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Taking advantage of the recent Micro-Electro-Mechanical Systems (MEMS), the global cost of
the Unmanned Aerial Vehicles (UAVs) has been reduced. However, this reduction in size, power
and price of the sensors comes at the expense of an increase in accuracy degradation making it
more difficult to estimate the attitude of highly dynamic UAVs. Developing an efficient Attitude
and Heading Reference System (AHRS) is then imperative where the integration of the Global
Positioning System (GPS) and Inertial Navigation System (INS) can provide a more reliable and
accurate AHRS.

In this article, the development of GPS/MEMS-INS systems specifically designed for attitude
determination of fixed-wing UAVs is attempted and their performance evaluated. Two Extended
Kalman Filters (EKF) are developed where the measurements equations are analytically solved in
order to avoid the derivation of the Jacobian matrices. The algorithms make use of GPS-derived
accelerations and airspeed sensors distinctly. Simulation results show that the attitude of the
UAV can be accurately estimated, with maximum error standard deviations rounding one degree.
One of the EKFs algorithms was also tested with real flight data and results show a consistent
roll, pitch and yaw angles estimation. Comparisons were made with a commercial device (MTi-G
Xsens) and the innovation sequences of the EKF algorithm support its reliability.

I Introduction

The Global Positioning System (GPS) and Inertial
Navigation System (INS) data fusion is not a new

subject and much research has already been carried.1,2

The INS can provide continuous and reliable naviga-
tion determination. However, the main drawback of
this system is that its error increases over time. On
the other hand, the GPS can be used to correct these
errors, as an aiding system, because it provides long-
term stability with high accuracy.3 Thus, this fusion
between the GPS and INS strive to achieve the follow-
ing:4

• Acceptable accuracy level with the possibility to
keep decent accuracy over time.

• Continuous and reliable navigation determination
(e.g., position, velocity and attitude).

The potential uses of Unmanned Aerial Vehicles
(UAVs) in the civil industry are extensive.5 However,
in order to become successful, the global cost of the
UAVs has to be affordable to the civilian market. This
has led to large strides in sensor cost reduction where
the advent of the low-cost Micro-Electro-Mechanical
Systems (MEMS) accelerometers and gyroscopes took
place in the last years.3,6

When the final product of the GPS/INS integration
algorithm is the attitude solution it is referred to as
Attitude and Heading Reference Systems (AHRS).7

An AHRS can be seen as an integrated sensor sys-
tem providing roll, pitch and heading angles with
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the use accelerometers, rate gyros, and magnetome-
ters. With the integration of the GPS as an aiding
system, the final outcome can also be called an inte-
grated AHRS/GPS system. Restricted by the weight,
size and power, the small UAVs can not carry tradi-
tional attitude measurement systems. Consequently,
several AHRS structures with GPS/MEMS-INS inte-
gration have been investigated, especially making use
of a Kalman filter (KF).1,8, 9

An inexpensive gyro-free attitude determination
system that makes use of accelerometers, magnetome-
ters and GPS as primary sensors, has been studied in
Ref. 10. Additionally, an algorithm that takes advan-
tage of the relatively accurate GPS L1 carrier phase
measurements to derive the acceleration of the user
was developed in Ref. 11. Moreover, GPS-based at-
titude determination obtained by differencing signals
from multiple antennas has also been a research topic,
investigated by many researchers, such as in Refs. 12
and 13. An approach that did not make use of inertial
sensors was studied in Ref. 14. Instead, a kinematic
model of an aircraft along with the GPS position and
velocity measurements derived from a single GPS an-
tenna was used to generate a so called pseudo-attitude.
More recently, vector matching algorithms that makes
use of the Earth’s magnetic and gravity field vectors
as observations, and GPS as an aiding system, have
been derived and successfully implemented in Ref. 15.
The somewhat disregarded utilization of GPS-

derived accelerations in this integration systems is an
open research field with plenty of benefits to take ad-
vantage.16,11 Additionally, upon the Kalman Filter
implementation, the derivation of the Jacobian ma-
trices for both process and measurement equations
is nontrivial in most applications, and quite often
leads to significant implementation difficulties. Two
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approaches in order to overcome this problem will
be attempted, by analytically solving the measure-
ments equations. Thus, in this article the perfor-
mance of an integrated low-cost GPS/MEMS-INS (or
GPS/MEMS-AHRS) system specifically designed for
highly dynamic fixed-wing UAVs airborne applications
is investigated. One of the derived algorithms will
make use of GPS-derived accelerations and the other
of airspeed measurements.

This paper is organized as follows. First, a brief
description about the GPS/INS integration topic is
provided in the next section. Then, in Section III,
the inertial sensors and the GPS are modeled and
the attitude estimation EKF algorithms developed. In
Section IV the performance of the algorithms are eval-
uated with simulated and real flight data. Finally, the
conclusions are drawn in Section V.

II GPS/INS Integration
This section describes the various types of GPS/INS

integration architectures and the one that was cho-
sen to follow during the attitude estimation algorithms
derivation. A short presentation about the Extended
Kalman Filter is also given.

II.A GPS/INS Integration Architecture

In general, an INS exhibits relatively low noise from
second to second, but tends to drift over time. On
the other hand, GPS errors are relatively noisy from
second to second, but exhibit no long-term drift. In-
tegrating the information from each sensor results in
a GPS/INS navigation system (single algorithm) that
operates like a drift-free INS. There are further bene-
fits added depending on the level at which the infor-
mation is combined.17

Basically, there are four types of GPS/INS integra-
tion architectures: uncoupled, loosely coupled, tightly
coupled and deeply/ultra-tight integrated configura-
tions. The loosely and tightly coupled architectures
are the most commonly implemented methods. In a
loosely coupled integration architecture the two nav-
igation systems operate in cascade, where the GPS
provides position and velocity measurements to correct
the INS estimations. Thus, the GPS receiver needs at
least four satellites to compute a navigational solution
to be used in the second EKF. On the other hand,
the tightly coupled integration makes use of only one
KF and results in a better performance in jamming
environments or urban areas.18

However, due to a more complex integration where
the access to the GPS hardware is required and low
computational power is available on board of small
UAVs, the loosely coupled architecture seems more
than adequate. Furthermore, aircraft like fixed-wing
UAVs usually fly in open air and the GPS loss of track
is not so common as it happens in land vehicles. Flight
test experiences have demonstrated that GPS outages
during flights are rare and of a short duration.13 Due
to these reasons, the loosely coupled architecture was
chosen as GPS/INS integration architecture.

II.B Kalman Filtering

In essence, the Kalman Filter (KF) is a tool that
estimates the variables of a wide range of processes,
propagating the mean and covariance of the states
through time. In this paper specifically, the Kalman
filter will receive the measurements from the GPS,
gyroscopes, accelerometers and airspeed sensor, filter
them and estimate the attitude (roll, pitch and yaw
angles) and the biases of the gyroscopes of the UAV.
The ongoing KF cycle computation can be summa-
rized as:19

The time update projects the current

state estimate ahead in time

↑ ↓
The measurement update adjusts the projected estimate

by an actual measurement at that time

II.B.1 Extended Kalman Filter

The extension of the KF to nonlinear systems and
nonlinear observations leads to the Extended Kalman
Filter (EKF).20 The general nonlinear state-space
model is given by:

ẋ(t) = f [x(t), u(t), t] +G [x(t), t]w(t), x(0) = x0 (1)

zm(t) = h [x(t), u(t), t]

z(tk) = zm(tk) + v(tk), k = 1, 2, . . . (2)

where f [·] is the system (nonlinear) dynamics, h[·] is
the nonlinear observer equations that relates the states
to the measurements, and G[·] the system noise input
matrix. The states, measurements and input vectors
are given respectively by x(t), z(t) and u(t). For the
implementation of the EKF it is assumed that f [·] and
h[·] are continuous and continuously differentiable with
respect to all elements of x(t) and u(t). Additionally,
the system and measurements noise vectors are respec-
tively given by w(t) and v(tk). They have the following
noise characteristics:

E{w(t)} = 0, E{w(t)wT (τ)} = Q(t)δ(t− τ) (3a)

E{v(ti)} = 0, E{v(ti)vT (tj)} = R(ti)δij (3b)

where Q and R are the process and observation noise
covariance matrices, respectively. The EKF steps are
then the following1:

Time Update (Prediction)
1. One step ahead state prediction: for nonlinear

systems this can be obtained by integrating the non-
linear state of Eq. (1):

x̂(k + 1|k) = x̂(k|k) +
∫ tk+1

tk

f(x(t|tk), u∗(t), t) dt (4)

2. One step ahead error covariance matrix predic-
tion: the error covariance matrix P is calculated the
same way it is for the Kalman filter with the difference
of firstly computing the following linearization:

Fx(tk) =
∂f(x(t), u(t), t)

∂x(t)

∣

∣

∣

∣

x(t)=x∗(tk),u(t)=u
∗(tk)

(5)

1These steps are adapted to the implementation in this paper
and several variations exist.
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where x∗(tk) = x̂(k|k). Then, after discretization, to
get the discrete-time linearized system dynamics Φ(k)
and the discrete-time system noise covariance matrix
Qd(k), the error covariance matrix prediction can be
obtained as follows:

P (k + 1|k) = Φ(k)P (k|k)ΦT (k) +Qd(k) (6)

Measurement Update (Correction)
3. Kalman gain computation: before its calculation,

linearization of the observer is necessary:

Hx(k + 1) =
∂h(x(t), u(t), t)

∂x

∣

∣

∣

∣

x(t)=x∗(tk+1),u(t)=u
∗(tk+1)

(7)
where x∗(tk+1) = x̂(k + 1|k). Then,

K(k + 1) = P (k + 1|k)Hx(k + 1)T

[Hx(k + 1)P (k + 1|k)Hx(k + 1)T +R(k)]−1 (8)

4. Update state estimate with new measurements :

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[z(k + 1)

− h(x̂(k + 1|k), u∗(k + 1))] (9)

5. Update error covariance matrix :

P (k + 1|k + 1) = [I −K(k + 1)Hx(k + 1)]P (k + 1|k)
[I −K(k+1)Hx(k+1)]T +K(k+1)R(k+1)KT (k+1)

(10)

The EKF is initialized with x̂(0|0) = x̂0 and P (0|0) =
P0.

II.B.2 Kalman Filter Reliability

In the real world the real states are not available
and it is more difficult to verify if the KF’s estimated
states are reliable. It is possible to verify the Kalman
filter performance by using the knowledge about the
statistics of the innovations. The innovation ν is the
difference between the actual observation and the pre-
dicted observation:

ν(k + 1) = z(k + 1)−H(k + 1)x̂(k + 1|k) (11)

It represents the amount of new information intro-
duced in the system by the current measurement. If
the innovation sequence has a zero mean white noise
characteristic with covariance given by Eq. (12), then
the Kalman filter is working properly.21

σν(k+1) = H(k+1)P (k+1|k)HT (k+1)+R(k+1) (12)

III Modeling
In this section, the measurements provided by the

Inertial Measuring Units (IMUs), GPS receiver and
airspeed sensor are going to be modeled. After that,
the attitude estimation EKF algorithms are derived in
two steps: first the development of the process model
and then the derivation of two measurements models
(one with GPS-derived accelerations and other with
airspeed sensor measurements).

III.A Inertial Measuring Units Modeling

The IMUs are affected by various errors that influ-
ence their performance. In practice, the accelerome-
ters and gyroscopes are affected by biases and time-
varying noise such as:22 measurement noise, measure-
ment bias, misalignment and scale factor errors. These
characteristics have to be modeled in order to design
a suitable estimation/integration algorithm. However,
manufacturer supplied specification sheets for low-cost
MEMS-IMUs rarely provide enough details to com-
pletely construct the error models.23 Thus, all the
associated errors of the IMUs can be simplified to:

Axm = Ax + bAx + εAx

Aym = Ay + bAy + εAy

Azm = Az + bAz + εAz

(13)

pm = p+ bp + εp

qm = q + bq + εq

rm = r + br + εr

(14)

where the accelerometers vector A and gyroscopes
vector ω were split into their three orthogonal compo-

nents, A = [Ax, Ay, Az]
T
and ω = [p, q, r]

T
, respec-

tively. The subscript m refers to a measured quantity.
The bias terms

[

bAx
, bAy

, bAz

]

of the accelerometers
and [bp, bq, br] of the gyroscopes include all the con-
stant null-shifts biases and bias-drifts. Additionally,
the noise terms of the accelerometers and gyroscopes,
respectively,

[

εAx
, εAy

, εAz

]

and [εp, εq, εr], are a
function of the measurement noise.
Generally, the noise terms ε are modeled as white

Gaussian noise and the bias of the accelerometers can
be disregarded due to its relative small magnitude and
influence compared to the bias of the gyroscopes. Fi-
nally, the bias of the gyroscopes are often modeled as
a sum of a null-shift bias b0 = [b0p , b0q b0r ]

T , and a

bias-drift bR = [bRp
, bRq

, bRr
]T .7 Thus, from Eq. (14)

we obtain:
pm = p+ b0p + bRp + εp

qm = q + b0q + bRq + εq

rm = r + b0r + bRr + εr

(15)

The null-shift bias is modeled as a random constant
that varies from turn-on to turn-on:

ḃ0 = 0 (16)

The bias-drift, representing the in-run bias variation,
is commonly modeled as a first-order Gauss-Markov
process given by:

ḃR = − 1

τc
bR + εbR (17)

where τc is the correlation time of the process and εbR
is the associated white Gaussian noise. However, for
low-cost MEMS-IMUs these parameters are often not
provided by the manufacturer2. Thus, the first-order
Gauss-Markov process is used to overbound the output
errors and not necessarily model them exactly. One
approach to overcome this lack of sensor information

2For instance, the correlation time τc is not provided by the
device used to obtain the UAV’s real data.
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is to use a random walk process instead of a Gauss-
Markov process:24

ḃR = εbR (18)

where the noise term εbR incorporates the full noise
of the bias-drift. The variance of this white Gaussian
noise parameter is then adjusted manually till reason-
able results are obtained.

III.B GPS Modeling

A GPS receiver reports new information as a se-
quence, typically at 1 to 10Hz rate. However, due to
limitations imposed by the internal signal processing
of the GPS, higher reporting rates do not necessar-
ily mean a better performance.25 In order to give
direction information, the GPS receiver has to move,
otherwise there is no way to determine the orientation
of the individual GPS antenna. Since the objective
is to implement in fixed-wing UAVs, this problem is
avoided.
The GPS receiver modeling is now addressed. The

focus is on the GPS velocity and derived accelerations.

III.B.1 GPS Velocity Modeling

The GPS velocity of a vehicle can be obtained mea-
suring the Doppler shift between the known satellite
carrier frequency and the frequency determined at the
receiver.26 This Doppler shift is directly proportional
to the velocity of the receiver, along the direction to
the satellite, regardless of the distance to this satel-
lite.27 The accuracy of this type of GPS velocity is
usually much higher when compared to the GPS posi-
tion (and posteriorly differentiation), reaching values
better than 0.01m/s.28 Additionally, the GPS provides
a drift-free reference vector for the course orientation
of the airplane. It is assumed that the GPS receiver
already provides the velocities in the Navigational ref-
erence frame FN . The GPS velocities are defined as:

V GPS =





uGPS
vGPS
wGPS



 (19)

For implementation purposes the GPS velocity can
be considered an unbiased and drift-free reference vec-
tor affected by white Gaussian noise ε. The measured
velocities provided by the GPS receiver are then given
as:

uGPSm = uGPS + εuGPS

vGPSm = vGPS + εvGPS

wGPSm = wGPS + εwGPS

(20)

III.B.2 GPS Acceleration Modeling

Acceleration determination is not yet a typical ap-
plication of the GPS system. Nevertheless, proposed
methods for GPS acceleration determination fall in
two categories:16 one is to derive acceleration directly
from GPS determined positions (double differentia-
tion) and the other is based on the Doppler shift
method differentiation. The latter has several advan-
tages: it does not rely on the precision of the positions
obtained by the GPS and the accuracy will not severely
degrade with an increase in the sampling rate (e.g.,
10Hz or more).

GPS-derived accelerations will be utilized as an ab-
solute attitude reference by using them in conjunction
with a 3-axis accelerometer. This technique was al-
ready implemented and results show that a GPS re-
ceiver can be used to determine the acceleration of a
moving vehicle with reasonable accuracy.16,29 It has
been demonstrated that the GPS is able to provide a
measurement of vehicle speed that is sufficiently re-
liable to determine acceleration with an uncertainty
under 0.10m/s2.30 Advantages in using GPS-derived
accelerations arise with these promising results such
as: less susceptibilities to the gravity vector, immunity
to vibrational disturbances and temperature fluctua-
tions, and unbiased solutions.

When performing a differentiation, attention should
be paid to implement some kind of filter to avoid ex-
cessive noise on the output due to the high-frequency
components. The GPS-derived accelerations aGPS will
be modeled using finite differences as presented in
Eq. (21). Other differentiation methods could be im-
plemented but we would start losing track of the highly
dynamic characteristics of the UAV.

aGPSx =
uGPSm(k)− uGPSm(k − 1)

∆t

aGPSy =
vGPSm(k)− vGPSm(k − 1)

∆t

aGPSz =
wGPSm(k)− wGPSm(k − 1)

∆t

(21)

III.C Process Model

Both attitude estimation algorithms make use of the
same Process model presented as follows. The nonlin-
ear Equations of Motion (EOM) used to describe the
UAV are kinematic in nature and can be found, for
instance, in Ref. 31. Since the objective is to esti-
mate the UAV’s attitude, the roll φ, pitch θ and yaw
ψ angles are chosen as state variables. Additionally,
due to the previous discussion about the bias(-drift) of

the MEMS-gyroscopes, their bias b = [bp, bq, br]
T
are

chosen as state variables as well. Thus, the final state
vector is:

x = [φ, θ, ψ, bp, bq, br]
T (22)

The rate of change of the states is given in Eq. (23).
Note that the time dependency term t and the sub-
script R of Eq. (17) were dropped without loss of
generality.

ẋ =































φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ
cos θ

+ r cosφ
cos θ

ḃp = − 1
τ
bp + εbp

ḃq = − 1
τ
bq + εbq

ḃr = − 1
τ
br + εbr

(23)

It is presumed that the angular rates ω = [p, q, r]
T

are available, and they form the input vector u of the
EKF. With Eq. (14) we arrive at the process model of
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the EKF given by Eq. (1) with:

f [x(t), u(t), t] =
















pm − bp + (qm − bq) sinφ tan θ + (rm − br) cosφ tan θ
(qm − bq) cosφ− (rm − br) sinφ

(qm − bq)
sinφ
cos θ

+ (rm − br)
cosφ
cos θ

− 1
τ
bp

− 1
τ
bq

− 1
τ
br

















(24)

G [x(t), t] =
















−1 − sinφ tan θ − cosφ tan θ 0 0 0
0 − cosφ sinφ 0 0 0

0 − sinφ
cos θ

− cosφ
cos θ

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















(25)

and,
w =

[

εp, εq, εr, εbp , εbq , εbr
]T

(26)

III.D Measurement Model 1

Estimation of the roll φ and pitch θ angles of the
aircraft can be made by augmenting the accelerome-
ter with GPS-derived accelerations. Additionally, the
course of the UAV can be determined by the GPS
(North and East) velocities.
The measurements vector z will be composed by the

three Euler angles, roll φ, pitch θ and yaw ψ. Assum-
ing that the sideslip angle β ≈ 0, the yaw angle is
given by3:

ψ ≈ χ (27)

where χ is the course angle. Thus, with the previous
assumption, the measured yaw angle can be obtained
with the GPS velocity components as follows:

ψm = arctan

(

vGPSm
uGPSm

)

(28)

The measurements of the UAV’s roll φm and pitch
θm angles can be obtained by measuring acceleration
in the Body-fixed reference frame FB and relating it
to the Navigational reference frame FN . Recall that
the output of an accelerometer is a measurement of
the difference between the true vehicle acceleration a
and the gravitational acceleration g:16

f = a− g (29)

where f is the specific force. Under the assumption
that the GPS velocities are obtained in inertial space
and transforming all the components to Body-fixed ref-
erence frame, the measurements of the accelerometers
are then equal to the difference between the GPS-
derived accelerations and the gravity:32





Ax
Ay
Az





B

= RB/N (φ, θ, ψ)





aGPSx

aGPSy

aGPSz





N

−RB/N (φ, θ, ψ)





0
0
g





N

(30)

3A negligible sideslip is often considered in an aircraft with
a fixed rudder and reasonable aerodynamic characteristics.

where the matrix RB/N (φ, θ, ψ) is given by:31

RB/N (φ, θ, ψ) =





cψcθ sψcθ −sθ
cψsθsφ − sψcφ cψcφ + sψsθsφ cθsφ
sψsφ + cψsθcφ sψsθcφ − cψsφ cθcφ





(31)

with c(·), s(·) and t(·) corresponding respectively to
cos(·), sin(·) and tan(·).
Rewriting Eq. (30), a nonlinear measurement model,

with the accelerations from the accelerometers sensors
as measurements, is obtained:




Ax
Ay
Az





B

= RB/N (φ, θ)





aGPSx cosψ + aGPSy sinψ
−aGPSx sinψ + aGPSy cosψ

aGPSz − g





=





cos θ 0 − sin θ
sinφ sin θ cosφ cos θ sinφ
cosφ sin θ − sinφ cosφ cos θ









rx
ry
rz



 (32)

where the vector [rx, ry, rz]
T

was defined by the
above equation and it includes the UAV’s GPS-derived
accelerations and gravity acceleration already rotated
by the yaw angle ψ = ψm, determined in Eq. (28).
Eq. (32) is clearly nonlinear and finding an analytical
solution for φ and θ would allow us to use all the three
Euler angles as measurements in the EKF. Thus, solv-
ing the first equation of Expression (32) for θ, yields:

Ax = rx cos θ − rz sin θ

and after some manipulation, the analytical solution
for the measured pitch angle θm = θ can be found:

θm = arctan

(

−rxrz ±Ax
√
r2x + r2z −A2

x

A2
x − r2z

)

(33)

If the same strategy is taken for the second equa-
tion of Expression (32) the analytical solution for the
measured roll angle φm = φ can also be found:

Ay = rx sin θ sinφ+ ry cosφ+ rz cos θ sinφ

⇔ Ay = rθ sinφ+ ry cosφ (34)

where the following was defined:

rθ = rx sin θ + rz cos θ (35)

with θ = θm, already determined in Eq. (33). Per-
forming similar manipulations as the ones applied to
obtain the θm solution, an analytical solution for the
roll angle φm is given by:

φm = arctan

(

rθry ±Ay
√

r2y + r2θ −A2
y

A2
y − r2θ

)

(36)

Another solution for φm but using the Az accelerom-
eter could be obtained by solving the third equation of
Expression (32). With the found analytical solutions
for the Euler angles, the measurements vector z of the
EKF finally becomes:

z =





φm
θm
ψm



 =















arctan

(

rθry+Ay

√
r2y+r

2
θ
−A2

y

A2
y−r

2
θ

)

arctan

(

−rxrz−Ax

√
r2x+r2z−A

2
x

A2
x−r2z

)

arctan
(

vGPSm

uGPSm

)















(37)
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The measurements vector calculation is performed
every time new GPS data is available. The choice be-
tween the plus or minus signals on Eqs. (33) and (36)
can be decided based on simulation results. The Ob-
servation matrix of the Kalman filter becomes linear
with these analytical solutions:

H(k + 1) = [ I3×3 | 03×3 ] (38)

The z calculation has to be performed in a cascade
way: first the yaw angle ψm is computed, then the
pitch angle θm and finally, φm can be obtained.

III.E Measurement Model 2

A second measurement model is now presented.
Newton’s laws can be used to express the Body-fixed
frame accelerations in terms of gravity, angular rates
and axial accelerations:




Ax
Ay
Az





B

=





u̇
v̇
ẇ





B

+





p
q
r





B

×





u
v
w





B

−





− sin θ
cos θ sinφ
cos θ cosφ



 g (39)

where all the terms are expressed in the Body-fixed
reference frame FB . This model will additionally pre-
sume the availability of airspeed measurements V a
related with the body-velocity by:





u
v
w





B

= Va





cosα cosβ
sinβ

sinα cosβ



 (40)

where α and β are the angle of attack and sideslip
angle, respectively. The Va (True Airspeed) is ob-
tained through an airspeed sensor (modeled as Vam =
Va+εVa

). The following is assumed through the deriva-
tion of this measurement model:

θ ≈ α+ γ and β ≈ 0 (41)

where γ is the flight path angle. This idea was previ-
ously implemented in UAV/MAV (Micro Aerial Vehi-
cle) attitude determination, e.g., in Ref. 33. However,
it is very common to make more assumptions such

as the climb angle γ and the accelerations [u̇, v̇, ẇ]
T

to be zero. Consequently, this substantially reduces
the allowed maneuvers to be performed by the UAV.
If these assumptions are not adopted and we handle
Eq. (39) it is possible to find analytical solutions for
the Euler angles φ and θ. The solution for pitch mea-
sured angle θm = θ can be obtained:

θm = arctan

(

a1a2 ±Ax
√

a21 + a22 −A2
x

A2
x − a21

)

(42)

with

a1 = −Vaθ̇ cos γ + Vaγ̇ cos γ + Vaq cos γ + V̇a sin γ + g

a2 = −Vaγ̇ sin γ + Vaθ̇ sin γ − Vaq sin γ + V̇a cos γ

The solution for the roll measured angle φm = φ can
be derived as well:

φm = arcsin ((−Ay − Var(cθcγ + sθsγ)+

Vap(sθcγ − cθsγ)/(gcθ)) (43)

The measured yaw/course angle ψm can be obtained
with the GPS velocity, as for the previous measure-
ment model, Eq. (28), taking advantage of its rela-
tively high precision. As happened with the Measure-
ment Model 1, the current measurement model also
runs on GPS availability. So, this measurement model
has the Euler angles as measurements as well, where
the vector z is given by:

z =





φm
θm
ψm



 =



















arcsin ((−Ay − Var(cθcγ + sθsγ)+
Vap(sθcγ − cθsγ)/(gcθ))

arctan

(

a1a2−Ax

√
a21+a

2
2−A

2
x

A2
x−a21

)

arctan
(

vGPSm

uGPSm

)



















(44)

This measurement model also works in cascade: the
pitch angle θm is firstly calculated, then the φm can
be calculated. The yaw angle can be calculated as
desired. The Observation matrix of the Kalman filter
is linear and given by Eq. (38) as well.

IV Results
In this section, the estimation results are presented.

The derived algorithms (EKF1 with measurements
model 1 and EKF2 with measurements model 2) were
tested with computer simulated flights and then, the
algorithm that attained best results tested with real
flight data.

IV.A Simulation Flight Results

The fixed-wing UAV model used is based on the
Aeronautical Simulation MATLAB/Simulink library.
This library includes the Aerosonde UAV, a long-
range weather-reconnaissance autonomous airplane,
that was used as simulation model.
In order to properly simulate the developed algo-

rithm, the characteristics of the sensors used in the
simulation have the noise and bias values presented
in Table 1. The Gauss-Markov gyroscopes parame-
ters have the following values:34 σbw = 211 deg/h and
τc = 382 s.

Table 1 Noise and bias introduced in the simula-
tion sensors.

Symbol Value

Accelerometer noise σa 0.02 m/s2

Gyroscope noise σw 0.05 deg/s
Gyroscope turn-on bias b0 1.5 deg/s
Gyroscope bias stability σbw 211 deg/h
GPS velocity noise σVGPS

0.01 m/s
Airspeed noise σVa 0.06 m/s

The outputs of the IMUs and GPS were considered
to provide measurements at rates equal to 100 Hz and
10 Hz, respectively. A particular situation should be
noticed and taken in consideration. After rolling an
angle φ about the X-axis of the aircraft, the angle of
attack will have projections on both the new Y and
Z-axis.35 Thus, a sideslip βroll appears and can be
determined as follows:

βroll = arcsin(sinα sinφ) = arcsin(sin(θ − γ) sinφ) (45)
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where the relation θ ≈ γ + α was used.

IV.A.1 Tuning Parameters

The tuning parameters of the EKF have to be prop-
erly defined in order to perform a good estimation.
The process noise covariance matrices Q (6 × 6 ma-
trix) can be defined as:

Q = diag

([

σ2
w, σ

2
w, σ

2
w,

2σ2
bw

τc
,
2σ2

bw

τc
,
2σ2

bw

τc

])

Due to the analytical solutions obtained for the mea-
surements model, the measurements noise covariance
matrices R (3×3 matrix) do not have a straightforward
formulation as the process noise covariance matricesQ.
Considering a standard deviation of σφ = σθ = σψ =
1 deg for all the Euler angles:

R = diag
([

σ2
φ, σ

2
θ , σ

2
ψ

])

(46)

An investigation to verify if a Gaussian distribution
still fits the measurements error/noise was performed
and it confirmed that the distributions remain rela-
tively Gaussian even under the nonlinear transforma-
tions/calculations of the measurements models. These
results also provided a fair initial starting point to
achieve the final R matrix.
Finally, regarding the characteristics of the bias

of the gyroscopes it might be desirable to increase
the convergence speed of their estimation.2 Recall
Eq. (25), from the KF process modeling, that can also
be written as:

G [x(t), t] =

[

Fx(1:3,4:6) 03×3

03×3 λI3×3

]

(47)

where the parameter λ was introduced and Fx(1:3,4:6)

corresponds to a part of Jacobian of the process equa-
tions. It is possible to change the bias estimator poles
by changing λ. In order to increase the speed of con-
vergence due to the highly dynamic behavior of the
UAVs it was chosen that:

λ = 10 (48)

IV.A.2 Flight Results

One of the flights performed by the UAV has its 3D
trajectory presented in Figure 1. A general flight was
performed where the airplane turns right pitching up
for a while and then turns left and starts descending
varying its airspeed. The sideslip reaches moderate
values in order to test the limits of the algorithm
(Figure 2).

The estimated attitude angles of the UAV and the
differences between the truth and estimation for both
algorithms (EKF1 and EKF2) are presented respec-
tively in Figures 3(a) and 3(b). As it is possible to
see, the estimation error is relatively small during all
simulation time: below 2 degrees for the all the Eu-
ler angles. Additionally, it is possible to notice the
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Fig. 2 Sideslip of simulated flight.

initial convergence for the three Euler angles. The nu-
merical results of this flight are presented in Tables 2
and 3 where we can confirm these small estimation
errors. The estimation performance for the yaw an-
gle ψ is very similar for both algorithms due to same
measurement update method used. Furthermore, the
estimation errors are correlated with the sideslip an-
gle (compare, for instance, the yaw angle estimation
error in Figure 3(b) and the sideslip in Figure 2: when
the sideslip angle increases, the yaw estimation error
is higher). There is also a certain degree of correla-
tion between the roll angle error for the EKF2 and the
sideslip angle.

Table 2 Numerical results of EKF1

State Error Mean Std. Deviation
φ -0.039 deg 0.135 deg
θ -0.024 deg 0.136 deg
ψ -0.150 deg 0.759 deg
bp 0.027 deg/s 0.124 deg/s
bq -0.001 deg/s 0.094 deg/s
br 0.022 deg/s 0.165 deg/s

Table 3 Numerical results of EKF2

State Error Mean Std. Deviation
φ -0.080 deg 0.704 deg
θ 0.005 deg 0.355 deg
ψ -0.160 deg 0.751 deg
bp -0.046 deg/s 0.349 deg/s
bq -0.030 deg/s 0.250 deg/s
br 0.030 deg/s 0.170 deg/s

IV.B Real Flight Results

The EKF1 algorithm, with GPS-derived accelera-
tions, was tested with real data. The application to
real flight data is the ultimate test to an algorithm.
A MTi-G Xsens device was used to collect the real
data. It can provide us the raw data necessary to ap-
ply the derived attitude estimation algorithm. This
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Fig. 3 Estimated states for the simulation flight for EKF1 and EKF2.

device also estimates various position, velocity and at-
titude parameters, which includes the roll, pitch and
yaw angles. The flight was performed on 2010-10-13
at Delft, The Netherlands, and a post-processing of
the data was conducted. The utilized UAV is highly
dynamic, performing wide maneuvers in few seconds.
Figure 4 shows the Easystar UAV, used to obtain the
flight data.

Fig. 4 Easystar UAV with 1.4m wingspan and
0.68kg of (empty) weight.

The lack of information about the inertial sensors
of the MTi-G Xsens device makes the modeling of
the sensors more difficult. However, this issue can be
overcome by assuming the bias of the gyroscopes as
presented in Eq. (18).
When multiple sensors are used, each producing

its own data, synchronization among all the systems
is required. The 1 Pulse-Per-Second (PPS) GPS
signal provided by the MTi-G device was utilized to
synchronize both navigation systems where all the
data were aligned to GPS-time. Additionally, with
the default configuration, the MTi-G outputs the
data of the inertial sensors at a frequency of 100Hz
and GPS measurements at 4Hz.

The real flight consists in highly dynamic maneu-
vers performed by the small UAV, constituted mainly
by 360 degrees turns at constant altitude (see Fig-

ures 5 and 6). The GPS velocity of the aircraft varied
approximately between 12 and 18m/s. The estima-
tion algorithm runs while the aircraft is in the air
(t ∈ [44.12, 171.22]s of the log-file) and no GPS out-
ages were found.
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Fig. 5 North-East position provided by GPS.
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Fig. 6 Altitude provided by GPS and Barometer.

The estimated attitude angles, roll φ, pitch θ and
yaw ψ can be seen in Figure 7. Since no informa-
tion about the real attitude angles is available, the
estimated Euler angles provided by the MTi-G Xsens
device is also included for a matter of comparison.

We can see a consistent attitude tracking for all the
angles. The roll angle is highly dynamic where we
can notice wide maneuvers of almost 90 degrees (from
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Fig. 7 Results of EKF1 for real flight: Estimation
of φ, θ and ψ.

φ ≈ 50deg to φ ≈ −40deg) in just 1.6 seconds (check
t ≈ 88s or t ≈ 166s). Nevertheless, the algorithm
seems to accomplish this fast attitude estimation with-
out major difficulties. The pitch angle is consistent
with an almost horizontal flight with two fast pitch
down at t = 87s and t = 144s. The yaw angle estima-
tion shows that the UAV performed several complete
turns. We can also notice the fast initial convergence
of the EKF.
In Figure 7, we can additionally observe angles es-

timated by the MTi-G Xsens device. Comparison
between the two estimations let us conclude that they
present small deviations between each other. Never-
theless, the yaw angle seems to exhibit some kind of
offset. Since the MTi-G unit uses more instruments
to estimate the attitude (such as magnetometers) it
might be related to the sideslip angle. Small and light
UAVs like this one can fly during long periods with
high sideslip angles. However, since no true states are
available we can not know which estimation algorithm
is closer to the true yaw angle. In Table 4 the differ-
ences between the two estimations are presented. It
is noticeable the similar performances of the roll and
pitch estimations.
The best way to evaluate the performance of the

EKF when no true states are available is by assess-
ing the innovation sequences. Figure 8 shows the
innovation sequences and their numerical results are
presented in Table 5. They show an average close
to zero and standard deviations around 4 degrees.
Additionally, it was possible to confirm that the inno-
vation sequences have a similar behavior to the ones
obtained in the simulations: the roll and pitch esti-
mations present a more white sequence and the yaw a
more correlated one.
As a matter of curiosity, a particular aspect of the
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Fig. 8 Innovation sequences. The red line repre-
sents the standard deviation of the innovation.

Table 4 Numerical results: comparison of
EKF1 algorithm and MTi-G device.

State Error Mean [deg] Std. Deviation [deg]
φ −0.118 2.083
θ 0.547 2.211
ψ −5.788 8.273

Table 5 Innovation sequences of EKF1.

Innovation Mean [deg] Std. Deviation [deg]
φ 0.046 3.636
θ 0.033 4.139
ψ 0.109 3.928

EKF algorithm is its estimation speed4. The time re-
quired to estimate the three attitude angles and the
bias of the gyroscopes for the complete flight (tflight =
127.10s) was only 0.569 seconds. The time average of
each iteration was t = 0.122ms without GPS update
and t = 0.213ms with measurements update.

V Conclusions
The work developed in this paper concerned the

derivation of GPS/MEMS-INS (GPS/MEMS-AHRS)
integration algorithms that would provide a fast, effi-
cient and reliable attitude estimation for small highly
dynamic UAVs. Two algorithms were developed and
they make use of GPS-derived accelerations and air-
speed sensors. The measurements equations of the
correction steps of the EKF were analytically solved.
Concerning the simulation results, the Half EKFs

with nonlinear process models and linear measure-
ments models resulted in relatively small estimation
errors but, overall, the EKF1 demonstrated a better

4The computer specifications where the EKF1 algorithm ran
are: Intel CoreTM 2 Duo CPU T9550 2.66GHz with 4Gb RAM-
Memory and Windows Vista Operating System.
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performance than the EKF2. The best attitude esti-
mation was attained for the roll and pitch angles of the
EKF1 with 0.13 degrees of standard deviation of the
error between the true and estimated angles. The yaw
angle accuracy was confirmed to degrade upon flight
situations where sideslip was present. However, even
in more demanding situations that went beyond the
algorithm assumptions, the estimation accuracy was
not heavily decreased.
The EKF1 algorithm was tested with real UAV

flight data in a post-processing method. The algo-
rithm demonstrated a consistent attitude tracking for
all the Euler angles. Comparison of EKF1 attitude es-
timation with the one provided by the MTi-G Xsens
device showed that they are mainly in accordance with
innovation sequences of the algorithm verifying its re-
liability.
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