
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO
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Pelo sonho é que vamos,
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Resumo

Esta tese tem como objectivo comparar o desempenho de métodos de autenticação, implemen-

tados num cartão inteligente Java Card. Os métodos de autenticação considerados dividem-se

em dois grupos: desafio/resposta e protocolos de conhecimento nulo.

A autenticação por desafio/resposta baseada na cifra AES é mais rápida e segura do que

a baseada na cifra RSA. Esta última apenas é posśıvel com aux́ılio do coprocessador. De-

vido à complexidade das operações de multiplicação e exponenciação modular, o mesmo se

aplica à autenticação baseada em protocolos de conhecimento nulo, nomeadamente o Feige-

Fiat-Shamir e Guillou-Quisquater. A máquina virtual não permite executar tarefas computa-

tionalmente exigentes em tempo útil, e além do mais, o acesso ao coprocessador criptográfico

encontra-se limitado pelo API do Java Card.

Também propomos um método de autenticação por desafio/resposta, baseado numa cifra de

fluxo caótico de chaves chamada eLoBa. Para uma implementação sem aux́ılio do coproces-

sador, o tempo de resposta varia entre 1.4 segundos para 16 rondas e 2.5 segundos para 31

rondas. A autenticação baseada na cifra eLoBa demora cerca de 10 vezes mais do que a

baseada na cifra AES, que é o criptosistema mais rapido analisado. O limite máximo de 2.5

segundos é aceitável para um utilizador comum, e como tal, a autenticação baseada na cifra

eLoBa é adequada para cartões inteligentes contemporâneos.

Palavras chave: Autenticação · Java Card · Criptografia Caótica · Desafio/Resposta · Provas

de conhecimento nulo · Desempenho
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Abstract

In this thesis we report on the performance of authentication schemes in a Java Card smart

card. Authentication schemes have been divided into two sorts, challenge-response and zero-

knowledge protocols.

Challenge-response authentication based on AES is faster and more secure than RSA, which

is only feasible with coprocessor support. Due to the complexity of modular multiplication

and modular exponentiation, the same applies to authentication based on zero-knowledge

protocols, namely Feige-Fiat-Shamir and Guillou-Quisquater. Demanding computations on

the virtual machine are too slow for practical use, but on the other hand, access to the

cryptographic coprocessor is limited by the restrictive Java Card API.

We also present a challenge-response authentication scheme based on a stream-based chaotic

cipher named eLoBa. The response time, for Java-based implementation, varies between

1.4sec for 16 rounds, and 2.5sec for 31 rounds. The eLoBa-based authentication scheme is

about 10 times slower than the AES-based scheme, which is the fastest cryptosystem analysed.

The maximum authentication time of 2.5 seconds is acceptable for most end-users, therefore,

eLoBa-based authentication is suitable for contemporary smart cards.

Keywords: Authentication · Java Card · Chaos cryptography · Challenge-response · Zero-

knowledge · Performance
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Chapter 1

Introduction

Everyone suspects himself of at least one of the cardinal virtues, and this is

mine: I am one of the few honest people that I have ever known.

The Great Gatsby

F. SCOTT FITZGERALD

1.1 Motivation

With the decreasing cost of smart cards, as well as their growing computational power and

storage capacity, a new door has been opened to a whole new variety of security mechanisms,

making them ideal candidates for authentication devices. A smart card owner who wants to

access a given resource can, therefore, show a verifier he is who he claims to be, in such a way

that nobody else can pose as himself.

Cards have gone a long way to meet the users’ demands. At the very beginning they were

mere PVC embossed cards, used for exclusive membership. However, the growing need for

more sophisticated identification mechanisms led to the creation of magnetic-stripe credit

cards and, ultimately, to the development of smart cards. The latter resemble tiny computers

as they not only provide portability, ease of use and data storage but also processing ability.

Currently, smart cards are replacing magnetic-stripe cards as a more secure alternative; they

not only provide far greater storage capacity than that of a magnetic-stripe card, but their

stored data can also be protected against unauthorised access and manipulation.

The current generation of smart cards is both convenient and efficient. Their security prop-

erties, the multi-application smart card operating systems and the standardization of smart

1



2 CHAPTER 1. INTRODUCTION

card are expanding the range of potential applications. For instance, currently deployed smart

cards are widely used in public transportation, e.g. Lisboa Viva — see http://www.carris.

pt/en/Lisboa-viva and Andante— see http://en.wikipedia.org/wiki/Andante_ticket.

Payment cards also provide authentication and digital signature functionalities to citizens, e.g.

portuguese identity card named Cartão Cidadão and developed by Gemalto — see: http://

www.cartaodecidadao.pt, allowing them to access a variety of services.

Advanced authentication schemes are possible thanks to the smart cards’ ability to execute

applications and perform cryptographic calculations like hashing, encrypting and decrypting.

However, in order to develop such applications we must not only adhere to international

standards to ensure interoperability, but also understand the capabilities and limitations

of current technologies. Despite the advances in smart card technology, they still remain

resource-constrained devices.

1.2 Thesis goals

In this thesis we set out to evaluate the performance of different authentication mechanisms on

a Java Card [14, 6] smart card. The objective is to achieve authentication within a 5 second

period and to conclude which protocols and key lengths are useful in practice. For that

purpose, a Java Card smart card is used as a trusted platform module and challenge-response

as well as zero-knowledge authentication schemes are considered.

Java Card devices run a subset of the Java language, tailored to suit resource-constrained

devices. However, aside from the advantages of code portability and multi-application support,

the use of an interpreted language does not come without a performance penalty. Therefore,

we focus on it’s suitability to implement already established authentication schemes, as well

as developing new ones.

Since smart cards often incorporate a coprocessor to speed up mathematical operations, cryp-

tographic primitives (e.g. symmetric cryptosystem AES and public-key cryptosystem RSA)

are implemented from scratch, to enable a comparison between the performance of pure-java

implementations and the optimized and coprocessor-enabled cryptographic library available

on Java Card smart cards.

The thesis contribution is the implementation on a Java smart card of a authentication

http://www.carris.pt/en/Lisboa-viva
http://www.carris.pt/en/Lisboa-viva
http://en.wikipedia.org/wiki/Andante_ticket
http://www.cartaodecidadao.pt
http://www.cartaodecidadao.pt


1.3. DISSERTATION STRUCTURE 3

scheme [15], based on recently proposed chaotic keystream cipher eLoba [76, 77]. Its per-

formance is also compared against other known authentication schemes.

1.3 Dissertation structure

In this chapter we provide a brief work motivation and the thesis main goals. The remainder

of this dissertation is organized as follows.

In Chapter 2 we give a brief introduction to cryptography and present two methods for entity

authentication: challenge-response and zero-knowledge protocols.

Chapter 3 covers the main aspects of smart cards and the Java Card technology, namely

communication mechanisms between smart cards, smart card operating systems and the pro-

gramming environment.

In Chapter 4 we describe the modular arithmetic operations necessary to implement the

protocols described in chapter 2. Algorithms for multi-precision addition, subtraction, multi-

plication and exponentiation are presented.

Subsequently, in chapter 5, the focus is put into the challenges and their respective solutions,

regarding an implementation on a Java Card platform. We describe the implementation and

optimization of the authentication schemes, and how the Java Card cryptographic library can

be used to speed up modular multiplication.

The configuration of the development environment is discussed in chapter 6. Further, perfor-

mance measurement tests and experimental results are presented and discussed. To conclude,

we present our conclusions as well as suggestions for further work.
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Chapter 2

Authentication Methods

On the Internet, nobody knows you’re a dog.

PETER STEINER

In the following sections we will look at different authentication schemes which are built upon

symmetric and public-key cryptosystems. The reader is not required to fully grasp the internal

behaviour of the cryptographic functions used, nevertheless, it is important to get familiarized

with the computational costs and implementation challenges involved. We will cover the

essential background; readers who want a deeper understanding of cryptographic theories,

have at their disposal several good books devoted to cryptography, such as Cryptography and

Network Securityby William Stallings [79].

2.1 Cryptography - Basic definitions

Cryptography is the study of mathematical techniques related to aspects of information secu-

rity such as confidentiality, data integrity, entity authentication, and data origin authentica-

tion [5]. Cryptography is the building block of many security services [88]. However, by itself
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it does not guarantee security [89], other issues, such as protocol analysis — see Needham-

Schroeder, Lowe attack [48] are required. In addition, an attacker may perform side channel

attacks, where information is gained from the (physical) implementation of a cryptosystem,

rather than by cryptanalysis. Nevertheless, we will assume the existence of a physically secure

channel between the communication participants, as we are only concerned with the security

and performance aspects of the authentication protocols.

Cryptography manipulates many kinds of text, such as letters, computer data and pictures.

We may convert all of them to integers: for example, latin letters may be replaced by their

ASCII codes.

Cipher is a cryptographic algorithm that works in combination with a key and a message. The

original message, which can be understood without any special measures, is called plaintext,

while the disguised message is called ciphertext. The process of transforming a plaintext into

a ciphertext, using a cipher, is called encryption (encipherment). Thereafter, the plaintext

can be recovered from the ciphertext by the inverse process, decryption (decipherment). The

encryption and decryption process is illustrated in Figure 2.1.

One of the major goals of cryptographic systems is the data privacy of plaintext , i.e. to

prevent unauthorised parties (intruders) from listening in on private communications. More-

over, ciphertext may be accessed by anyone - communication parties and intruders, because

ciphertext circulate on open access media such as Internet.

Figure 2.1: Encryption and decryption

The exact transformations performed by a cipher depend both on the type of key used and the

type of input data. Symmetric key algorithms (Private-key cryptography) use the same key

(secret key) for encryption and decryption, shared by the two communicating parties, whereas

asymmetric key algorithms (Public-key cryptography) use two different keys, one which is only

know to each individual (private key) and another which is publicly available (public key).

Symmetric key algorithms are further divided into two categories: block ciphers and stream
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ciphers. Block ciphers split the message into blocks of fixed length; if plaintext size is not a

multiple of a block size, then it must be extended - this operation is known as padding. Each

block is iterated a given number times, where permutation and substitution operations take

place. In addition, the original key is expanded so that a different key is used for each round.

One of the most well-known block ciphers is the Advanced Encryption Standard (AES) [25],

which was adopted as a standard on 2001 in order to replace the Data Encryption Standard

(DES) [16], now considered to be insecure.

Unlike block ciphers, stream ciphers operate on streams of bits. Instead of a set of fixed

transformations, a keystream generator is used to produce a stream of bits which is to be

XORed with the stream of input bits, thereby producing the stream of output bits. The

output of the keystream generator is a function of the internal state of the keystream generator

and hence encryption(decryption) depends not only on the key and plaintext(ciphertext), but

also on the internal state of the keystream generator. Therefore, the closer the keystream

generator’s output is to randomness (when in fact it is actually deterministic since it depends

on the key), the harder it will be to break the system’s security. Cryptosystems of this type

include the Linear Feedback Shift Register [47], RC4 [73] and the chaotic stream cipher,

eLoBa [77]. The reality of a stream cipher security lies somewhere between the simple XOR

and the one-time pad (OTP) [70], which uses random keys that are as long as the message.

The OTP is completely unbreakable since it guarantees that after an opponent receives the

ciphertext he has no more information than before receiving the ciphertext. However, the fact

that keys cannot be reused creates severe key management problems and prevents keystream

generators from being widely used [83].

Key distribution is the biggest disadvantage of symmetric algorithms and it is why asymmet-

ric ciphers are often used to circumvent this issue. In a public key cryptosystem , each

user has a pair of keys - the public and the private key. Public keys are not secret and can

be broadcast freely, which allows Alice to send Bob a message by ciphering it with his public

key. Bob can later decipher the message with his private key. In the same manner, anyone

can verify a signature because only the owner of the secret can sign it, and all other parties

can check the signature with the owner public key.

The security of these cryptosystems lie in the size of the keys and in the difficulty of factoring

large numbers (RSA), or difficulty on discrete logarithm (ElGamal , Diffie-Hellman , DSA,

ECC). Furthermore, the private key cannot be calculated from the public key (at least not
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computable in polynomial time). However, as the keys increase in length, so do the computa-

tional costs involved for ciphering/deciphering, specially for resource-constrained devices such

as 8-bit smart card processors. That is why for asymmetric ciphers, such as RSA [69], special

math coprocessors are needed. As the minimum key size for RSA keeps increasing, alterna-

tives have already been proposed such as the Elliptic Curve Cryptography (ECC) [54, 46],

which when compared to the RSA cryptosystem, requires smaller key sizes for the same level

of security.

2.2 Authentication - Basic definitions

This chapter considers different techniques that allow a claimant to show a verifier that he is

who he claims to be; in other words, an authentication scheme allows someone’s identity to

be confirmed and prevent impersonation.

Very often, the terms Identification and Authentication are used interchangeably, however,

while the former refers to the process of establishing an identity, the latter refers to a process

of linking this identity to someone. Identification involves a claim or statement of identity :

”I am José Rafael”, while Authentication is a verification of that claim.

Definition 1 Identification is the means by which an user provides a claimed identity to the

system. Authentication is the means of establishing the validity of this claim [58].

Entity authentication is not to be mistaken with message authentication (MAC), which allows

to detect if any changes were made to the message content.

The objectives of identification protocols have been listed as [5]:

1. In the case of honest parties A and B, A is able to successfully authenticate itself to B,

i.e., B will complete the protocol having accepted A’s identity.

2. (transferability) B cannot reuse an identity exchanged with A so as to successfully im-

personate A to a third party C.

3. (impersonation) The probability is negligible that any party C distinct from A, carrying

out the protocol and playing the role of A, can cause B to complete and accept A’s

identity. Here negligible means ”is so small that it is not of practical significance”.
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4. Points 1 to 3 remain true even if a (polynomially) large number of previous authentica-

tions between A and B have been observed; the adversary C has participated in previous

protocol executions with either or both A and B; and multiple instances of the protocol,

possible initiated by C, may be run simultaneously. The idea of zero-knowledge-based

protocols, described in section 2.5, is that protocol executions do not even reveal any

partial information which makes C’s tasks any easier whatsoever.

To provide a proof of identity, authentication can be based on several different factors, which

can be used alone or combined. Some commonly used factors are:

1. Something known : something which is known to the individual. This secret infor-

mation can be, for example, a password, a personal identification number (PIN), or a

cryptographic key.

2. Something possessed : something that the individual owns. Tokens such as magnetic-

strip cards or smart cards are commonly used and will be discussed in the next chapter

of this report.

3. Something inherited : something that the individual is, which usually refers to biometric

data (e.g., handwritten signatures, fingerprints, retinal patterns, voice, ....).

There are several characteristics of authentication protocols that must be addressed, such as:

1. Reciprocity : either unilateral or mutual authentication is possible, provided that only

one, or both entities provide a proof of identity, respectively.

2. Computational efficiency : the number of operations required to execute a protocol.

3. Communication efficiency : this includes the number messages exchanged between en-

tities, as well as the bandwidth required(total number of bits transmitted).

While passwords provide authentication schemes, such as fixed password schemes and one-

time password schemes, they are still vulnerable to a variety of threats such as replay attacks

and dictionary attacks. Therefore, we focus on the cryptographic mechanisms available in

smart cards which allow us to design stronger authentication schemes.

Several authentication schemes have been proposed and discussed, however our focus is on

finding those which are suitable for smart cards. Being resource-constrained devices, the
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amount of computation and the memory requirements should be kept as small as possible.

In the following sections we will discuss several authentication schemes, based on challenge-

response cryptosystems (section 2.4) and Zero-Knowledge protocols (section 2.5).

2.3 Notations

The following notation will be used throughout the dissertation:� A and B identify, respectively, the verifier and the claimant, and are used to prevent

reflection attacks;� rA denotes a random number generated by A;� EK a symmetric encryption algorithm (e.g. AES), with a secret key K shared by entities

A and B;� Optional message fields are denoted by an asterisk (*), while a comma (,) within the

scope of EK denotes concatenation;� h(x) denotes a one-way hash function, where x is the input to the function.� PA denotes the public-key of A, required to an asymmetric cryptographic algorithm

(e.g., RSA).

2.4 Challenge-Response techniques

In password authentication, the claimant proves her identity by demonstrating that she knows

a secret, the password. However, revealing the secret makes it susceptible to interception by

the adversary. Replaced by a time-varying challenge, the secret no longer needs to be sent to

the verifier; instead, in challenge-response authentication, the claimant demonstrates knowl-

edge of a secret by correctly responding to the challenge, where the response is a function of

the entity’s secret and the challenge. Since every challenge is different, even if an adversary is

monitoring the communications, the response from one execution of the authentication proto-

col should not provide an adversary with useful information for a subsequent authentication,

as subsequent challenges will differ, thereby precluding replay attacks.
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2.4.1 Time-variant parameters

Challenges must incorporate time-variant parameters. Such parameters are usually called

nonces and are essential to provide uniqueness and distinguish one protocol instance from

another. Without time-variant parameters, protocols are vulnerable to counteract replay,

interleaving attacks as well as chosen-text attacks.

Definition 2 A nonce is a time variant parameter, to be used no more than once, with the

purpose of distinguishing one protocol instance from another. It typically serves to prevent

(undetectable) replay.

There are three main classes of time-variant parameters that can be used: random numbers,

sequence numbers, or timestamps. Both have their advantages and disadvantages [5]; however,

since the majority of smart cards lack internal time source [65, 66] (e.g., real-time clock) they

are, therefore, not adequate for timestamp-based protocols (it is not always possible to extend

the use of timestamps to any schema, especially when dealing with smart card authentication

processes) or anything which involves time synchronization. They miss standardized access

to a timer and what is more, they lack as well appropriate data types to process time [80, 87].

Since timestamps in protocols may typically be replaced by a random number challenge plus

a return message, in the further discussed protocols we will solely be using the latter.

2.4.2 Challenge-response by symmetric-key cryptosystems

Challenge-response mechanisms, based on symmetric-key cryptosystems, require the claimant

and the verifier to share a symmetric key, which can be derived from the card data (e.g., Chip

serial number).

Two simple techniques based on ISO/IEC 9798-2 [40] (Mechanisms using symmetric encipher-

ment algorithms) are described on Figure 2.2, which assume the prior existence of a shared

secret key. Two parties may either carry out unilateral entity authentication or mutual au-

thentication. The claimant corroborates its identity by demonstrating knowledge of the shared

secret by encrypting a challenge using the shared secret key EK . The challenge-response pro-

cedure is as follows : B generates rB which he sends to A (step a). Upon reception of the

random number, A will either proceed with unilateral authentication or mutual authentica-

tion. In the former, he encrypts the received number using its secret key, K, while in the latter
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1. unilateral authentication , using random numbers :

(a) B −→ A : rB

(b) A −→ B : EK(rB , B
∗)

2. mutual authentication , using random numbers :

(a) B −→ A : rB

(b) A −→ B : EK(rA, rB , B
∗)

(c) B −→ A : EK(rB , rA)

Figure 2.2: Authentication based on symmetric-key cryptosystem

he generates rA to which he appends rB and encrypts the resulting number using K. After

receiving the ciphertext from A (step b), B deciphers it and compares the results against the

previously generated rB . If they match, A will be authenticated by B. Before authenticating

A, B may also check the identifier to prevent a reflection attack. In the case of a mutual

authentication, upon reception of the ciphertext (b), B recovers rA, which he swaps with

rB thus concatenating them; thereafter he encrypts the resulting number using K ; this step

allows the challenge and response to be distinguished from each other. Finally, he sends the

resulting ciphertext to A, who will authenticate B if the results match.

2.4.3 Challenge-response by public-key cryptosystems

Public-key cryptosystems may be used for challenge-response based authentication, with a

claimant demonstrating knowledge of its private key in one of two ways: the claimant either

decrypts a challenge encrypted under its public key or digitally signs a challenge. The former

is described in Figure 2.3 [5].

1. Challenge-response based on public-key decryption

(a) B −→ A : h(rB), B, PA(rB , B)

(b) A −→ B : rB

Figure 2.3: Authentication through private key decryption

B chooses rB , computes the witness x = h(rB) (x demonstrates knowledge of rB without

disclosing it), and computes the challenge e = PA(r,B). B sends (a) to A. After A decrypts

the ciphertext and recovers r′B and B′ , he computes x′ = h(r′B), and quits if x 6= x′ or if B is
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not equal to its own identifier. Otherwise, A sends rB = r′B to B. B succeeds with (unilateral)

entity authentication of A upon verifying the received rB agrees with that sent earlier. The

use of the witness precludes chosen-text attacks.

2.4.4 Challenge-response by stream-based chaotic system

Keystream generators are useful for cryptography and may as well be used in authentication

schemes. Ciphers, such as eLoBa - ”enhanced Lorenz based” [76, 77], which uses a chaotic

module as a keystream generator is a good candidate for an authentication scheme [15].

Going over the architecture of the eLoBa cipher falls out of scope of this report, as for the pur-

pose of this section it suffices to explain how it works as an authentication device; three main

modules constitute the eLoBa architecture : the chaotic subsystem implements the Lorenz

System of equations; the chaotic disturbance subsystem is responsible for the introduction of

changes in the chaotic subsystem, therefore avoiding convergence to short-cycle length orbits;

finally, the key-mix subsystem translates the internal state of the chaotic system into two

128-bit keys.

The authentication scheme based on the eLoBa cipher is depicted on Figure 2.4, and can be

informally explained as follows : A will prove its identity to B via knowledge of a secret 128

bit number, the seed. In order to do that, B will produce a 128 bit number that will serve as

a challenge. Upon reception of the challenge, the 128 bits are split as shown next :� 123 bits are XORed with the chaotic system seed, producing the Key.� 4 bit are XORed with 0x10 and will define the number of rounds (i.e., iterations to the

chaotic system). This ensures a minimum of 16 rounds and a maximum of 31.� 1 bit is used to choose the output flux, since each iteration to the chaotic system produces

two keys.

The challenge r requires that A is able to answer to the challenge, which demonstrates her

knowledge of the secret seed. An adversary impersonating A might try to cheat by carefully

selecting r, such as r = 0 , and then collect A’s answer to the challenge. That would, however,

fail to provide the value of the seed, as the scheme ensures that the system is iterated at

least 16 times. Moreover, the cipher mechanism encompasses two mechanisms that mask the
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internal state of the system : the chaotic system undergoes an initialization process that aims

at protecting the seed from algebraic deduction attacks; also, the keys produced by the system

do not expose the entire state of the Lorenz system equations.

Terminal

eLoBa

!=0

��challenge��response

123 1 4

Challenge

eLoBa

123��5

+

128

+
#min rounds ( 0x10)

#rounds

Seed

+

stream output

key

Fail Success

true false

Smart Card

output
Response

Figure 2.4: eLoBa Authentication

2.5 Zero-Knowledge techniques

In zero-knowledge interactive proofs the claimant only needs to demonstrate the knowledge

of the secret, and not anything else that might reveal or endanger the confidentiality of the

secret. S. Goldwasser, S. Micali and C. Rackoff introduced the concept [31] and the first

practical solution was proposed by A. Fiat and A. Shamir [27]. There are several well-

known zero-knowledge proof authentication schemes. The Feige-Fiat-Shamir(FFS) [26] is

based on the difficulty of factoring. The Guillou-Quisquater(GQ) [34] improves FFS protocol

in terms of memory requirements and number of rounds required. In the following years, the

Schnorr [72, 71] and Okamoto [59] schemes were proposed, whose security is based on the

intractability of certain discrete logarithm problems.

2.5.1 Zero Knowledge Introduction

An interactive proof is said to be a proof of knowledge if it has both the properties of com-

pleteness and soundness [5].



2.5. ZERO-KNOWLEDGE TECHNIQUES 15

Completeness If the statement is true, the honest verifier will be convinced of this fact by

an honest prover.

Soundness If the statement is false, no cheating prover can convince the honest verifier that

it is true, except with some small probability.

Zero-knowledge If the statement is true, no cheating verifier learns anything other than

this fact.

The general structure of zero-knowledge protocols is the following:

A −→ B : witness

B −→ A : challenge

A −→ B : response

The entity claiming to be A selects a random number from a predefined set, as its se-

cret commitment, from which he computes the witness. This mechanism provide random-

ness which allows to distinguish different protocol runs. Upon reception of the witness,

B issues a challenge to which only the legitimate party A can provide a correct response.

To decrease the probability of successful cheating, the protocol is iterated if necessary.

Figure 2.5: Ali Baba’s Cave

The zero-knowledge concept is often presented with

the Ali Baba’s cave example [64], where Peggy

wants to prove to Victor that she knows the se-

cret password that allows her to open the cave’s

door, depicted in Figure 2.5.

Example 2.5.1 Peggy wants to convince Victor

that she knows the secret key to unlock the door

between points 3 and 4, without having to reveal

it. While Victor stands at point 1, Peggy enters the cave and stands either at point 3 or 4

(commitment). When ready, Peggy cries to Victor to come to point 2. At this point, Victor

has no way to know whether Peggy is at point 3 or 4. Victor then calls to Peggy, asking her

to come out either from the ”left” or the ”right” side of the passage (challenge); at this point,

Peggy might need to use the secret password to comply with the command (response).
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Peggy and Victor will then repeat this procedure until Victor is confident enough that Peggy

knows the secret, but no matter how many times that the proof repeats, Victor does not learn

the secret. If Peggy knows the secret, then she always passes the test (completeness). If she

does not, Peggy’s chances of anticipating Victor’s requests would become vanishingly small as

the number of rounds increase, and she could only comply with Victor’s request with probability

2−n(proof). For an impostor to fool Victor there must be an alternative way from 3 to 4 and

anybody can use it (soundness).

2.5.2 Feige-Fiat-Shamir authentication protocol

The Fiat-Shamir authentication protocol [27] requires a large number of iterations, conse-

quently the authentication process is slow and computationally expensive for both the prover

and the verifier. Nevertheless, a more efficient protocol exists: the Feige-Fiat-Shamir proto-

col [26] (Figure 2.6). This protocol is a variation of the Fiat-Shamir protocol and is based on

the difficulty of computing square roots modulo composite numbers. The protocol is repeated

t times, where a large enough t reduces the chances of an impostor successfully carrying out

an impersonation.

The security of the FFS scheme is 2−kt: provided that the factorization of N is difficult, the

best attack has a probability 2−kt of successful impersonation [5].

Example 2.5.2 (Feige-Fiat-Shamir protocol with artificially small paramenters)

1. The TA selects p = 683, q = 811, yielding N = 553913.

2. Peggy selects her private keys: s1 = 157, s2 = 43215, s3 = 4646 and computes her public

keys: v1 = 441845, v2 = 338402, and v3 = 124423.

3. Peggy selects r = 1279, and computes the witness: x = r2modN = 528015.

4. Victor sends Peggy the 3-bit challenge: vector (0,0,1).

5. Peggy computes y = r · s01 · s
0
2 · s

1
3modN = r · s3modN = 403104.

6. Victor computes z = y2 · v01 · v
0
2 · v

1
3 modN = y2 · v3modN = 25898 and verifies that

z 6= 0 and that z = −xmodN .



2.5. ZERO-KNOWLEDGE TECHNIQUES 17

1. Initialization

(a) A Trusted Authority (TA) selects two Blum primes p and q, each congruent to 3
mod 4 and publishes the common modulus N = pq, a Blum integer.

2. Configuration

(a) A generates two keys:

i. Secret Key : k random integers s1, s2, · · · , sk where sj ∈ZN .

ii. Public Key : k quadratic residues v1, v2, · · · , vk , where vj = s−2
j modN .

3. Protocol Messages. Each of the t rounds has three messages as follows :

(a) A −→ B : x = r2modn

(b) B −→ A : (e1, . . . , ek) , ei ∈ {0, 1}

(c) A −→ B : y = (r · se11 · s
e2
2 · · · · · s

ek
k )modn

4. Protocol Actions : the following steps are executed t times and B

(a) A choses a random integer r ∈ZN , and sends the witness, x = r2modN , to B.

(b) B sends to A a random k -bit vector, e (the challenge).

(c) A computes and sends to B the response: y = r ·
∏k

j=1 s
ej
j modN .

(d) B computes z = y2 ·
∏k

j=1 v
ej
j modN , and verifies z = ±x and that z 6= 0.

Figure 2.6: Feige-Fiat-Shamir protocol

2.5.3 Guillou-Quisquater authentication protocol

The GQ protocol [34], depicted in Figure 2.7, is an extension of the Fiat Shamir protocol that

limits the number of rounds required; this enhancement is particularly suitable for resource-

constrained devices, such as smart cards, and is achieved by reducing both the number of

messages exchanged and the memory requirements for user secrets.

In the GQ protocol, v is the security parameter and determines the security level. The

probability of false acceptance is equal to v−t, where t is the number of iterations. Therefore,

the recommended bitlength of v depends on the environment under which attacks could be

mounted [5, 34]. For instance, for signature schemes it is recommended to use a public

exponent v of at least 160 bits, nevertheless, in the corresponding authentication scheme,

shorter exponents are allowed [85]. A small v allows more efficient computations, however it

would require an a significant increase in the number of iterations. Therefore, in practice GQ

protocols require only one iteration, t=1.
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1. Selection of system parameters

(a) A Trusted Authority (TA) selects two RSA-like primes p and q and publishes the
common modulus n = pq. It must be computationally infeasible to factor n.

(b) T defines a public exponent v ≥ 3, coprime to φ = (p − 1)(q − 1), which should
be about 30 bits length for a remote authentication [34], and computes its private
exponent s = v−1modϕ.

2. Configuration

(a) A publishes a unique identity IA, from which B derives the redundant identity,
JA = f(IA) ∈ Zn, using a known redundancy function f. Ja is kept secret.

(b) T gives to A the secret (accreditation data) sA = J−s
A modn.

3. Protocol Messages. Each of the t rounds (often t=1) has three messages as follows :

(a) A −→ B : IA, x = rvmodn

(b) B −→ A : e (where 1 ≤ e ≤ v)

(c) A −→ B : y = r · seAmodn

4. Protocol Actions : the following steps are executed t times and B

(a) A choses a random integer r ∈Zn(the commitment), and sends the witness, x =
rvmodn, along with IA to B.

(b) B sends to A a random integer e (the challenge), such that 1 ≤ e ≤ v.

(c) A computes and sends to B the response: y = r · seAmodn.

(d) B computes z = Je
A · y

vmodn, and accepts A’s proof of identity if both z = x and
z 6= 0.

Figure 2.7: Guillou-Quisquater authentication protocol

Example 2.5.3 (GQ protocol with artificially small parameters and t=1)

1. The TA selects p = 569 and q = 739. Therefore, N = p · q = 420491.

TA computes φ = (p − 1)(q − 1) = 419184, selects v = 54955 and computes the secret

value s = v−1 modφ = 233875.

The pair (54955, 420491) is made available to all users.

2. Suppose that Peggy’s identity is JA = 34579.

Peggy’s accreditation data is sA = (JA)
−smodN = 403154.

3. Peggy selects r = 65446 and computes x = rv modN = 89525. Afterwards, she sends

the pair (IA, 89525) to Victor.

4. Victor sends the challenge e = 38980 to Peggy.

5. Peggy computes y = r · seAmodN = 83551 and sends it to Victor.

6. Victor computes z = Je
A · y

v modN = 89525 and authenticates Peggy since z = x.



Chapter 3

Smart Card Architecture and

Programming

It may well be doubted whether human ingenuity can construct an enigma...

which human ingenuity may not, by proper application, resolve.

The Gold Bug

EDGAR ALLAN POE

Smart cards are devices much similar to credit cards, being capable of storing and processing

information through the electronic circuits embedded in silicon in the plastic substrate of

its body [14]. Despite its major hardware constraints, its portability, tamper resistance and

capability to execute security protocols and algorithms, remain one of the mobile computing

devices of choice [17, 75]. In fact, because smart cards can be used do provide authentication,

identification and transaction processing, the smart card security market keeps expanding [24].

One of the most widely used multi-application smart card platforms [52], Java Card, is at

least partly responsible for the success of smart cards as the ”write-once-run-everywhere”

concept brought smart card application developers more development flexibility and platform

independence.

This chapter provides basic introduction to smart card technology. Extra information is

available elsewhere [86, 66, 65, 52, 14].

19
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3.1 History

Before the advent of smart cards, other types of cards have been used to provide some sort of

identification. The story traces back to a little incident with the businessman Frank McNa-

mara; unable to pay for dinner at a restaurant because he had left his wallet on another suit,

he faced a terrible embarrassment and decided to create the Diners Club — see http://www.

dinersclubinternational.com. The first cards date back to 1950, when the Diners Club

issued the first ”multi-purpose charge card”.

Since synthetic material PVC was cheap and plastic cards began to proliferate, it wasn’t long

until Visa and Mastercard began issuing their own cards. A demand for machine-readable

cards led IBM to develop the magnetic stripe cards in 1960. This step allowed to replace

paper-based transactions by electronic data processing. However, this technology’s security

was brittle, as the data stored on the stripe could be read, deleted or rewritten by any one

with the right equipment.

The enormous progress in microelectronics in the 1970s created the path for smart card

creation, making it possible to integrate data storage and processing logic on a single silicon

chip. The first smart card patents (1970s) and field trials with prepaid telephone cards (1984)

soon followed. With the advances in chip technology and modern cryptography, smart cards’

areas of application widened to the telecommunications (GSM networks: 1991), credit cards

(EMV specifications: 1994) and electronic signatures (European directive [23]: 1999).

From a software developer’s perspective, smart card software was initially rigid and mono-

lithic [17], with closed proprietary systems that made the process of application development

lengthy and difficult. Nevertheless, the success of open smart cards like MultOS [49] and Java

Card [14, 6] became an important milestone in the history of smart cards. These brought

flexible and interoperable mechanisms, by which multiple applications could be installed after

the card had been issued.

3.2 Benefits and applications

Nowadays, smart cards are becoming ubiquitous, widely used in the telecommunication in-

dustry (SIM cards for mobile phones), payment and banking industries (fig. 3.1b), trans-

portation(fig. 3.1a), health care, and citizen’s electronic authentication (eID) (fig. 3.1c). For

http://www.dinersclubinternational.com
http://www.dinersclubinternational.com
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example, the currently in progress Stork3 project — see http://www.eid-stork.eu/, aims

at providing a reliable electronic authentication (eID) student mobility platform, with the

objective of facilitating student’s mobility across Europe.

(a) Lisboa Viva (b) university eID (c) Citizen card (PT)

Figure 3.1: smart cards

Some advantages of the smart card technology are listed bellow:� security : smart cards are tamper-resistant devices with embedded chip which allow data

storage, processing and personal key management in a secure way. Unlike magnetic

stripe cards, smart card exploitation requires not only the physical possession of the

card, but also intimate knowledge of the smart card hardware, software and specialized

equipment.� multi-application support : multiple applications can reside on a single card. Moreover,

these can be installed and removed after the card has been issued, without compromising

the security of the various applications.� standardized features : standards such as the EMV [20], ISO7816 [39] , ISO 14443 [38]

and GSM [22] ensure interoperability between different card manufacturers and different

card readers (see section 3.3.4).� cryptographic support : faster microprocessors and bigger storage capacity allow the ex-

ploitation of complex cryptographic algorithms. Current smart cards provide both sym-

metric and public-key cryptography through AES [25] and RSA [69], respectively, hash-

ing (SHA-1 [63] , MD5 [68]) and digital signature schemes such as DSA and ECDSA [28].

Furthermore, these can be used to develop more advanced cryptographic protocols and

provide security schemes (e.g., authentication).

http://www.eid-stork.eu/
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3.3 Smart card basics

In this section we present some basic concepts related to smart cards. In section 3.3.1 we

introduce the two main types of smart cards, and in section 3.3.2 we describe their hardware.

Communication between a smart card and a computer is described in section 3.3.3 and finally,

in section 3.3.4, we outline a certain number of standards and specifications, which have been

defined to achieve interoperability between smart card systems.

3.3.1 Smart card types

Smart cards are classified as memory card or microprocessor cards. The former are only

capable of storing data because they do not contain a microprocessor. Because of their non-

programmable logic they cannot be reprogrammed and reused, nevertheless, their low cost

is adequate for prepaid services, such as public phones cards. Microprocessor cards, on the

other hand, are more expensive than memory cards but possess of a central processing unit

(CPU) and provides the card with multifunctional capabilities.

Figure 3.2: Card Types [65]

In terms of the access mechanism, smart

cards can be further categorized as contact

cards, contactless cards, or hybrid when they

offer both interfaces. While Contact cards

must be inserted in a card acceptance de-

vice (CAD), contactless cards communicate

through an antenna, where energy and data

are transferred without any electrical contact

between the card and the terminal. These

cards need not to be placed in a CAD, there

is also no mandatory direction or orientation, in fact, these can even remain in the user’s

purse or wallet, making them particularly suited for public transport systems and payment

— see Master Card’s PayPass : http://www.paypass.com/.

3.3.2 Smart card hardware

Smart card contact points and architecture are depicted in figure 3.3. The Smart card ar-

chitecture, depicted in figure 3.3b, is made of one embedded CPU; three types of memory:

http://www.paypass.com/
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electrical erasable program read-only memory (EEPROM), random access memory (RAM)

and read-only memory (ROM); and may also have a coprocessor for mathematical computa-

tions (fig. 3.3b).

(a) Smart card contact points

Microprocessor

CPU

Coprocessor

AESRSA/ECC

Memory

RAMEEPROMROM

Contacts

I/O CLK RST

VCC GND

(b) Microcontroller architecure

Figure 3.3: Smart card contact points and architecture� Smart Card Contact Points: As depicted in figure 3.3a, a smart card has eight contact

points which allow it to communicate with a CAD : Vcc, RST, CLK, GND, I/O and

RFU.� Processor : Most of CPUs on smart cards are 8-bit size. However those with a 16-bit or

32-bit microcontroller exist and are likely to become more common in the future. The

clock signal is supplied externally as smart card processors usually do not have internal

clock generators. Even though the standards restrict the clock signal to a range of 1-5

MHz, an internal clock multiplier allows cards to operate at higher frequencies.� Coprocessor : Smart cards have very limited resources, and without a specialized math-

ematical coprocessor, some cryptographic operations would otherwise be infeasible. Se-

curity applications which involve modular arithmetic and large-integer calculations com-

monly resort to the coprocessor (e.g., RSA [69], ECC [28]).� Memory System :

– read-only-memory (ROM) : This persistent memory can only be programmed once,

by the manufacturer, and usually includes the operating system routines, crypto-

graphic algorithms and transmission protocols.
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– EEPROM : Data like the smart card applications and operating system parameters

is stored in this type of memory. It can hold data after the power supply is switched

off and also be erased electronically and rewritten. However, writing this memory is

considerably slower than RAM, which should be carefully taken into consideration

when designing and implementing applications. For instance, Chen [14] says that

writing to EEPROM is 1000 times slower than writing to RAM, while Karima [67]

from 10 to 50 times slower.

– RAM : RAM is the fastest and most scarce type of memory in a smart card, meant

to store and modify temporary data. The data is stored temporarily in RAM,

being immediately lost when the power supply is switched off.

– Depending on the application area, memory capacity may range from 16 to 400KB

of ROM, 1 to 500KB of EEPROM and 256 bytes to 16KB of RAM [66].

3.3.3 Communication models

In order to communicate with a computer, a card interacts with a Card Acceptance Device

(CAD). This device can either be a reader, which in turn communicates with the computer it

is connected to, or a terminal if it comprises both the tasks of a reader and a computer (e.g.,

ATM machine). In this communication model (fig. 3.4), the applications that communicate

with the smart card are called host applications. Smart cards adopt client-server paradigm,

being smart card the server and the host application the client. Due to the client-server

paradigm, communication between a host and a CAD is half duplex, therefore data can only

be sent in one direction at a time. This is achieved through a request-response protocol

(fig. 3.4), in which application protocol data units (APDU’s) are exchanged. It is the host

who initiates the communication, which he does by sending to the card a command APDU

(C-APDU), thereafter the smart card replies with a response APDU (R-APDU). The smart

card state machine is depicted in Figure 3.5.

Figure 3.4: Smart card communication model
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Figure 3.5: Smart card state machine

The structure of APDUs are illustrated in table 3.1. In the C-APDU the CLA byte identifies

the class of instructions and the INS byte further specifies the specific instruction, while

bytes P1 and P2 provide extra parameters. The SW1 and SW2 bytes form the status word,

which is used to provide feedback about the execution of the C-APDU. Several status words

are predefined in the ISO 7816 standard [39]; examples of status words are ”0x9000”, which

means that the command was successfully executed and ”0x6D00” for an invalid INS value.

The remaining fields are optional: the data field may contain up to 255 bytes, where Lc defines

the number of data bytes in the C-APDU and Le the maximum number of bytes expected in

the R-APDU data field.

Table 3.1: APDU structure

(a) C-APDU

Mandatory header Optional body

CLA INS P1 P2 Lc Data field Le

︸︷︷︸

1 byte

︸︷︷︸

1 byte

︸︷︷︸

1 byte

︸︷︷︸

1 byte

︸︷︷︸

1 byte

︸ ︷︷ ︸

up to 255 bytes

︸︷︷︸

1 byte

(b) R-APDU

Optional body Mandatory trailer

Data field SW1 SW2

︸ ︷︷ ︸

up to 255 bytes

︸︷︷︸

1 byte

︸︷︷︸

1 byte

When powered up, or after receiving a RST command, a smart card sends out an answer to

reset (ATR) message to the host. ATR message contains various parameters related to the

transmission protocol; card hardware parameters but also allows the host to identify the card

as cards from the same family share the same ATR (table 3.2). In this thesis, a Gemalto TOP

GX4 [4] smart card is used.

Transmission protocols are designated as ”T=” (for ’transmission protocol’) plus a sequential
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Table 3.2: sample ATRs

Manufacter/family ATR

Portuguese Citizen’s card 3B 7D 95 00 00 80 31 80 65 B0 83 11 C0 A9 83 00 90 00

IST eID card 3B 29 00 80 72 A4 45 64 00 FF 00 10

Lisboa Viva subway pass from Portugal 3B 6F 00 00 80 5A 08 06 08 20 02 00 92 37 89 73 82 90 00

Lisboa Viva subway pass Sub23 3B 6F 00 00 80 5A 08 06 08 20 02 00 92 55 3C 39 82 90 00

Gemalto TOP GX4 3B 7D 96 00 00 80 31 80 65 B0 83 11 D0 A9 83 00 90 00

number. The two most used protocols are called T=0 and T=1 [65], where the former is

asynchronous, half-duplex, byte oriented, and the latter is asynchronous, half-duplex, block

oriented.

3.3.4 Standards and Specifications

Many standards and specifications have been developed over the years to ensure the inter-

operability between smart card systems. Along the way, many projects have born, evolved,

fused together or even dropped:� ISO/IEC 7816 [39]: The most important standard regarding smart cards, it defines

multiple aspects of smart cards, such as physical characteristics, transmission protocols

and their security architecture are defined by this international standard.� ISO/IEC 14443 [38]: Describes the properties and operation modes of contactless smart

cards with a range of approximately 10cm.� GSM [22, 56]: Set of standards that cover the use of smart cards in public and cel-

lular telephone systems. GSM devices use Subscriber Identity Module (SIM) smart

cards, which are security modules capable of holding personal identity information and

performing security operations, such as entity authentication.� EMV: Europay, MasterCard and VISA defined this specification, based on the ISO 7816,

with the aim of promoting a global standard for interoperability between smart-card-

based payment systems — see http://www.emvco.com/.� Open/Global platform [51]: GlobalPlatform specifications ensure secure and interoper-

able deployment and management of smart card applications, regardless of technology

vendor or service provider. These specifications encompass the communication between

smart cards, CADs and the host’s system infrastructure.

http://www.emvco.com/
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applications deployed on the smart cards. The project was discontinued, however,

other projects are still using OCF, namely the Open Smart Card Development Plat-

form (OpenSCDP) — see http://www.openscdp.org/.� PC/SC specification [2] (Interoperability Specifications for ICCs and Personal Com-

puter Systems) defines a general purpose architecture for using smart cards on personal

computer systems.� M.U.S.C.L.E (Movement for the Use of Smart Card in a Linux Environment) — see

http://www.linuxnet.com/, defines a Linux API, a set of compliant drivers and a

resource manager through a GNU environment. MUSCLE is built on PC/SC, but

unlike PC/SC, the source code is openly available under a GPL license.

3.4 Chip Operating Systems

The smart card’s chip operating system (COS) is a sequence of instructions, permanently

embedded in the ROM, that allow user applications to be stored from an outside development

system and provide resources for their execution.

Today’s smart card’s COSs are nothing like the monolithic first-generations of smart cards,

which did not allow the management and execution of third-party applications. As a result,

early smart cards were inflexible and failed to provide portability, since applications needed

to be developed with a single microprocessor in mind.

It was the introduction of open smart card platforms, namely Multos [52] and Java Card [14, 6]

that allowed both hardware abstraction and multi-application deployment. Later on, other

technologies emerged, such as Windows for Smart Cards (WfSC), BasicCard and smart card

.NET [86, 65, 66, 52].

While Multos and Java Card remain the most widely used smart card platforms, the latter

appears to be the one enjoying the widest acceptance amongst security researchers. WfSC was

intended to be an alternative to Java Card, however, due to lack of acceptance by the smart

card industry, the project was abandoned by Microsoft. On the other hand, BasicCard and

SmartCard.NET platforms appear to be growing in popularity, specially the latter one, taking

into consideration the growing numbers of published articles involving these smart cards.

http://www.openscdp.org/
http://www.linuxnet.com/
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Note that not all of the above technologies are smart card operating systems : Multos and

WfSC are underlying smart card operating systems, whereas Java Card, Basic Card and

smart card .Net are located on top of a smart card operating system. For example, both

Gemalto’s TOP and NXP’s JCOP smart cards are Java Card and Global Platform compliant;

nevertheless, each manufacturer provides a different underlying operating system.

The basic functions of an operating system that are common across all smart card products

are [66]:

1. Management of interchange between the card and the outside world, primarily in terms

of interchange protocol.

2. Management of local files and data held in memory.

3. Access control to information and functions.

4. Management of card security and cryptographic algorithm procedures.

A brief overview of the above mentioned technologies is provided in sections 3.4.1 to 3.4.4.

More information on the above mentioned technologies can be found in [65, 52, 19], since a

detailed comparison of these platforms is out of the scope of this thesis.

3.4.1 Java Card

Java Card technology [14, 6] enables programs written in a subset of Java programming

language to run on smart cards and other resource-constrained devices, where applications

written for the Java Card platform are referred to as applets. Due to the smart card hardware

limitations, only a subset of the features of the Java can be supported. Furthermore, Java

virtual machine (JVM) must be distributed between the smart card and the workstation. The

supported Java subject of Gemalto’s TOP GX Java Card [4] is depicted in Table 3.3. However,

note that garbage collection and integer data type support are features optional to smart card

builders and, therefore, are not supported by all cards. An overview of the architecture of a

Java Card system is shown in Figure 3.6.

The Java Card runtime environment (JCRE) manages card resources, network communica-

tions, applet execution and security. It also makes sure that different applets do not interfere

through a security mechanism referred to as applet firewall.
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Table 3.3: Supported and unsupported Java features

Supported Unsupported

boolean, byte, short int, long, double, float, char

one-dimensional arrays string, multi-dimensional arrays

packages, classes, interfaces , exceptions dynamical class loading

objects object cloning, object serialization

garbage collection threads

security manager

The bottom layer of the JCRE contains the Java Card virtual machine (JCVM) and native

methods. The JCVM executes bytecodes, controls memory allocation, manages objects,

and enforces runtime security. Unlike the Java virtual machine (JVM), the Java Card

Virtual Machine is split between the card and the workstation. The former is referred to

as the on-card VM, or interpreter, and the latter as off-card VM, or converter. While the

converter loads and processes the class files and outputs a CAP (converted applet), the

interpreter executes the CAP, by which we mean that it executes bytecode instructions and

ultimately executes applets. Another component of the JCVM is the Java Card application

framework classes (APIs) which provides functions coded in the native instructions of the

target processor. Since this can yield a considerable increase in processing speed, APIs should

be used as much as possible (e.g., cryptographic operations).

The steps for creating and downloading a Java Card application are summarized as follows:

1. At the workstation, the application programmer writes the Java source code and com-

piles it, with a standard Java compiler, creating a class file and an export file. At this

point, the process is identical to Java programming for PCs.

2. The class file is then transferred to the Java Card Converter (the off-card portion of the

VM), which performs static tests and, if all these tests are passed successfully, delivers

a second export file and a card application file (CAP file).

3. The applet is loaded into the smart card in the form of a CAP file, which is often carried

out using GlobalPlatform.

4. Oncard VM (interpreter) tests and interprets the bytecode line by line and generates

machine instructions for smart card processor from bytecode.
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Java Card offers several advantages which could explain why it has enjoyed such a wide

acceptance from programmers : extensive documentation, development tools, cards and

code portability. On the other hand, Java is an interpreted language, which comes at a

performance price. Nevertheless, it is relatively difficult to make fair comparisons between

assembler or C programs and Java. We can only assume that with proper use of the Java API,

the execution time will be approximately 50% longer than for a comparable implementation

in C or assembler [66].

Figure 3.6: Java Card system architecture

3.4.2 MultOS

The internal architecture of a MultOS card is depicted in Fig. 3.7. The MultOS operating

system is executed natively by the microprocessor and provides communication with the un-

derlying hardware and the virtual machine, where the applications are executed. It provides

the basic required functionality of I/O, file management, cryptographic services, application

management and command dispatchment.

The MultOS operating system can only execute Multos Executable Language (MEL) byte

code, the language for MultOS applications. Both security and hardware abstraction are

achieved since the MEL language is interpreted not by the underlying smart card hardware

but by the MultOS interpreter. Nonetheless, MultOS software development is not confined

to MEL bytecodes; applications can be developed in high-level languages like C and Java
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and then converted to MEL through compilers. Language independence is probably the most

important feature of MultOS [75]; this flexibility, however, comes with a price : a developer

has less control over the produced byte-code, and for example, that may result in larger and

of less performance code [41]. Nevertheless, the significantly smaller code size and an overall

superior performance over the competitors, remain attractive features [19].

MultOS smart card operating system takes security and performance into serious considera-

tion. For example, certificates are required to manage applications on the smart card (with

exception of the development cards).

However, MultOS’ closed design and the difficulty in obtaining development tools and cards

put constraints on its deployment [41]. Progressively, the entities promoting MultOS have

realised their mistakes and attempted to overcome some of the forementioned problems, but

the impact on the market remains to be seen [52]. Currently, extensive documentation as well

as the SmartDeck development environment are available free-of-charge and can be found in

the MultOS’ website — see http://www.multos.com/developer/.

Figure 3.7: MultOS architecture

3.4.3 BasicCard

BasicCard [52] is a smart card platform owned by ZeitControl Cardsystems. Applications are

written in the Basic language, being particularly suited for constrained devices.

According to [65], the program code is very compact and the execution speed is relatively

high when compared with other smart card operating systems with interpreters.

Nevertheless, the most advertised feature is the low selling price of the hardware compared to

other smart cards such as Multos or Java Card — see http://www.basiccard.com/.

http://www.multos.com/developer/
http://www.basiccard.com/
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The BasicCard offers a number of additional programming libraries (mainly cryptographic)

that aim to support the development of advanced and dedicated applications [52]. BasicCards

support different Cryptographic functionalities, ranging from Public-Key algorithms (RSA,

EC) to symmetric-key algorithms (DES, AES) and Hashing (SHA-1, SHA-256).

3.4.4 Smartcard.Net

The .NET Card technology is a multi-application, multi-language, smart card platform that

allows the integration of smart cards with other .NET based technologies.

The platform is based on the HiveMinded Smartcard.NET reference implementation of the

Common Language Infrastructure (CLI), and developed as close as possible to the inter-

national standardisation organisation ECMA335 specifications [18], and the .NET frame-

work [52].

An appropriate subset of the .NET class libraries allows applications to run on smart cards

while supporting a programming model consistent with that of the full .NET framework. In

addition, applications can be written in any .NET-compliant programming language, such as

C#, C++, Visual Basic (VB), J# or JavaScript.

However, at the time of writing this dissertation it was not easy to obtain detailed information

about the platform. Moreover, we were only aware of Gemalto’s and Feitian’s .NET smart

cards — see http://www.gemalto.com/products/dotnet_card/ and http://www.ftsafe.

com/products/dotNet-Card.html.

3.5 Choice of smart card platform

Considering all the smart card platform available and the fact that each platform has unique

selling points [19], the choice is far from obvious. Moreover, there are constant improve-

ments to the actual specifications, platforms, and smart card hardware; therefore indicative

comparison factors might not be valid [52].

In terms of performance, BasicCard and Multos appear to be best choices, with the former

focusing on the low cost of the cards and the latter taking security into very serious consid-

eration. However, we could not find any published research on BasicCard and very little on

http://www.gemalto.com/products/dotnet_card/
http://www.ftsafe.com/products/dotNet-Card.html
http://www.ftsafe.com/products/dotNet-Card.html
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Multos [41]. SmartCard.NET seems promising and improving in popularity, but there is still

not much information available though [29, 80].

We have chosen to implement the authentication protocols on a Java Card smart card, even

though it should have been possible to implement it on any of the other platforms.

There were no strong reasons motivating this choice - the subtle reason is that Java Card

has enjoyed wide support from a number of programmers, and as a result a number of

development tools and extensive documentation became widely available — see Java Card

Forum: http://www.javacardforum.org/, Java Card Documentation: http://www.oracle.

com/technetwork/java/javacard/documentation/index.html and Chen [14].

Contrary to the other platforms, Java Card smart cards feature in a variety of published

articles, with research topics ranging from identity & privacy protection [11, 9, 82, 84] and

attacks on smart cards [81, 10] to performance measurement on smart cards [67, 60, 61].

The main advantages and disadvantages of each smart card platform are summarized in

Table 3.4.

Table 3.4: Overview of smart card platforms

Java Card
+ Extensive documentation, development tools and cards
- Performance

MultOS
+ Multi-language support, performance and security (ITSEC6)
- Closed design, card acquisition process

BasicCard
+ Performance, low-priced cards and free development software
- Single manufacturer, only supports BASIC language

.NET
+ Multi-language support, integration with Microsoft environments
- Detailed information unavailable

WfSC
+ —
- Project was cancelled

http://www.javacardforum.org/
http://www.oracle.com/technetwork/java/javacard/documentation/index.html
http://www.oracle.com/technetwork/java/javacard/documentation/index.html
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Chapter 4

Implementing Big Number

Operations

Teaism is a cult founded on the adoration of the beautiful among the sordid

facts of everyday existence. It is essentially a worship of the Imperfect, as it

is a tender attempt to accomplish something possible in this impossible

thing we call life.

The Book of Tea

KAKUZO OKAKURA

This chapter describes the multi-precision integer arithmetic routines required to implement

the authentication schemes presented in Chapter 2. These cryptosystems are based on

modular arithmetic, such as modular multiplication and exponentiation, performed on very

large numbers, thus requiring efficient methods to perform complex computations in Zm.

However, the Java-Card platform provides no adequate support to perform such oper-

ations. The only exception is the BigNumber class, from the optional package javac-

ardx.framework.math, which is only be available in version 2.2.2 of the Java Card API.

Not only there are few cards which implement version 2.2.2, but also the access to the

cryptographic coprocessor is very limited, since only addition and multiplication are available

and modular arithmetic is not implemented.

In addition, the cryptographic coprocessor is not directly accessible, which is further

aggravated by the overhead caused by the JVM and the impossibility of optimization through

low-level programming. Therefore, in order to be able to carry out the authentication

fast enough for practical use, we must exploit the cryptographic API to gain access the

35
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cryptographic processor.

The remainder of the chapter is organized as follows. In section 4.1 we introduce the addition

and subtraction functions. Subsequently, in section 4.2 the focus is put on the multiplication,

followed by exponentiation in section 4.3. In these last two sections we present two differ-

ent approaches; one software implementation and another which relies on the cryptographic

coprocessor to perform the calculations.

4.1 Large Number addition and subtraction

The two most elementary multiple-precision operations are the addition and subtraction,

which are usually based on the classic pencil-and-paper, or Fibonacci, method [5]. Since

the operations are carried out word by word, a suitable base, b, should be chosen so that

(xi+yi+c)mod b can be computed as efficiently as possible by the hardware on the computing

device. Since most smart cards do not support integers, the base is stored in a byte array and

shorts are used to store the intermediary results. Note that the word size has an impact on the

performance of the algorithm; as the size of the word increases, the number of computations

necessary to carry out the operation decreases as well.

The algorithms presented in this section are for computing addition, subtraction as well their

respective modular operations. We also discuss the algorithm efficiency as big-Oh function [74]

over the number of bits.

4.1.1 Addition and subtraction

Algorithms 1 and 2 describe how two large numbers can be added and subtracted, respectively.

Addition and subtraction complexity is O(n).

4.1.2 Modular Addition and Subtraction

Let x = (xn−1 · · · x0)b and y = (yn−1 · · · y0)b be two integers verifying x, y ∈ Zm, where

m is the modulus. Extending Algorithms 1 and 2 in order to obtain the respective modular



4.1. LARGE NUMBER ADDITION AND SUBTRACTION 37

Algorithm 1 Multiple-precision addition

Input: x = (xn−1, · · · , x0)b and y = (yn−1, · · · , y0)b
Output: w = x+ y = (wnwn−1 · · ·w1w0)b
1: carry ← 0;
2: for i =0 to n-1 do

3: wi ← (xi + yi + carry)mod b;
4: if (xi + yi + carry) > b then

5: carry ← 1;
6: else

7: carry ← 0;
8: end if

9: end for;

10: wn ← carry;
11: return(w);

Algorithm 2 Multiple-precision subtraction

Input: x = (xn−1, · · · , x0)b and y = (yn−1, · · · , y0)b
Output: w = x− y = (wnwn−1 · · ·w1w0)b
1: carry ← 0;
2: for i =0 to n-1 do

3: wi ← (xi − yi + carry)mod b;
4: if (xi − yi + carry) ≥ 0 then

5: carry ← 0;
6: else

7: carry ← −1;
8: end if

9: end for;

10: return(w);

operations is straightforward if we observe that

(x+ y)modm =







x+ y, if x+ y < m

x+ y −m if x+ y ≥ m

(4.1)

Therefore, modular addition (Algorithm 3) and subtraction (Algorithm 4) can be performed

without the need of long division, requiring only that we compare the result against the

modulo and eventually perform a subtraction or an addition, respectively.

Therefore, modular addition and subtraction precision is O(n).
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Algorithm 3 Large number modular addition

Input: m = (mn−1, · · · ,m0)b,x = (xn−1, · · · , x0)b and

y = (yn−1, · · · , y0)b, (x,y)<m

Output: z = x+ ymodm = (zn−1, · · · , z0)b
1: z ← x+ y; % Algorithm 1

2: if z ≥ m then

3: z ← z −m; % Algorithm 2

4: end if

5: return(z);

Algorithm 4 Large number modular subtraction

Input: m = (mn−1, · · · ,m0)b,x = (xn−1, · · · , x0)b and

y = (yn−1, · · · , y0)b, (x,y)<m

Output: z = x+ ymodm = (zn−1, · · · , z0)b
1: z ← x− y; % Algorithm 2

2: if z < 0 then

3: z ← z +m; % Algorithm 1

4: end if

5: return(z);

4.2 Large Number Multiplication

Modular multiplication and modular exponentiation are the most common operations in RSA

public-key cryptosystems. Moreover, modular exponentiation is composed of a sequence of

modular multiplication operations, which means that an efficient implementation of modular

reduction is the key to high performance [13].

Many software and hardware efficient implementations have been proposed to reduce the

execution time modular multiplication [57, 21]. Two of the methods which have received

more attention in the literature are due to Barrett [8] and Montgomery [55]. These techniques

aim to reduce the computational requirements of the operation by avoiding to explicitly carry

out the classical reduction step, i.e. to compute the remainder on a division by m. Several

other fast reduction algorithms have been proposed though; for more information, the reader

may consult [5].

In this section we describe and analyse the different approaches used to compute modular

multiplication, discussing which are more adequate for a Java Card implementation. We start
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by introducing our implementation of large integer multiplication and thereafter modular

multiplication. Since these operations are not supported by the Java Card API, later in

this section we describe an improved modular multiplication method, which accesses the

cryptographic hardware of the smart card in order to speed up the computations.

4.2.1 Large Integer Multiplication

Algorithm 5, based on the algorithm in [5], describes a standard large number multiplication

based on the classical pencil-and-paper method. Multiplication is done word by word, creating

a carry word each time, and the intermediate result, (uv)b, is stored in a double word, where

u and v are base b digits, and u may be zero.

Algorithm 5 Standard large number multiplication

Input: x = (xlen1−1, · · · , x0)b and y = (ylen2−1, · · · , y0)b, (x,y)<m

Output: z = x · y = (zlen1+len2−1, · · · , z0)b
1: z ← 0;
2: for i = 0 to len1 − 1 do

3: carry ← 0;
4: for j = 0 to len2 − 1 do

5: (uv)b ← zi+j + xj · yi + carry;
6: zi+j ← v;
7: carry ← u;
8: end for

9: zi+len2
← u;

10: end for

11: return(z);

Taking n = len1 = len2, standard multiplication complexity is O(n2)

4.2.2 Russian Multiplication

In base 2, multiplication can be implemented without requiring a multiplication table. Such

an example is the multiplication algorithm discussed below, commonly known as the Russian

Peasant Multiplication. This algorithm is very fast in hardware as it processes multiplication

as a series of binary shifts and additions. Addition was already discussed in section 4.1 and

division or multiplication by 2 can be implemented, respectively, by a right or left shift of bits.

Russian peasant multiplication can be computed by Algorithm 6. It decomposes one of the

multiplicands (generally the larger) into a sum of powers of two and creates a table of doublings
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Algorithm 6 Russian Peasant Algorithm

Input: Three positive integers a,b and c

Output: z = a · b
1: x← a; y ← b; z ← 0;
2: while (y > 1) do

3: if LSB(y)==’1’ then

4: z ← z + y;
5: end if

6: x≪ 1; y ≫ 1;
7: end while

8: z ← z + x;
9: return(z);

of the second multiplicand. The algorithm works by shifting the multiplicand one bit to

the right (halving) and the multiplier one bit to the left (doubling). However, when the

multiplicand’s least significant bit (LSB) is ’1’, we must add the multiplier to the result prior

to shifting. We repeat this procedure while the multiplicand is greater than one and terminate

by adding the multiplier to the result.

Example 4.2.1 To multiply 19 by 11, double the 19 and halve the 11, and add the doubles

that correspond to an odd number in the result column.

19 × 11 result

19 11 0 double 19, halve 11, add 19 to result

38 5 19 double 38, halve 5, add 38 to result

76 2 57 double 76, halve 2

152 1 57 add 152 to result, terminate

209

The complexity of Russian peasent multiplication depends on the operand values. The shift

right operation increases the bit number to n + 1, n + 2, . . . , 2n but the adding complexity

remains O(n). The main issue is the LSB value of the each of n multiplicants: in the worst-

case, all are 1 and complexity is O(n2), in the best-case only one multiplicant is odd and

complexity is O(n).

4.2.3 Modular multiplication

The simplest algorithm for modular multiplication, xy mod m, consists in the computation

of x · y, followed by a reduction of the result modulo m. This method, often referred to as the
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classical algorithm for modular multiplication, requires significant computational effort, since

modular reduction is closely related to division and large dimension intermediate products

are computed. On the other hand, methods which do not explicitly carry out a division

step do require extra calculations, i.e., pre-calculations, argument transformations, and post-

calculations.

Barrett reduction

Barrett reduction (Algorithm 7) computes r = x mod m given x and m, through an estima-

tion of the quotient, in a way that the required operations are less expensive than division.

The Barrett reduction method requires the precomputation of one parameter, µ = ⌊b2k/m⌋,

which does not change as long as the modulus remains constant.

Algorithm 7 Barrett modular reduction

Input: x = (x2k−1 · · · x1x0)b, m = (mk−1 · · · m1m0)b with

mk−1 6= 0, and µ =
⌊
b2k/m

⌋
.

Output: r = x mod m.

1: q1 ←
⌊
x/bk−1

⌋
; q2 ← q1 · µ; q3 ←

⌊
q2/b

k+1
⌋
;

2: r1 ← x mod bk+1; r2 ← q3 ·m mod bk+1; r ← r1 − r2;
3: If r < 0 then

4: r ← r + bk+1;

5: end if

6: While r ≥ m do r ← r −m;

7: Return(r);

Note that if b is a power of 2, divisions and modular reductions can be replaced, respectively, by

right-shifts and AND operations (i.e., truncation of the least significant bits of the operand).

This results that the remaining operations are addition and multiplication, both of which are

less expensive than division.

Montgomery’s multiplication

In order to compute modular multiplication, Montgomery’s multiplication (Algorithm 8) re-

quires a m-residue transformation as well as a pre- and post-computation step. Despite not

being suitable for single modular multiplications, it is very effective for performing modular

exponentiation (see section 4.3.1).

The basic idea of Montgomery’s theorem is to replace division by m with division by 2k. First
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we choose a positive integer coprime greater than m, R, i.e. R > m and gcd(m,R) = 1. If m

is represented as a base b integer of length n, where b is the length of the machine word, then

a typical choice for R is bn. Furthermore, if m is odd (such as RSA moduli), then b can be a

power of 2 and R = bn will meet the condition gcd(m,R) = 1. Letting R be a power of two

allows multiplication, division and modulo by R to be done by shifting or logical operations.

Let x, y and m be three integers of length n and 0 ≤ x, y < m, with x = (xn−1 · · · x0)b and

y = (yn−1 · · · y0)b. For m odd, the Montgomery multiplication of x and y modulo m can be

computed by Algorithm 8, taken from [5].

Algorithm 8 Montgomery multiplication

Input: x = (xn−1 · · · x1x0)b, , y = (yn−1, · · · , y0)b and

m = (mn−1 · · · m1m0)b, with 0 ≤ x, y < m, R = bn with gcd(m,b)=1, and

m′ = −m−1 mod b.
Output: A = (an · · · a0)b = xyR−1 mod m.

1: A← 0;
2: for i=0 to (n-1) do

3: ui ← (a0 + xi · y0)m’ mod b;
4: A← (A+ xi · y + ui ·m)/b;
5: end for

6: if A ≥ m then

7: A← A−m;

8: end if

9: return A

Computational efficiency of Algorithm 8: Suppose x, y and m are n-digit base b integer, with

0 ≤ x, y < m. Neglecting the cost of the precomputation in the input, Algorithm 8 computes

xyR−1 mod m with 2n(n+ 1) single-precision multiplications [5].

Example 4.2.2 (Montgomery multiplication)

In Algorithm 8, let m = 0x7d, x = 0x2b and y = 0x5c. Here, n = 1, therefore R = 2561 and

m′ = −m−1 mod 256 = 0x2b. The steps in Algorithm 8 are the following:

(line 3)







ui ← (a0 + xiy0)m
′ mod b

u0 ← (0 + 0x2B · 0x5C) · 0x2B mod 0x100 = 0x7C

(line 4)







A← (A+ xiy + uim)/b

u0 ← (0 + 0x2B · 0x5C + 0x7C · 0x7D)/0x100 = 0x4C
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Hence, the output of the algorithm is xyR−1 mod m = 0x4C. In order to obtain xy mod m,

we must convert the previous result from the Montgomery domain back to the integer domain,

which can be achieved by applying Algorithm 8 to xyR−1 mod m and R2 mod m.

Multiplication by squaring

Software implementations are always less efficient than dedicated hardware solutions, which is

why most smart cards use dedicated hardware in order to speed up cryptographic operations.

As a matter of fact, it appears that any software implementation of an efficient modular

multiplication algorithms (such as Montgomery, Barrett reduction or row-multiplication and

reduction) will perform poorly in the Java Card VM [7, 82, 32, 84, 9].

Nevertheless, by converting modular multiplications to modular exponentiations we can bene-

fit from the fast calculations performed on the cryptographic coprocessor. This method which

employs modular squaring to perform modular multiplication, is often referred to as multipli-

cation by squaring or RSA squaring [82, 9, 84] and can be implemented either by Equation 4.2

or Equation 4.3.

a · b mod n =
(a+ b)2 − a2 − b2

2
mod n (4.2)

a · b mod n =
(a+ b)2 − (a− b)2

4
mod n (4.3)

Both equations compute the result of a multiplication without actually computing this mul-

tiplication, differing only in the number and type of operations required. However, as can

be seen in Table 4.1, both require other modular operations. Modular exponentiation (see

section 4.3.3) is the only operation which can be efficiently computed on the coprocessor.

Modular addition and subtraction, on the other hand, must be implemented in software as

was already discussed in section 4.1. The remaining operation is division by 2 or by 4, which

can be implemented by a right shift by one or two positions, respectively; Algorithm 9 depicts

a right shifting algorithm.

Table 4.2 compares the number of operations required for Equations 4.2 and 4.3. Note that the
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Algorithm 9 1-bit logical shift (right)

Input: m = (mn−1 · · · m0)b, x = (xn−1 · · · x0)b, with x < m, m odd

Output: r = x≫ 1 mod m
1: if(x0(0) 6= 0)then
2: x← x+m;

3: end if

4: for i=0 to n-1 do

5: zi ← xi+1(0) ||xi((log2 b)− 1 · · · 1);
6: end for

7: return(r);

Table 4.1: Multiplication by squaring

Operation Algorithm

modular addition 3
modular subtraction 4
modular exponentiation see section 4.3
division by 2k 9

number of modular additions varies depending on the result of ((a+ b)2− a2− b2); if its least

significant bit equals one, we must add the modulus to the result prior to shifting, otherwise

we would be rounding down the result. In the case of Equation 4.3 we might need two extra

additions, since we perform two shifts. Depending on the performance of the cryptographic

coprocessor on a given card, it is possible to decide which one will be faster. However, due to

the significant overhead caused by the JVM, Equation 4.2 is likely to outperform Equation 4.3

as most cards will perform a modular squaring faster than a modular right shift [82].

Table 4.2: comparison of the number of operations needed to perform modular multiplication

number of executions

Operation equation 4.2 equation 4.3

modular addition/subtraction 3 to 4 3 to 5

modular exponentiation 3 2

1-bit modular right shift 1 2

Without prior knowledge of the reduction algorithm used by the cryptographic coprocessor,

we cannot determine the computational efficiency of this method.

Comparison of the multiplication algorithms: Table 4.3 shows the theoretical number

of multiplications and divisions required for the reduction operation only: they do not include

the multiplications and divisions of the precalculation, any transformation or postcalcula-
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Algorithm 10 squaring multiplication

Input: a = (ak−1 · · · a0)b, b = (bk−1 · · · b0) and

n = (nk−1 · · · n0)b, where (a,b)<n

Output: res = a · b mod n
1: res← (a+ b) mod n; % Algorithm 3

2: res← res2 mod n; % RSA API

3: aux← a2 mod n; % RSA API

4: res← (res− aux) mod n; % Algorithm 4

5: aux← b2 mod n; % RSA API

6: res← (res− aux) mod n; % Algorithm 4

7: if(LSB(res)=1) res← res+ n;
8: res← shiftRight(res);
9: return(res);

tion [13]. The results refers to the reduction of a 2k-digit number with a k-digit modulus m.

The performance of the algorithms is attributed to the multiplications and divisions required,

which are the most time consuming operations in the inner loop of the algorithms.

Table 4.3: Complexity of reduction algorithms in reducing a 2k-digit number

Algorithm Classical Barrett Montgomery

Multiplications k(k + 2.5) k(k + 4) k(k + 1)
Divisions k 0 0

Precalculation Normalization b2k div m −m−1
0 mod b

Arg. transformation None None m-residue
Postcalculation Unormalization None Reduction
Restrictions None x < b2k x < mbk

If only the reduction operation is considered, Montgomery’s algorithm is the fastest. Nev-

ertheless, the algorithms are quite close to each other in performance [13]. In their most

naive implementation, both have a runtime of O(n2), which is due to the use of Schoolbook

Multiplication.

In order to improve performance of these modular reduction algorithms, enhancements to the

original algorithms have been proposed, e.g. [44, 36, 43].

4.3 Large Number Exponentiation

Modular exponentiation is not only widely used in public key cryptosystems, but it is also the

most computationally expensive modular operation. This is particularly true for smart cards,
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where we have to consider a variety of factors such as memory availability, processing power

or the existence of dedicated hardware for cryptographic operations.

In this section we first present our software implementation of the modular technique due to

Montgomery. The choice is motivated by the fact that, for general modular exponentiation,

the Montgomery’s algorithm appears to have the best performance [13, 78]. However, even

though this algorithm calculates modular exponentiation efficiently, the implementation in

Java might not be fast enough for practical use. Therefore, we also show how the Java Card

cryptographic library can be used to speed up this operation.

4.3.1 Montgomery exponentiation

Montgomery exponentiation is one of the most implemented techniques to compute xe

mod m. It combines Montgomery multiplication (Algorithm 8) with the right-to-left binary

exponentiation algorithm [5, 21] to give a Montgomery exponentiation algorithm (Algorithm

11).

Algorithm 11 Montgomery exponentiation

Input: m = (ml−1 · · · m0)b,R = bl, m′ = −m−1 mod b,
e = (et · · · e0)2 with et = 1, and an integer x, 1 ≤ x < m.

R mod m and R2 mod m may be provided as inputs.

Output: A = (an · · · a0)b = xe mod m.

1: x̃←Mont(x, R2 mod m); % Algorithm 8

2: A← R mod m;

3: for i=t to 0 do

4: A←Mont(A,A);
5: If ei 6= 0 then

6: A←Mont(A, x̃);
7: end if

8: end for

9: A←Mont(A, 1);
10: return A

Note that, aside from m′, Montgomery exponentiation additionally requires pre-computation

of the constants R mod m and R2 mod m. In any case, when the modulus changes infre-

quently these pre-computations are essentially free. For instance, these parameters could be

computed externally, during the personalization phase of the card, where resource limitations

are not a problem [12].
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As we have already mentioned, our implementation of xe mod m uses Montgomery expo-

nentiation with the standard square-and-multiply algorithm. This method could benefit from

the p-ary generalization [45, 21], in which instead of scanning a single bit of the exponent

at a time, groups of p bits are scanned. The powerings and subsequent multiplications are

performed according to a table of preprocessed values, which stores the powers of x. As the

value of p increases, so does the average number of modular multiplications decreases [13].

However, this also increases the memory required to store the table of powers, which makes

large values of p prohibitive for smart cards.

Computational efficiency of Montgomery exponentiation: The expected number of single-

precision multiplications to compute xe mod m by Algorithm 11 is 3l(l + 1)(t + 1), where t

is the number of bits of the exponent and l the number of digits, base b of the modulus [5].

4.3.2 Chinese Remainder Theorem

The Chinese remainder theorem (CRT) is used to speed up modulo computations, thereby

decreasing the computation time of private key operations in RSA by a factor of approximately

four [33, 62, 5].

If the integers n1, n2, · · · , nk are pairwise relatively prime, then the system of simultaneous

congruences







x ≡ a1 mod n1

· · ·

x ≡ ak mod nk

has a unique solution x, such that 0 ≤ x < n = n1n2 · · · nk.

If the system of the linear congruences is soluble, then its solution x can be calculated as

x ≡
k∑

i=1

aiNiN
′

i (modn) (4.4)

where n = n1n2 · · ·nk, Ni = n/ni, Ni’ = N−1
i (modni), for i = 1, 2, · · · , k.

The proof of CRT is available in most number theory books, e.g. [91].
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The algorithm which is generally used to solve the Chinese remainder problem is Garner’s

algorithm for CRT, which is particularly efficient when dealing with large integers (e.g., RSA).

Given that the prime factors of the modulo, n = pq, are known, xd mod n can be computed

by first computing xdp mod p and xdq mod q (where dp = d mod (p − 1) and

dq = d mod (q−1)), and then use Garner’s algorithm to construct xd mod pq. Although this

procedure takes two exponentiations, each is considerably more efficient because the modulus

are smaller.

For further details on the Garner’s algorithm, please refer to Chapter 14.5 of [5].

Example 4.3.1 We can use the CRT to compute m = cd mod n more efficiently.

Suppose p = 7, q = 11, e = 19 and d = e−1 mod (p− 1)(q − 1) = 19.

We begin by precomputing :

dP = e−1 mod (p − 1) = d mod (p− 1) = 19 mod 6 = 1

dQ = e−1 mod (q − 1) = d mod (q − 1) = 19 mod 10 = 9

qInv = q−1 mod p = 11−1 mod 7 = 2

Then we store our private key as the quintuple (p, q, dP, dQ, qInv).

To compute s = md mod pq we use Garner’s algorithm:

s1 = mdP mod p = 501 mod 7 = 1

s2 = mdQ mod q = 509 mod 11 = 2

h = qInv · (s1 − s2) mod p = 2(1 − 2) mod 7 = 5

s = s2 + h · q = 2 + 5 · 11 = 57.

s = md mod pq = 5019 mod 77 = 57 �

4.3.3 Java Card’s RSA and exponentiation

Even if Montgomery’s algorithm is an efficient algorithm for modular exponentiation, in

the context of smart cards this does not hold true. In fact, it has already showed that

even a highly optimised assembly implementation of a multi-exponentiation algorithm does

not execute in reasonable time on an 8-bit microcontroller [7]. In addition, these complex

mathematical operation will have to be executed in the Java Card VM, which has been

proved to be inherently inefficient [82, 84, 9].
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Based on the above, it becomes clear that the solution may lie in using the cryptographic

coprocessor to speed up the computations. However, on currently available Java cards, it

is only possible to access the cryptographic coprocessor through the Java Card application

programming interface (API). The problem is that the API does not provide any support for

large number arithmetic even though RSA, Diffie-Hellman and DSA are available through

the API and internally perform these calculations.

The only exception is the BigNumber class, in the optional package javacardx.framework.math,

which is only available in version 2.2.2 of the Java-Card API. Besides being an optional pack-

age and, therefore, rarely implemented, it only supports non-modular addition, subtraction

and multiplication.

Nonetheless, the Java Card API does include support for RSA, where an encryption of the

message m to the ciphertext c is executed by calculating c = memodn. This is the same as

calculating a modular exponentiation, which means that by setting all the values involved

the RSA cipher can be tricked into performing modular exponentiation.

The RSA key types which allow us to set the modulus and the exponent are the RSAPub-

licKey and the RSAPrivateKey. The RSAPrivateCrtKey achieves faster decryption through

the use of the Chinese Remainder Theorem (CRT), however to set up such key we would need

to know the factorization of the modulus. Among the several available modes of operation

for the RSA on the Java Card platform, only one is of interest to us; the RSA NOPAD

mode is the only mode which ensures that the input value is not padded. Therefore, the pair

(key type,operation mode) that we are interested in is the (RSAPrivateKey/RSAPublicKey,

RSA NOPAD); an example on how to perform modular exponentiation with the RSA cipher

is depicted in Appendix A.

To ensure the correct computation of the modular exponentiation, a few restrictions must

apply, though :� The modulus must be at least 64 bytes long and have a maximum length of 244 bytes.

It must also be odd, divisible by 4, and its most significant byte (MSB) must be nonzero

(otherwise the bytes in the result array will be ”shifted”’).� PublicKey size must be at most 10 bytes long, while private keys may be up to 244

bytes long. These restriction prevent us, for example, from tricking the coprocessor into
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performing modular exponentiation or modular multiplications with a modulus smaller

than 64 bytes.� RSA NOPAD requires that input data should be exactly the same size of the modulus

(i.e., the input array must have the same length as the modulus array; nevertheless, we

can pad the MSBs of the input array with zeros).� There is a limit for RSA public and private keys on how many times we can assign a

cryptographic key to an RSA key object. The limit is different for public and private

keys; while the former has a higher limit, the latter’s is rather small. In Table 4.4 we

present the upper bound for RSA Public Keys. This restriction appears to be a security

mechanism specific to the card, as such feature has not been documented in similar

projects that rely on JCOP Java Cards [82, 84, 9].

Table 4.4: RSA public key limitations

Key (bits) 512 768 1024 1280 1536 1792 2048

RSAPublicKey 519 392 314 260 221 192 169

RSA keys are meant to change infrequently. However, to design a general modular exponen-

tiation routine, we need to be able to do so in order to change both exponent and modulus.

A general modular exponentiation routine would do the following: at applet initialization a

RSAPublicKey object would be created and assigned to an RSAPublicKey reference. After-

wards, during the applet’s lifetime, whenever an exponentiation would be computed, another

Key would be created using the KeyBuilder.buildKey() method. Afterwards, the modulus

and exponent of the key would be set up and fed to the RSA cipher in order to compute the

modular exponentiation.

However, with such restriction we cannot design a general modular exponentiation algorithm

using RSA, without, at some point, having to re-issue the applet.

In addition, RSA keys are persistent objects, which would not only slow down the expo-

nentiation routine, but would also have to rely on the efficiency of the garbage collector (if

available).



Chapter 5

Implementing Authentication

Protocols

”You can’t mean this little hole! It isn’t a window; it’s a hole in my bed.”

”I did not say it was a window: I said it was my window.”

”But it can’t be a window, because windows are holes to see out of.”

”Well, that’s just what I made this window for.”

”But you are outside: you can’t want a window.”

At the Back of the North Wind

GEORGE MACDONALD

In this chapter we address implementation issues and choices regarding the authentication

schemes presented in chapter 2. Two classes of key-based encryption algorithms are imple-

mented: symmetric and asymmetric ciphers. In the former, we consider both block and stream

ciphers.

The most common operations performed by symmetric ciphers are bitwise operations. How-

ever, the architecture of the Java Card platform introduces extra overhead, which must be

carefully addressed in order to minimize the performance penalizations. Public-key cryptosys-

tems have the advantage of not requiring the entities to share a private key; however, this

comes with a price: more complex and expensive computations are involved. When these

cryptosystems are embedded in low resource devices, such as smart cards, an efficient imple-

mentation of modular arithmetic is fundamental, as we have already discussed in Chapter 4.

In sections 5.1, 5.2 and 5.3, we start by describing our implementation of the challenge-response

protocols for AES, eLoBa and RSA, respectively. Sections 5.4.1 and 5.4.2 then descrive the

51
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implementation of the Feige-Fiat-Shamir and Guillou-Quisquater identity protocols, respec-

tively.

5.1 Block cipher AES

In this section we describe the main classes implemented for AES cryptosystem.

5.1.1 Architecture

The AES algorithm is iterative and every round operates on an entire data block called

State. The input to the encryption and decryption algorithms is fixed-sized block (usually

128 bits, but AES is easily adaptable for a multiple 32-bit size block, such as 192 and 256

bits). Data is processed as a square matrix of bytes. However, the Java Card specifications

do not support multi-dimensional arrays, which forces us to represent the state matrix as an

array of 128/8 = 16 Bytes. In order to speed up the transformations performed upon the

state variable, we store the data as a transient byte array.

A working implementation of AES must support all the four transformations : substitution,

permutation, mixing and key adding. The four main methods that are used for the encryption

process are the SubBytes, ShiftRows, MixColumns and AddRoundKey functions; these oper-

ations are depicted in Figure 5.1(a). As for decryption, the sequence of method invocation

is reversed, except for the AddRoundKey, whose inverse transformation is identical to the

forward transformation, because the Xor operation is its own inverse. The AES Java class

diagram depicted in Figure 5.1(b), where the algorithm’s parameters and functions’ names

are according to the FIPS-197 recommendation [25].

Our implementation of AES supports three different key lengths: 128, 192 and 256 bits. The

cipher key is loaded into the card at applet instantiation time and stored in static memory.

The AES class constructor is invoked when the AES cipher is created at applet instantiation

time; it takes a key as parameter and performs all the necessary memory allocation, key

expansion and set up of the algorithm.
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(a) AES encryption round (b) AES class diagram

Figure 5.1: AES round methods

SubBytes

The SubBytes transformation performs a simple byte substitution on each byte of the State

using a substitution table, the substitution box (sBox), which contain the permutations of all

256 8-bit values. These boxes are constructed using defined transformation of values in GF (28)

and are loaded into the card as static final byte arrays (EEPROM) at applet instantiation

time. Each of this tables is stored in the EEPROM and requires 256 bytes of memory.

The implementation of the inverted SubBytes function is straightforward, as is it processed

exactly in the same way as the SubBytes operation, with the exception that the inverse

substitution Box (invsBox) table is used. Consequently, a total of 512 bytes are needed for

storing the S-BOX and the inverted S-BOX table, which is almost negligible for modern smart

cards. The S-BOX and inverted S-BOX tables are depicted in Appendix B.1.

ShiftRows

The ShiftRows transformation consists of circular byte shifts, where each row is shifted over a

different number of positions. The inverse shift row transformation (invShiftRows) performs

the circular shifts in the opposite direction.
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MixColumns

MixColumns is the most expensive operation, since it involves matrix multiplication in

GF(28). GF(28) multiplication is defined with a carefully selected primitive polynomial

x8 + x4 + x3 + x+ 1 to speed up computation.

In practice, Mix Columns can be implemented by expressing the transformation of each col-

umn as four equations to compute the new bytes for that column [79]. The computation

only involves shifts, XORs and conditional XORs (for the modulo reduction). However, the

decryption is slower due to the computation requiring the use of the inverse matrix, which

has larger coefficients.

We can achieve a significant speed up by using lookup tables with all the precomputed mul-

tiplications in GF (28). The additional 1536 bytes of EEPROM memory required to store the

lookup tables does not comprise a problem, taking into account the considerable amount of

memory currently available in smart cards. Lookup tables not only improve the performance

of the AES algorithm but also make it more secure by making it less prone to timing and

power attacks [41, 81, 10]. The multiplication tables are shown in Appendix B.2.

AddRoundKey

The AddRound function is straightforward: the 128 bits of State are bitwise XORed with the

128 bits of the round key.

KeyExpansion

The AES key expansion algorithm takes as input the key and produces the expanded key

array, which ranges from 176 bytes to 240 bytes, depending on the size of the input key.

The expanded key could be expanded each time it is being used, or be expanded once and

stored in the static memory. We have followed the latter approach, since storing the key in

static memory has a low memory footprint and decreases the time needed to perform either

encryption or decryption.

The round constant array (Rcon) contains the values given by xi−1, with xi−1 being powers of

x in the field GF (28). This array is stored in persistent memory and is depicted in Table 5.1.
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Table 5.1: Rcon array

i 0 1 2 3 4 5 6 7 8 9

xi 01 02 04 08 10 20 40 80 1b 36

5.1.2 Challenge-Response with AES

The challenge-response scheme with the AES cryptosystem, see section 2.4.2, is carried

out between the host application (residing in the workstation) and the applet (residing in

the smart card). We could have adapted our implementation of the AES cipher for the

Windows/PC workstation, however we have decided to use Java Security Extension (JSE)

to test interoperability between the 2 implementations. Moreover, since our implementation

uses 8-bit arithmetic it would most certainly run slower than the JSE implementation.

The challenge-response authentication with AES proceeds as follows: in unilateral authenti-

cation the verifier generates a 16 byte random number for the claimant to encrypt with the

shared secret key, whereas in mutual authentication each entity generates an 8 byte number,

creating a 16 byte block which will be used as challenge. No identifier was used; although this

approach is security weak - for example may suffer man-in-the-middle attacks, our focus is on

the performance of the implementation of the cipher. Nevertheless, extending the protocol to

incorporate the identifier is rather straightforward.

In order to communicate with the applet, we have defined four APDU commands: UNILAT-

ERAL AUTH AES CE, MUTUAL AUTH AES CE, UNILATERAL AUTH AES PJ and

MUTUAL AUTH AES PJ. The first two commands request a unilateral and a mutual au-

thentication, respectively, using the coprocessor-enabled (CE) Java Card cryptographic API,

while the remaining two achieve the same functionality using our implementation of AES

(fig. 5.1(b)).

5.2 Stream cipher eLoBa

In this section we describe the main classes implemented for eLoBa cryptosystem.



56 CHAPTER 5. IMPLEMENTING AUTHENTICATION PROTOCOLS

5.2.1 Architecture

The eLoBa cipher has a modular architecture comprised of four Sub-Systems, as shown in

Figure 5.2(a). Relating to the overall functionality of eLoBa, the cipher is initialized by a

128 bit secret value, or Seed, which is processed through a sequence of steps. After system

initialization, the complete process of key generation starts with the iteration of the Chaotic

Sub-System after which the Key Mix Sub-System generates two 128 bit keys. The output of the

Chaotic Sub-System gives also input to the Chaotic Disturbance Sub-System whose purpose

is to provide feedback disturbance to the next iteration of the Chaotic System. Figure 5.2(b)

shows the definition (attributes and methods) of the eLoBa class.

Seed
128

Init
512

128

384 512

Chaotic Disturbance
Sub-System

Chaotic
Sub-System

384128

Key Mix
Sub-System

Keystream output

1

Keystream
128

(a) eLoBa modules (b) Java class diagram

Figure 5.2: eLoBa architecture

The most common operations are straightforward: bytewise XORs, shifts, and byte swapping.

This greatly simplifies the implementation of the system, as both the chaotic and key mix

modules solely rely on these simple operations. Another such example are the 128-bit full

cycle linear feedback shift registers (LFSRs), which are used in the initialization module as

well as the Chaotic disturbance and Key mix sub-systems. These LFSRs are implemented

in software by the shiftLFSR(byte[] lfsr) method, with a primitive polynomial given by the

coefficients (128,7,2,1,0).
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The most computationally demanding operations required by the system are, without doubt,

the integer modular arithmetic performed by the Chaotic module. Modular addition and

subtraction have already been discussed in section 4.1.2, and modular multiplication on sec-

tion 4.2. Nonetheless, eLoBa works in 128 bit arithmetic, i.e., it has a fixed modulus, which

means that we will only need to consider the 16 least significant bytes of the result. There-

fore, instead of the modular operations we use the classic methods. An example for modular

multiplication is given in Appendix C.

An interesting alternative would be to use cards implementing version 2.2.2 or 3.0.1 of the

Java Card standard, since it includes support for non-modular addition, subtraction and

multiplication through the BigNumber class.

Chaotic Sub-System

The Chaotic Sub-System implements the Lorenz System of Equations and is parametrized for

chaotic behaviour. Its behaviour is mathematically represented by Equation 5.1, where X,

Y and Z are the coordinates of the chaotic system and ∆t the integration step. The system

parameters, obtained from [77], are fixed to σ = 10, ρ = 28, β = 3 and loaded into the card

at applet instantiation time. Other values can be used as long as the system presents chaotic

behaviour, which is achieved for σ > β + 1, ρ > 0 and ρ > σ(σ+β+3)
σ−β−1 .







Xi+1 = Xi +∆i(σ(y − x))

Yi+1 = Yi +∆i(ρx− y − xz)

Zi+1 = Zi +∆i(xy − βz)

(5.1)

The eLoBa cipher uses the Lorenz system of equations running in integer algebra under a 128

bit modular arithmetic. Therefore, each iteration to the Chaotic Sub-System requires eight

128-bit modular multiplications. Each modular multiplication is computed bytewise, hence

each iteration requires a total of 16 bytewise multiplications.

It is still possible to reduce the calculation time by reducing the range of the integration step

variable ∆t [77]. In the reduction of the integration step, we substitute three 128 bit by 128

bit multiplications by three 8 bit by 128 bit multiplications, which has great impact in the

performance. The reduced integration step is obtained by selecting a single byte from that
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variable, according to the value of its own four bits of highest level. However, to keep the

level of security, the integration step variable must keep its storage space of 128 bits.

Another feature of eLoBa’s modular arithmetic is that, even though multiplications may pro-

duce a result of more than 16 bytes, only the 16 least significant bytes are kept and the

remaining bytes are ignored. This greatly improves performance as it reduces both the mem-

ory and computation requirements. For instance, while a 16 bytes by 16 bytes multiplication

requires 136 bitwise multiplications and 240 bitwise additions, a 16 bytes by 1 byte multipli-

cation, requires only 16 bitwise multiplications and 15 bitwise additions.

The chaotic system is iterated through the iterateChaos() method; the Add(), Sub1() and

Mul1() provide addition, subtraction and multiplication, respectively, for two 128 bits un-

signed integers in the byte array format, while Sub2() and Mul2() provide subtraction and

multiplication for the operations when one operand has 128 bits and the other 8 bits.

Chaotic Disturbance Sub-System

The Chaotic Disturbance module is responsible for the introduction of orbit changes in the

Chaotic Sub-System, avoiding it to converge to one single value or enter in short-cycle length

orbits. Its behaviour is implemented by the SSCD() method and mathematically represented

by Equation 5.2. The LFSRCD is used to XOR its present state with the resulting Y and

Z coordinates from the Chaotic Sub-System. The value of the integration step ∆t is also

changed through the XOR of its present value with the value of the present X coordinate that

comes from the Chaotic Sub-System. The resulting Yk+1, Zk+1 and (∆t)k+1 values will be

used as feedback to the Chaotic SubSystem and update the respective variables to be used in

the next iteration of the chaotic system. After the new value for iteration step is computed,

the reduced integration step byte is updated as well.







Yk+1 = Yk+1 ⊕ LFSRCDi

Zk+1 = Zk+1 ⊕ LFSRCDi+1

∆t = ∆t⊕ xk+1

(5.2)
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Key Mix Sub-System

The Key Mix Sub-System receives as input a triple of coordinates (x,y,z) produced by the

Chaotic Sub-System and generates as output two 128 bits keys, as shown in Equation 5.3.

The purpose of equation 5.3 is to conceal the chaotic state to the outside world.

Regarding the notation, xa means byte of order a in coordinate x; y[a : b] corresponds to the

bits a to b from the y coordinate; the ith state of the LFSR is represented by LFSRi and the

symbol A||B corresponds to the concatenation of A with B.

In order to generate the keys, bits from the three coordinates are concatenated into a block

of 128 bits which is to be XORed with the LFSRCD; the second key, on the other hand, is

generated after iterating the LFSRCD.







Keyi = [x3 || y[1 : 3] ||x7 || y[5 : 7] ||x11 || y[9 : 11] ||x15 || y[13 : 15]] ⊕ LFSRKMi

Keyi+1 = [x2 || z[1 : 3] ||x6 || z[5 : 7] ||x10 || z[9 : 11] ||x14 || z[13 : 15]] ⊕ LFSRKMDi+1

(5.3)

Initialization

The value of the Seed is processed by the initialization module, in order to initialize all the

parameters of the three sub-systems:

1. Chaotic Sub-System : the x, y and z coordinates and integration step ∆t

2. Chaotic Disturbance Sub-System : the LFSRCD

3. Key Mix Sub-System: the LFSRKM

The initialization of the Chaotic Sub-System can be summarized by Equation 5.4, where

LFSRi denotes the state of the LFSR after the ith iteration, x0 is the initial value of the x
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coordinate and F1, F2 and F3 are functions that perform byte circular shifts.







LFSR = SEED

x0 = LFSR0

y0 = F1(LFSR1)

z0 = F2(LFSR2)

∆t0 = F3(LFSR3)

(5.4)

The auxiliary LFSR, auxLFSR, as well as the x coordinate, are set to the value of the Seed,

while the values of y0, z0 and ∆t0 are set to the value of the auxLFSR after each of three

iterations. Thereafter, the values of y, z and ∆t are fed to the F1, F2 and F3 functions,

respectively, thereby concluding the initialization of the Chaotic Sub-System.

The initialization of the remaining two Sub-Systems is straightforward: first, we initialize the

Chaotic Disturbance Sub-System by iterating the Chaotic Sub-System; the resulting three new

values for the coordinates, namely x1, y1 and z1, are then XORed according to Equation 5.5.







LFSRCD0
[0 : 3] = x1[4 : 7]⊕ y1[8 : 11]⊕ z1[12 : 15]

LFSRCD0
[4 : 7] = x1[8 : 11] ⊕ y1[12 : 15]⊕ z1[0 : 3]

LFSRCD0
[8 : 11] = x1[12 : 15]⊕ y1[0 : 3]⊕ z1[4 : 7]

LFSRCD0
[12 : 15] x1[0 : 3]⊕ y1[4 : 7]⊕ z1[8 : 11]

(5.5)

The initialization of the Key Mix Sub-System and the Chaotic Disturbance Sub-System are

similar; first the Chaotic Sub-System is iterated, resulting in three new values for the coor-

dinates, namely x2, y2 and z2. These are to be XORed according to Equation 5.6, thereby

concluding system initialization.







LFSRKM0
[0 : 3] = x2[12 : 15] ⊕ y2[8 : 11]⊕ z2[4 : 7]

LFSRKM0
[4 : 7] = x2[0 : 3]⊕ y2[12 : 15] ⊕ z2[8 : 11]

LFSRKM0
[8 : 11] = x2[4 : 7]⊕ y2[0 : 3]⊕ z2[12 : 15]

LFSRKM0
[12 : 15] = x2[8 : 11]⊕ y2[4 : 7]⊕ z2[0 : 3]

(5.6)
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Note that the LFSRCD and the LFSRKM will still be used after the initialization process

is complete, while the auxLFSR is only necessary for system initialization. Nonetheless,

the transient memory allocated for the auxLFSR is still usable and RAM still remains a

scarce resource on smart cards. Therefore, the memory allocated for the auxLFSR in the

initialization module is afterwards used for storing intermediary results.

5.2.2 Challenge-response with eLoBa

The overall functionality of our authentication scheme with the eLoBa cipher, depicted in

figure 5.3 using SDL language [42], is divided in an initialization step and a minimum of 16

and up to 31 iterations to the Chaotic Sub-System. The 128 bit challenge is split between

the number of rounds and the output key bit, while the remaining bits are XORed with the

system’s Seed and used to initialize the system. The process of key generation starts with the

iteration of the Chaotic Sub-System after which the Key Mix Sub-System could produce the

first pair of keys. However, since we are only interested in the system’s internal state after a

certain number of rounds, we can skip the key generation step until we reach the last round. In

the last round we iterate the chaotic sub-system and the Key mix subsystem, but we eliminate

the Chaotic Disturbance Sub-System iteration since it will not be necessary to further iterate

the system. The process of key generation is carried out by the Key-Mix Sub-System, thereby

constructing either key1 or key2, according to the parity of the output key bit. The generated

key is then sent to the verifier in response to the challenge. The fact that we only need to

generate the requested output key allows us to avoid unnecessary computations.

5.3 RSA

In this section we describe the components implemented for RSA cryptosystem.

5.3.1 Arquitecture

The RSA cryptosystem is a public-key cryptosystem that offers both encryption and digital

signatures (for authentication). It uses a public modulus n, product of two large prime
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Figure 5.3: SDL description of eLoBa functionality

numbers p and q, a public exponent e, less than n and relatively prime to ϕ(n) = (p−1)·(q−1),

and a private exponent d = e−1(modϕ(n)). The values e and d are called the public and

private exponents, respectively. The public key is the pair (n, e), while (n, d) is the private

key. The factors p and q that constitute n must be kept secret, and allow us to use the Chinese

Remainder Theorem(CRT) to speed up decryption/signing – see section 4.3.2. Additionally,

when using Montgomery’s algorithm for exponentiation, pre-computation and storage ofm′, R

mod m and R2 mod m is also required — see Algorithm 11. On the other hand, if Barrett’s

algorithm is used, only the pre-computation of µ = ⌊b2k/m⌋ is required — see Algorithm 7.

The keys and other required parameters are computed externally, in the workstation with

the java.math.BigInteger class, and loaded into the card at applet instantiation time. Once

the RSA cryptosystem is set up, i.e., the modulus and the private and public exponents are

determined and the public components have been published, both the operation of signing and

verification can be performed with the computation of a modular exponentiation, M e (modn),

which we have already discussed in Chapter 4. The digital signature is created by exponenti-

ating: s = md mod n, where d and n are the signatory’s private key, and m the message to

be signed. The validation/verification of the signature is performed by m = se mod n, where

e and n are the signatory’s public key.
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5.3.2 Challenge-response with RSA

We compare our own implementation of RSA, which uses Barrett’s exponentiation, against

the one available in the Java Card crypto APIs, using CRT multiplication. No padding was

added to the original messages, i.e., message length is equal to N size.

Our unilateral challenge-response protocol is based on RSA decryption and implements a

simplified version of the protocol described in section 2.4.3. Figure 5.4 depicts RSA unilateral

authentication.

Figure 5.4: RSA-based challenge-response authentication

Note that we have omitted some features from the original protocol, namely the claimant’s

identifier and the message digest; we did so in order to focus on the performance of the cipher

rather than on the protocol itself. Nevertheless, this approach provides us with the lower

bound for the execution time of the complete protocol, and also allows a fair comparison

between the authentications with AES and eLoBa.

Despite the fact that this basic scheme is not very secure, our implementation can be easily

extended given that message digests (e.g., SHA-1 [63]) are directly available on current smart

cards.
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5.4 Zero-knowledge protocols

In this section we describe the implementation of two zero-knowledge protocols: Feige-Fiat-

Shamir, in section 5.4.1, and Guillou-Quisquater, in section 5.4.2.

5.4.1 Feige-Fiat-Shamir

The Feige-Fiat-Shamir (FFS) authentication scheme, discussed in section 2.5.2, uses a public-

private key pair and is based on the difficulty of computing square roots modulo composite

numbers. The claimant’s public and private keys are generated in the workstation and loaded

into the card at instantiation time. The protocol is repeated t times, where t=8 and the

challenge is composed of k bits, where k=9.

In contrast to RSA, FFS is computationally much lighter; the only computations involved are

modular multiplications, whereas RSA uses modular exponentiation. However the difficulties

of implementing FFS on a Smart card are the limited computational resources and the ineffi-

ciency of Java (byte) code execution, as explained in chapter 4. Therefore, in order to achieve

an acceptable performance we should rely as much as possible on the built-in cryptographic

operations, which are executed on the dedicated coprocessor.

Table 5.2 depicts the mathematical operations needed for the FFS protocol. Random number

generation is supported by the Java Card RandomData class and modular arithmetic has

already been discussed on chapter 4. Naturally, our choice falls on the Java Card RSA

interface, which benefit from hardware acceleration: modular multiplication is implemented

through multiplication by squaring (section 4.2.3) and modular squaring is easily achieved

through RSA exponentiation (section 4.3.3) with a fixed exponent 2.

A drawback of approach is that, even though modular multiplication partly executes on the

coprocessor, it still remains the bottleneck in this protocol; multiplication by squaring involves

modular exponentiation (for squaring) but also modular addition and subtraction, which must

be computed on the JVM. In theory, FFS only requires a small fraction of the computations

required by RSA, however, in practice, it is inherently less efficient than RSA because the

latter can fully execute on the cryptographic coprocessor.

For comparison purposes, we also implement FFS without the coprocessor, using Barrett’s

algorithm for modular multiplication.
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Table 5.2: Operations required by the FFS protocol

Mathematical operation number of operations

Random number generation: r 1
Modular squaring: x = r2modn 1
Modular multiplication: y = (r · sc11 · · · s

ck−1

k−1 · s
ck
k )modn up to k + 1

Figure 5.5: Feige-Fiat-Shamir authentication scheme

5.4.2 Guillou-Quisquater

As was already mentioned in section 2.5.3, the Guillou-Quisquater (GQ) protocol is an ex-

tension of the Fiat-Shamir protocol that limits the number of rounds, computations and the

amount of memory requirements for user secrets. This protocol relies in the difficulty of ex-

tracting vth root module n, where v is the security parameter and t determines the number

of executions of the protocol.

No repetition of the procedure is needed as long as the size of the public exponent v is

sufficient for the desired level of security. For instance, twenty to thirty bits are enough to

ensure a secure remote authentication [34]. Therefore, we have chosen a 32 bit v and t = 1

(a single round), since these assure a good compromise between the level of security and the
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execution speed. To simplify the implementation, we have also chosen a random value for

the signature JA (without actually computing the hash of an ID) and loaded the certificate

SA ≡ (JA)
−1modn directly into the card.

We perform the system one-time setup and the selection of per-user parameters in the work-

station, followed by the personalization of the card and applet instantiation.

As it can be seen from tables 5.2 and 5.3, and figures 5.5 and 5.6, the GQ protocol is very simi-

lar to the FFS protocol as it also involves modular multiplication and modular exponentiation.

However, on one hand, an execution of the GQ protocol requires two modular exponentiations

instead of one modular squaring, but on the other hand, GQ protocol requires only one single

modular multiplication instead of k + 1 multiplications.

Since we can compute modular exponentiations much faster than modular multiplications,

thanks to the RSA API, we can expect GQ to outperform FFS which is much penalized by

the modular multiplication operation, which must be implemented in software.

Table 5.3: Operations required by the GQ protocol

Mathematical operation number of operations

Random number generation: r 1
Modular exponentiation: x = rvmodn , y = r · Se

Amodn 2
Modular multiplication: y = r · Se

Amodn 1

The drawback of this approach are the severe restrictions of the RSA interface, which prevent

us from fully exploiting it. For instance, the GQ protocol involves modular exponentiation

with a random exponent (the challenge), which requires us to update the RSA keys frequently

to obtain exponentiations with different values. Since RSA keys are stored in persistent

memory (EEPROM), this will not only lead to premature wear of the memory but also

prevent us from rapidly changing the exponent.

More importantly, the most severe limitation comes from the fact that our TOP GX4 card

only allows a limited number of updates to the key object. Therefore, the number of modular

multiplications our applet can execute before having to be re-installed, is also limited. We

are able to maximize the number of updates to the RSA key by using a public key, instead of

a private key, to store the 32 bits v. Yet, this hardly a solution to the problem and we have

found no way to bypass this.

For comparison purposes, we also implement GQ without the coprocessor, using Barrett’s

algorithm for modular multiplication and modular exponentiation.
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Figure 5.6: Guillou-Quisquater authentication protocol
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Chapter 6

Result Analysis, Conclusions and

Further Work

Perfection is achieved, not when there is nothing more to add, but when

there is nothing left to take away.

Antoine de Saint-Exupéry

To analyse the performance of our implementation of the authentication protocols, we must

first address the issue of performance measurement. For the code under analysis to be executed

by the smart card’s CPU, the command APDU must traverse several layers of software and

hardware. To accomplish this, we must devise an adequate test framework to allow us to

extract the proper execution time of our application. Unlike other projects [50, 67, 60, 61],

our aim is not to provide a complete test framework to measure the performance of Java

Card platforms. Therefore, we have decided to adopt a simpler approach, which we believe

to be sufficiently accurate for the purpose of this work, and for the magnitude of the time

measurements in cause.

In sections 6.1 to 6.2, we describe the configuration of the workspace and propose a general

architecture for performance measurement. Performance results are depicted and discussed

in section 6.3.

69
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6.1 The development environment

For the development and testing of smart card applications, we adopted for the host computer

an Intel Pentium IV 3GHz PC with 1,50 GB of RAM under Windows 7. Several tools are

available to develop and load Java Card applets, and, even though there are interesting propri-

etary tools, we focused only on publicly available and open source software. The development

environment has the following configuration:� A Gemalto TOP GX4 [4] smart card is used in this project. It is Java Card 2.2.1 and

Global Platform 2.1.1 compliant and has an approximate available memory size of 68K.

Multiple cryptographic algorithms are supported, such as RSA (up to 2048 bit), AES

(128, 192 and 256 bits) and SHA1. True random number generation and real garbage

collector (JC 2.2.1 specification) are also available.� Omnikey 3121 USB smart card reader will perform the tasks of a CAD.� The workstation is a Windows/PC, which is used to develop the Java Card applets as

well as running the host applications.� Java code source file (.java) can be compiled via the Java Development Kit (JDK) into

a class file (.class). Sun’s Java Card Development Kit (JCDK) version 2.2.1 [1] is used

for converting class files into converted applet files (.cap). The JCDK does not provide

a visual development environment, therefore, the Eclipse IDE is used for developing

Java Card applets through the JCDE [3] plugin, which integrates the functionality of

the JCDK. The Eclipse integrated Java Card development Environment is depicted in

Figure 6.1.� In order to deploy the application, the CAP file must be loaded into the smart card,

which can be achieved through the open source program GPShell 1.4.2 [30].� Our implementation of the AES cryptosystem for the Java Card smart card supports

three key sizes: 128, 192 and 256 bits. However, the standard Java SDK does not

support the 192 and 256 key sizes due to export restriction policies. In order to access all

sizes in the challenge-response, Java Cryptography Extension (JCE) Unlimited Strength

Jurisdiction Policy Files need to be downloaded.
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Figure 6.1: Eclipse integrated Java Card development Environment� The javax.smartcardio package was included in Java 6 and allows Java programs to

communicate with a Java Card smart card, using ISO/IEC 7816-4 APDUs. With the

Java Smart Card I/O API it is also possible to detect card insertion/removal as well as

to establish connection with a reader.

Prior to deployment, applications may be tested in the PC/Windows workstation, using the

two simulators provided by the JCDK : JCWDE and CREF. Card simulator reveals several

advantages, such as speeding up the development process of applets and not wearing out the

card. However, these simulators also have several limitations; for instance, several crypto-

graphic algorithms are not or only partially available (e.g. RSA keys are limited to 512 bits

and NOPAD mode is not available). Moreover, accurate benchmarking can not be performed

because the code is executed by the simulator running on a 0x86 CPU and can only provide

estimate values. Emulators, on the other hand, provide more accurate results as their be-

haviour is similar to the physical cards. However these are only available on proprietary tools,

such as JCOP tools [37].

Details of the setting up the development environment, may be consulted elsewhere [90].

6.2 Performance evaluation

The performance of authentication schemes on a smart card depends not only on the efficiency

of the implementation, but also on the delays that can be encountered either in the application

running in the smart card, or in the application residing in the workstation [50]. In order to

accurately measure the performance of our authentication schemes, we must first identify

what affects the execution time in order to allow the isolation of the execution time of the

features of interest.
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6.2.1 Execution time isolation

Smart cards have no internal clock, as a result we must deduce the execution time of our appli-

cation from the elapsed time between sending a command APDU and receiving the respective

response APDU. However, this is not enough due to the significant and non-predictable elapse

of time between the beginning of the measure, characterized by the starting of the timer on the

computer, and the actual execution of the byte-code of interest [61]. This non-predictability

is mainly dependent on hardware characteristics of the benchmark environment (such as the

card acceptance device (CAD), PC’s hardware, etc), the OS level interferences, services and

also on the PC’s VM [67, 60].

To isolate the execution time of the on-card code of interest, we must remove the communi-

cation overhead, or in other words, the fraction of elapsed time that does not depend on the

efficiency of our implementation. As a matter of fact, before the command can be processed

on the card’s CPU, several layers of software and hardware must be traversed, as depicted in

Figure 6.2.

A command APDU needs to be sent from the workstation host application and transmitted

through the PC/SC interface with the card reader, before the command APDU can be trans-

mitted to the smart card. After reaching the smart card, the JCRE must yet forward the

command to the applet and, only then, does the applet take control and process the command.

After the command is executed, the applet sends a response APDU to the host application

and the inverse communication path is traversed.

While the delay in the workstation is mainly due to sudden load changes within the OS,

there is also the delay associated to the card reader (CAD) and its drivers, as well the APDU

interpretation/encapsulation in the smart card.

The execution time for the code of our implementation corresponds to the t4 frame depicted

on Figure 6.2, i.e., the execution time of the command on the card’s CPU. Therefore, we must

exclude the communication overhead introduced by the application layer (t1), the PC/SC

interface and the card reader (t2), as well as the on-card APDU interpretation (t3). Addition-

ally, if data is transmitted, it’s contribution to the total execution time should be considered

as well.

A first approach to estimate the on-card execution time of a target command is to execute the

command several times in a loop, and for each iteration collect the total execution time. Due

to variance in the measurements, a sufficiently large number of samples is required to compute
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Figure 6.2: Communication path between the application on the computer and the card

the arithmetic mean and ”filter” trustworthy results. The sampled values may also be stored

persistently in a log file, allowing further access to the test data and statistical operations to

be performed. With our proposed execution time measurement solution, we expect that the

isolated execution time of the command of interest will stabilize after a certain loop size. This

simplicity, however, requires that we perform a sufficiently large number of loops which may

make the overall test tedious.

To compute the mean isolated execution time of the command of interest, we need to perform

the following calculation:

M(command) = mL(TargetCommand)−mL(Overhead) (6.1)

where,� M(command) is the estimation for the execution time of the code of interest.� L represents the number of loop iterations, i.e., the number of times the command under

test is executed.� mL(TargetCommand) is the mean global execution time of the target command, in-

cluding interferences coming from other operations performed during the measurement,

both on the card and on the computer side, with respect to a loop size L.� mL(Overhead) represents the mean execution time of all the overhead functions: Smart

card connection and disconnection, applet selection and data transmission — see sec-

tion 6.3.1.
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Despite the fact that the number of clock cycles are commonly used to compare the perfor-

mance of different implementations, in this case it would not allow a fair comparison. The

reason behind this is that interpreted languages, such as Java Card, have additional overhead

caused by the complexity of the smart card operating system, making the execution of an

application on top of the operating system much more expensive. For instance, in lightweight

ciphers such as AES, the main source of computational cost may reside in the overhead caused

by the operating system [41].

6.2.2 Test module configuration

Our test module consists of a script part and an applet part. While the script part, entirely

written in Java, manages the execution of the tests and runs on a Windows/PC workstation,

the applet is loaded on the smart card and implements the operations whose performance we

want to measure.

The script makes use of the javax.smartcardio [53] package to exchange APDUs with the

smart card and execute the target commands. Thereafter, the elapsed time between sending

a command and receiving back the response is measured thanks to the System.nanoTime

method.

In order to perform the tests required to solve equation 6.1 and evaluate the performance

of our implementations, we have implemented the GET BYTES function. The command

GET BYTES instructs the applet to receive the bytes contained in the data field of the

command APDU, and to return back the same data field in the response APDU. If the data

field of the APDU carries data, the applet must invoke the apdu.setIncomingAndReceive()

method to receive the incoming data. In addition, the apdu.sendBytesLong() method must

be used to return back the received data.

To measure the total execution time we set two timers: one to trigger before sending the first

command and another to trigger after receiving the last response. Between the two timers the

commands that constitute the test are executed. Card connection/disconnection and applet

selection are included as well, since they increase the total execution time, thereby reducing

the amount of standard deviation in the measurements.



6.3. PERFORMANCE RESULTS 75

6.3 Performance results

In this section we provide performance measurements related to the execution of authentica-

tion protocols. We begin by presenting performance results for communication overhead in

section 6.3.1, followed by modular multiplication in section 6.3.2 and finally, authentication

protocols in section 6.3.3.

6.3.1 Communication overhead

All values presented in this report refer to the total time needed to carry out an authentication

protocol. Total time includes four overhead functions: (a) Smart card connection – 1,71ms, (b)

Smart card disconnection – 0,20ms, (c) Applet selection – 3,21ms, and (d) Data transmission,

where each value is obtained by computing the mean over 5000 executions.

In order to understand the impact of data transmission in the total execution time, the data

transmission overhead values are depicted in Table 6.1, obtained by computing the mean over

5000 samples, for APDU with different lengths.

We consider a case 4 command APDU [66] where Le = Lc, i.e. the amount of data contained

in the C-APDU is the same amount of data which is to be returned in the R-APDU.

Table 6.1: Time spent for a data APDU

data field length(bytes) 0 16 64 96 128 160 192 224 255

time(ms) 2.98 6.98 10.99 15.00 17.62 21.00 24.02 27.75 30.01

Aside from the mandatory header and the Lc and Le bytes, the APDU buffer may hold up to

255 bytes of data. When more than 255 bytes of data must be sent, the data must be split

between several APDUs. Nevertheless, the P1 and P2 bytes can be used to provide extra

input data. Note that these bytes are part of the header and therefore do not increase the

data transmission time. For example, sending 256=28 Bytes requires one single APDU if we

use P1 field.

Example 6.3.1 Let the total time for an unilateral challenge-response authentication with

AES, including card connection/disconnection and applet selection, equal 16,09 ms. If the

challenge is composed of 16 bytes, the estimated on-card processing time is approximately:

16, 09ms (total time)−1, 71ms (connect)−0, 20ms (disconnect)−3, 21ms (applet selection)−

6, 98ms (data overhead) = 3, 99ms.
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6.3.2 Modular Multiplication

Modular multiplication algorithms are described in section 4.2.3 and their average execution

times are depicted in table 6.2, where execution times correspond to the mean over the values

collected from 1000 iterations.

Tables 6.2a and 6.2b show that without coprocessor support, modular multiplication based on

the algorithms originally proposed by Barrett and Montgomery exhibit similar performance.

Both have approximately quadratic complexity and, therefore, are not fast enough for practical

use.

On the other hand, squaring multiplication with coprocessor support, depicted in table 6.2c,

exhibits superior performance results, even thought the algorithm is partly executed in the

virtual machine. Note that the values depicted in table 6.2c correspond to the implementation

of equation 4.2.

Table 6.2: Execution times for modular multiplication, with overheads excluded

(a) Montgomery Multiplication (xyR−1 mod n)

Modulus (bits) 128 256 384 512

Time (s) 0.14 0.52 1.17 2.04

(b) Barrett Multiplication (xy mod n)

Modulus (bits) 128 256 384 512

Time (s) 0.15 0.55 1.21 2.10

(c) Squaring Multiplication (xy mod n)

Modulus (bits) 512 768 1024 1280

Time (ms) 65.87 91.15 123.84 162.43

6.3.3 Performance of Authentication Protocols

In this section we provide the average execution time for authentication protocols, with copro-

cessor support (C) and own implementation, i.e. programmed without coprocessor support

(P), based on a total of 1000 measurements.

6.3.3.1 Authentication based on AES

The execution times for unilateral authentication are depicted in table 6.3, for coprocessor

and own implementation.

The implementation of AES on the coprocessor runs virtually for free, which was expected

since block ciphers are particularly efficient, especially when implemented on hardware. Even
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Table 6.3: Execution times for AES unilateral authentication

Key size(bits) 128 192 256

Coprocessor(ms) 16.09 16.70 16.97

Programmed(ms) 68.93 79.94 90.97

though our implementation of AES is much slower than the coprocessor-enabled implementa-

tion, it still achieves acceptable execution times. This is probably due to the fact that AES

consists mainly of logic operations and the most complex operations (multiplications in GF )

can be replaced by lookup tables. The difference in execution times is most certainly due to

the execution of byte code in the JVM instead of executing the code directly on the dedicated

coprocessor.

6.3.3.2 Authentication based on RSA

The execution times for unilateral authentication with coprocessor support based on CRT,

are depicted in table 6.4.

Table 6.4: Execution times for RSA

Modulus (bits) 512 768 1024 1280 1536 1792 2048

Coprocessor (ms) 159.08 253.23 436.18 602.48 786.51 994.54 1675.58

Without coprocessor, execution times for 64 and 128 bits are, respectively, 4.1s and 27.3s.

These values are based on Barrett reduction. Nowadays, these keysizes are unsafe. However,

these results indicate that safe keysizes would not be usable in practice, even if we were to

resort to the CRT.

6.3.3.3 Authentication based on eLoBa

Execution times for eLoBa unilateral authentication vary according to the number of rounds.

For a minimum of 16 rounds and a maximum of 31 rounds the execution times are 1.4s and

2.5s, respectively.

6.3.3.4 Authentication based on ZKP

Execution times required for unilateral authentication based on ZKP are depicted in table 6.5a

and table 6.5b for coprocessor and own implementation, respectively.
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Table 6.5: ZKP execution times
(a) with coprocessor

Modulus (bits) 512 768 1024 1280 1536 1792

FFS-C (s) 2.6 3.9 5.1 6.6 7.7 8.8

GQ-C (ms) 262.03 313.53 395.29 473.00 534.11 596.17

(b) without coprocessor

Modulus (bits) 64 128 192

FFS-P (s) 2.0 6.6 13.3

GQ-P (s) 2.3 7.0 14.8

6.3.3.5 Overall comparison

Figure 6.3 presents an overview of the execution times of the authentication protocols.
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Figure 6.3: Comparison of authentication protocols

The AES cipher has the best performance among all the considered protocols, even without

coprocessor support. The performance of eLoBa is excellent taking into consideration that it

involves modular multiplications without resorting to the coprocessor.

Regarding RSA and ZKP, without coprocessor support FFS and GQ are faster than RSA.

These results were expected as FFS and GQ involve operations which are computationally

less expensive than RSA exponentiation. On the other hand, with coprocessor support we

observe that RSA and GQ are faster than FFS. This contrast can be explained by the amount

of operations that must execute on the VM. While RSA fully executes on the coprocessor,

FFS and GQ require the computation of modular multiplications, which are only partially

executed on the coprocessor. GQ outperforms FFS by the simple fact that only needs to

perform a single modular multiplication.

It is also interesting to note that RSA is faster than GQ up until 896 bits. The explanation

behind this behaviour is that as the module in the RSA-based authentication grows, so does
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the exponent. On the other hand, GQ always uses an exponent that is bounded by the

security parameter. This means that even though the size of the module increases, the cost

of performing exponentiation does not grow at the same rate as in RSA.

6.4 Conclusions

In this thesis we have evaluated the performance of authentication schemes in a Java Card

smart card. We have also implemented an authentication protocol based on a chaotic-based

stream cipher and evaluated its performance against currently known cryptosystems [15].

We have shown that, due to the overhead of the Java Virtual Machine and the limited exe-

cution speed of the CPU, computations performed outside the coprocessor are too expensive.

Java Card code is inherently inefficient and, as a result, reasonably fast implementations

without hardware acceleration are only possible for very efficient algorithms, such as AES and

eLoBa. We conclude that the performance of keystream chaotic system is only about 10%

slower than AES, the fastest cryptosystem, and, therefore, is also suitable for authentication.

In order for RSA to remain presumably secure, the task of computing the private key given

the public key must be computationally infeasible. However, larger key sizes require higher

computational power and storage space, which are especially costly requirements for resource-

constrained environments, such as smart cards.

The main performance limitation resides, however, in the Java-Card API, which restricts the

access to the cryptographic coprocessor. API limitations force us to implement mathemati-

cally complex operations on the virtual machine, resulting in implementations that are too

slow for practical use. Even efficient modular multiplication algorithms such as Barrett and

Montgomery do not execute in reasonable time.

Nevertheless, it is possible to speed up the implementation of operations not directly offered

by the Java Card API, through the clever usage of the available high-level cryptographic

methods (e.g. RSA). By relying on the Java Card RSA interface, the squaring multiplication

can be used to dramatically decrease the cost of modular multiplication, thus allowing FFS

and GQ protocols to execute within acceptable time. However, the execution speed of the

protocols is still bounded by the amount of computations that must be performed outside the

coprocessor.
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6.5 Further Work

As future work we propose to research optimizations to the authentication protocol based on

the eLoBa cipher. A possible improvement would be to modify the authentication protocol

in order to decrease the performance penalization of the initialization step.

To further improve the performance of protocols that rely on modular multiplication, the

squaring multiplication method must also be enhanced. In this case, this is achieved by out-

sourcing more computation to the coprocessor, more specifically, by delegating the additions

to the hardware acceleration. This should be possible by tunnelling additions through the

RSA-CRT decryption operation [11].

Further work should also include a throughout analysis of the applet’s memory requirements,

making clear that memory consumption does not pose a problem for the chosen platform.

The implementation of algorithms using Elliptic Curve Cryptography (ECC) is also an in-

teresting field. Compared to RSA, an equivalent level of security is achieved with smaller

keys. Besides the performance advantage of ECC over RSA, the storage and transmission

requirements are also considerably lower [35, 9].
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[13] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three modular

reduction functions. In In Advances in Cryptology-Crypto’93, LNCS 773, pages 175–186.

Springer-Verlag, 1994.

[14] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s

Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[15] Rui Gustavo Crespo and Jose Rafael Carvalho. Smartcard authentication scheme based

on chaotic keystream cipher. In e-Smart 2011 Proceedings, September 2011.

[16] Des. Data encryption standard. In In FIPS PUB 46, Federal Information Processing

Standards Publication, pages 46–2, 1977.

[17] Damien Deville, Antoine Galland, Gilles Grimaud, and Sébastien Jean. Smart card oper-
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Appendix A

RSA exponentiation

Step 1 - Create instance of a Cipher and key(s)

Cipher rsa;
RSAPublicKey pubKey;
try{
rsa=javacardx.crypto.Cipher .getinstance(javacardx.Crypto.Cipher.ALG RSA NOPAD,false);
pubKey=javacardx.security.KeyBuilder.buildkey();
}
catch(){ /*RSA Crypto engine not supported by this card*/ }

Step 2 - Initialize key(s)

pubKey.setModulus(modulus,(short)0,modulus len);
pubKey.setExponent(exponent,(short)0,exponent len);

Step 3 - Initialize cryptographic engine

rsa.init(pubKey,MODE ENCRYPT);

Step 4 - Perform encryption

rsa.doFinal(buffer2encrypt,(short)inOffset,(short)inLength,outputBuffer,(short)outOffset);
/*use rsa.update() to feed input data cumulatively, if the entire input data cannot be fit in
a byte array*/
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Appendix B

AES tables

B.1 AES S-Boxes

Table B.1: AES forward S-box

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1x ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2x b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3x 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4x 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5x 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6x d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7x 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8x cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9x 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
ax e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
bx e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
cx ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
dx 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
ex e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
fx 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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Table B.2: AES inverted S-box

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1x 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2x 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3x 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4x 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5x 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6x 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7x d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8x 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9x 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
ax 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
bx fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
cx 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
dx 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
ex a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
fx 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

B.2 AES multiplication tables

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 02 04 06 08 0a 0c 0e 10 12 14 16 18 1a 1c 1e
1x 20 22 24 26 28 2a 2c 2e 30 32 34 36 38 3a 3c 3e
2x 40 42 44 46 48 4a 4c 4e 50 52 54 56 58 5a 5c 5e
3x 60 62 64 66 68 6a 6c 6e 70 72 74 76 78 7a 7c 7e
4x 80 82 84 86 88 8a 8c 8e 90 92 94 96 98 9a 9c 9e
5x a0 a2 a4 a6 a8 aa ac ae b0 b2 b4 b6 b8 ba bc be
6x c0 c2 c4 c6 c8 ca cc ce d0 d2 d4 d6 d8 da dc de
7x e0 e2 e4 e6 e8 ea ec ee f0 f2 f4 f6 f8 fa fc fe
8x 1b 19 1f 1d 13 11 17 15 0b 09 0f 0d 03 01 07 05
9x 3b 39 3f 3d 33 31 37 35 2b 29 2f 2d 23 21 27 25
ax 5b 59 5f 5d 53 51 57 55 4b 49 4f 4d 43 41 47 45
bx 7b 79 7f 7d 73 71 77 75 6b 69 6f 6d 63 61 67 65
cx 9b 99 9f 9d 93 91 97 95 8b 89 8f 8d 83 81 87 85
dx bb b9 bf bd b3 b1 b7 b5 ab a9 af ad a3 a1 a7 a5
ex db d9 df dd d3 d1 d7 d5 cb c9 cf cd c3 c1 c7 c5
fx fb f9 ff fd f3 f1 f7 f5 eb e9 ef ed e3 e1 e7 e5

Table B.3: AES m2 table
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 03 06 05 0c 0f 0a 09 18 1b 1e 1d 14 17 12 11
1x 30 33 36 35 3c 3f 3a 39 28 2b 2e 2d 24 27 22 21
2x 60 63 66 65 6c 6f 6a 69 78 7b 7e 7d 74 77 72 71
3x 50 53 56 55 5c 5f 5a 59 48 4b 4e 4d 44 47 42 41
4x c0 c3 c6 c5 cc cf ca c9 d8 db de dd d4 d7 d2 d1
5x f0 f3 f6 f5 fc ff fa f9 e8 eb ee ed e4 e7 e2 e1
6x a0 a3 a6 a5 ac af aa a9 b8 bb be bd b4 b7 b2 b1
7x 90 93 96 95 9c 9f 9a 99 88 8b 8e 8d 84 87 82 81
8x 9b 98 9d 9e 97 94 91 92 83 80 85 86 8f 8c 89 8a
9x ab a8 ad ae a7 a4 a1 a2 b3 b0 b5 b6 bf bc b9 ba
ax fb f8 fd fe f7 f4 f1 f2 e3 e0 e5 e6 ef ec e9 ea
bx cb c8 cd ce c7 c4 c1 c2 d3 d0 d5 d6 df dc d9 da
cx 5b 58 5d 5e 57 54 51 52 43 40 45 46 4f 4c 49 4a
dx 6b 68 6d 6e 67 64 61 62 73 70 75 76 7f 7c 79 7a
ex 3b 38 3d 3e 37 34 31 32 23 20 25 26 2f 2c 29 2a
fx 0b 08 0d 0e 07 04 01 02 13 10 15 16 1f 1c 19 1a

Table B.4: AES m3 table

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 09 12 1b 24 2d 36 3f 48 41 5a 53 6c 65 7e 77
1x 90 99 82 8b b4 bd a6 af d8 d1 ca c3 fc f5 ee e7
2x 3b 32 29 20 1f 16 0d 04 73 7a 61 68 57 5e 45 4c
3x ab a2 b9 b0 8f 86 9d 94 e3 ea f1 f8 c7 ce d5 dc
4x 76 7f 64 6d 52 5b 40 49 3e 37 2c 25 1a 13 08 01
5x e6 ef f4 fd c2 cb d0 d9 ae a7 bc b5 8a 83 98 91
6x 4d 44 5f 56 69 60 7b 72 05 0c 17 1e 21 28 33 3a
7x dd d4 cf c6 f9 f0 eb e2 95 9c 87 8e b1 b8 a3 aa
8x ec e5 fe f7 c8 c1 da d3 a4 ad b6 bf 80 89 92 9b
9x 7c 75 6e 67 58 51 4a 43 34 3d 26 2f 10 19 02 0b
ax d7 de c5 cc f3 fa e1 e8 9f 96 8d 84 bb b2 a9 a0
bx 47 4e 55 5c 63 6a 71 78 0f 06 1d 14 2b 22 39 30
cx 9a 93 88 81 be b7 ac a5 d2 db c0 c9 f6 ff e4 ed
dx a0 03 18 11 2e 27 3c 35 42 4b 50 59 66 6f 74 7d
ex a1 a8 b3 ba 85 8c 97 9e e9 e0 fb f2 cd c4 df d6
fx 31 38 23 2a 15 1c 07 0e 79 70 6b 62 5d 54 4f 46

Table B.5: AES m9 table
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 0b 16 1d 2c 27 3a 31 58 53 4e 45 74 7f 62 69
1x b0 bb a6 ad 9c 97 8a 81 e8 e3 fe f5 c4 cf d2 d9
2x 7b 70 6d 66 57 5c 41 4a 23 28 35 3e 0f 04 19 12
3x cb c0 dd d6 e7 ec f1 fa 93 98 85 8e bf b4 a9 a2
4x f6 fd e0 eb da d1 cc c7 ae a5 b8 b3 82 89 94 9f
5x 46 4d 50 5b 6a 61 7c 77 1e 15 08 03 32 39 24 2f
6x 8d 86 9b 90 a1 aa b7 bc d5 de c3 c8 f9 f2 ef e4
7x 3d 36 2b 20 11 1a 07 0c 65 6e 73 78 49 42 5f 54
8x f7 fc e1 ea db d0 cd c6 af a4 b9 b2 83 88 95 9e
9x 47 4c 51 5a 6b 60 7d 76 1f 14 09 02 33 38 25 2e
ax 8c 87 9a 91 a0 ab b6 bd d4 df c2 c9 f8 f3 ee e5
bx 3c 37 2a 21 10 1b 06 0d 64 6f 72 79 48 43 5e 55
cx 01 0a 17 1c 2d 26 3b 30 59 52 4f 44 75 7e 63 68
dx b1 ba a7 ac 9d 96 8b 80 e9 e2 ff f4 c5 ce d3 d8
ex 7a 71 6c 67 56 5d 40 4b 22 29 34 3f 0e 05 18 13
fx ca c1 dc d7 e6 ed f0 fb 92 99 84 8f be b5 a8 a3

Table B.6: AES mB table

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 0d 1a 17 34 39 2e 23 68 65 72 7f 5c 51 46 4b
1x d0 dd ca c7 e4 e9 fe f3 b8 b5 a2 af 8c 81 96 9b
2x bb b6 a1 ac 8f 82 95 98 d3 de c9 c4 e7 ea fd f0
3x 6b 66 71 7c 5f 52 45 48 03 0e 19 14 37 3a 2d 20
4x 6d 60 77 7a 59 54 43 4e 05 08 1f 12 31 3c 2b 26
5x bd b0 a7 aa 89 84 93 9e d5 d8 cf c2 e1 ec fb f6
6x d6 db cc c1 e2 ef f8 f5 be b3 a4 a9 8a 87 90 9d
7x 06 0b 1c 11 32 3f 28 25 6e 63 74 79 5a 57 40 4d
8x da d7 c0 cd ee e3 f4 f9 b2 bf a8 a5 86 8b 9c 91
9x 0a 07 10 1d 3e 33 24 29 62 6f 78 75 56 5b 4c 41
ax 61 6c 7b 76 55 58 4f 42 09 04 13 1e 3d 30 27 2a
bx b1 bc ab a6 85 88 9f 92 d9 d4 c3 ce ed e0 f7 fa
cx b7 ba ad a0 83 8e 99 94 df d2 c5 c8 eb e6 f1 fc
dx 67 6a 7d 70 53 5e 49 44 0f 02 15 18 3b 36 21 2c
ex 0c 01 16 1b 38 35 22 2f 64 69 7e 73 50 5d 4a 47
fx dc d1 c6 cb e8 e5 f2 ff b4 b9 ae a3 80 8d 9a 97

Table B.7: AES mD table
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf
0x 00 0e 1c 12 38 36 24 2a 70 7e 6c 62 48 46 54 5a
1x e0 ee fc f2 d8 d6 c4 ca 90 9e 8c 82 a8 a6 b4 ba
2x db d5 c7 c9 e3 ed ff f1 ab a5 b7 b9 93 9d 8f 81
3x 3b 35 27 29 03 0d 1f 11 4b 45 57 59 73 7d 6f 61
4x ad a3 b1 bf 95 9b 89 87 dd d3 c1 cf e5 eb f9 f7
5x 4d 43 51 5f 75 7b 69 67 3d 33 21 2f 05 0b 19 17
6x 76 78 6a 64 4e 40 52 5c 06 08 1a 14 3e 30 22 2c
7x 96 98 8a 84 ae a0 b2 bc e6 e8 fa f4 de d0 c2 cc
8x 41 4f 5d 53 79 77 65 6b 31 3f 2d 23 09 07 15 1b
9x a1 af bd b3 99 97 85 8b d1 df cd c3 e9 e7 f5 fb
ax 9a 94 86 88 a2 ac be b0 ea e4 f6 f8 d2 dc ce c0
bx 7a 74 66 68 42 4c 5e 50 0a 04 16 18 32 3c 2e 20
cx ec e2 f0 fe d4 da c8 c6 9c 92 80 8e a4 aa b8 b6
dx 0c 02 10 1e 34 3a 28 26 7c 72 60 6e 44 4a 58 56
ex 37 39 2b 25 0f 01 13 1d 47 49 5b 55 7f 71 63 6d
fx d7 d9 cb c5 ef e1 f3 fd a7 a9 bb b5 9f 91 83 8d

Table B.8: AES mE table
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Appendix C

Modular multiplication in eLoBa

� Multiplications are processed Byte by Byte.� The operands, stored in a Byte array, are a = (a15, a14, · · · , a0)8 and

b = (b15, b14, · · · , b0)8, while the product is stored in r = (r15, r14, · · · , r0)8.� The product of two Bytes, for example a12 and b07, results in Bytes 12c07H||12c07L,

where ’||’ denotes the concatenation of two Bytes.

C.1 1 Byte by 16 Bytes modular multiplication

Figure C.1: 1 Byte by 16 Bytes modular multiplication
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C.2 16 Bytes by 16 Bytes modular multiplication

Figure C.2: 16 Bytes by 16 Bytes modular multiplication
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