The implemented API was the PKCS#11, allowing this solution

to be used in a wide variety of operating systems. The Middleware provides a known API encap-

sulating all the complexity of the communication with the Smart Card reader and the biometric

sensor. It also encapsulates the complexity of the communication with the applets inside the Java

Card, respecting the correct execution flow of the authentication process.

An enrolment process was also designed to personalize and initialize the Java Card with the

user private information. The enrolment process lead to the need for the development of a Java

application with a GUI, for the insertion of the private and personal data in the IAS applet. The

adaptation of the Precise Biometrics SDK Toolkit was also performed in order to load the user

biometric template into the BioServer applet.

The implementation of the prototype was based on the existing eID cards, as is the case of

the Portuguese citizen card. This work also shows the compatibility of the proposed solution

with existing technologies. The proposed eID card is able to provide the remote authentication of

the user, ensuring his local biometric authentication first. The developed prototype shows that it is

possible to add the local biometric authentication feature, to existent solutions, without a significant

cost. The proposed solution assures to the remote server the presence of the user during the

authentication process, and removes the user need to remember any secret information.

The security analysis of the proposed solution and of the implemented prototype is performed

in the next chapter.

61

4. Prototype Implementation

62

5
Assessment of the Solution

Contents
5.1 Test Environment . 64
5.2 Test Results and Analysis . 67
5.3 Security Analyses . 69
5.4 Conclusion . 72

63

5. Assessment of the Solution

This chapter performs an assessment of the solution proposed in this thesis. An analysis of

the proposed solution and the results of the tests performed to the implemented prototype are

herein performed.

The proposed solution claims to be the architecture of a secure authentication mechanism,

able to authenticate a remote user using his biometric signature. The implemented prototype

of the proposed solution shows that the proposed architecture can be implemented in using the

existent technologies, and deployed in existing solutions. Therefore, this section describes the

performed analysis to the security of the developed solution, and the functionality of the imple-

mented prototype in a real scenario.

The analysis of the implemented prototype is performed by the results obtained during the

test of the developed solution in a real scenario. The test of the implemented prototype was

performed with a web application authenticating the user towards a remote server. A web server

was developed and used as the remote server, while the used user application was a web browser.

The developed Middleware, capable of communicating with the Java Card, was installed in the

browser. The analysis to the security and functionality of the proposed solution is detailed in

the following sections. This chapter is divided in 4 sections. The first section, 5.1, details the

developed test environment in which the implemented prototype was analyzed, including the used

technologies. Section, 5.2, presents the performed tests to the implemented prototype, and the

analysis of the obtained results. The security analysis of the developed solution, and of the

implemented prototype, is performed in section 5.3. The final section, 5.4, concludes this chapter

with some final considerations to the performed analyses.

5.1 Test Environment

The tests performed to the prototype, implementing the proposed solution, were performed

using an environment test developed to represent a real authentication scenario. This section

describes the developed authentication scenario, and the technologies used in the creation of the

environment test.

The developed prototype is basically composed by the Java Card applets, and by the Mid-

dleware, implementing the proposed solution. The proposed solution was designed as a remote

authentication mechanism capable of using the user biometric signature, taking advantage of the

existing technologies. Therefore, the implemented scenario to test the developed prototype, aims

to demonstrate the functionality of the proposed solution by requiring a remote authentication of

the user, based on his biometric authentication. The authentication of the user in the environ-

ment test is performed by the developed prototype, assuring at the same time his local biometric

authentication.

The environment test showed that the proposed architecture can be implemented in existent

64

5.1 Test Environment

solutions, and can be used by current systems. A web environment was developed, being one

of the most used systems requiring user remote authentication. The developed web site was de-

ployed on an apache web server. The web server represents the remote authentication server,

to whom the user wants to authenticate. Nevertheless, the authentication will be established

between the web server, and the web browser. Thus, the web browser represents the user ap-

plication using the developed Middleware to interact with the developed authentication system,

present in the Java Card.

The authentication between the application of the user, and the remote server, consists on the

establishment of a HyperText Transfer Protocol Secure (HTTPS) connection in which the security

operations required in the user authentication process are executed by the developed prototype.

When the web browser needs to sign the challenge received from the remote server, to authenti-

cate the user, it uses the installed Middleware to interact with the user Java Card, possessing the

user private key. Figure 5.1 represents the scheme of the developed environment test.

Web Server

BioServer
Applet

HTTPS

JC-BioAPI

Legend:

PC/SC: Personal Computer / Smart Card
IAS: Identification Authentication Signature
MOC: Match-On-Card
SIO: Shareable Interface Object

Java Card

Smart Card
Reader

Fingerprint
Reader

Embedded Reader

APDU

IAS
Applet

Proxy
AppletSIO

PIN

RSA Keys ...

Template 1

Template n

PIN’

PKCS#11
Middleware

Browser

Precise
Biometrics

Toolkit
PC/SC

Figure 5.1: Environment test.

The request for the signature of the challenge is required during the establishment of the Trans-

port Layer Security (TLS) handshake of the HTTPS connection, once the web server requires the

client authentication. During this authentication phase the user application has to send the user

65

5. Assessment of the Solution

public certificate apart from having to sign the challenge. Therefore, the web browser requests the

user public certificate, and the signature operation, to the user Java Card, through the Public-Key

Cryptography Standards (PKCS#11) Middleware.

The Middleware sends the sequence of the Application Protocol Data Unit (APDU) commands

directly to the Proxy applet, since this is the front end of the authentication system implemented in

the Smart Card layer. The Identification, Authentication, and Signature (IAS) applet is responsible

for the storage of all the private information of the user and the performance of the security op-

erations required in remote authentication. Therefore, the public digital certificate and the entire

signature operation requests are redirected by the Proxy applet to the IAS applet. Whenever the

IAS applet uses the user private key to perform the signature of a challenge, a local biometric

authentication of the user is required. The Proxy applet manages the user local authentication

inside the Java Card, by authenticating the user in the IAS applet after a successfully local bio-

metric authentication. Out of the card, the Middleware is the entity responsible for managing the

biometric authentication.

The developed PKCS#11 Middleware asks the user to put his finger on the biometric sensor,

and sends his biometric fingerprint template to the Proxy applet. Once again, the Proxy applet

serves as a front end of the Java Card system, this time proxing the BioServer applet. Once the

BioServer applet possesses the user biometric template and is able to use the BioMatch library,

it is the entity responsible for performing the user biometric authentication, against the biometric

fingerprint template received from the Proxy applet. If a successful biometric authentication is

reported by the BioServer, the Proxy applet authenticates the user in the IAS applet using his

Personal Identification Number (PIN), and informs the Middleware that the user is locally authen-

ticated in the Java Card system.

The signature of the challenge sent by the server is requested again by Middleware to the

Java Card, and the result is provided to the web browser, to be sent to the web server in order

to conclude the user remote authentication. This process assures that the user performs a local

biometric authentication, every time that a signature with his private key is performed.

The technology used in the development of the environment test is depicted in Figure 5.2.

Web Server:
-> Apache v 2.2.17
-> PHP v 5.3.5

Web Browser:
-> Mozilla Firefox v 6.0.2
-> Middleware PKCS#11

HTTPS

Figure 5.2: Technology used in the environment test.

The used web server was an apache version 2.2.17, with the Hypertext Preprocessor (PHP)

version 5.3.5. The web site developed, presents the user name and id after a successful remote

authentication. The user name and id are requested to the web server using PHP, and are

obtained from the user public certificate, available after a successful HTTPS connection. The web

66

5.2 Test Results and Analysis

browser used was the Mozilla Firefox version 6.0.2, running the developed PKCS#11 Middleware.

5.2 Test Results and Analysis

The tests performed on the developed prototype of the proposed solution, using the environ-

ment test presented in the previous section, are detailed in this section. This section also aims to

present the obtained results, and analyze them based on the goals of the proposed solution.

The proposed solution consists of a remote authentication system using the user biometric

signature, being at the same time compatible with the existent technologies. The proposed solu-

tion was developed in order to ensure the presence of the user during the authentication process,

and to remove from the user the need for him to memorize any additional information. Its design

also has in account the protection of the user biometric template used in the biometric authenti-

cation process. The main goal of the developed environment test is to provide a real scenario to

test the implemented prototype, demonstrating the functionality of the proposed solution and its

compatibility with existent systems.

The enrolment process was applied on the Java Card, where the user loaded his name, id,

photo, and the generated private keys and public certificates, using the developed java Graphical

User Interface (GUI) application. After the registration of the user private information needed for

the remote authentication in the IAS applet, the user biometric template was loaded into the Java

Card BioServer applet, through the Precise Biometrics Software Development Kit (SDK) toolkit

with the alterations presented in the enrolment process described in section 4.3. The enrolment

process allowed the personalization of the user Java Card, thus initializing the authentication

system with all the requirements of the proposed solution specific for the user.

All the created tests were performed using the developed environment test. The user, using

the web browser with the PKCS#11 Middleware installed, opens the login web page. The web

page is accessed by HyperText Transfer Protocol (HTTP), and contains a button for the user to

perform his login. The HTTPS connection is required by the web server during the login, and the

user has to perform his biometric authentication to open the web page containing his name and id.

The first test was performed by the user that previously had performed the enrolment on the Java

Card. With the correct user using the authentication system the authentication was performed

successfully, proving that the developed system works and can be used in real scenarios with

existent technologies.

The second test consisted on the confirmation of the correct functionality of the biometric

authentication, performed locally by the BioServer applet in the Java Card of the user. The local

biometric authentication of the user has to reject all other users, aside from the one who performed

the enrolment on the Java Card. Therefore, a login was performed in the web page used for

testing, by a user not enrolled on the Java Card. The biometric authentication of the user failed

67

5. Assessment of the Solution

and the HTTPS connection was cancelled, being the reason why the user web page was not

made available by the web server. The web browser showed an error page, reporting an error on

a PKCS#11 interaction command.

The third test was made in order to test if the biometric authentication of the user is able to

distinguish the finger inserted by the user enrolled on the authentication system. Therefore, a

login was performed in the web page used for test by the user enrolled on the Java Card, but

using a different finger from the one used in the enrolment to generate the biometric template.

The biometric authentication of the user has also failed, and the web browser showed an error

page reporting an error on the PKCS#11 interaction command.

The fourth and most complex test was performed with the purpose of verifying if the PIN

used by the IAS applet on the user Java Card, to locally authenticate the user, was successfully

changed by the Proxy applet, for one randomly chosen. The change of the PIN in the IAS applet

prevents the user from using it directly, by forcing them to use the Proxy applet, responsible for

managing the authentication process inside the Java Card. Figure 5.3 depicts the purpose of the

fourth test.

Proxy
Applet

IAS
Applet

BioServer
Applet

Java Card
X

Figure 5.3: Test the direct access to the IAS applet.

This test implied the alteration of the used Middleware. It must be remembered that the Mid-

dleware is not a component of the proposed authentication system responsible for providing se-

curity. Rather, it is a means to achieve a good abstraction for user applications, encapsulating

the complexity of the communications with the user Java Card. Therefore, a user can use the

developed Middleware, or develop his own Middleware, in order to interact with the authentication

system. The alteration performed to the Middleware, enabling it to be used on this test, consisted

on the redirection of the challenge signature request directly to the IAS applet, instead of passing

through the Proxy applet. Therefore, when the IAS applet intends to use the user private key to

perform the signature, the PIN is requested to locally authenticate the user, instead of performing

a biometric authentication. The user then inserts his PIN on the popup window prompted by the

Middleware. Since the PIN was correctly changed by the Proxy applet, the authentication of the

user has failed, and the HTTPS connection was cancelled, having the web browser show an error

page reporting an error on a PKCS#11 interaction command.

68

5.3 Security Analyses

The tests performed to the implemented prototype showed that the proposed solution works

correctly and prevents unauthorized users from using the authentication system to authenticate

themselves in the remote servers. A security analysis of the proposed solution is performed in the

following section, where an indepth discussion of the security of the biometric template during its

usage cycle is performed.

5.3 Security Analyses

This section aims to present a security analysis for the proposed solution and for the imple-

mented prototype. The main components that represent the focus of the security analysis are

detailed and analyzed. The security analysis aims to present the main concerns in the usage of

the proposed solution, as well as the consequences of the breaches of some security assump-

tions.

The analysis performed in this section aims to analyze the possible points of failure of the

proposed solution, as well as the severity related to each one. This security analysis is important

in order to define which limitations the proposed solution has, and to specify the precautions

needed in the developed prototype. This analysis can also be used to define the areas needing

better improvements, in order to assure the global security of the system.

The scope of the security analysis herein proposed covers the Java Card system, responsible

for the storage of the user’s private information such as the private keys and biometric templates,

as well as for the performance of the crucial operations needed during the authentication process.

The security of the biometric template during its usage cycle is also analyzed, since it is one of

the major concerns in the use of biometrics on current remote authentication systems. Finally,

the necessary trust between the entities involved in the user authentication is also examined.

The consequences of a breach of confidence due to the compromise of one of these entities are

described, and the problems surrounding the introduction of the proposed solution in an already

implemented system are detailed.

The Java Card is the source of all the security functionality in the proposed authentication

system, once it possesses the user private keys and biometric template. Given that, the Java

Card is a secure platform, and the Smart Cards a tamper resistant system, the private information

of the user is securely protected against physical attacks made directly to the user Java Card.

Even if the user loses his Java Card, or if it is stolen, an attacker cannot have access to the

private information kept inside it. The attacks made by software to the user Java Card are also not

able to get the user private information, since this data is kept in Java Card applets, responsible

for assuring that the private data never leaves the card. To ensure this, the applets perform the

security operations needing the private information of the user.

The IAS applet ensures the storage and usage of the user private key, and the BioServer applet

69

5. Assessment of the Solution

assures the storage and correct usage of the user biometric template. The operations requiring

the usage of the user private key, as is the case of the signing of the challenge sent by the

remote server, always require the user local authentication. As explained in the proposed solution

chapter and validated in the previous section 5.2, the Proxy applet manages the authentication of

the user inside the Java Card, forcing him to perform a biometric authentication, which ensures

his presence during the authentication process. Therefore, if a malicious person has access to

the user Java Card it cannot use it to perform a remote authentication, since he does not possess

the biometric signature of the user.

After the overview on the security of the Java Card system, it is important to consider the

weaknesses of dealing with the biometric templates, in this security analysis. The security of the

fingerprint template of the user has to be analyzed from the moment in which it is captured by

the user’s finger on the biometric sensor, until it reaches the BioServer applet, inside the user

Java Card, to be matched against the template previously stored during the enrolment process.

The intervenient entities on this process are the user, the embedded device composed by the

biometric sensor and the Smart Card reader, and the Java Card of the user.

The most important considerations regarding the security of the biometric template are related

to the fact that the template, used during the authentication process by the Java Card, has to be

”fresh”, which means that it has to be captured in the moment of the authentication, avoiding this

way the use of captured biometric templates by possible attackers. Apart from that, it has to be

assured a secure and exclusive environment to the biometric template, assuring that no external

entity has access to the user biometric data sent during the local biometric authentication of the

user.

To assure the protection of the biometric template specified above, the embedded device has

to be able to manage the biometric authentication of the user, without the use of any external

entity, providing a secure and exclusive environment for the user biometric template. Since this

requirement is vital for the functionality of the presented system, it is important that the Java

Card authenticates the embedded device, assuring that it was validated by an external entity

responsible for verifying if it respects the requirements of the system. Therefore, the embedded

device is certificated by the Certification Authority (CA). It possesses a private key and a public

digital certificate with its public key, signed by the CA.

The Middleware sends a command to the embedded device that triggers the capture of the

biometric data and its validation. After that, the biometric authentication of the user starts inside

the embedded reader device, with the establishment of a secure channel with the Proxy applet

inside the Java Card. The embedded device is public, and susceptible of being attacked by any

person. If the embedded device or his private key were compromised, all the security of the sys-

tem is compromised, since the protected and exclusive environment of the biometric template

is violated, and can then be forged. This protected environment is essential to assure that the

70

5.3 Security Analyses

Match-On-Card (MOC) operation is always performed with a fresh template. As depicted in Fig-

ure 5.4, the protected environment assures that no external entity has access to the biometric

template.

Middleware

Embeded reader device

Smart Card
Reader

Smart Card

Proxy

Match-On-Card Protected environment
for biometric data

User biometricsBiometric data
to be match

Biometric
Sensor

Figure 5.4: Protected environment for biometric data in the biometric match process.

The embedded reader device receives the request for a local biometric authentication from

the Middleware, and triggers the procedure flow to perform the local authentication of the user

in the Java Card. Therefore, it captures the biometrics of the user, and generates the biometric

data to be match by the BioServer applet. It must be the embedded device the one who sends

the generated biometric data directly to the Proxy applet inside the Java Card, using the secure

channel previously established. The biometric sensor will send it, through the Smart Card reader

component in a specific format to be matched inside the Java Card.

The Proxy applet in the Java Card trusts in the biometric data coming to be matched, once the

embedded device is certificated and authenticated. The template received is necessarily ”fresh”,

since it was captured by the certificated reader device, in the moment of the local authentication.

Therefore, the biometric data of the user used to be match against the user template, never had

contact with any external entity, being assured its confidentiality and protection. This scheme

prevents the local authentication system from accepting old templates, or templates generated

by external and unreliable sources, also protecting the system against attempts to copy the real

template. To spoof the system a falsification of the biometrics of the user is needed, since it cannot

be spoofed simply by presenting a faked/stolen biometric template. The scope of this thesis was

to develop the solution to be installed on the Java Card system. The security of the biometric

template is assured by the embedded device, and is an assumption required for the correct and

secure functionality of the proposed system.

Until now, only the analysis of the Java Card system, and an evaluation of the cares needed

with the management of the biometric template were performed. Therefore, it is also necessary to

71

5. Assessment of the Solution

analyze the security perspective of the remote server. First, the server has to trust in the CA during

the authentication of the user Java Card, to be sure that it is communicating with the Java Card

of the correct user. This trust is very important, since it is the private key of the user that assures

that the Java Card being used is the correct one, and possesses the user biometric template

required to perform the local biometric authentication of the user. If this trust is compromised by

an attacker discovering the private key of the CA, all the security of the system is compromised,

since the would be able to sign his public certificate, as if it was a different and valid user.

The server also has to trust in the Java Card system, after it knows that it belongs to the correct

user and it is validated by the CA. This trust assures to the server that the user presence was

verified with his local biometric authentication, executed after following all the required precautions

specified in the proposed solution.

The entire system proposed in this thesis is able to be implemented in existing solutions, as

was shown in the previous chapters. However, if this system is deployed in a solution already in

operation, where the user local authentication is assured by his PIN, the server may be unable to

be sure if the Java Card used to authenticate the user already has the Proxy applet installed or

not. Therefore, the server may be unable to be sure if the user being authenticated with his correct

private key had performed a biometric or a PIN local authentication. One solution for this situation

is to add additional information on the public certificate of the new users using the proposed

solution installed on their Java Card. Thus, the server could verify the user public certificate to

check if the Java Card being used to authenticate the user already has the Proxy applet installed,

and thus performs a biometric authentication of the user. Another solution would be to assign a

different level of IDs to the users whose Java Card already had the proposed solution installed.

This last solution can be impossible to apply if the ID of the users cannot be changed, or is

pre-established.

The analysis performed in this section shows the security of the proposed solution, and the

requirements to use the implemented prototype. An observation was made of the security pro-

vided by the Java Card system, and the cares to have in mind when using this system in a real

scenario. The next section presents the main conclusions of the analysis here in performed.

5.4 Conclusion

This section presents the conclusion about the assessment of the proposed solution. A brief

overview of the chapter content is presented, summarizing the developed test environment, the

results obtained during the test of the implemented prototype, and the main conclusions on the

security analysis of the proposed solution.

The assessment of the solution was performed in order to determine the security and reliability

of the proposed authentication system. The proposed solution is intended to perform the remote

72

5.4 Conclusion

authentication of a user, using his biometric signature. Therefore, a prototype was implemented

respecting the architecture defined in the proposed system, and its behavior tested in a real

remote authentication scenario. The scenario implied the authentication of the user in a remote

server, using his Java Card with the prototype installed, in order to ensure his local biometric

authentication.

The developed test environment is composed of a web server requiring the user authentica-

tion through an HTTPS connection, established via the user’s web browser. The the PKCS#11

Middlewar was installed in the web browser, which is responsible for redirecting the requests for

the security operations related with the user authentication phase of the HTTPS, to the user Java

Card.

The environment test was used to test the developed prototype. The realized tests allow us

to conclude that the proposed solution works in existent systems, and can be implemented using

current technology. The authentication of the correct user occurred successfully, while all the

attempts by different users failed. The alteration of the PIN in the IAS applet was also tested,

being verified that the user cannot use his PIN to directly authenticate himself in the IAS applet

during the remote authentication. Therefore, it assures the correctness in the use of the Proxy

applet and performed the biometric authentication.

The security analysis shows that the Java Card system containing the developed solution is

secure, and that its requirements assure the safety of the user private data. The user biometric

data used in the local biometric authentication is one of the major concerns during the authentica-

tion process, reason why an authenticated embedded device has to be used, capable of assuring

a secure and exclusive environment to the biometric data.

In summary the developed solution is a secure remote authentication system, ensuring the

presence of the user during the authentication by using biometric authentication. The assessment

of the solution has positively demonstrated the functionality of the developed system in current

authentication scenarios, and its reliability.

73

5. Assessment of the Solution

74

6
Conclusions

Contents
6.1 Overview . 76
6.2 Contributions . 78
6.3 Future work . 79

75

6. Conclusions

The growth of Internet usage increases the number of users using Electronic Service (e-service),

which leads to the need for the development of more efficient security mechanisms, capable of

assuring the protection of the user’s information and identity, being at the same time adjusted to

the needs of the market. In this sense, remote authentication mechanisms are becoming a very

important issue, since they are a basic requirement on security systems, being used to identify

people and, to assure that an entity is in fact who it claims to be.

The research on the authentication technology area has led to the need of developing a bio-

metric authentication system, where the user is identified by something that is part of him, such

as his fingerprint. This technology can be easily used by users, since they always carry their

behavior and physical characteristics, and is also reliable, since it assures the presence of the

user being authenticated. However, the biometric authentication is not used in current remote au-

thentication systems, since it is not secure to send the biometric template of the user. Therefore,

the goal of this thesis was to securely integrate the biometric authentication on existent remote

authentication systems using Smart Cards with Personal Identification Number (PIN)s, through a

solution easy to deploy and with low integration costs.

The proposed solution, the implemented prototype, their analysis, and the current state of

the art were presented in the previews sections. The main conclusions of the work performed

on this thesis is presented in this chapter. This chapter is divided in three sections. Section

6.1 presents an overview of the proposed solution, and the results obtained during the testing

of the implemented prototype. Section 6.2 specifies the main contributions of the developed

work, the convenience for the users, and the added security advantages provided to the current

authentication systems. Future developments and a proposal for an important feature that should

be assured on a large scale implementation of the proposed solution are described in the future

work, presented in section 6.3.

6.1 Overview

The main goal of this thesis was to develop an authentication system capable of authenticating

a remote user using his biometric signature. The authentication system was designed to be

used in current systems, and to be deployed with existent technologies. The architecture of the

proposed solution is based on the use of a Smart Card, already possessing an authentication

module inside capable of authenticating the user remotely, using asymmetric cipher. Usually,

the module responsible for the remote authentication assures the local authentication of the user

through a PIN authentication, after which the user’s private key is used to sign the challenge sent

by the remote server.

The Smart Card also has to possess the ability to process the biometric template on the card

itself with the Match-On-Card (MOC) operation, being able to perform a local biometric authenti-

76

6.1 Overview

cation of the user. Therefore, for a Smart Card to be used as the base of the proposed solution,

the remote authentication module and the biometric authentication module have to combined,

being independent between each other. The solution proposed on this thesis suggests the de-

ployment of a Proxy module in the Smart Card. The Proxy module becomes the one responsible

for managing the user authentication, inside the card, ensuring the release of the user private key

in the remote authentication module, just after a successful biometric authentication of the user

performed by the MOC module.

In order to prove the functionality of the proposed solution, a prototype was implemented

following the defined architecture. The prototype was implemented over a solution based on Elec-

tronic Identity (eID) cards, as is the case of the Portuguese citizen card, to prove that it can be de-

ployed in existent solutions. An Identification, Authentication, and Signature (IAS) and BioServer

applets, corresponding to the authentication and MOC modules respectively, were developed, and

deployed on a Java Card. After that, a Proxy applet was developed and loaded to the Java Card

already containing the developed IAS and BioServer applet.

The test of the implemented prototype was performed using a web server, and a web browser,

where the implemented Middleware was installed. The developed Middleware provides a Public-

Key Cryptography Standards (PKCS#11) standards interface, and is responsible for providing the

necessary abstraction of the communication with the Smart Card reader and biometric sensor.

The environment test is composed by an embedded reader device, having the ability to perform

the communication with the Java Card and the ability to capture the fingerprint of the user. The

user authentication was performed during the user authentication phase of the Transport Layer

Security (TLS) protocol, on the HyperText Transfer Protocol Secure (HTTPS) connection required

by the web server. The web browser uses the developed Middleware to interact with the Java

Card that is responsible for signing the challenge sent by the remote server, first ensuring the

local biometric authentication of the user.

The tests performed on the developed prototype have shown that the implemented applets,

installed on the Java Card, are secure and reliable, not being possible for a user to use someone

elses Java Card, or to perform the remote authentication directly using the IAS applet. Therefore,

the user is forced to communicate with the Proxy applet performing a local biometric authentication

before the release of his private key.

However, for the secure functionality of the proposed system it is assumed that an embedded

device, capable of managing the biometric authentication process with the Java Card, is used.

Therefore, the capture of the fingerprint image and the generation of the biometric data used in

the match process has to be performed on an embedded device. Furthermore, the embedded

device has to send the biometric data generated, directly to the the Java Card of the user. This

mechanism assures a protected and exclusive environment to the user biometric data, assuring

that the used biometrics are always collected in the moment of the authentication, and that no

77

6. Conclusions

external entity can gain access to it.

The implemented prototype has also shown that the proposed solution can be implemented

using existent technology, and that it works with current authentication systems. However, if the

proposed solution is intended to be deployed in a current implemented system, it has to be taken

in consideration if the user is using a Smart Card with the Proxy already installed, or is still using

a Smart Card that only has a PIN based authentication.

6.2 Contributions

The main contributions of the authentication solution presented on this thesis are summarized

in the following sections. The added value of the proposed system is described in two perspective

points, one from the user local authentication point of view, and the other from the remote server

or service using the developed solution to authenticate the user.

User advantages during local authentication:

• The current remote authentication systems perform the local authentication of the user

based on PIN. The proposed solution removes the need for the user to memorize any

information such as his PIN, by performing the local authentication using his biometric sig-

nature. The user can never forget the necessary credentials required for the authentication

system, since his local authentication is performed by something that is intrinsically related

with him, and thus, always with him. This can be particularly useful.

• From a security perspective, the proposed solution is more efficient against theft, copy, or

forgery of the user authentication credentials. The theft of the user biometrics is significantly

more difficult than the PIN, making it more difficult for malicious users to get access to

the credentials needed for the user authentication. Therefore, easy techniques such as

the shoulder surfing cannot be used. The copy or counterfeiting of the users biometrics

requires expertise and laboratory equipment, being harder to forge than the traditional PIN.

The biometric template of the user, used to be matched with the previous stored template,

is impossible to guess, and the use of an embedded device makes it even harder to obtain.

• The proposed solution is based on a mechanism that does not require any security enrol-

ment on the server side, thus, it can be used to authenticate the user in a wide variety of

servers and services. Furthermore, the user can always use the same credentials to be

authenticated in all the systems being compatible with the proposed solution. Therefore, it

is not necessary to have several authentication credentials, one for each service, making

the interaction with the authentication system easier for all the various services that the user

uses.

78

6.3 Future work

Remote server or service advantages:

• The remote services can ensure the presence of the user being authenticated by using

the proposed authentication solution. The biometric traits of the user cannot be borrowed

by anyone; thereby it is assured that no one besides the user can use its authentication

credentials. This can be useful to prevent the repudiation of an authentication, or to assure

that it is in fact the correct user being authenticated, providing an accurate control.

• The proposed system is easy to deploy in existent solutions, and can be used in current

systems. Thereby, it takes a low cost and effort to adopt it on an authentication system

being already in use, since it respects the requirements defined in the proposed solution in

3.2. Besides that, the majority of the current systems used for the remote authentication of

the users can use the proposed solution, merely requiring the installation of the developed

Middleware.

• The enrolment of the user biometric traits is performed into the Smart Card of the user,

not being necessary to have a data base for each user, responsible for storing the user

information necessary in the authentication. Thereby, the server just needs to trust in the

Certification Authority (CA). Nevertheless, because the users do not need to constantly

change the PIN, the maintenance of the authentication system is lower, reducing the need

for constant alteration of the user’s secret information.

6.3 Future work

The proposed solution defines the requirements needed for the development of a secure au-

thentication system, using the user’s biometrics. However, the protection of the biometric data,

captured from the user to be matched inside the Smart Card, until it reaches the Smart Card, is an

assumption of the proposal. The embedded device used during the test of the proposed solution

does not generate internally the biometric data, requiring the Middleware to perform this compu-

tation. Therefore, the development of embedded device reader with the capacity to simultaneous

capturing the image of the biometrics of the user being authenticated, and afterward generate the

biometric data in a format that is prepared to be matched inside the Smart Card is suggested.

Thus, it does not leave the reader unless it needs to be sent to the MOC module inside the user’s

Smart Card.

79

6. Conclusions

80

Bibliography

[1] Anil K. Jain, P. F. and Ross, A. A. (2007). Handbook of Biometrics. Springer, London, UK.

[2] Bistarelli, S., Santini, F., and Vaccarelli, A. (2006). An asymmetric fingerprint matching algo-

rithm for java card tm. Pattern Analysis and Applications, 9(4):359–376.

[3] Cappelli, R., Ferrara, M., Franco, A., and Maltoni, D. (2007). Fingerprint verification competi-

tion 2006. Biometric Technology Today, 15(7-8):7–9.

[4] Chang, C.-C. and Wu, T.-C. (1991). Remote password authentication with smart cards. IEE

Proceedings E Computers and Digital Techniques, 138(3):165.

[5] Chen, Z. (2004). Java Card Technology for Smart Cards: Architecture and Programmer’s

Guide. Addison-wesley, Boston, USA.

[6] Chien, H.-y. and Jan, J.-k. (2002). An Efficient and Practical Solution to Remote Authentica-

tion: Smart Card. Computers & Security, 21(4):372–375.

[7] Chu-Hsing Lin, Y.-Y. L. (2004). A flexible biometrics remote user authentication scheme. IEEE

Computer Standards & Interfaces, 27(1):19–23.

[8] company, G. (2010). Portuguese Citizen’s Card.

[9] Consortium, B. and Group, W. (2002). Java Card: Biometric API White Paper. Architecture,

(August):02–0016.

[10] D, D., Gomes, B. G., Nova, L., and Brazil, N. R. N. (2006). Automation of Java Card compo-

nent development using the B method. Engineering, 2.

[11] Dodis, Y., Reyzin, L., and Smith, A. (2008). Fuzzy Extractors : How to Generate Strong Keys

from Biometrics and Other Noisy Data. Artificial Intelligence.

[12] Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31(4):469–472.

[13] Fodor, O. and Hassler, V. (1999). Javacard and opencard framework: a tutorial. IEEE

Information Systems, pages 13–22.

81

Bibliography

[14] France-massey, T. (2005). Multos - the high security smart card os. Development,

44(September):0–4.

[15] French, H. P., Brennan, a., White, B., and Cusack, T. (2010). Manual therapy for osteoarthritis

of the hip or knee - a systematic review. Manual therapy.

[16] Haller, N. (1994). The S/KEY One-Time Password System. Proceedings of the ISOC

Symposium on Network and Distributed System Security.

[17] Hellman, E. (1976). New Directions in Cryptography. IEEE Trans. Inform. Theory IT 22,

(6):644–654.

[18] Husemann, D. (2001). Standards in the smart card world. Computer Networks, 36(4):473–

487.

[19] Jain, A., Pankanti, S., and Bolle, R. (1997). An identity-authentication system using finger-

prints. Proceedings of the IEEE, 85(9):1365–1388.

[20] Jan, J.-k. and Chen, Y.-y. (1998). Paramita wisdom: password authentication scheme without

verication tables. Journal of Systems and Software, 42:45–57.

[21] Lamport, L. (1981). Password authentication with insecure communication. Communications

of the ACM, 24(11):770–772.

[22] Lee, J., Ryu, S., and Yoo, K. (2002). Fingerprint-based remote user authentication scheme

using smart cards. IEEE Electronics Letters, 38(12):554.

[23] Li, C.-T. and Hwang, M.-S. (2010). An efficient biometrics-based remote user authentication

scheme using smart cards. Journal of Network and Computer Applications, 33(1):1–5.

[24] Magalhães, P. S. (2003). Biometria e autenticação resumo.

[25] Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S. (2009). Handbook of Fingerprint

Recognition. Springer, London, UK, 2 edition.

[26] Mayes, K. E. and Markantonakis, K. (2008). Smart Cards, Tokens, Security and Applications.

Springer, London, UK.

[27] Mostowski, W. (2002). Java card tools for together control center. Development, pages 1–9.

[28] Mpcos, G. (2003). Mpcos simple , flexible , proven and reliable technology for multi-

applications.

[29] M.S. Hwang, L. L. (2000). A new Remote User Authentication Scheme using Smart Cards.

IEEE Transactions on Consumer Electronics, pages 1–3.

82

Bibliography

[30] O’Gorman, L. (2003). Comparing passwords, tokens, and biometrics for user authentication.

Proceedings of the IEEE, 91(12):2019–2020.

[31] Ortiz, C. E. (cite Dec 2010). An introduction to java card technology.

[32] Perlman, R. and Microsystems, S. (1999). An Overview of PKI Trust Models. Ieee Network,

(December):38–43.

[33] Prabhakar, S. (2003). Biometric recognition: security and privacy concerns. IEEE Security,

4677(2):275–42.

[34] Rankl, W. (2007). Smart Cards Applications: Design models for using and programming

smart cards. Wiley, West Sussex PO19 8SQ, England.

[35] Rankl, W. and Effing, W. (2003). Smart Card: Handbook. Wiley, West Sussex PO19 8SQ,

England, 3 edition.

[Republic] Republic, C. BIOMETRIC AUTHENTICATION: SECURITY AND USABILITY. pages

1–13.

[37] Rivest, R. L., Shamir, a., and Adleman, L. (1978). A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126.

[38] Selimis, G., Fournaris, A., Kostopoulos, G., and Koufopavlou, O. (2009). Software and hard-

ware issues in smart card technology. IEEE Communications Surveys & Tutorials, 11(3):143–

152.

[39] T. Hwang, Y. Chen, C. L. (1990). NON-INTERACTIVE PASSWORD AUTHENTICATIONS

WITHOUT PASSWORD TABLES. Information and Software Technology, 32(3):228.

[40] Terán, L. and Drygajlo, A. (2009). On development of inspection system for biometric pass-

ports using java. pages 260–267, Berlin, Heidelberg. Springer-Verlag.

[41] Tsujii, S. and Itoh, T. (1989). An ID-based cryptosystem based on the discrete logarithm

problem. IEEE Journal on Selected Areas in Communications, 7(4):467–473.

[42] Uludag, U. (2004). Biometric cryptosystems: issues and challenges. Proceedings of the

IEEE, 42(8):136–960.

[43] Usenix, F., Conference, N., Deville, D., Galland, A., and Grimaud, G. (2003). Smart card

operating systems : Past , present and future. pages 1–18.

[44] Warnier, M. (2003). Java card remote method invocation.

[45] Zúquete, A. (2008). Segurança em Redes Informáticas. FCA, 2 edition.

83

Bibliography

84

A
BioServer Applet Manual

85

A. BioServer Applet Manual

This manual is intended to detail the development of the BioServer applet. The motivation

for the development of this applet, as well as the internal structure and Application Programming

Interface (API) that it provides are described.

The BioServer applet was developed in the context of the implemented prototype for the pro-

posed solution. This applet is an implementation of the Match-On-Card (MOC) module inside the

Smart Card layer of the proposed solution 3.2.1. The main purpose of the BioServer applet is

to manage the biometrics of the Java Card holder, allowing the user to perform the enrolment of

his biometric template in the Java Card, and providing an internal API for the Proxy applet to be

able to perform the user biometric authentication. The Java Card used during the implementation

of the prototype already had a Java Card applet able to execute the same functionalities that the

BioServer applet provides. However, the private API provided by this applet is not the generic

Java Card Biometric Application Programming Interface (JC-BioAPI), reason why this new applet

was developed.

BioServer applet is a Java Card applet, developed using the Java Card Development Kit

(JCDK) for the Java Card version 2.2.1. This applet simultaneously provides and takes advan-

tage of the JC-BioAPI. On the other hand it uses this API to interact with the BioMatch library

developed by Presice Biometrics, present in the Java Card, and at the same time provides it as

an internal API being used by internal applets, such as the Proxy applet.

Its internal structure is divided into two sections. The first section, BioServer API, is respon-

sible for the communication with the outside of the Java Card and with the other internal applets.

The other section, BioServer implementation, takes care of the interaction with the BioMatch li-

brary, being responsible for keeping the state and managing the biometric authentication for each

biometric template enrolled on the Java Card. Figure A.1 depicts the internal structure of the

BioServer applet.

BioServer
API

BioServer
JC-BioAPI

BioServer
APDU

Commands

BioServer
Implementation

Precise Biometrics
BioMatch library

JC-BioAPI

Figure A.1: Internal structure of the BioServer.

The communication with the BioServer applet can be performed from outside the Java Card, or

internally by other applets sharing the Java Card. The internal communication with other applets

86

Commands Description CLA INS P1 P2
Enroll biometric template: Init ’B0’ ’30’ Template ID ’00’
Enroll biometric template: Update ’B0’ ’30’ Template ID ’01’
Enroll biometric template: Final ’B0’ ’30’ Template ID ’02’
Verify biometric data: Init ’B0’ ’32’ Template ID ’00’
Verify biometric data: Update ’B0’ ’32’ Template ID ’01’
Verify biometric data: Final ’B0’ ’32’ Template ID ’02’
Get information about the biometric template ’B0’ ’34’ Template ID ’00’
Delete biometric template ’B0’ ’36’ Template ID ’00’
Select Applet ’00’ ’A4’ ’04’ ’00’

Table A.1: External API provided by the BioServer applet.

is performed using the JC-BioAPI, specified in the [42]. The API provided for the communication

with the external world is composed by the methods shown on table A.1.

Any internal applet, as is the case of the Proxy applet, can communicate with this applet

using the generic and public known JC-BioAPI. Despite the use of the fingerprint the generic

architecture of this applet covers a wide variety of biometrics, specifically all the supported by the

JC-BioAPI.

87

A. BioServer Applet Manual

88

B
IAS Applet Manual

89

B. IAS Applet Manual

This manual is intended to detail the development of the Identification, Authentication, and

Signature (IAS) applet. The motivation for the development of this applet, as well as the internal

structure and Application Programming Interface (API) that it provides are described.

The IAS applet was developed in the context of the implemented prototype for the proposed

solution. This applet is an implementation of the authentication module inside the Smart Card

layer of the proposed solution 3.2.1.The main purpose of this applet is to store the personal infor-

mation of the user such as his name, id, photo, or address. It is also responsible for performing

all the necessary operations for the user remote and local authentication, securely storing his

private key and biometric template. The implementation of this applet followed the Identification

Authentification Signature - European Citizen Card (IAS-ECC) standard. However, only the func-

tions needed to develop the prototype of the proposed solution were implemented. Furthermore,

this applet enables the communication with other applets in the Java Card by providing an internal

API, known by the Proxy applet.

The IAS applet is divided in three core sections, the API, the Command Implementation, and

the File System.The API section is responsible for allowing the communication between the IAS

applet and the outside of the Java Card, as well as with the Proxy applet inside the Java Card.

The implementation section is responsible for the internal processing of the arrived Application

Protocol Data Unit (APDU) commands. It performs the execution of all the functionalities provided

by the IAS applet, covering the implementation of the user authentication and the management

of his personal information, as well as the execution ofall the cryptographic operations required.

Furthermore, the implementation section is also responsible for the management of the applet

states. The IAS applet has three states, SELECTABLE while it is in the personalization phase,

PERSONALIZED after being personalized with the user information, and BLOCKED if the Java

Card is blocked by an external command or because the user exceeded the limit of wrong au-

thentication tries.

The security logic of the IAS applet, regarding the sensitive information stored by the applet,

and the necessary level of authentication in each access is managed by the File System section.

The internal structure of the IAS applet is depicted in Figure B.1, where it is even possible to

see the section responsible for the management of the constant variables shared among each

section. The File System implemented in the IAS applet is also divided in the binary file system

and in the object data file system. The binary file system follows the International Organization

for Standardization / International Electrotechnical Commission (ISO/IEC)7816-4 standard, and is

responsible for managing the access to all the binary files keeping the user information, such as

name, id and the public certificate. These files are kept in Elementary File (EF) distributed by the

Dedicated File (DF). The object data file system stores the sensitive information such as the user

Personal Identification Number (PIN) and private key.

Communication with the IAS applet can be performed from outside the Java Card, or internally

90

IAS
Binary

File System

IAS
API

IAS
Commands

Implementation

IAS
File System

IAS
Object Data
File System

PIN
RSA

Private
Key

DF
Certs

DF
User

IA
S

C
on

st
an

ts

Proxy
Internal
Interface

IAS
APDU

Commands

Figure B.1: Internal structure of the IAS.

Commands description CLA INS P1 P2
VERIFY ’00’ ’20’ ’00’ pinRef
SELECT ’00’ ’A4’ Data type RetType

PUT DATA ’00’ ’DB’ ’00’ ’FF’
CHANGE REFERENCE DATA ’00’ ’24’ ’00’ pinRef

RESET RETRY COUNTER ’00’ ’2C’ Mode pinRef
GET DATA TLV ’00’ ’CB’ ’00’ ’FF’
CREATE FILE ’00’ ’E0’ ’00’ ’00’

UPDATE BINARY ’00’ ’D6’ P1 P2
READ BINARY ’00’ ’B0’ P1 P2

ERASE BINARY ’00’ ’0E’ P1 P2
PSO - Compute Digital Signature ’00’ ’2A’ ’9E’ ’9A’

PSO - Hash ’00’ ’2A’ ’90’ ’80’/’A0’

Table B.1: External API provided by the IAS applet.

by the Proxy applet. The internal communication with the Proxy applet is performed using the

Shareable Interface Object (SIO), which respective API can be found at C. The external interface

of the IAS applet is supported by the commands shown in the table B.1, all of them specified

in the ISO/IEC7816. The other provided commands are specific from the proprietary IAS-ECC

implementation of Gemalto, and as such will not be presented here.

91

B. IAS Applet Manual

92

C
Proxy Applet Manual

93

C. Proxy Applet Manual

This manual is intended to detail the development of the Proxy applet. The motivation for

the development of this applet, as well as the internal structure and Application Programming

Interface (API) that it provides are described.

The Proxy applet was developed in the context of the implemented prototype for the proposed

solution. This applet is an implementation of the proxy module inside the Smart Card layer of the

proposed solution 3.2.1. The main purpose of the Proxy applet is to manage all the operations

related with the user authentication. Therefore, during the remote authentication of the user, the

Proxy applet redirects all the requests either to the Identification, Authentication, and Signature

(IAS) or to the Bioserver applet. The challenge sent by the remote server has to be signed by

the IAS applet, using the private key of the user. To use the private key of the user, a local

authentication of the user using his Personal Identification Number (PIN) is required by the IAS

applet. The Proxy applet ensures the release of the user private key in the IAS applet, inserting

the user PIN, but only after a successful biometric authentication of the user is performed in the

BioServer applet.

This applet is designed to be deployed in an existent system, taking full control of the user

authentication in the IAS, and being the front end of the Java Card. To take control of the user

PIN authentication on the IAS applet, the Proxy changes it when it is deployed to the Java Card.

To perform this change, and the subsequent user PIN authentication in the IAS applet, the Proxy

applet defines an API that has to be implemented by the authentication modules, such as the IAS

applet. The Proxy applet represents the innovation module brought by the proposed solution on

this thesis.

The Proxy applet is a Java Card applet, developed using the Java Card Development Kit

(JCDK) for the Java Card version 2.2.1. This applet uses two API, one to interact with the

BioServer applet, and the other one used for the interaction with the IAS applet. Furthermore,

this applet provides one API to the external communication with the Java Card, covering all the

functionalities and operations supported by the system. The structure of the Proxy applet is de-

picted in the Figure C.1.

Proxy
Internal

 Interface

Proxy
APDU

Commands

JC-BioAPIProxy

Figure C.1: Internal structure of the Proxy.

The Java Card Biometric Application Programming Interface (JC-BioAPI) is used to commu-

94

nicate with the BioServer applet, while the communication with the IAS applet is assured by a

Shareable Interface Object (SIO) provided by the IAS applet. This SIO implements an API de-

fined by the Proxy internal interface. The definition of the Proxy internal interface is described in

the following:

pub l ic in te r faceIASECCInter faceex tends Shareable {

/∗∗
∗ Allows the Proxy to c a l l the process method of IAS app le t
∗ /

p u b l i c v o i d process (APDU apdu) ;

/∗∗
∗ Allows the Proxy to c a l l the s e l e c t method of the IAS app le t
∗ /

p u b l i c v o i d s e l e c t (APDU apdu) ;

/∗∗
∗ Allows the Proxy to perform an a u t h e n t i c a t i o n of the user
∗ i n the IAS applet , using h is PIN
∗ /

p u b l i c v o i d v e r i f y (APDU apdu) ;

/∗∗
∗ Allows the Proxy to change the PIN of the user i n the
∗ IAS app le t
∗ /

publ icvoidchangeReferenceData (APDU apdu) ;
}

This interface is composed by the necessary methods for the Proxy applet to interact with the

IAS applet, assuring all the requirements of the system. The process method is used to redirect

normal requests to the IAS applet. Therefore, it is used when a command received by the Proxy

applet is neither from it nor the BioServer applet. Since the process method is the entry function of

all commands, the IAS applet may not even realize that the command was not received directly by

an external source of the Java Card. The select command is used to select the IAS applet. This

is necessary since the select command can arrive at the Proxy applet with different destinations,

being necessary for the Proxy to request its data. Once requesting the data of a command, the

Proxy cannot send it to the IAS applet over the process command as it was directly sent to it. The

verify command is used by the Proxy applet for the authentication of the user in the IAS applet.

This authentication is performed using the PIN of the user, stored safely by the Proxy applet. The

change of the PIN of the user in the IAS applet is performed by the Proxy applet using of the

changeReferenceData command.

95

C. Proxy Applet Manual

96

D
Load Applets in a Java Card

97

D. Load Applets in a Java Card

The purpose of this appendix is to describe the load process of an applet into a Java Card,

summarizing the technologies used and the steps performed. The Java Card platform does not

specify any secure mechanisms for managing the load and deletion of the applets inside a Java

Card. Therefore, the Global Platform specifications are used in most of the existent Java Card

systems, to manage the load of the applets into the cards. In the development of the prototype

of the proposed solution three applets were developed, the Identification, Authentication, and

Signature (IAS), the Proxy, and the BioServer. These applets were loaded into the Java Card

using an application developed according to the Global Platform specifications.

The Java Card applet code is developed in a .java file. To load the code into the Java Card

it needs to first be compiled using the tools provided by the Java Card Development Kit (JCDK)

into Converted Applet (CAP) files. If any external interface has to be imported by the applet, such

as is the case of the Java Card Biometric Application Programming Interface (JC-BioAPI) in the

Proxy and BioServer applets, an .exe file containing this external interface has to also be provided

to the JCDK during the compilation. In addition to the CAP file, the compilation generates a .exe

file, containing the definition of the interfaces provided by the applet compiled.

The CAP files contain the byte-code ready to be loaded over Application Protocol Data Unit

(APDU) commands into the Java Card, and installed afterwards on its the Java Card Runtime

Environment (JCRE).The sequence of the commands, respecting the security specifications of

the Global Platform, were generated and sent to the Java Card by the Global Platform Shell

version1.4.4.The main components used in the development and load of a Java Card Applet are

depicted in the Figure D.1.

JCDK

Applet
Code

External
libaries

Applet
Bit Code

Applet
libraries Java Card

.java File

.exp File .exp File

.cap File

Figure D.1: Scheme for loading an applet into a Java Card.

The information specifying the Secure Channel Password (SCP) used, and the location of the

CAP files are inserted in the Global platform shell in the form of a script file. An example of a

script file is summarized next:

98

/ /
/ / S c r i p t G loba lPa l t fo rm / /
/ /

/ /
/ / I n i t
/ /
mode 211
enab le t race
e s t a b l i s h c o n t e x t
card connect

/ /
/ / Se lec t Card Manager
/ /
s e l e c t −AID A000000018434D00

/ /
/ / Open secure channel
/ /
open sc −s e c u r i t y 1 −scp 1 −scpimpl 5 −keyind 0 −keyver 0

−keyDer iva t ion v isa2 −key <KEY>

/ /
/ / L i s t commands
/ /
/ / g e t s t a t u s −element e0 / / L i s t app le ts and packages and s e c u r i t y domains
/ / g e t s t a t u s −element 20 / / L i s t packages
/ / g e t s t a t u s −element 40 / / L i s t app le ts or s e c u r i t y domains
/ / g e t s t a t u s −element 80 / / L i s t Card Manager / Secu r i t y Issuer Domain

/ /
/ / IAS
/ /
i n s t a l l − f i l e app le ts / i as . cap −nvDataLimit 500 −p r i v 2

−nvCodeLimit 4000 −pkgAID 010101010102

/ /
/ / Disconnect
/ /
card d isconnec t
re lease con tex t

99

D. Load Applets in a Java Card

100

E
PKCS#11 Implementation List

101

E. PKCS#11 Implementation List

Category Function Description
General purpose C Initialize Initializes the PKCS#11 library.
functions

C Finalize
Signals that the application is through
with the PKCS#11 library.

C GetInfo
Returns manufacturer and version
information about the cryptoki library.

C GetFunctionList
Returns all functions of PKCS#11
interface;

Slot and token C GetSlotList Returns a list of available slots.
management

C GetSlotInfo
Obtains information about a particular
slot in the system.

functions C GetTokenInfo Gets information about a specific token.
C WaitForSlotEvent Wait for a slot event. (only non-blocking)

C GetMechanismList
Gets a list of mechanism types that are
supported by the specified token.

C GetMechanismInfo
Obtains information about a particular
mechanism.

Session
C OpenSession

Enables an application to start a
cryptographic session with a specific token
in a specific slot.

management
C CloseSession

Close a cryptographic session with a
specific token.

functions
C CloseAllSessions

Close all cryptographic sessions of
a slot.

C GetSessionInfo
Obtains information about a particular
session.

Object management
C GetAttributeValue

Obtains the value of one or more object
attributes.

functions C FindObjectsInit Initialize a search for an object.
C FindObjects Return the search result.
C FindObjectsFinal Finalize the search and clean memory.

Signing and MACing
C SignInit

Initializes a digital signature operation.
(private key encryption)

functions
C Sign

Encrypts with private key, data in a
single part.

C SignUpdate
Continues a multiple-part signature
operation.

C SignFinal
Finishes a multiple-part signature
operation, returning the signature.

Random number C SeedRandom Generate a seed.
generation functions C GenerateRandom Generate a random sequance of bytes.

102

F
Test Environment

103

F. Test Environment

The purpose of this appendix is to illustrate the results obtained during the test of the proposed

solution. It is shown in the print screens of the developed web site, illustrating the interaction of

the user with the authentication system.

Figure F.1 depicts the first page of the web site, that can be accessed by a HyperText Transfer

Protocol (HTTP) connection. The login button represents the link for the user page, only accessed

by an HyperText Transfer Protocol Secure (HTTPS) connection.

Figure F.1: Login web page.

During the establishment of the HTTPS connection the Java Card requests the user biometric

authentication to the PKCS#11 Middleware. The PKCS#11 prompts a window requesting the user

to put his finger over the biometric sensor. The prompt window can be seen in Figure F.2.

Figure F.2: Requesting the user fingerprint.

The Middleware captures the fingerprint biometric template through the biometric sensor, and

sends it to the proxy applet into the Java Card, in order to process the user biometric authenti-

104

cation. After a successful biometric authentication, the Identification, Authentication, and Signa-

ture (IAS) applet is able to process the signature of the challenge sent by the web server using the

user private key. The result of this signature is passed to the browser that will finish the Transport

Layer Security (TLS) handshake with the web server. If the HTTPS connection is established suc-

cessfully, the user page is filled using Hypertext Preprocessor (PHP) calls, where the username

and id are collected from the user public certificated by the web server. Figure F.3 shows the user

page, after a successful authentication. If the TLS authentication fails, the web browser displays

an error page informing the user that the HTTPS connection cannot be correctly established due

to an error in the TLS handshake.

Figure F.3: User web page.

105

F. Test Environment

106

	Titlepage
	Acknowledgments
	Dedication
	Abstract
	Abstract
	Resumo
	Resumo
	Index
	Contents
	List of Figures
	List of Acronyms

	1 Introduction
	1.1 Background and Motivation
	1.2 Proposed Work Goals and Contributions
	1.3 Document Structure

	2 State of the art
	2.1 Authentication
	2.1.1 Overview
	2.1.2 Evolution of Authentication
	2.1.3 PKI
	2.1.4 Biometric Authentication
	2.1.4.A Biometric Features
	2.1.4.B Authentication Flow
	2.1.4.C Error Analysis
	2.1.4.D Fingerprints
	2.1.4.E Remote Authentication Scenarios

	2.2 Smart Cards
	2.2.1 Overview
	2.2.2 Technology Specifications
	2.2.3 Communication
	2.2.4 Operating Systems
	2.2.5 Java Card
	2.2.5.A Platform Structure
	2.2.5.B Applets
	2.2.5.C Middleware
	2.2.5.D Biometric Support

	2.3 Existent Solutions
	2.4 Conclusion

	3 Proposed Solution
	3.1 Authentication Scheme
	3.2 Architecture
	3.2.1 Smart Card Layer
	3.2.2 Middleware Layer

	3.3 Conclusion

	4 Prototype Implementation
	4.1 Java Card Applets
	4.2 Middleware
	4.3 Enrollment Process
	4.4 Conclusion

	5 Assessment of the Solution
	5.1 Test Environment
	5.2 Test Results and Analysis
	5.3 Security Analyses
	5.4 Conclusion

	6 Conclusions
	6.1 Overview
	6.2 Contributions
	6.3 Future work

	Bibliography
	A BioServer Applet Manual
	B IAS Applet Manual
	C Proxy Applet Manual
	D Load Applets in a Java Card
	E PKCS#11 Implementation List
	F Test Environment

