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Abstract

In the present work, a modification of the stochastic History Matching method of Mata-Lima [8] is

proposed.

The method is modified in order to use a multi-objective optimization based on the estimation of

the Pareto front of the generated image set. The additional computational weight imposed by the

multi-objective approach on the perturbative (Co-Direct Sequential Simulation) and fluid simulation

stages of the process is minimized with the sequential application of image match, Multi-Dimensional

Scaling, Kernel-PCA and Clustering techniques in order to reduce the set of secondary images need.

The resulting method is applied to a case study with promising results.

Keywords: History Matching, Multi-Objective Optimization, Inverse Problem, Kernel-PCA,

Multi-Dimensional Scaling, Geostatistics

1 Introduction

History Matching of Oil Reservoirs is a much need procedure in the workflow of reservoir analysis. It

enables the planning of future exploration considering economic constraints by reducing the uncertainty

associated with the knowledge of fundamental petrophysical proprieties (e.g. permeability and porosity).
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The subject as received continuous considerable attention since the early works of Jacquard [6] and Chen

et al. [2] among others.

The subject is currently well developed, as it can be realized in the extensive review recently preformed

by Oliver and Chen [9].

History Matching problems are mathematically categorized as an ill-posed and inverse problems, i.e.,

one knows the solution but lacks information about the conditions which enabled to arrive to the observed

solution. In terms of oil reservoir analysis it means that one uses the observed dynamic data obtained from

currently producing wells and from that data one tries to compute - or in History Matching parlance,

to obtain a ”match” - a petrophysical model (or models) capable of generating the observed dynamic

response. Hence, it can also be mathematically seen as an optimization problem.

According to Sarma et al. [11], current approaches to History Matching problems can be classified in

four main categories:

• gradient calculation;

• streamline simulation-based algorithms;

• ensemble Kalman filters;

• stochastic algorithms.

In this paper, the focus rests on the last category. Stochastic algorithms are based on the perturbation

of the initial image of the property subject to match, and the application of an objective function in order

to rank the response obtained from fluid simulation of the perturbed image. The process is iterative and

can find several minima in the objective space. The main drawback in this class of algorithms concerns

the high cost in terms of fluid simulations needed in order to achieve a reasonable match.

In this paper, a modification of the stochastic algorithm developed by Mata-Lima [8] is proposed in

order to use a multi-objective function based on the simple concept of Pareto Front (or Pareto Optimal

Set). The multi-objective approach carries a large computational penalty which is minimized using the

image clustering method outlined by Scheidt and Caers [12]. These three key concepts are the subject of

the following sections.

2 Stochastic History Matching using Co-Direct Sequential Simulation

The stochastic History Matching algorithm of Mata-Lima [8] can be summarized in the following steps:
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1. Initial Seed: initial generation of an image set of size N of the property subject to ”match” (e.g.

permeability) by Direct Sequential Simulation [15] conditioned only to the hard data1 available and

to the bi-point spacial continuity information revealed by the same data;

2. Transfer Function: the N images are used as input in N finite difference simulation flows in order

to obtain time responses of dynamic data of the variable used to perform the match (e.g. WWCT -

Well Water Cut). In the general framework of stochastic algorithms, the use of a fluid simulator can

be viewed as the simple application of a (usually) non-linear transfer function, i.e., fluid simulation

is treated as a black box;

3. Response Ranking: the responses of the transfer function are ranked using some objective function

- e.g. the modified Hausdorff distance [1] - to the observed historic data of the dynamic match

variable (e.g., WWCT). If the obtained match is satisfactory the process stops here;

4. Perturbation: a new set of N images is generated by Co-Direct Sequential Simulation, where the

image with the best rank from the previous step is used as conditioning information. The process

iterates to step 2.

Using this general framework, Mata-Lima [8] explores how the perturbation stage can be improved,

either by varying the correlation with the conditioning (or secondary image), and/or by using a linear

combination of best ranked images as secondary information. A regionalized version is also explored

where the secondary image is a composite of the images which gives the best match according to each

well.

This regionalized variant is the one used in the present work.

3 Multi-Objective Approach: Using the Pareto Front

The concept of Pareto Front or Pareto Optimal Set is a widely used concept in multi-objective optimization

and it as already been used in multi-criteria approaches to History Matching problems [14].

The first approach considered when dealing with a multi-objective optimization problem usually con-

sists in the linear combination of the objective functions for each optimization variable. The problem is

thus reduced to a single-objective one. This approach as inherent difficulties such as the fact that many

times the objective variables conflict with each other, i.e., a better fit in one will necessary lead to a worse

1hard data sets are those which result from direct observation of petrophysical properties on core samples or from well

logging.
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fit in the other. Another difficulty avoided by the use of the Pareto front concept is the use of a scaling

procedure in the combined multi-objective approach. When badly done, such scaling can lead to very

slow convergence [10].

The Pareto Front or Pareto Optimal Set is defined as follows: Consider a multi-objective problem

with m parameters (to minimize) and n objectives:

to minimize �y = f (�x) = (f1 (x) , ..., fn (x))

where �x = (x1, ..., xn) � X (1)

and �y = (y1, ..., yn) � Y

The vector �x is called the decision vector in the parameter space X and �y a vector in the Y objective

space spanned by the individual objective functions. A decision vector �a � X is said to dominate another

�b � X (or with the same meaning �a � �b), iff:






∀i�{1, ....., n} : fi (�a) ≤ fi(�b)

∃j�{1, ....., n} : fj (�a) < fj(�b)
(2)

Figure 1: Pareto Front in a two dimensional objective space: point C is dominated by both point A and

point B. No point dominates over these last two, hence they are part of the set of optimal choices defining

part of the Pareto Front.

The set of undomitaded vectors constitutes a set of optimal solutions on all optimization parameters

known as the Pareto Optimal Set or Pareto Front (figure 1).
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The use of this concept on the History Matching algorithm previously described (section 2 - region-

alized variant) will generated not one but several best images per well. The permutation of all these

local best fit images will generate a potentially very large set of composite optimal images entailing a

consequentially very large computational weight in the application of the transfer function. As such, these

image set must be reduced in order to use just a few representative images.

4 Reducing the Composite Optimal Image Set

The extraction of a few representative images from the generated composite optimal imaged set is accom-

plished following the image clustering procedure used by Scheidt and Caers [12]. It entails the following

steps:

1. Image Feature Extraction: The individual images needs to be simplified in order to perform

efficient pattern recognition. For that purpose, all the images are submitted to edge-detection using

the Sobel Operator, and the resulting images are then subject to a cut around their median value,

resulting in a reduced point-set that preserves the main features of each image. This procedure is

common in pattern extraction workflows [4], and can be observed in figure 2 applied to one of the

optimal images resulting from the procedure described previously (section 3).

Figure 2: One of the composite optimal images obtained (left) is submitted to edge-detection using the

Sobel Operator (center) and finally a cut around its median value is performed (right).

2. Hausdorff Matrix Distance Calculation: After the pattern extraction procedure is performed

for all composite images, the Modified Hausdorff Distance is calculated between all of them. This

metric is quite useful and again frequently used in pattern recognition workflows [4]. It is defined as
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follows; Let A = {a1, ...., an} and B = {b1, ...., bn} be two finite point-sets, the Hausdorff distance

between A and B is given by:

H (A,B) = max (h(A,B), h(B,H)) where (3)

h(A,B) = max
a�A

min
b�B

�a− b� (4)

where h(A,B) is the direct Hausdorff distance from set A to set B for a given norm �.�. The

Modified Hausdorff Distance is defined as follows [4, 7]:

hmod(A,B) =
1

|A|
�

a�A

min �a− b� (5)

This modification, calculating the average of the point-to-point distances, reduces the impact of

outliers, thus being more appropriate for pattern recognition purposes.

3. Generation of an Euclidian Space by Multi-Dimensional Scaling: Once the distance ma-

trix between all composite images is available, it is used as input to a statistical procedure for

dimensionality reduction known as Multi-Dimensional Scaling [3, 5]. This procedure uses as input

a distance matrix (or any dissimilarity matrix) and builds a N dimensional Euclidean projection,

i.e., it provides a mapping on a N -dimensional euclidean space of the original data.

4. Kernel-Principal Component Analysis and Clustering: On the Multi-Dimensional generated

euclidean space, a technique known as kernel-Principal Component Analysis proposed by Scholkpof

et al. [13] is used. This technique is a non-linear extension of Principal Component Analysis in

which the feature space is mapped by a non-linear function Φ, of which usually only the inner -

product matrix between all points (the kernel matrix) is known. The use of a non-linear feature

space ensures that every possible cluster, which might not be linearly separable in the original space,

is separable in the non-linear feature space. As such, the projection of the input data points in the

feature space where separability between clusters is enhanced is ideal for the use of non-hierarquichal

clustering techniques such as the K-means algorithm. That is exactly what it is done in the described

methodology, being the number of final clusters pre-determined by the number of flow-simulation

sets computationally feasible. The point (i.e. image) extracted is the nearest neighbor of the cluster

centroid.
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When the composite image reduction process is completed, the method of Mata-Lima [8] continues to

the perturbation stage with the images selected by the explained procedure has secondary information.

5 Case Study

The described method was applied to a five-spot (four production wells and one central water injection

well) with the following overall parameters:

P1

P2 P3

P4

INJ

Figure 3: Synthetic porosity (left) and permeability (right) images of the five-spot test case. Over-imposed

on theses images are the sample grid of hard data (right) and well locations (right).

• initial permeability image set of thirty images generated by Direct Sequential Simulation;

• three secondary images generated in each iteration;

• dimension three used in the image clustering procedure;

• kernel-PCA used with a Gaussian Kernel;

• each secondary image is correlated at 0.8 in the perturbation by Co-Direct Sequential Simulation

stage. Twenty images are generated per secondary image used;

• two dimensional multi-objective space spanned by WWCT (Well Water Cut) and WBHP (Well

Bottom Hole Pressure) match variables. The scalar objective function used is the Modified Hausdorff

Distance;

• two iterations performed.
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iteration 0 (DSS): composite representative optimal images obtained from a total of 72.

iteration 1 (Co-DSS): composite representative optimal images obtained from a total of 160.

iteration 2 (Co-DSS): composite representative optimal images obtained from a total of 240.

Figure 4: Resulting representative optimal images for each iteration.
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Figure 5: final match: one of the images obtained with iteration 2 (left) and the synthetic image of

permeability (right).

The composite images resulting from the clustering process are sequentially presented in figure 4

and one of the final images of iteration 2 is presented in figure 5 along with the synthetic permeability

image. As it can be seen, a very good match can be obtained as early as the second iteration, even with

parameters that may not be ideal. The composite final images reveal a remarkable increase in spatial

continuity, being the artifact introduced by the regionalized well areas progressively reduced.

The number of composite images per iteration increases considerably while simultaneously the similar-

ities (by visual inspection) between the representative images tend to lessen. This fact can be considered

natural if the process is convergent, as the images should be progressively more alike.Hence, the final

match (figure 5) can be considered quite good.

6 Conclusions and Future Work

Among the proposed modifications to the History Matching procedure of Mata-Lima [8] and considering

the results of the case study, the following conclusions can be stated:

1. the procedure is successfully adapted to multi-objective optimization by use of the Pareto Front

without an excessive computational weight due to the image clustering procedure applied [12];

2. the resulting composite images show a reestablishment of spatial continuity, which can be seen as

an indicator of convergence;

3. the match is quite good at a very early stage of the procedure (iteration 2)
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The proposed procedure was only tested on the presented case study and as such, it needs extensive

testing and fine-tuning in each of its steps, validation against other History Matching methods and testing

on real reservoirs. In the execution of the presented test case, several issues worthy of further scrutiny

were noticed and are stated:

1. in the application of the vectorial objective function and following calculation of the Pareto Optimal

Set, every previous iteration should be considered. It was observed that a few optimal points of

previous iterations remained so, hence the corresponding images should be preserved;

2. the number of composite optimal images increases considerably with each passing iteration and

simultaneously the similarity between representative images also increases, hence it can be expected

that the distance values contained in the calculated Hausdorffmatrix will show a significant decrease.

Hence, a matrix norm could be used as measure of convergence.

3. the dimension used in the image clustering procedure needs to be evaluated in a systematic way. For

instance, in the paper of Scheidt and Caers [12], a four dimensional euclidean space was used after

correlation analysis on the Multi-Dimensional Scaling stage. This was not done in the presented

test case;

4. the regionalized version of the Mata-Lima [8] procedure enables the use of local correlations per

well zone of influence. Hence the perturbation stage of the procedure can be fine tuned according

to convergence information made available after each iteration.

References

[1] Caeiro, M. H., Soares, A., Santos, J., Carvalho, A., and Guerreiro, L. (2010). Geostatistical History

Matching with Direct Transformation of Images. Application to a Middle East Reservoir. In Rio Oil

& Gas Expo and Conference 2010, pages 1–10.

[2] Chen, W., Gavalas, G., Seinfeld, J., and M.L., W. (1974). A New Algorithm for Automatic History

Matching. SPE Journal.

[3] Cox, T. F. and Cox, M. A. A. (2001). Multidimensional Scaling. Chapman & Hall/CRC, New York.

[4] Dubuisson, M.-P. and Jain, A. (1994). A modified Hausdorff distance for object matching. Proceedings

of 12th International Conference on Pattern Recognition, pages 566–568.

10
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