
Specifying the Behaviour of
Building Automation Systems

João Aguiam

IST - Instituto Superior Técnico

Abstract. Building automation systems have known an upsurge of in-
teresting due to their energy savings potential and for creating smart
environments. However the development of this type of systems consists
essentially of embedded systems in hardware controllers written in C
which are difficult to program. In situations where the actuation must
vary continually based on the sensor inputs, development and testing be-
comes even harder. This work proposes a framework based on a declara-
tive language to specify the behaviour of a building automation system.
This language allows the specification of the behaviour without worrying
about hardware details. This language and framework proposed herein
use the notions of fuzzy logic and temporal logic. The specifications de-
veloped using the proposed language describe fuzzy control systems that
interface with actuators through a different defuzzification process, where
we suggest an intermediate approach less demanding than the Mandani
fuzzy system but more flexible than the Tsukamoto and Sugeno mod-
els. We validate our proposal by developing a simulator of the language
semantics and animating a case study specification of the control sys-
tem of an automated office room. For further validation we used sensor
reading traces and observed the behaviour of our animated specification,
analysing graphic representations of the actuators along the simulation.

1 Introduction

Building Automation has its origins in the 1980s however in the last decade
there has been an upsurge of interest in this thematic. This interesting is es-
sentially related with the potential energy savings that a building can have if
it is controlled automatically. However, in a residential environment there are
also other research developments focused on converting the home space into a
more comfortable place for its inhabitants. In both residential and non residen-
tial buildings the area of Artificial Intelligence and Smart Environments have
spurred the interest by the research community and of individual users.

To address this situation most automation hardware manufacturers have cre-
ated suites of hardware modules that came with pre-packaged embedded appli-
cations that have to be configured. In either case, to develop an automation
system, the user must have considerable expertise regarding hardware details.
Besides this issue, the proprietary systems and the intercommunication between
different manufacturers devices is also a problem in building automation systems.

In the same way, the majority of building automation systems are based on C
programs embedded in hardware controllers. With this approach, modifications
and adjustments to the system are a difficult and sometimes impossible task. To
modify the logic of the programs it is necessary to reprogram these controllers
which must be done by an expert, making it very difficult or impossible for the
end-user to adapt the system to suit its needs. The development and testing of
these system are also time consuming and error prone. Ideally, there should be
a clear separation between the hardware controller and the program logic. The
specification of the behaviour of the system should be done by the end-user in
a friendly way. To this aim, we propose a declarative language for specifying
the behaviour of Building Automation Systems. By using a declarative language
with a formally declarative language, the focus of this proposal focuses on what
the user wants the system to do instead of how to do it. This has the advantage
of approximating the specification task to the domain of the end-user of the
system due to the simplicity of this specification, allowing it to be specified by
non-expert users. Declarative languages also enable the automatic validation of
behaviour specification.

The remaining content in this article is organized as follows. Section 2 presents
the related works and concepts with this work like the concepts of building au-
tomation, fuzzy logic, temporal logic and the concept of context-aware systems
and its fuzzy context aware applications. In the section 3 we describe the pro-
posed declarative language while in the section 4 the framework which use this
language is specified. To validate this work we defined a simple case study and
discuss its results, which is described in the validation section 5. Finally we fin-
ish this article with the listing of possible future works in section 7 and the
conclusions we have achieved in the section 6.

2 Concepts and Related Work

This section addresses the main concepts related with this work as well as list
some of the most relevant works in this domain.

2.1 Building Automation

The concept of Building Automation (BA) is a very wide topic that touches the
subjects of control, automation, energy management, learning and intelligence
applied in buildings. Sometimes BA is also equated with Smart Buildings and
Smart Homes, as all these concepts refer to automating and controlling buildings.
However, these two concepts are rather general concepts while BA refers to
concrete technological solutions. We can divide BA into two different domains,
the domain of homes and the domain of facilities. This distinction is important
because in homes the automation system is more focused in the comfort of the
inhabitant, while in the buildings the aim of its automation system lies on the
efficiency and reduction of costs of the building operations [9]. Despite having
different goals, BA systems aims at controlling electric devices such as luminaries,

HVAC systems (heating, ventilation and air-condition), window blinds, among
other in order to reproduce the desired behaviour in the building. All types of
Building Automation Systems (BAS) have in common three components: the
sensors, controllers and the actuators. Both sensors and actuators are devices
installed in the building. The formers give information to the controller in order
for it to reason about the building state and perform actions in the actuators,
which will define the behaviour of the building.

In this work we will focus our attention in the controller component as it
is the core of the specification of the system’s behaviour. The controller of a
BA system specifies the logic behind the system. In this work we define the
components of this system using the concepts of fuzzy logic and temporal logic,
which will be introduced on what follows.

2.2 Fuzzy Logic

The notion of fuzziness was introduced by Zadeh with the aim of creating fuzzy
sets [19]. These sets tries to simulate the propositions used by humans which are
not completely true neither completely false, they have a degree of truth. Zadeh
defined a fuzzy set A as a set of pairs formally defined as A = {(x, µA(x))|x ∈ X}.
where µA(x) is the membership function of the fuzzy set which return the degree
of truth of an object x. A membership function can be any function from X →
[0, 1] that characterizes the fuzzy set. The domain X is also referred as universe
of discourse or in fuzzy logic terminology as linguistic variable. A linguistic
variable can have associated with it one or more fuzzy sets that describe a certain
interval of the universe. These fuzzy sets are called a linguistic value [20,21]. The
operations of classical logic theory can be generalized to fuzzy logic by defining
the common logic operations in turns of membership functions.

A ∧B = min(µA(x), µB(x)

A ∨B = max(µA(x), µB(x)

¬A = 1− µA(x)

Besides the notion of fuzzy sets, in fuzzy logic the notion of fuzzy rules were
also introduced. These rules usually assumes the form

if x is A then y is B,

where A and B are linguistic values defined by a fuzzy set in X and Y re-
spectively. These rules are often written as A → B, to describe a binary fuzzy
relation R over the product space X ×Y between the linguistic values A and B,
which are represented by the variables x and y. These two linguist values are in
different spaces being necessary to transform the fuzzy sets into a fuzzy set over
the product space X × Y , which is done through the cylindrical extension.

In the fuzzy reasoning process, to calculate the generated fuzzy set of the
system one firstly has to calculate the degrees of compatibility of each fuzzy set
in the antecedent part of each rule, then the firing strength of each one which

will be propagated to the consequent part generating a fuzzy set for that rule
and finally aggregate all the resultant fuzzy sets into a single one. The resultant
fuzzy set of a rule (C′), which is a relation A × B → C, is achieved through
the equation 2.1, where w1 and w2 are the degrees of compatibility of A and B
respectively, while w1 ∧w2 is the firing strength of the rule.

µC′(z) = ∨x,y[µA′(x) ∧ µB′(y)] ∧ [µA(x) ∧ µB(y) ∧ µC(z)]

= ∨x,y[µA′(x) ∧ µB′(y) ∧ [µA(x) ∧ µB(y)] ∧ µC(z)]

= {∨x[µA′(x) ∧ µA(x)]︸ ︷︷ ︸
w1

} ∧ {∨y[µB′(y) ∧ µB(y)]︸ ︷︷ ︸
w2

} ∧ µC(z)

= (w1 ∧ w2)︸ ︷︷ ︸
firing strength

∧µC(z)

(2.1)

Fuzzy reasoning process is mostly applied in controller systems which are
denominated as fuzzy control systems. These systems have the particularity of
returning a single crisp value in order to control a certain object. Due to this
requirement, an additional component to transform the resultant fuzzy set into
a single crisp value is needed. This process is called defuzzification and there
are many different techniques to do so. A fuzzy control system is composed of
four different components: (1) a fuzzification component which transforms the
crisp input into a fuzzy one, recurring to the membership functions defined in
the system; (2) a rule-base which contains the fuzzy rules of the system; (3) an
inference mechanism that performs the fuzzy reasoning and (4) a defuzzification
component to convert the fuzzy output into a single crisp value.

There are three main models to build a fuzzy control system in literature
with differences in the defuzzification phase. The Mamdani fuzzy inference sys-
tem [10] has the particularity of receiving crisp inputs instead of a fuzzy set, so
the membership function of each fuzzy set must be used with these values as
input. The rest of the fuzzy inference process follows the usual procedure. As
a defuzzification schema, Mamdani suggest to use the centroid of area method.
The Sugeno fuzzy model was originally proposed by Takagi, Sugeno and Kang
[16, 17]. It is characterized by defining the consequent part of a rule as a crisp
function in the fuzzy region space specified by the antecedent of the rule. The
deffuzification procedure used by this model is a simple weighted average. This
method avoids the time-consuming process of defuzzification, however it can lead
to the loss of membership linguistic meanings. The Tsukamoto fuzzy model [18]
is a model that can be placed in between the Mamdani system and the Sugeno
model, as it allows the propagation of the fuzziness from the antecedent to the
consequent of each rule, however it also avoids the heavy computation effort to
deffuzy the output into a crisp value. This is possible because in this model the
consequent membership function has to be monotonical, so the propagation of
the firing strength into these membership functions only generate a single value,
though the deffuzzification technique applied can be the weighted average [7].

2.3 Temporal Logic

Another topic related with the logic behind the controller component of our
BA system is the Temporal Logic (TL). Prior introduced the TL with the aim
of reasoning about time, where the operators eventually and always were sug-
gested [14]. With these operators we may write formulas to express the propo-
sition "The light will always be turned on" or "The room will eventually be
occupied". Writing "always p" means that p is true in a given state s and in
all states reachable from s. Writing "eventually p" means that p will be true in
some state reachable from s. Over the years, TL has been extended with other
operators such as until or since [8].

Temporal Logic can be classified into two categories considering the model of
time flow: Linear Temporal Logic (LTL) and Branching Temporal Logic (BTL).
In LTL the model time flow is ordered in a linear sequence, i.e. each state can
only leads to a single next state. On the other hand, in BTL, there may be
several distinct future states, which model a non-determinism, i.e. we do not
know a priori how the system will behave. Usually, this kind of logic is structure
as a tree. [4–6].

The common interpretation of LTL formulas is a linear path of states, where
each state correspond to an observation of the system in a certain instant t. A
path is represented as π = s0, s1, . . . , sn, where st is the state observed in the
system at the instant t, 0 ≤ t ≤ n. Reasoning in LTL is made through the analysis
of the states in a certain path π according to a specified formula. A formula ϕ can
be defined by the following grammar: ϕ ::= (| p | ¬ϕ | ϕ1∧ϕ2 | ◦ϕ | ϕ1Uϕ2,
where the symbols U and ◦ denotes the operators until and next respectively.
The operator next (◦ϕ) says that ϕ holds in the next state to be observed in
the path. The formula ϕ1Uϕ2, using the temporal operator until, means that
ϕ1 holds since now until the moment that ϕ2 holds, which can be either now or
somewhere in the future.

Temporal logic is frequently used in the formal verification of the correctness
of programs. TL allows the reasoning about past, present and future observa-
tions of an observed state which allows us to formally verify the correctness of
a program by specifying its properties in this logic [13]. A specification of the
behaviour of the program is translated into a graph of state transition. Then,
properties about the desired program behaviour written as temporal logic for-
mulas are evaluated over this model. This is known as model-checking [3].

2.4 Fuzzy Context-Aware Systems

Besides theses concepts, some related works must be analysed. These works can
be inserted in the domain of Context-Aware Systems (CAS) which are systems
that adapt themselves to the surrounding environment. However these related
systems have the particularity of reasoning based on fuzzy logic, which is the
main topic of our work. Acampora et al. developed a system to control certain
aspects of the environment (such as lighting, temperature and blinds) which re-
lates multiagents paradigm and fuzzy logic [1]. Mantyjarvi and Seppanen, in their

work, introduce the concept of fuzzy context in the development of a context-
aware system, more specially in handheld devices [11]. The definition of fuzzy
context aims at modelling the humans’ perceptions of the environment, which
are also fuzzy. Park et al. developed a context-aware music recommendation sys-
tem which is based on fuzzy Bayesian networks with utility theory [12]. They
gather context informations from sensors and from the internet which are then
pre-processed in a fuzzy system to generate a fuzzy membership vector. This
vector is then input in the Bayesian network in order to infer the contexts of
the system. Finally, to calculate the music score having into account the user
preference, the utility theory is applied. Ranganathan et al. proposed a system
for dealing with uncertain contexts [15]. They have developed a model that uses
probabilistic logic, fuzzy logic and Bayesian networks in their reasoning with the
aim of facilitating the task of incorporating uncertainty in their context-aware
applications. Cao et al. also introduce the fuzzy logic theory into context-aware
applications, more specially in the adaptation model which is concerned in the
reconfiguration of the services of such a system according to the user’s current
context [2].

3 Context Description Language

In this section we propose a language that can be used in the description of a
context. This is a declarative language based on fuzzy logic and temporal logic.
We define a context as a combination of different gathered informations from the
environment which is represented by a value between 0 and 1. To calculate this
value, a context can be defined through a formula expressed by the operators
defined in this language. These operators are adaptations of the operators from
the fuzzy logic and temporal logic among others defined by us. Some of these
operators have different meanings and definitions their first introduction in the
logic proposal. A context can be compared with the notion of proposition used
in the fuzzy and temporal logic, which can be either fuzzy or crisp, although, in
this case, a context is a fuzzy proposition.

A formula that specifies a context can be defined by the following grammar:
C ::= c | f(rt(s)) | ↑ C | ↓ C | ¬C |C1 ∧ C2 |C1 ∨ C2 |C1 ∧b C2 |C1ŨC2, where c
is a constant between 0 and 1, f(r t(s)) a function f : S → [0, 1] where r t(s) is a
sensor reading at instant t of the sensor s and S its domain; and the symbols ↑,
↓, ∧b and Ũ the operators Raise Transition, Fall Transition, Combination and
Until respectively. The operator raise verifies if the context value has increased
from the previous instant t while the fall checks a decreasing in the context.
The operator combination can be seen as a weighted multiplication between two
context by a certain factor b between 0 and 1. Finally, the operator until defined
in this work holds (in a fuzzy way) since the value of the first context argument
holds until the value of the second one holds. This definition is different than the
one defined for the until operator in TL. Let [[C]]t be the interpretation of the
context C at the instant t, C1 and C2 be two contexts and b a factor between 0
and 1, we formally define the operators in this language as:

Sensors Controller Actuactors

Logical Level

ScenariosContextsSensors Actuators

Execution Level

Fig. 1: Proposed framework architecture. This architecture can be analysed in
two distinct levels, the logical level where the components of a controller are
defined and the execution level.

[[↑ C]]t
def
=

{
[[C]]t − [[C]]t−1 if [[C]]t − [[C]]t−1 > 0

0 otherwise

[[↓ C]]t
def
=

{
[[C]]t−1 − [[C]]t if [[C]]t−1 − [[C]]t > 0

0 otherwise

[[¬C]]t
def
= 1− [[C]]t

[[C1 ∧ C2]]t
def
= min([[C1]]t, [[C2]]t)

[[C1 ∨ C2]]t
def
= max([[C1]]t, [[C2]]t)

[[C1 ∧b C2]]t
def
= (1− b)× [[C1]]t + b × [[C2]]t

[[C1ŨC2]]t
def
=

{
min(max([[C1]]t, [[C1ŨC2]]t−1), 1− [[C2]]t) if t > 0
min([[C1]]t, 1− [[C2]]t) if t = 0

4 Proposed Framework

In this section we present the framework behind this work which is based on the
declarative context description language and fuzzy inference process. We start
by describing the architecture and then detail the fuzzy inference process.

4.1 Architecture

In this framework, behaviour specification resides in a logical level and is based
on four main components: sensors, contexts, scenarios and actuators (see Fig. 1).

Sensors are the way by which the system captures the environment of the
building and its properties. They act like an interface between the system and the
physical building. In this framework we suggest an event triggering approach as
the system reacts and interprets the event from the sensors as soon as it happens

instead of checking the state of the environment with a predefined time interval
of time.

Contexts are abstractions of the physical environment and are used in the
conditions of the fuzzy rules. They are represented as a value between 0 and 1
which represent the degree of confidence of that context being true. The defini-
tion of the contexts is done using the context description language which specifies
the context as a fuzzy set. Contexts can be divided into low level contexts which
represents a normalized value of a given sensor, and high level contexts which can
be values both from sensors or from other contexts that are already normalized.
It is important to notice that a context must have its initial value pre-defined.

The scenarios specify the behaviour of the system through the definition of
fuzzy rules. This component performs the fuzzy inference of the system which
decides the actuators that should be manipulated and with which values. A
scenario is a set of fuzzy rules, however for the system only the rules matter.
The aggregation of the rules into scenarios is only an abstraction for the user
important in terms of engineering, by modelling the behaviour into different
scenarios. The rules specified in this system are if-then fuzzy rules with the
following representation: if antecedent then consequent.

Finally, the actuators are the ultimate goal of the system as they are the
ones that will effectively perform the desired behaviour in the building. They
transform the action received by the system into physical changes in the devices
installed in the building.

4.2 Fuzzy Inference Process

The fuzzy rules used in this framework are divided into two parts, the antecedent
and the consequent.

The antecedent part can have one or multiple sub-antecedents, which are
connected by a fuzzy connector: ∧ and ∨. Each of these sub-antecedents are a
fuzzy condition expression which is given by the following grammar: cond ::=
C |χC | ¬cond, where χ is a fuzzy context operator. This operator is a function
f : [0, 1] → [0, 1]. The application of the fuzzy context operator to a certain
context C generate a fuzzy set characterized by a membership function given
by the function f . This fuzzy set represents the degree of truth of the context
C belonging to the semantically meaning of the application of the fuzzy context
operator to this context.

To evaluate the antecedent part of a rule, one has to evaluate each sub-
antecedent and then calculate the overall value of the antecedent having into
account the fuzzy connectors used between each sub-antecedent. If the fuzzy
connector is the and, the min operation between the two sub-antecedents is
returned while if the connector is the or, the max operation is used instead.
The calculated value of the antecedent part of the rule is then propagated to the
consequent part.

The consequent part is given by the following grammar: consequent ::=
actuator = γ, where γ is a fuzzy consequent operator. This operator is a fuzzy
set in the universe of discourse of the actuator actuator. A fuzzy context operator

is defined by the correspondent membership function of its fuzzy set as well as
the inverse function of its membership function in order to transform a fuzzy
value into a crisp one.

The aim of this system is to control the actuators of a building in order to
perform the desired behaviour. However, a fuzzy consequent operator defines a
fuzzy set to be attributed to the actuator, which in practice is not possible as
the actuators can only assume a crisp value as control input. To solve this issue,
a deffuzification strategy must be applied.

In literature, there are many different deffuzification schemas used in trans-
forming a fuzzy set into a single representative crisp value and some different
ways of implementing a fuzzy control a system, which differ essentially in the
deffuzification process. In this framework we propose an intermediate system be-
tween the Mandani fuzzy inference system and the Tsukamoto fuzzy model. In
the Tsukamoto model, the deffuzification is a simple weighted average due to the
restriction of having a consequent fuzzy set represented by a monotonous mem-
bership function, which generates a single crisp value. To simplify the Mandani
system and not impose any restriction to the developer of the fuzzy consequent
operator, we propose a system where the propagation of the antecedent value to
the consequent generates a crisp value as it happens in the Tsukamoto model,
regardless of the fuzzy consequent operator chosen. To accomplish this, the prop-
agation of the antecedent value when intersected with the consequent fuzzy set,
instead of generating a fuzzy set, it will opt to choose a single crisp value. De-
pending on the consequent fuzzy set, the intersection of the antecedent value of
the rule with its consequent fuzzy set may produce more than one value, but in
a fuzzy control system we will have to choose only one. This framework proposes
that the value chosen is the closer to the current value of the actuator.

However, there are many rules that actuate on the same device, so different
values must be set on a device where only one value can be chosen. To solve
this conflict, we opt to choose the method used both in the Sugeno and in the
Tsukamoto models, which calculates the weighted average of the antecedent value
with the resultant consequent crisp value of each rule. The weighted average is
the application of the centroid of area method when there are only crisp values.
This method consider both the strength of a rule as well as its resultant value,
by weighting them.

To summarize this inference process, it can be divided into three steps:

1. Calculate the antecedent value of each rule, which will be denoted by wi and
is named by firing strength.

2. Propagate the firing strength of the antecedent part to the consequent part
in each rule by retrieving the resultant single crisp value zi.

3. Aggregate the resultant crisp values for each actuator by calculating its
weight average given by the following formula:

actuator =

∑
i wizi∑
i wi

.

5 Validation

To validate this work we firstly have defined a simple case study that illustrate
a real application of the proposed framework and then we have developed a
simulator to apply and test this work. In this section we describe the case study
as well as we discuss the results of the tests performed.

5.1 Case Study

This case study reflects a simple office which is a small room with a desk and
a support table used for meetings. In the ceiling there are two luminaries, one
closer to the window and another to the inner wall. Near the window there is the
desk where the occupant usually works, while near the inner wall there is placed
the support table. To prevent the excessive inside glare and ensure privacy of
the occupants, the windows have curtains that can be adjusted throughout the
day. It is important to refer that in this case study we have only considered one
person in the room at the same time.

Following the proposed framework we started the specification of this case
study by listing the sensors installed in the office, then we define the contexts
needed in the fuzzy conditions of the rules specified in the scenarios.

In this case study we have the following sensors: a door sensor to detect
the entrance or leaving of someone; the table sensor and desk sensor to detect
which activity is the user performing; two luminosity sensors inside the room,
one near the window and other near the inner wall which allow the inference
of the amount of light over the support table and the desk; a luminosity sensor
placed in the exterior; and a virtual time sensor to allow the reasoning about
time.

The contexts are one of the core components of this framework as the fuzzy
conditions are all based on them. To define the contexts we have used the pro-
posed declarative language. We can separate the contexts defined in this case
study into two categories, low level and high level contexts.

As low level contexts we have the ones that deal directly with the sensors by
normalizing its values as well as some lighting models. The luminosity sensors
output a value bigger which is not normalized, so for each one we have defined
a context which is a simple linear normalization of the sensors. Besides this, two
lighting models have been specified which indicates the predictable amount of
day and night for a given time.

As high level contexts, we have defined the core contexts of this case study.
Firstly we define the contexts Arriving and Leaving in order to detect if the user
is arriving or leaving the room. To define these two contexts we use the operators
raise and fall defined in the proposed language. The context InTheRoom is de-
fined based on the two previous contexts using the operator until. Related with
the activity of the user we have defined the contexts WorkingDesk, WorkingTable
and the WalkingAround. To reason about the amount of light in each workplace,
we defined some high level contexts which are based on the normalized lumi-
nosity contexts. They are the contexts TableIlluminated, DeskIlluminated and

(a) Along the day (b) Arriving and leaving (c) Passage of a cloud

(d) Working at desk (e) Working at table (f) Walking around

Fig. 2: Graphic representation of the simulations performed

RoomIlluminated. Besides these contexts, two more were also defined in order
to reason about the Day and Night. These contexts use the lighting models
weighted with the luminosity low-level contexts.

The next step specified in the framework proposed is the definition of the
scenarios and its rules. However, before specifying this component, it is necessary
do define the fuzzy context and fuzzy consequent operators which are used in the
rules. As fuzzy context operators, we have only defined three operators to qual-
ify the value of a given context: Insufficient, Sufficient and TooMuch. As fuzzy
consequent operators we have defined the ones related with our actuators, more
specially related with the luminaries and the curtains. For the curtains actuator
the operators defined were Completely Closed, PartiallyClosed, PartiallyOpened
and CompletelyOpened. For the luminaries actuators we have defined the oper-
ators FewLight, NormalLight and MuchLight. With these operators defined we
could then specify our scenarios which were related with the activity of the user
(Arriving, Leaving, Working at Desk, Working at Table and WalkingAround) and
a scenario for Privacy issues which has the aim of avoiding that someone look
to inside the office specially at night.

Finally, as actuators of this case study we have two luminaries, one near the
window and other near the inner wall, and curtains at the window.

5.2 Discussion

The case study defined above is the basis of all the validation process. To validate
this work the building of an example system of the proposed framework is needed.
However, after having defined the case study, we have not build immediately the
desired system. We have started to developed a simulation in an Excel sheet as
it is a quick way to apply and test the framework. Despite being a good way
to quickly test the system, it is not very robust, so we decided to develop a
graphical simulator where one can interact with the system and simulates the
real events occurring in a building. Finally, for more robust validation tests, with

the basis of this simulator, we have converted it to a non-graphical simulator in
order to accept input flat files and outputting a csv file that could be analysed
with more details and generate some graphics that illustrate the behaviour of
the system. Figure 2 illustrates the graphics generated in the validation process.

We performed six simulations with series of events that retract some partic-
ular scenarios that could happen in a real case. The scenarios specified in the
case study were also tested with independent input files. The evolution of the
curtains along the day controlled by this system is represented graphically in the
figure 2a. Here we can see that as the sun is risen the curtains remain open while
during night they are closed. To test if the lights turn off when someone leaves
the room as well as in the arriving we have performed a simulation illustrated
in the figure 2b. This simulation shows that while the user is outside the office
the luminaries are turned off and in the arriving they are set to a maximum
value because there is insufficient light in the office. Another test performed in
our validation process was to test the evolution of the multiple actuators in the
room when a cloud passes in the sky. In this case the curtains must be completely
opened to allow the entrance of more light inside ans the lights should increase
their values to compensate the reduction of natural light. This behaviour in seen
in the figure 2c.

Besides the validation we have also tested this system when simulating the
three different activities of the user with slightly the same simulation input.
These tests simulates that there is sufficient light in the given in the room, then
there is insufficient light in the specific workplace and finally the light in that
workplace is too much. In the case the user is working at the desk (see figure 2d)
there are two points to note, the different values of LumWindow and LumWall
and the partially closing of the curtains to avoid the excessive glare over the
desk. In the case of the support table (see figure 2e) the excessive amount of light
does not disturb the work of the user making the curtains to remain constant
along the simulation. However, the values of the two luminaries is not the same
as well. Finally, the last test performed evaluates the actuators in the activity
working around (see figure 2f). In this case both the luminaries have the same
value as the office is seen as a whole. By analysing the result of the simulations
performed, one can conclude that they can validate this work, however more
robust validations, specially in a real environment, should be performed.

6 Conclusions

In this work we presented a system that allows the specification of the behaviour
of a BAS where the actuators varies continuously based on sensors, in an easy
way to the user. This was achieved through a proposal of a declarative language
based on fuzzy logic and temporal logic. We have described this language as well
as the whole system that use such language. In order to validate the worked done,
we have created a case study that applies the proposed framework to exemplify
its use and perform validation tests on it. The validation tests where performed
on a simulator of this system. With the discussion of the results achieved we

can conclude that the tests performed validate this work in order to specify the
behaviour of a BAS.

This work resulted in the proposal of a declarative language for specifying the
behaviour of building automation systems with the following main contributions:

– Framework proposal to specify the behaviour of building automation systems
based on the fuzzy logic.

– A formal syntax and semantics of the language proposed drawing on concepts
borrowed from fuzzy logic and temporal logic.

– Adaptation of the concept of "context" from intelligence environment to
fuzzy logic.

– A generalization of the temporal Until operator to deal with fuzzy proposi-
tions.

– A new approach to defuzzyfication process of fuzzy control systems that is
computationally less demanding than the Mandani fuzzy system but more
flexible than Tsukamoto and Sugeno models.

7 Future Work

This work has touched some different subjects and has presented some new
contributions, however there are some topics that can be developed further.
One aspect critical to effectively validate this work is a more robust validation.
More case studies based on the proposed framework should be performed as
well as to implement it in a real environment. When we started this work, our
initial aim was to develop a BAS capable of learning the routines of the user,
however we have directed the work to the specification of the behaviour instead
of the learning. With the basis of this solution it would be easier to incorporate a
learning strategy. Another possible future work related with the proposed system
and language is the creation of a compiler for the propose declarative language.
With such a compiler the user could specify their own rules and implement itself
the system. Finally this solution and the logic inherent to it could be applied in
other domains such as business for example.

References

1. G. Acampora, M. Gaeta, V. Loia, and A. Vasilakos. Interoperable and adaptive
fuzzy services for ambient intelligence applications. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 5(2):1–26, 2010.

2. J. Cao, N. Xing, A. Chan, Y. Feng, and B. Jin. Service adaptation using fuzzy
theory in context-aware mobile computing middleware. 2005.

3. E. Clarke. Model checking. In Foundations of software technology and theoretical
computer science, pages 54–56. Springer, 1997.

4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. Logics of Programs, pages 52–71, 1982.

5. E. Emerson and J. Halpern. “sometimes” and“not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

6. E. Emerson and J. Srinivasan. Branching time temporal logic. Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, pages
123–172, 1989.

7. J. Jang, C. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing-A Computa-
tional Approach to Learning and Machine Intelligence [Book Review]. Automatic
Control, IEEE Transactions on, 42(10):1482–1484, 1997.

8. J. Kamp. Tense logic and the theory of linear order. 1968.
9. W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann. Communication

systems for building automation and control. Proceedings of the IEEE, 93(6):1178–
1203, 2005.

10. E. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies, 7(1):1–13, 1975.

11. J. Mantyjarvi and T. Seppanen. Adapting applications in handheld devices using
fuzzy context information. Interacting with Computers, 15(4):521–538, 2003.

12. H. Park, J. Yoo, and S. Cho. A context-aware music recommendation system
using fuzzy bayesian networks with utility theory. Fuzzy Systems and Knowledge
Discovery, pages 970–979, 2006.

13. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, pages 46–57. IEEE, 1977.

14. A. Prior. Time and modality. 1957.
15. A. Ranganathan, J. Al-Muhtadi, and R. Campbell. Reasoning about uncertain con-

texts in pervasive computing environments. IEEE Pervasive Computing, 3(2):62–
70, 2004.

16. M. Sugeno and G. Kang. Structure identification of fuzzy model. Fuzzy sets and
systems, 28(1):15–33, 1988.

17. T. Takagi and M. Sugeno. Fuzzy identification of system and its applications to
modelling and control. IEEE Transactions on Systems, Man, and Cybernetics,
15:116–132, 1985.

18. Y. Tsukamoto. An approach to fuzzy reasoning method. Advances in fuzzy set
theory and applications, pages 137–149, 1979.

19. L. Zadeh. Fuzzy sets*. Information and control, 8(3):338–353, 1965.
20. L. Zadeh. Outline of a new approach to the analysis of complex systems and

decision processes. Systems, Man and Cybernetics, IEEE Transactions on, (1):28–
44, 1973.

21. L. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning–I* 1. Information sciences, 8(3):199–249, 1975.

