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Vogal: Prof. Patŕıcia Figueiredo
Vogal: Prof. Rui Tato Marinho

October 2010



Acknowledgements

I would like to start by thanking the Magnetic Resonance Department of the hospital Erasme for the
images and help provided, namely to Dr. Celso Matos and Dr. Thierry Metens.
I would also like to thank the following people:
My supervisor professor João Sanches.
My parents for all the support and help.
My grandmothers Belmira and Lila.
My brothers.
My taunt Maria João.
My uncle António José.
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Resumo

A Ressonância Magnética com contraste dinâmico tem demonstrado ser o método de diagnóstico mais
eficiente na detecção de tumores hepáticos. Esta técnica de imagem permite avaliar a perfusão tecidual
através do seguimento da difusão de um contraste intravenoso no corpo humano.

As capacidades imagiológicas desta técnica podem ser considerávelmente melhoradas através da
modelação da informação contida na imagem com modelos farmacocinéticos que descrevem o processo
de difusão do contraste. A aplicação de tais modelos permite recolher diversos parâmetros de perfusão.

O f́ıgado é caracterizado por um duplo aporte sangúıneo: 75% do sangue que entra no f́ıgado tem
a sua origem na veia porta hepática e os restantes 25% na artéria hepática. No entanto, este equiĺıbrio
pode ser alterado localmente ou globalmente em diversas condições patológicas, como por exemplo
no cancro do f́ıgado. Desta forma, a estratégia principal utilizada nesta tese para avaliar diferenças
entre tumores do f́ıgado consistiu na medida da percentagem arterial do tecido tumoral. Isto implica a
utilização de um modelo de perfusão hepática com dupla entrada, onde a perfusão do f́ıgado é calculada
com base nos sinais recolhidos da aorta e da veia porta.

O modelo foi implementado em MATLAB e uma interface gráfica foi criada.
Seis casos com diagnóstico confirmado pelo hospital Erasme, em Bruxelas, foram analizados us-

ando o método descrito. Estes estudos imagiológicos continham um total de 9 tumores, incluindo 4
tumores benignos e 5 carcinomas. O modelo usado permitiu recolher uma quantidade considerável de
parametros de perfusão à parte da percentagem arterial.

Apesar de terem sido usadas imagens com fraca resolução temporal, o método foi capaz de de-
tectar diferenças claras entre tumores benignos e malignos em termos da percentagem arterial. Os
resultados confirmaram o facto de os carcinomas hepáticos serem maioritariamente alimentados pela
artéria hepática. Os tumores benignos registaram percentagens arteriais médias entre 16.6% e 37.5%.
Contrariamente, os tumores malignos revelaram uma componente arterial num intervalo entre 51.4%
e 75.5%.

Palavras-chave: Neoplasmas Hepáticos, Classificação Tumoral, Farmacocinética, DCE-MRI,
Percentagem Arterial.
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Abstract

Dynamic Contrast Enhanced Magnetic Resonance Imaging has proven to be the most efficient diag-
nose method for liver tumor identification. This image technique allows assessing tissue perfusion by
following the diffusion of an intravenous contrast agent in the human body.

DCE-MRI imaging capabilities can be considerably increased by modeling the imaging data ac-
quired with pharmokinetic models that describe the contrast diffusion process. The application of such
models allows retrieving several perfusion parameters.

The liver is characterized by a dual-blood supply: 75% of the blood that enters the liver has
its origin in the hepatic portal vein and the rest 25 % in the hepatic artery. However, this balance
can be altered locally or globally in several pathological conditions, like for example in liver cancer.
So, the main strategy used in this thesis to assess differences between liver tumors consisted in the
measurement of the arterial ratio of tumor tissue. This implied the use of a dual-input liver perfusion
model, where the hepatic perfusion is calculated based on the signals retrieved from the aorta and the
portal vein.

The model was implemented in MATLAB and a Graphical User Interface was created.
Six cases with confirmed diagnosis given by the hospital Erasme, in Brussels, were analyzed using

the method described. These imaging studies contained a total of 9 tumors, including 4 benign tumors
and 5 carcinomas. The model used allowed collecting a considerable amount of perfusion parameters
apart from the arterial ratio.

Besides using low temporal images, the method was able to detect clear differences between benign
and malignant tumors in terms of the arterial ratio. The results confirmed the fact of liver carcinomas
being mostly supplied by the hepatic artery. Benign tumors registered mean arterial ratios between
16.6% and 37.5%. On the contrary, malignant tumors revealed an arterial component in a range
between 51.4% and 75.5%.

Keywords: Liver Neoplasms, Tumor Classification, Pharmacokinetics, DCE-MRI, Arterial Ra-
tio.
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Chapter 1

Introduction

Liver cancer is a silent killer: usually detection occurs when there is nothing left to do. According
to the IARC(International Agency for Research on Cancer) Globocan 2008 project, liver cancer killed
478,275 persons worldwide and 522,355 new cases were registered in 2008. In the same year, in Europe,
an incidence of 46,566 cases and a mortality of 46,483 Europeans were observed [15]. This proximity
between incidence and mortality values reveals how deadly liver cancer is. The geographic distribution
of this disease (figure 1.1) is intrinsically connected to the occurrence and natural history of Hepatitis
B and C ([3],[4]). Consequently, vaccination against these viruses reveals to be essential for liver
cancer prevention. However, in the fight against this type of cancer screening plays a very important
role. In 2004, a Chinese study with 18,816 patients reported that biannual screening was able to
reduce hepatocellular carcinoma (HCC) mortality by 37%, being this the most common primary liver
cancer[57].

Large tumors can be easily identified by several imaging techniques. However, late detection does
not save lives. In order to improve survival, liver cancer has to be detected in an early stage, when
its smaller dimensions and less marked features make difficult its identification. Dynamic Contrast
Enhanced Magnetic Resonance Imaging (DCE-MRI) has proven to be the most efficient diagnostic
method for liver tumor identification([14],[48],[55]). Despite the elevated price of this imaging tech-
nique, efforts are being made to reduce the related costs and its availability is increasing. This reveals
to be important taking into account that its noninvasiveness makes it ideal for screening applications.
Moreover, its capabilities can be considerably increased when image processing comes into action.
DCE-MRI provides a huge amount of data whose computational analysis allows not only highlight-
ing differences between normal and pathological cases, but also reveal important information that in
a human-based analysis would be unnoticed. This thesis is presented in the context of liver cancer
imaging improvement by the application of image processing techniques to DCE-MRI images.

The approach here developed is based upon pharmacokinetic analysis. More specifically, by means
of studying how the contrast diffuses in the patient’s body and modeling the data with pharmacokinetic
models, a certain group of parameters are retrieved. These parameters are a reflex of the perfusion
properties of the region imaged. Thus, since perfusion is altered in neoplasic situations it is intended
to analyze how malign features are traduced in the perfusion parameters collected. This form the basis
on which this thesis develops.

At ISR (Instituto de Sistemas e Robótica), a first approach on this type of image processing had
already been made by Caldeira L. et al.. The research made obtained interesting results, having been
capable of detecting differences in the speed of contrast uptake and downtake between benign and
malign tumors. However, pharmacokinetic analysis has shown to have greater potentialities and a
lot was left to explore. One of the points where this work distinguishes from the previous is due to
the consideration of liver dual-blood supply. The liver is a unique organ in the sense that it receives
blood from both a venous and an arterial sources. In normal conditions about 75% of the incoming
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Figure 1.1: Worldwide distribution of liver cancer in men. The size of each circle placed among
every country is proportional to the number of new cases of liver cancer per 100,000 male residents
during 2002. The greatest incidence rate is observed in Mongolia where 57 new cases per 100,000
male residents were found in 2002 and the smallest in Guyana where the same indicator has a value
of 0.2. In Portugal the number of new cases is relatively small with 1.8 new cases per 100,000 male
habitants in 2002. The image was obtained using Gapminder and the incidence data was compiled also
by Gapminder using data from IARC GLOBOCAN 2002 (estimates for 2002) and IARC CI5 (Cancer
Incidence in 5 Continents) time series data.

blood comes from the portal vein and the rest 25% from the hepatic artery. However, this balance
can be altered locally or globally in several pathological conditions, such as in liver cancer or cirrhosis.
Based on this, the method used was developed in order to be able to resolve hepatic portal venous and
arterial components of blood flow. In parallel, several other perfusion characteristics can be assessed.
The analysis was made in a voxel-by-voxel approach, which allows building parameter maps that can
facilitate tumor detection and also identify tumor characteristic heterogeneity.

1.1 Thesis Organization

This thesis is organized in four chapters:

- Background, is presented the main theoretical background information that constitutes the
basis of this work. Here one can find: information concerning the imaging technique (DCE-MRI), a
brief reference the most common tumors found in liver and a description of the evolution of perfusion
models related to the one applied here. There are also mentioned the important features of the liver
in the contrast imaging perspective, the theory behind the software used to perform the fundamental
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task of image alignment and the acquisition characteristics of the images used in this thesis.

- Method. In this chapter the method used to reach our initial goals is described. Here the algo-
rithm is approached first in a general basis and then component by component.

- Interface. Here is shown the user-interface developed to improve the interaction between the
algorithm, the imaging data and the user. In this chapter is presented a more practical view of how
the methods described previously can be implemented.

- Results. After the description of the theory behind the method, the method itself and its imple-
mentation, the results obtained are revealed and their meaning discussed.

- Conclusions and Future Work. Finally, the main conclusions are exposed as the future per-
spectives that resulted from this thesis.
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Chapter 2

Background

2.1 Dynamic Contrast Enhanced Magnetic Resonance Imaging

Briefly, DCE-MRI consists of the acquisition of several Magnetic Resonance images at different in-
stances in time, after a contrast substance being introduced in the patient’s blood flow. This ties the
MRI imaging capabilities with the perfusion information given by the contrast variation in each tissue.

Since its introduction in oncology, DCE-MRI has assisted doctors with non-invasive methods to:
identify and classify lesions, follow-up patients, assess their response to treatment and screen risk
populations.

DCE-MRI images have demonstrated its superiority in the differential diagnosis between malignant
and benign lesions in comparison with other imaging techniques such as ultrasound[25] and CT[14].
Even so, this performance difference it’s not so well-marked in terms of lesion detection[48].

Dynamic contrast MRI is distinguished by its capability to detect alterations in tissue contrast
enhancement patterns, making it particularly useful in oncology, since tumor growth tends to modify
normal tissue perfusion characteristics in several ways. Consequently, small avascular tumors are
undetectable with this imaging technique.

Perfusion characteristics or physiological data may be extracted from DCE-MRI studies by the
application of pharmacokinetic models that mimic contrast distribution processes in the human body.

In malignant tumors an abnormal development with lack of vascular structural maturation is
observed. This results in a heterogeneous, high permeable and fragile structure formed by coarse
capillaries[20]. In benign tumors angiogenesis comes with normal maturation and consequently a more
regular and homogeneous vasculature is obtained. Therefore, in DCE-MRI images malignant tumors
normally reveal faster intensity changes with higher amplitude, in comparison with normal tissue and
other less malignant or benign tumors [37]. According to tumor size and image resolution, heterogene-
ity in malign tumors may be or not detectable.

The contrast injection is usually performed in a peripheral vein by means of an automated procedure
to ensure reproducibility. The coherency of the bolus is assured by the immediate injection of normal
saline at the same rate of the previous injection.

Most of the contrast agents used are classified into three main groups: low molecular weight agents,
with less than 1000 Dalton that easily diffuse to the extravascular-extracellular space (EES); large-
molecular weight agents with more than 30,000 Dalton that are retained inside vessels (blood pool
agents or macromolecular contrast media); and contrasts designed to accumulate in sites with active
angiogenesis. In the specific case of the liver, there are contrast agents that are absorbed by the
hepatocytes and excreted into the biliary tract; and others that are retained in the reticuloendothelial
system and therefore can differentiate tumors based on the presence of Kupfer cells[2].
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Figure 2.1: Overall view of the DCE-MRI technique baseline processes. In a) a representation of the
angiogenesis process with the respective sprout of new vessel from existing ones is shown. In b) the
concept that one voxel represents a determined volume that can contain several cells and capillaries is
represented. Finally, in c) the pharmacokinetic processes ruling the contrast agent diffusion between
the EES and the vascular space are shown. This figure was obtained from [18].

Dynamic contrast MRI studies were made possible only recently with the emergence of new rapid
acquisition protocols that, due to the increased temporal resolution, allowed following contrast varia-
tions through time.

Dynamic Contrast MRI can be either T1-weighted, relaxivity-based methods, or T2-weighted,
susceptibility-based methods. In the first approach Gd induces a signal enhancement causing voxels
to brighten as the corresponding tissue increases its contrast concentration. Contrary, in the latter
methods the opposite phenomenon is observed with smaller amplitude.

T1-weighted methods are able to measure capillary surface area, transendothelial permeability,
leakage space, transfer and rate constants and assess microvessel density. As so, these are used for
lesion detection and characterization, predict and monitor response to treatment, determine tumor
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staging and follow-up patients.
The T2-weighted based-techniques normally work with relative quantification methods and are

mainly used to assess blood flow and volume, transit time, tumor grade and microvessel vessel density.
These methods allow characterization of lesions mainly in breast, liver and brain. In terms of the
brain, noninvasive brain tumor classification, direct brain tumor biopsy and treatment monitoring are
permitted with this technique.

There are several imaging protocols suitable for DCE-MRI. The pulse sequence chosen should
represent the best equilibrium possible between the concurrent choices of the spatial and temporal
resolutions, Field-Of-View, Signal to Noise Ratio and degree of contrast weighting [18]. T1-weighted
techniques normally use gradient echo-based sequences.

As it will be discussed later, the images used in this thesis are T1-weighted and, in order to achieve
the spatial resolution and speed required, mainly use two methodologies: Keyhole and Parallel imaging.
The first one is simply based on the fact that the central part of the k-space, where one finds the low
spatial frequencies, will have most of the contrast image data contained on it. On the other hand, the
outer lines of the k-space represent the high-frequency domain that will be mostly related with the
structural image information and that in a breath-hold acquisition can be considered constant. As
so, in order to increase temporal resolution one can simply acquire several times the central k-space
and perform only one longer complete acquisition, during a single breath-hold. The same objective is
shared by parallel imaging that consists of using several smaller coils, instead of only one bigger, to
simultaneously receive data that combined will form the final image. This technique has the advantage
of allowing rapid volume acquisition.

In every part of the body, the utility of MRI is related with the ability to maximize differences
between normal and disease cases. In terms of the liver, fat suppression techniques allow increasing
image contrast and are essential in tissue characterization and pathology identification of fatty livers.

One of the specific features of the liver, that is used to differentiate lesions, is its characteristic
dual-blood supply: liver receives about 75% of its blood supply from the portal vein and the rest 25%
from the hepatic arteries([11],[46]) (figure 2.2 ). This feature is also observed in some lesions that have
its origin in normal liver tissue. However, in some cases lesions present a blood supply that contrasts
with the one from the normal liver, causing these to show different enhancement patterns. In order
to detect this differences, liver DCE-MRI is usually acquired in four different phases: pre-contrast,
before contrast injection; arterial phase, during arterial ’first-pass’ where the arterial blood with a
high contrast concentration reaches the cells(see figure 2.1); portal phase, during venous ’first-pass’
where a second amount of contrast arrives at the liver via the hepatic portal vein; and equilibrium, when
the concentration in the EES is supposed to be greater than the one found in the capillaries. These
multiphasic studies are produced with low temporal resolution in comparison with other techniques,
being the images acquired at each specific phase.

The use of pharmacokinetic approaches in the liver should overcome mainly two distinct problems:
the abdominal movement, largely caused by respiratory motion; and the dual-blood supply that should
be considered in the model used. In terms of the respiratory motion, the effects are reduced by acquiring
the images while the patient holds his breath. However, there are visible differences between distinct
breatholds that call for the application of registration techniques. Relatively to the dual-blood supply,
this feature is increasingly considered in liver pharmacokinetic modeling ([28],[38],[36]).

Despite pharmacokinetic approaches normally using continuous dynamic acquisition techniques,
in this work the pharmacokinetic model developed was applied to multiphasic image sets, which are
characterized by a lower temporal resolution.

2.2 Liver: Morphology and Vascularization

The information concerning liver structure and vascularization has to be taken into account if one
wishes to fully understand the way a contrast agent distributes in this organ. The following description
considers an extracellular contrast agent.
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The blood that enters the liver has two distinct sources: the hepatic portal vein and the hepatic
artery. The term portal reflects the purpose of this vessel: hepatic portal vein connects two capillary
networks, receiving blood from the capillaries of digestive organs and delivering it to liver capillary-like
structures called sinusoids. The portal blood is rich in substances absorbed from the gastrointestinal
tract that need to be filtered before entering the systemic circulation.

Besides, liver cells need an oxygenated blood source to work properly, which is provided by the
hepatic artery, a direct branch of the abdominal aorta. After being processed by the liver, the blood
is then collected by the hepatic vein that directs it to the inferior vena cava, where it will re-enter the
heart.

Figure 2.2: Liver representation highlighting its vasculature.

The liver is composed by two lobes: the right lobe and the left lobe. Each one of these is formed by
different functional units called lobules. The lobule cross section has a radial symmetry where we can
find a central vein, that collects the filtered blood, and several branches from both the hepatic artery
and the hepatic portal vein in its periphery (2.3).

Before reaching the lobule center, the blood mixed from its two sources passes through sinusoidal
endothelium-lined spaces where it contacts with the cells responsible for filtering the blood: hepato-
cytes. Although, this contact is not direct: between the sinosoidal endothelium and hepatocytes we
can find the space of Disse. This place is full of blood plasma and, in normal conditions, low-weight
contrast agents have access to it.

Based on all this information, one is now able to describe how an extracellular contrast agent
diffuses in the human body, and namely in the liver. First, the contrast is injected in a peripheral vein.
Then, it will join all the blood that comes from other parts of the body and enters the right heart.
Next, the contrast performs the pulmonary circulation and re-enters the heart where it is driven into
the aorta by the contraction of the left ventricle. Through the branching of the aorta it will reach the
hepatic artery and consequently the liver. At the same time, gadolinium enters the systemic capillaries
of the gastrointestinal tract. The respective blood is then gathered by the hepatic portal vein and a
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second amount of contrast enters the liver with a certain delay. In the liver, the blood from the two
distinct sources is mixed and passes through the sinusoids, where part of the contrast is retained in
the space of Disse. After the sinusoids, the blood is collected by the hepatic vein. Finally, this leads
it to the inferior vena cava and again reaches the right heart, closing the cycle. In parallel, part of
the contrast agent is excreted by the kidneys that, in normal conditions, are able to halve the total
amount of contrast present in blood in about 1.5 hours[1].

Figure 2.3: Liver lobules. In this picture one is able to identify the main liver structures where blood
passes through.

2.3 Liver Tumors

After a general view of the DCE-MRI imaging technique and a description of how the contrast agent
spreads within the body and in the liver, one should now focus on the abnormal situations.

Tumors alter liver perfusion regionally, and even globally in some situations. The way it is altered
depends largely on the type of tumor. Therefore, in order to better understand the differences in
images obtained for different tumors, one should have a particular overview through the most common
tumors that can develop in the liver.
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Based on its origin, liver cancer can be classified as primary, when is the result from a abnormal
development of one or a group of liver cells, or as secondary, when metastasized from a malignant
tumor original from other part of the body.

Since every tumor has its own characteristics depending on the type of cells from which it started
developing, liver metastasis can vary a lot.

This section starts by describing the primary benign cases, followed by the malignant cases where
one founds the most common primary malignant liver tumor and a brief reference to metastatic tumors.

Benign Tumors

Hepatocellular Adenoma

Hepatic adenomas are more frequently observed in women, what may suggest a hormonal influence in
its pathogenesis. Normally present in the right lobe they can reach large dimensions, surpassing 10 cm,
and be multiple. These two characteristics, if simultaneously present, increase the risk of malignancy
that in normal cases would be low.

When observed through a microscope, hepatocellular adenoma cells show increased glycogen, ap-
pearing paler and larger than normal. These tumors show no bile ducts and receive only arterial
supply, contrasting with the rest of the liver that is mainly supported by the portal venous supply.
Kupffer cells may be present but with remote activity.

Hepatocellular adenomas may be detected accidentally or induce symptoms such as pain, the
existence of a palpable mass and circulatory collapse if there is intratumor hemorrhage. Diagnose can
be made by ultrasound, CT, MRI and radionuclide scans.

In T1-weighted DCE-MRI images these tumors normally show early hyperintensity in arterial
phase and hypointensity in portal and latter phases[30] but may contain hyperintense zones due to
hemorrhage or presence of fat.

Focal Nodular Hyperplasia

Focal nodular hyperplasia is the second most common benign tumor. Like hepatocellular adenomas,
these are also more frequent in women. These tumors are normally solid masses with fibrous core and
stellate projections containing atypical hepatocytes, biliary epithelium, Kupffer cells, and inflammatory
cells. These lesions have decreased portal vein supply and are associated with the development of
portal hypertension. Detection can be made via helical CT, angiography and MRI but difficultly with
ultrasound.

In T1-weighted DCE-MRI they are usually hyperintense and marked by an early arterial enhance-
ment and a rapid loss of contrast(washout), showing increased perfusion. Even though, they maintain
hyperintensity in latter phases[30].

Hemangioma

Like the previous two tumors, this one is also more frequent in women. Hemangiomas are the most
common benign liver tumor having a prevalence of 0.5 to 7% in general population [47]. They are
asymptomatic and therefore they are usually detected by accident. Hemangiomas are basically the
result of an abnormal development of blood vessel endothelial cells. In this type of tumor, malignant
change does not occur and liver resection is only necessary when mass effects are observed.

In multiphasic T1-weighted DCE-MRI they are normally hyperintense at the arterial phase, main-
taining this feature even in latter phases.

Hemangiomas can be misidentified with hepatocellular carcinomas in the early phases but distinc-
tion can be usually performed at latter ones, when HCC reveal hypointensity[19]. Nevertheless, large
cavernous hemangiomas can show a central hypointense region resultant from fibrosis.
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Nodular Regenerative Hyperplasia

Nodular Regenerative Hyperplasia consists of multiple hepatic nodules formed as a result of periportal
hepatocyte regeneration accompanied with atrophy of surrounding tissue. Its pathogenesis is unknown
but studies show that it may be related with abnormalities in the hepatic blood[40], being formed as
the response to atrophy of the liver, caused by vascular obstruction of small portal veins or hepatic
arteries[39]. The most common symptom in non-cirrhotic liver is portal hypertension and, in some
cases, anomalous liver function with progressive symptoms are observed[10].

T1-weighted DCE-MRI images reveal homogeneous hyperintensity in all phases[30].

Malignant Tumors

Hepatocellular Carcinoma

Normally, in the context of liver cancer, studies refer mainly to Hepatocellular Carcinoma (HCC) as
it is by far the most common malignant primary liver tumor.

HCC is more common in men and usually arises in a cirrhotic liver. Cirrhosis may be an important
contributor to HCC although not being an essential precondition.

Concerning its pathogenesis one may point viral infection by hepatitis B and C, chronical alco-
holism, hereditary hemochromatosis and food contamination. In patients with underlying cirrhosis
these tumors may be difficult to diagnose since symptoms caused by HCC may be interpreted as a
progression of the underlying disease. Nevertheless, the most common symptoms are abdominal pain
and the presence of an abdominal mass in the right upper quadrant. Moreover, HCC tumors frequently
cause intrahepatic portal vein obstruction [12].

While the hepatocarcinoma tumor grows and perfusion needs are increased, angiogenesis is pro-
moted. This causes new branches from the hepatic artery to form in order to provide more nutrients
and oxygen to the cancerous tissue. However, the precancerous nodules - adenomatous hyperplasia -
are mostly supplied by the portal vein. Consequently, as the nodule develops into HCC, it may present
an outer venously supported region([12],[31]). Nevertheless, mature HCC tumors are mostly supplied
by arteries([49],[32]).

Diagnose may be performed using ultrasound, CT, MRI, hepatic artery angiography and technetium
scans. Ultrasound may be more appropriate for screening since it is less expensive and is able to identify
tumors greater than 3 cm. Besides this, CT and MRI scans have higher sensitivities. When its presence
is suspected, a percutaneous liver biopsy of a part of the region detected can be diagnostic. Although,
this procedure should be performed with extreme caution since HCC are extremely vascularized.

Patients with Hepatocarcinoma are usually classified according to tumor severity and corresponding
life expectancy. In 2001, a study performed by the Liver Cancer Study Group of the University of
Toronto[24] compared CLIP[34] (Cancer of the Liver Italian Program) and Okuda staging systems,
concluding that CLIP criteria was easier to implement and also more accurate. This classification
system is resumed in tables 2.1 and 2.2.

In certain cases therapy may prolong life but surgical resection is the only method for cure. However,
factors like underlying cirrhosis, involvement of both hepatic lobes, metastases in other parts of the
body and the reduced life expectancy make difficult to find patients with resectable tumors at the time
of detection. Therefore, as already mentioned, screening may be essential to increase survival of HCC
patients.

Another alternative to be considered is liver transplantation. This shows the same survival after
transplantation for patients with a single lesion of no more than 5 cm, or 3 or less lesions with maximum
of 3 cm, than for patients with nonmalignant liver disease.
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Scores
Variables 0 1 2

Child-Pugh stage A B C
Tumor uninodular and multinodular and massive or

morphology extension ≤50% extension ≤50% extension >50%
AFP(ng/dL) <400 ≥400

Portal vein thrombosis no yes

Table 2.1: Cancer of the Liver Italian Program (CLIP) classification system of Hepatocellular
Carcinomas[34], where Child-Pugh[42] is another classification system used to assess the prognosis
of chronic liver disease, mainly in cirrhosis, and AFP is the concentration of alpha-fetoprotein that, if
elevated, may indicate liver cancer. The final classification is obtained adding the scores obtained in
each variable. See table 2.2

Final Median survival Interquartile
Score (months) Range (months)

0 42.5 37.5 - not measurable
1 32.0 25.5 - 38.0
2 16.5 14 - 19.5
3 4.5 4 - 5
4 2.5 1.5 - 3.5

5+6 1.0 1 - 1

Table 2.2: Results obtained in [34] relating scores calculated with CLIP staging system (table 2.1) and
median survival in months. The superior limit of the interquartile range for 0 score was not measurable
since this group contained several survivors. The results were based in 435 patients with HCC.

Metastic Tumors

Metastasis to liver is very common being found in 30% to 50% of patients dying due to cancer.
Symptoms are normally referable only to the primary tumor. Diagnosis can be performed using
ultrasound, CT or MRI. Response to all forms of treatment is normally poor and palliation may be
the only measure to take.

In T1-weighted MRI, liver metastasis show always hypointensity in latter phases and frequently
are hyperintense in arterial phases[30]. Liver metastasis are mainly supplied by the hepatic artery[49].

2.4 Liver Perfusion Analysis

As stated previously, liver perfusion is affected differently depending on the type of tumor. Therefore,
in order to classify tumors based on DCE-MRI images, one should be able to assess perfusion charac-
teristics. This can be done by transporting the information contained in the image-level to a perfusion
model capable of describing the intensity changes observed. As a result of this operation, a set of
parameters, resulting from fitting the model developed to the image data measured, is obtained. Con-
sequently, this approach relies on the capability of the method to describe the processes that underlie
the temporal intensity changes in MRI images.

Moreover, when working with low temporal resolution images, applying a model allows fighting the
lack of information by adding data derived from the knowledge of the problem being studied. This
is done, for example, by establishing relations between observed objects or by limiting the data to
physical possible values.
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In 1997, Paul S. Tofts wrote a review[50] about the tracer kinetic models used at the time. As he
reports, when Gd-DTPA, a Gadolinium-based low-weight contrast agent, also known as Magnevist,
started to be used with MRI in the mid-1980s, there was no pharmokinetic or physiologic modeling of
the data. This new imaging technique emerged with the purpose of assessing brain tumors and led to
the sprout of new 4-D information that lack standard analysis tools.

A few years later, as a response to this problem, three models were presented by three distinct
teams: Tofts and Kermode[52], Larsson et al.[23] and Brix et al.([6],[5]). Tofts describes the different
methods and exposes the similarities and differences between them. In parallel it is expressed the need
to define standard approaches and nomenclatures to deal with this new problem so that information can
be more easily compared between different investigation teams. As a result, in 1999 he, the authors of
the described methods and several other investigators published a paper[51] proposing a new standard
approach to modelate low-weight tracer kinetics. This document stands today as a reference for all
the work developed in this area.

Figure 2.4: Figure showing the contrast (C) in the blood plasma and in the Extracellular Extravascular
Space (EES).

Before proceeding further, the main assumptions made by the models presented should be described[50]:
- From this point forward it is assumed that the contrast we are dealing with is an extracellular one.
Therefore one considers that it can only be found either inside vessels, diluted in the blood plasma, or
outside them, in the extracellular space.
- The term Extracellular Extravascular Space (EES) refers to the space outside cells and vessels, ex-
cluding the blood plasma, where tracer can be found.
- The pharmacokinetic models consider the compartment notion to refer to spaces with homogeneous
diffusion properties, where the contrast or the substance in analysis can be found in a uniform con-
centration.
- The kinetic parameters are considered constant during the time of acquisition.
- The flux between compartments is proportional to the corresponding difference in concentration.

The generalized kinetic model, presented in [51] for the variation of contrast concentration in tissue,
dCt/dt, is:

dCt
dt

= KtransCp − kepCt (2.1)

, where Cp and Ct are respectively the tracer concentrations in blood plasma and in tissue, Ktrans is
the volume transfer constant between blood plasma and the EES and kep is the rate constant between
EES and blood plasma. It should be noticed that the volume of EES per unit volume of tissue ve is
given by:

ve =
Ktrans

kep
(2.2)

13



The solution of the differential equation 2.1, considering that initially Cp and Ct are 0, is then:

Ct(t) = Ktrans

t∫
0

Cp(τ)e−kep(t−τ)dτ (2.3)

, and the corresponding impulse response:

h(t) = Ktranse−kept (2.4)

, where the impulse corresponds to a pulse of concentration equal to 1/(pulseduration).
A few years later, in 2002, a paper describing a method for quantification of hepatic perfusion

with dynamic MRI by Materne et al.[28] was published. This seems to be the first dual-input model
described that takes into account liver dual-blood supply. The model considers the whole liver including
capillaries, EES and cells as a single compartment.

The equation that describes the model is then:

dCL
dt

= k1aCa(t) + k1pCp(t)− k2CL(t) (2.5)

, being CL,Ca and Cp respectively the contrast concentrations in the liver, aorta and portal vein;
and k1a the aortic inflow rate constant, k1p the portal inflow rate constant and k2 the outflow rate
constant.

Considering initial null liver concentration and two delay parameters τa and τp that represent
respectively the transit time between the aorta and the portal vein, and the the liver, we obtain:

CL(t) =

t∫
0

[k1aCa(t′ − τa) + k1pCp(t
′ − τp)] e−k2(t−t

′)dt′ (2.6)

The method was validated in vivo in nine male rabbits with normal liver function. Liver perfusion
parameter measurements were made before DCE-MRI acquisition using radiolabeled microspheres.
The results obtained are found in table 2.3.

Property Microspheres DCE-MRI
(mLmin−1100g−1) (mLmin−1100g−1)

Hepatic flow 93± 42 100± 35
Arterial flow 20± 10 23± 13
Portal flow 73± 35 84± 32

Table 2.3: Results obtained in [28] for in vivo validation of the assessment of hepatic perfusion using
DCE-MRI images.

Three years before (1999), Scharf et al. [45] performed similar experiments demonstrating the
potential of DCE-MRI to assess hepatic perfusion. The experience described had also the objective
of testing the ability of DCE-MRI to measure liver perfusion. Therefore, DCE-MRI was performed in
nine pigs before and after partial portal occlusion. In parallel, perfusion was measured using thermal
diffusion probes.

The results from DCE-MRI images perfusion analysis of the average portal flow had a correlation
of r=0.93 with the results obtained with thermal diffusion probes. Acquisition was T1-weighted,
performed using a 1.0 Tesla MRI scanner and high temporal resolution was used, having been acquired
120 images over 4 minutes from one section. A linear relation between intensity and Gd concentration
was considered and perfusion curves were obtained using a linear dual-compartment model with single
input.
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Besides the relevance of the results shown, the model suffered from considering only one input
function. Moreover, both in these and in the experiments performed by Materne et al., the signal used
corresponds to the whole liver, which would make impossible tumor classification.

In 2005, a review from Pandharipande et al.[38] on Perfusion Imaging of the Liver was published.
According to the authors ”The ability to resolve hepatic arterial and portal venous components of
blood flow on a global and regional basis constitutes the primary goal of liver perfusion imaging.”
The paper described the development of HCC from dysplastic nodules with focus on the consequent
arterial fraction increase.

Moreover, the increased hepatic arterial liver perfusion, in a local and global basis, is also referenced
in metastic disease. Analysis of the balance between arterial and venous perfusion is also reported as
a possible strategy to diagnose cirrhosis. The review concludes highlighting the importance of DCE-
MRI as a non-invasive diagnostic tool and pointing the importance of increasing temporal and spatial
resolution in this imaging technique.

A different approach to model liver perfusion was proposed by Mescam et al. [29] in 2007. The
method presented a very interesting and complete perfusion model, describing carefully hepatic per-
fusion. Although the elevate number of variables may pose difficulties in terms of its application to
tumor classification.

Recently, in 2009, Matthew Orton et al. described a dual-input single compartment pharmacoki-
netic model of liver perfusion[36]. As they state, spatial resolution of MR and CT studies are sufficient
to allow dual-input single-compartment modeling viable, especially if the data is acquired at a high
temporal resolution. As a result, arterial and portal perfusion can be analyzed separately and its
ratio assessed. As Pandharipande et al., the authors refer to metastasis and cirrhosis liver perfusion
affection, highlighting the value of liver arterial ratio assessment in the diagnose of this diseases. The
model presented takes into account that the blood that comes from the two distinct sources mixes
together at liver sinusoids (figure 2.3).

Consequently, the input function is given by the weighted sum of the portal and arterial input
functions:

Cp(t) = γCA(t) + (1− γ)CV (t) (2.7)

, where Cp is the mixed blood plasma contrast concentration, CA is the arterial blood plasma
contrast concentration, CP the portal blood plasma contrast concentration and γ the arterial ratio.

Considering this, the contrast leakage from hepatic sinusoids to the EES is then modeled. This is
done using the generalized kinetic model defined by Tofts et al. in 1999. A delay τ is introduced to
represent the time taken by the blood from the vessels where the input functions signal was measured
to the liver sinusoids.

Thus, the model is mathematically expressed by:

Ct(t) = KtransCp(t)⊗ e−kep(t−τ) (2.8)

, where the impulse response form was used and Ct represents the contrast concentration in tissue.
The model is similar to the one from Materne et al., with k1a = γKtrans and k1p = (1− γ)Ktrans.
According to another publication of the same authors[35], the input functions can be modeled

considering that the concentration in blood plasma is the superposition of the bolus shape and its
shape after modification by the body impulse response:

Cinput(t) = CB(t) + CB(t)⊗G(t) (2.9)

, being CB(t) the bolus function and G(t) the body impulse response.
If we now consider a bolus of the form:

CB(t) =

{
0 if t=0
aBte

−µBt if t>0
(2.10)
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Figure 2.5: Bolus model function described in equation 2.10 with aB = 1 and µB = 0.25.

, and a body impulse response G(t) = aGe
−µGt, we obtain the following input model function:

Cinput(t) = ABte
−µBt +AG(e−µGt − e−µBt) (2.11)

, with AB = aB − aBaG/(µB − µG) and AG = aBaG/(µB − µG).
The small number of variables included in this liver perfusion model turns it adequate to a data

fitting approach.

2.5 Registration

The assessment of the perfusion curves based on images is only possible when we are able to follow
the intensity variation of a determined region through time. Therefore, every image from each study
should be aligned such that each voxel corresponds always to the same region, or more specifically, to
the same group of cells.

Besides being easy to understand the problem, alignment of abdominal DCE-MRI images is a very
challenging task.

One can distinguish three main factors in this particular type of medical image that explain the
difficulty of this alignment. Firstly, the lack of an intensity fixed meaning in MR images jeopardize
the direct intensity comparison even for two images of the same body region, acquired in the same
scanner, with the same protocol[33]. Secondly, tissues differential contrast uptake alters image in a
very heterogenic way. Last but not least, abdomen has a great freedom of movements and breathing,
peristalsis and other factors may cause organs to deform and change their relative position inside the
abdominal cavity. These changes combined altogether make almost impossible a perfect alignment.

In order to address these issues, inter-modality similarity measures that can overcome non-linear
intensity variations are used. Also, in order to minimize motion artifacts, patients may take medication
to reduce peristalsis[27], images may be acquired in breathold, like the ones used in this thesis, some
scanners use cardiac-triggered acquisition and constant progress is made towards faster MR acquisition.

In this work, image alignment was performed by means of a very flexible registration software: drop
registration toolkit([16],[21]). This tool considers Free Form Deformations (FFD)[44] and proposes a
solution based on Markov Random Field(MRF) Optimization. The interest in FFD comes from the
degree of flexibility provided by this type of transformation but also because these allow diminishing
considerably the dimension of the problem and provide smooth results.
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In a very simple way, FFD consider a deformable grid superimposed onto the image one seeks to
deform. In this grid the interaction is made through the intersection points of the grid, referred to as
the control points.

After moving one of these points, the pixels of the deformable image will deform according to its
distance to the displaced control point and the overall image will be reconstructed using interpolation
techniques. Based on this concept, drop seeks to find the group of displacements that, once applied to
each point of this deformable grid, will maximize the similarity between the corresponding deformed
image and the reference image. This is done considering the group of control point deformations as a
set of random variables respecting the MRF properties - MRF Optimization[21]. The concept of FFD
can be better understood in image 2.6

Figure 2.6: Free Form Deformations[56].

The alignment process or registration can be seen as the problem of finding the transform T (x)
such that:

∀x ∈ Ω, It(x) = h ◦ Id(T (x)) (2.12)

, where It is the target image; Id is the deformable image; h is a non-linear operator that explains
the changes between images related to evolution of the low-weight contrast agent in blood vessels and
EES, and also imaging artifacts; T is the coordinate transform and x is the coordinate vector.

Now, let us consider a deformation grid G : [1, L1] × [1, L2] × [1, L3], with L1 × L2 × L3 control
points, superimposed onto the two images to be aligned: Id, It : [1, N1] × [1, N2] × [1, N3], such that
the deformations in the grid will only affect the deformable image. Thus, the transformation within a
point x of Id will be given by:

T (x) = x+D(x) (2.13)

, with

D(x) =
∑
p∈G

η(|x− p|)dp (2.14)

17



,being dp the displacement vector corresponding to p; and η a weighting function that expresses
the contribution of the control point p to the deformation in the point x.

Drop allows choosing different interpolation techniques to perform the Free Form Deformations. In
this work B-Splines were used, and consequently D(x) becomes

D(x) =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n (2.15)

, where i = bx/δxc − 1, j = by/δyc − 1, k = bz/δzc − 1, u = x/δx − bx/δxc, v = y/δy − by/δyc,
w = z/δz − bz/δzc, Bl is the B-Spline lth basis function, and δx = N1

L1−1 , δy = N2

L2−1 , δz = N3

L3−1 the
control point spacing.

In order to direct the evolution of the deformations in each control point, information concerning
the alignment of the image has to be assessed. The relevance of each voxel in the direction of the
deformation of a determined control point will obviously depend on their mutual distance. Drop uses
different weighting techniques to answer this problem depending on the similarity measure used. When
using Mutual Information[26], a simple mask centered on the control point with certain dimensions
is applied. Consequently, the deformation in one control point depends on the voxels selected by
this mask. Since MI is a statistical measure, the similarity value that reaches each control point is
computed based using this neighbor voxels. Given that the size of this mask depends on the resolution
of the grid, increasing resolution decreases the amount of data that each control point has access when
making the decision of the deformation direction. According to the authors of drop[16], this effect
does not play a crucial role and very good results are shown using statistical measures. Nevertheless,
it should be taken into account when choosing the grid resolution and, obviously, the number of bins
used in the MI computation.

Returning to the formulation of the registration problem, the energy function one pretends to
minimize in order to align Id and It has the following form:

E = Edata + λEsmooth (2.16)

, where one finds two distinct terms: the data energy term that reflects the similarity measured
value between Id and It and the smoothness term with variable weight λ that allows controlling the
smoothness of the result obtained. The first term is the sum of the similarity measure calculated for
each control point,

Edata =
∑
p∈G

MI(Mp ⊗ It(x),Mp ⊗ Id(T (x))) (2.17)

, being Mp the mask centered in p with predefined dimensions that selects its neighborhood.
Relatively to the smoothness term, this should penalize displacement differences between close grid
points. Therefore is given by:

Esmooth =
∑
p∈G

∑
q∈N(p)

|dp − dq| (2.18)

, where N(p) is the neighborhood of the control point p.
The final solution is found by an iterative process using MRF optimization based on linear pro-

gramming. As already referred, the registration algorithm will seek the group of displacements that
minimize the energy function described.

2.6 Imaging Studies used in this Thesis

The work developed in this thesis used multiphasic T1-weighted DCE-MRI images with 6 timepoints
each. The first timepoint corresponds to the non-contrast acquisition, the following three to the arterial
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phase acquired using keyhole, the fifth one to the portal phase and the last one to the equilibrium
phase.

Figure 2.7: Schematic representation of the different phases and corresponding acquisitions through
time.

The history of events that underlie the acquisition process may be reported as follows:

- First, a simple MRI acquisition is performed without any contrast. Two images may be acquired in
order to ensure the quality of the scan performed.
- Then, the contrast - Gadovist with a Gadolinium concentration of 1.0 M- is injected at a constant
speed of 1.5 ml/s. The total amount of contrast injected depends on the patient’s body weight, being
0.1 mmol of Gd per each kg of body weight.
- Immediately afterwards, 15 to 20 ml of normal saline are injected at the same speed with the purpose
of maintaining the coherency of the bolus.
- After contrast injection, the heart and surrounding vessels are tracked at a constant frequency of 2
images per second.
- The moment the contrast is detected in the left heart or in the aorta, the patient is told to sustain
its breath and the arterial phase is launched.
- In the arterial phase the k-space is acquired partially, according to the keyhole technique. As so, in
the first two images of this phase only the low frequencies are registered, followed by the third image
which corresponds to the complete acquisition. The whole phase lasts 21 seconds, taking the initial
images 3.5 s and the last one 14 s.
- After this breathold acquisition, the patient is allowed to breath for about 10 to 20 seconds.
- Then, the patient returns to sustain its breath and the portal phase is acquired.
- The process ends with another free-breathing interval followed by the last acquisition - equilibrium
phase.
- Apart from the arterial phase images, each one of the others takes about 20 seconds to be acquired.

From this description we should conclude that the time course of each case may vary considerably. This
depends mostly on patients ability to sustain their breath, influencing the free-breathing intervals, but
also on its blood flow and corresponding speed, which affect the time between the contrast injection
and the start of the arterial phase.

The cases analyzed are summarized in table 2.4.
All imaging studies were acquired with a 1.5 Tesla superconducting magnet (Philips Achieva;

Hospital Erasme, Brussels) with the patients placed in the supine position. A T1-weighted Gradient
Echo sequence was used with a flip angle of 10o, repetition time of 3.93 msec and echo time of 1.87
msec.

In terms of fat suppression, Spectral Adiabatic Inversion Recovery (SPAIR) was used.
Each image has the following matrix dimensions: 256x256x150 with a corresponding pixel spacing

of 1.75 mm and a slice thickness of 3.6 mm with spacing between slices of 1.8 mm.
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Patient Pathology Tumors analyzed Time Vector (s)
1 Neuro-endocrine metastase 1 {0, 54, 58, 61, 117, 146}
2 Nodular Regenerative Hyperplasia 2 {0, 70, 75, 80, 191, 238}
3 Focal Nodular Hyperplasia 1 {0, 64, 67, 71, 156, 188}
4 Hemangioma 1 {0, 63, 66, 70, 119, 165}
5 Hepatocellular Carcinoma 3 {0, 56, 59, 63, 124, 158}
6 Hepatocellular Carcinoma 1 {0, 55, 59, 63, 164, 199}

Table 2.4: List of patients corresponding to the images used in this thesis.
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Chapter 3

Model

This work had as initial data the DCE-MRI images with confirmed diagnosis given by the Hospital
Erasme, Brussels. Based on these, it was intended to develop a classification method that could assess
perfusion differences between malignant and benign tumors.

This problem had already been studied at ISR by Caldeira, L.; Silva, I. and Sanches, J. ([9],[7],[8]),
having been shown some differences between wash-in and wash-out rates from benign and malign
lesions. Although the method used revealed interesting results, it considered only a single input
function, omitting liver characteristic dual-blood supply. Despite this, it demonstrated how perfusion
parameters can be accessed through the analysis of voxel-by-voxel tumor perfusion curves.

Many studies and reviews ([28],[50],[18],[13],[36],[35],[43],[25],[37], and many others) point in the
same direction, revealing that pharmokinetic analysis has a wide range of potential applications related
to tumor analysis. Thus, a similar approach was made to address the liver tumor classification problem.

Figure 3.1: Schematic representation of the algorithm different processes underlying the tumor param-
eter accessment.

The strategy used is described as follows. First, a region containing the whole liver is simply
extracted by cutting the initial images. One should consider that DICOM files of distinct images may
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contain differences in the intensity scales that need to be corrected. Then, since it is pretended to
make a voxel-by-voxel pharmacokinetic analysis, one should align the images of each study.

After the alignment, the perfusion model may be applied and the corresponding parameters ex-
tracted. However, this task needs a previous definition of the regions from where the input functions
signal will be measured, as of the volume where the analysis will be made. In a normal procedure the
tumor should be found at the center of this Volume Of Interest (VOI).

Having the analysis been completed, the task of defining the spatial limits of the tumor presents
easier than before. A simple segmentation technique based on the Region Growing algorithm is then
applied. The tumor perfusion data can now be retrieved and the mean values and standard variation
of its parameters are calculated.

Finally, results from different tumors are compared. The algorithm described is schematically
presented in figure 3.1.

Next, each part of the algorithm is described in more detail.

3.1 Crop

The images acquired contain a lot of unusefull data that makes heavier image processing. Taking into
account the purpose of this work and the information needed to apply the analysis method, we should
conclude that a box containing the whole liver, a part of the aorta and obviously the portal vein is
sufficient. Therefore, the crop reveals to be a very simple task that only needs the identification of the
limits of the structures described.

Figure 3.2: Example of the liver crop.
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3.2 Registration

As already mentioned, the image alignment was accomplished using drop registration tool. This tool is
not directed specifically to DCE-MRI images, having been developed with the purpose of being able to
respond to a broad group of registration problems. Consequently, the user should take several options
in terms of the registration parameters.

As previously mentioned, the intensity variation caused by the diffusion of the contrast in the
human body, turns impossible the establishment of intensity identity relations between voxels of the
two different images from the same study. This problem is resolved by applying statistical similarity
measures such as the Mutual Information (MI) or its normalized version (NMI).

The similarity measures are defined as follows:

MI(IA, IB) = H(IA) +H(IB)−H(IA, IB) (3.1)

, where H(·) is the entropy, given by:

H(I) = −
∑
i

pI(i) · log(pI(i)) (3.2)

, being pI(i) the probability of observing a voxel with intensity i in the image I. H(·, ·) is the joint
entropy of two images which is given by:

H(IA, IB) = −
∑
i,j

pIAIB (i, j) · log(pIAIB (i, j)) (3.3)

, where pIAIB (i, j) is the probability of observing one voxel with intensity i in the image IA and
intensity j in the image IB .

The normalized version of mutual information, also referred as Entropy Correlation Coefficient, is
simply:

NMI(IA, IB) =
H(IA) +H(IB)−H(IA, IB)

H(IA) +H(IB)
(3.4)

Figure 3.3: Perspective of how the number of bins affect the image and the ability to distinguish
objects in it.
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In order to calculate the probability values, the intensity scale has to be divided in a certain number
of equal intervals or bins. The number of bins has also to be optimized. In the one hand, the greater
its value the more sensible to noise the similarity measure will be. On the other hand, a value too
small does not allow to distinguish objects in the image, turning impossible the alignment task (see
figure 3.3).

One should consider that drop calculates MI and NMI in a local area around the control point
whose dimensions depend on the size of the grid. Besides, since it is being developed a voxel-by-voxel
analysis, the grid resolution has to be fine enough to allow obtaining the level of accuracy needed.
Consequently, an elevate number of bins may turn the calculation unstable since a small amount of
voxels are used to compute MI and NMI.

To decide about the similarity measure to use, as the corresponding number of bins, 60 registration
tests were performed. The results obtained can be found in figure 3.4.

Figure 3.4: Registration tests where two similarity measures were tested with 4 different number of
bins. The quality of the results is measured using the two similarity measures and mean values and
standard deviation is presented. The results were based in 60 image alignments. The 6 alignments
of each point correspond to the application of two different tests in 3 image studies: similar images
test, where two images without contrast are aligned; and opposite images test, where a pre-contrast
image is aligned with the one in the equilibrium phase. The values of MI and NMI used to evaluate
the performance of the alignments where calculated using 256 bins. The calculation was performed
excluding the peripheral voxels that, due to the image transformation, had no information.

A brief look at the results allows concluding that using Mutual Information as similarity measure
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with 14 bins proves to be the best solution. It is also noticed the instability phenomenon referred
previously by means of the standard deviation increase with the number of bins.

In terms of the grid, drop uses a hierarchical approach, being the registration performed in several
levels. As so, it starts with a large grid and, after the alignment process having been finished in each
level, the size of the grid is reduced to a half of the former one.

Since the displacements amplitude is connected to the size of the grid, the rigid body deformations
are normally corrected in the first level. The default value of levels is three, value that the drop authors
suggested as being adequate for the most part of alignment problems. Accordingly, this was the value
of levels chosen to align the image studies.

The grid resolution was chosen so that the finer grid level had a grid distance of about 8 voxels.
Several attempts were made using finer grids but no improvement was noticed.

Finally, the smoothening term weight - λ. This parameter varies considerably between different
situations. Normally was considered a λ value of 1, however in images that presented no great defor-
mations a greater value - 10 - was used, taking into account that no great displacements need to be
applied and a smooth result is desired.

Figure 3.5: Registration example. A checkboard view and the difference between the two images is
shown before and after the alignment.

Having now the main parameters chosen, the registration of each study was performed. This was
made choosing the same target image for all the alignments of each image study. The choice of anchor
image was made considering that the three arterial phase images are already aligned, having been
acquired using keyhole and consequently sharing the high frequencies section of the k-space. As a
result, the middle arterial phase image was chosen as anchor. Besides reducing the time taken to
align each study, one should not forget that interpolation techniques that deteriorate the quality of
the image are used, causing a blurring effect. Therefore fewer alignments allow decreasing the number
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of images that suffer this negative effects.
An example of a successful alignment is shown in image 3.5.

3.3 ROI definition

As it will be discussed later, the application of the pharmacokinetic model depends on the previous
knowledge of the contrast variation in the aorta and in the portal vein. Therefore, it is necessary
to define two regions inside each one of these two vessels. This task is performed manually and,
considering the purpose of these Regions of Interested, a depth of only one slice proves to be sufficient.
However, this is not the case for the tumor VOI since one pretends to analyze the whole tumor and
not a single slice of it.

3.4 Perfusion model

Input functions calculation

The main challenge present in this thesis is the lack of information resultant from using low resolution
images. In practice, the initial data consists of only 6 intensity values, observed per voxel in different
times. First, in order to be able to proceed with a pharmacokinetic analysis, a relation between intensity
and contrast concentration should be established. The best way to do this is by previous calibration,
filling several tubes with different solutions, with known contrast concentrations, and imaging them
[28]. Unfortunately, this information was not known. Even so, some studies point a linear relation
between contrast concentration and relaxivity[41]. Considering this, contrast concentration can be
approximated by the relative signal, or:

C(t, x, y, z) ≈ I(t, x, y, z)− I(0, x, y, z)

I(0, x, y, z)
(3.5)

, where C(t, x, y, z) is the contrast concentration at time t in the voxel with coordinates (x, y, z);
and I(t, x, y, z) is the intensity value of the same voxel at the same time.

Accordingly, the relative signal is now calculated for the mean intensities of the aorta and hepatic
portal vein selected regions.

Figure 3.6: Input functions example. The red points correspond to the arterial signal, and the blue
ones to the hepatic portal signal.
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Having now information concerning the contrast concentration, one should now focus on the deter-
mination of the perfusion curves that will be used as input functions. This task begins by fitting the
model shown in equation 2.11 to the signal retrieved from the aorta, using a least-squares approach.

Since the contrast present in the portal vein passes before in the aorta, this curve should be
obtained considering the arterial function as input. As so, the venous input function may be modulated
considering Tofts generalized kinetic model as:

dCPIF (t)

dt
= Ktrans

AP CAIF (t− τ1)− kPCPIF (t) (3.6)

, where Ktrans
AP is related to blood flow between the two regions.

The model can be interpreted as follows: the increase in the amount of contrast that one founds in
the hepatic portal vein depends on the contrast concentration in the aorta, a few seconds before, and
on the flow existent between these two vessels. In parallel, the higher the concentration in the portal
vein, the more this contrast will tend to diffuse into the EES and to the other blood plasma. kP is
then connected to the speed that characterizes this diffusion process. Overall, this may be viewed as
an example of what is described by Tofts et al. in [51] as a flow limited situation.

In conclusion, the hepatic portal input function is obtained by fitting the following equation:

CPIF (t) = Ktrans
AP CAIF (t)⊗ e−kP (t−τ1) (3.7)

An example of the arterial and portal input functions obtained is visible in figure 3.6. As one begins
to notice, using more points as a basis for the perfusion curves calculation may cause a significant
increase in the accuracy of the method.

Figure 3.7: Pharmacokinetic model used.

Liver perfusion calculation

Having an approximate measure of the contrast that is entering the liver by the hepatic artery and the
hepatic portal vein, one is now able to model liver perfusion. In contrast with the previous situation,
in this process the concentration in the liver is limited by the permeability of the sinusoids epithelium,
depending on the amount of contrast that flows between the sinusoids and the liver EES. Nevertheless,
in the corresponding volume of each acquired voxel one should find, apart from the hepatocytes, other
structures such as sinusoids and small vessels. Consequently this is a mixed situation, where the
concentration ’observed’ is both limited by the input flow and by the EES-to-sinusoids permeability.
Nevertheless, besides the perfusion parameters being influenced by different factors, the generalized
kinetic model remains unchanged, and can be described as follows:
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dCL(t)

dt
= Ktrans

L Cinput(t− τ2)− kLCinput(t) (3.8)

, or

CL(t) = Ktrans
L Cinput(t)⊗ e−kL(t−τ2) (3.9)

, where Cinput(t) is the input concentration, given by:

Cinput(t) = γCAIF (t) + (1− γ)CPIF (t) (3.10)

One is now in position to perform the model fitting in each voxel. The model corresponding to the
whole perfusion model is schematically represented in figure 3.7.

3.5 Perfusion Parameters

Having calculated the two input functions, the liver perfusion model is applied in each voxel of the
tumor ROI using least squares. From this process we obtain a set of perfusion parameters: Ktrans

L ,
γ, kL τ2, which characterize the voxel perfusion curve. This curve has also several characteristics
that may be useful for tumor characterization, such as: Maximum value and the time when it occurs;
the perfusion volume, calculated as the integral of the perfusion curve; wash-in rate measured as the
maximum derivative before the maximum and wash-out rate measured as the minimum derivative after
the maximum value. Here the approach was based on retrieving a considerable amount of parameters
in order to use the maximum information possible for the classification. The 9 parameters described
are registered for each voxel of the tumor ROI, allowing building several parameter maps.

3.6 Segmentation

The tumor VOI is defined as a 3D box in order to allow the user having the perception of the differences,
in terms of parameters values, between the tumor and the surrounding area. However, the tumor voxels
have to be identified, so that the mean and standard variation values of the tumor perfusion parameters
may be calculated.

Since the perfusion maps may help identifying the tumor limits, this task is performed after fitting
the data to the perfusion model. The segmentation applied in this thesis is based on the Region
Growing algorithm. This method of segmentation consists of starting with one point that we already
recognize as belonging to the structure we want to extract - the seed point -, and systematically adding
the neighbors that meet a certain condition of similarity. When analyzing the neighborhood of one
voxel, the conditions imposed are:
- the intensity of the neighbor should be between an upper and a lower bound defined by the user;
- the difference between one voxel and its neighbor should be smaller than a predefined limit, which
grants a certain homogeneity of the segmented structure.
To define the values corresponding to these conditions the user starts to choose the image where the
tumor can be better distinguished from the surrounding tissue. Then, since the tumor ROI should
have the tumor in its center, a small centered cube is retrieved from the selected image. After this,
the cube mean values and standard deviation are calculated. The segmentation is then performed
considering as limits the mean minus α times the standard deviation and the mean plus α times the
standard deviation, where α is defined by the user. The maximum intensity difference between one
voxel and its neighbor is β times the standard deviation observed in the cube, where β is another
user-defined value.

An example of a badly chosen β value and consequent leakage is shown in figure 3.8. In order
to avoid this, the search region is limited to the tumor ROI. Moreover, β is chosen small, what may
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cause several tumor voxels to not be identified by the segmentation algorithm. Consequently, a closing
operation is applied to the final segmentated region. As a result, the holes contained in the pre-
segmentated region corresponding to the non-identified voxels are filled. More details on this type of
morphological operation can be found in [17].

Figure 3.8: Example showing how a large β value can cause leakage. However, interestingly the error
consists of a parasite identification of one vessel and an intensively vascularized region that seems to
be the spleen. The tumor (Angioma) is the mass found in the left upper corner.

Having concluded the segmentation and consequently identified the tumor voxels, the mean and
standard variation of the perfusion parameters corresponding to the tumor are calculated.
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Chapter 4

Graphical User Interface

The model presented in the former chapter was implemented in MATLAB, and a Graphical User In-
terface(GUI) was developed in the same environment. This allows not only connecting all the parts
of the algorithm, but also improving the interaction between the imaging data, the algorithm and the
user.
The GUI developed here is composed by 3 different windows:

-the main window (figure 4.1);
-the ROI (Regions-of Interest) window (figure 4.2);
-the perfusion window (figure 4.3);

In the first one, the user loads and saves data, performs the tumor segmentation and analyses
the results. In the ROI window, the user defines the arterial, portal and tumor regions. The main
characteristic found in this component is the ability to view all the images from the image set at the
same time. This is of great importance when defining the several ROI, since registration may have
not produced the desired result and the user accompanies the region selection process in the complete
image set. Finally, in the perfusion window the user has access to the input functions and is able
to test the perfusion model. It should be noticed that the model fitting process is performed using
the lsqnonlin() MATLAB function. In a very general way, this works by starting with a initial set
of parameters and converging to the solution that minimizes an user-defined function. In this case
the cost-function used is the sum of the squares of the distances between the 6 initial points and
the value of the perfusion curve at the corresponding times. The parameters obtained are contained
between user-defined bounds. Consequently, the solution depends on the initial guess and the model
should be calibrated before applying it to the tumor. The calibration is simply made by performing a
pharmokinetic analysis in the normal liver and in the aorta. The values obtained for the arterial ratio
will allow assessing the response of the model to two regions whose supply is known. In terms of the
liver, every result above 25% is considered wrong and forces a re-definition of the initial parameters of
the input functions. Relatively to the aorta, obviously only results close to 100% are accepted.

In order to improve the understanding of how an user performs a normal analysis, a brief step-by-step
description follows:

- First, the user starts by loading the imaging data. The input object should be a .mat file con-
taining a 4D matrix with the pre-registered images and the time vector with the acquisition times.
- Then, in the ROIs window, the 3 regions (arterial, portal, tumor) are defined. Initially the ’tumor
ROI ’ may include only a normal part of the liver in order to calibrate the input functions.
- Now, the program has the information necessary to perform a first perfusion test. This is done in
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Figure 4.1: User Interface - main window

the perfusion window by means of controlling the input functions parameter limits and initial guess.
The user accompanies the effects caused by the changes inferred to the model in the two axes and in
the results section.
- After finishing the calibration process the ’tumor ROI’ may be redefined. The volume selected should
contain the tumor at its center and include a certain margin.
- The analysis starts as the user pushes the ’OK’ button in the perfusion window. Since this can take
from 2 minutes to several hours, depending on the number of voxels included in the tumor region, a
simple bar showing the time predicted for the end of the analysis was included.
- When this task is concluded, the user may now assess the perfusion maps calculated in the main
window.
- After viewing all the images, the segmentation should be performed with the image where the tumor
limits are more easily identified. This can be either one of the 6 initial images or one of the parameter
maps obtained.
- Then, the user defines the segmentation parameters (α,β) and accompanies the effects by comparing
the region selected with the original image. The user can also view the projections of the tumor in the
3 main planes: x0y, x0z and y0z.
-Finally, the tumor mean parameters can be viewed in the results part of the main-window. The option
to export the list of parameters obtained into an Excel spread sheet was also included.
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Figure 4.2: User Interface - ROIs window

Figure 4.3: User Interface - perfusion window
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Chapter 5

Results

The results are shown in accordance with the algorithm organization. As so, their presentation starts
with the input functions obtained for each patient, followed by the parameter maps calculated for all
tumor ROI analyzed. After this, the segmentation results are presented. The chapter ends with a
summary table of the most relevant tumor characteristics found.

5.1 Input Functions

As already mentioned, the entire process needs a previous definition of the three ROI: aortic, hepatic
portal and tumoral. This allows obtaining the points that will be used to calculate the input functions,
as well as knowing the region where the perfusion analysis will be performed. The input functions
obtained are presented in figure 5.1. As it can be seen, the contrast reaches previously the aorta and,
only after a certain delay, the hepatic portal vein. All AIF had higher amplitude than the corresponding
PIF, except for Patient 1. This disorder may be an effect of the metastatic tumor.

These input functions were previously tested by the application of the overall method in normal
liver tissue. The test results are summarized in table 5.1.

Patient Pathology Number of Arterial ratio
voxels analyzed in liver tissue

1 Neuro-endocrine metastase 96 0.035± 0.068
2 Nodular Regenerative Hyperplasia 87 0.002± 0.011
3 Focal Nodular Hyperplasia 88 0.014± 0.022
4 Hemangioma 95 0.149± 0.082
5 Hepatocellular Carcinoma 85 0.120± 0.076
6 Hepatocellular Carcinoma 92 0.001± 0.009

Table 5.1: Arterial ratios obtained after applying the model in regions of normal liver tissue. The
regions were carefully chosen so that they did not contained visible vessels.

The results were considered satisfactory since the model was able to detect that the liver receives
mainly blood from the portal vein. However, it should be noticed that the main purpose of this thesis
is not the correct measurement of the arterial ratio in the liver, but the detection of differences in this
parameter between normal tissue, benign tumors and malignant tumors. A careful analysis of liver
perfusion would need a much higher temporal resolution. This can be easily understood by observing
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the freedom that a perfusion curve has between the different imaging phases. The variability of the
input functions obtained confirms this aspect.

Figure 5.1: Input functions obtained for each patient. The red points correspond to the arterial signal,
and the blue ones to the hepatic portal signal. The black line close to the red points corresponds to
the AIF, and the other to the PIF.

5.2 Parameter Maps

The tumor regions were defined after calculating the input functions. As a result of the pharmokinetic
analysis of each region, one obtains a set of 3D parameter maps. In figures 5.3 to 5.11 is shown the
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main slice from the parameter maps obtained. The images are accompanied by the correspondent
DCE-MRI sequence in order to allow not only a better understanding of the results, but also viewing
how these perfusion images can help in the differentiation between tumors and normal tissue.

Before presenting the tumor results, there are shown two arterial ratio maps of entire slices of the
liver. The examples shown contain three tumors and pretend to demonstrate the usefulness of the
model in tumor detection. The arterial ratio maps were compared with the DCE-MRI image where
the tumors were more easily identified.

Figure 5.2: Whole liver arterial ratio analysis (right side). In the left side is presented the image where
the tumor limits where more easily identified (arterial phase). The tumors (Hepatocellular Carcinoma)
are signaled with a red circle.

From the parameter maps obtained several observations should be made:
- First it should be pointed out that the model used was able to identify perfusion differences between
all the tumors and the surrounding liver tissue.
- Apart from the quantification of the mean arterial ratio values in each tumor, the parameter maps
show clear differences between benign and malignant tissue in terms of its blood supply.
- Relatively to the other parameters, there is shown a certain relation between them and the arterial
ratio. This observation may be in accordance with the physiological background in some cases, but
in others it is clear that the lack of a higher temporal resolution, namely between the arterial phase
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and the portal phase, allows parameters such as the wash-out rate to depend too much on the input
function used.
- Relatively to the hemangioma case(figure 5.7), it remains the doubt whether the tumor is really
supplied by the portal vein. It is possible that the time taken by its core to uptake contrast have
erroneously caused the model to interpret this as a consequence of a low arterial ratio. Nevertheless,
if we consider the tumor classification perspective, this is in accordance with the other benign tumors.
On the other hand, it may actually result from an abnormal development of a hepatic portal vein
branch and, in this case, it would have been interesting to analyze the model response to an liver
arterial hemangioma.
- Furthermore, in terms of the perfusion volume one verifies a marked difference between big and
small malignant tumors. The smaller ones are highly and homogeneously irrigated. In contrast, the
accelerated growth with lack of vascular maturation causes the bigger malignant tumors to have high
perfusion in their exterior and low on their core. This difficulty to perfuse the interior is reflected in
almost every parameter.
- Other interesting parameter is the Time of Maximum that shows a tendency of the tumors to reach
the maximum value before the rest of the liver.
- Finally, considering all the shown cases in a general way, it is noticed that malignant tumors share
common features that distinguishes them from the benign ones. However, the benign lesions vary a
lot depending on the underlying pathology. This may suggest that the classification should be ad-
dressed not in terms of the distinction between carcinomas and benign tumors, but directed towards
the analysis of each pathology in separate. Consequently, a greater number of studies would be needed
to determine the common perfusion features of each type of lesion.

More conclusions will be drawn after the identification of the tumor voxels.

5.3 Segmentation Results

After calculating the parameter maps, the tumor voxels needed to be identified. As a result, the image
where the tumor had the best contrast was chosen and the segmentation performed. This process
needs the parameters α and β to be consecutively tested so that a good result may be obtained.

The results obtained from the Region Growing segmentation are visible in figure 5.12. In these
tumor projections is possible to detect some heterogeneity in the shape of the large malignant tumors.
However the largest and more irregular shape is found in a benign ’tumor’ (Patient 2 Tumor 1). In fact,
this mass is a conglomerate of multiple regenerative hyperplasia nodules, what explains its appearance.

5.4 Tumor Results

The complete set of parameters obtained for each tumor is attached to this thesis. In table 5.2 were
included the most relevant results in terms of the tumor classification.

Before commenting the results, it should be stated that the perfusion volumes shown represent
simply the integral of the perfusion curves. Consequently they depend on the time of acquisition, as
well as on the time at which the contrast was injected, what jeopardizes a inter-tumoral comparison of
these values. As a result, it was introduced the liver perfusion volume in order to allow the calculation
of the corresponding tumor/liver ratio. A greater ratio value should mean that, in comparison with
the liver, more contrast is detected in that tissue during the same time. This is related to the contrast
uptake and residence time.

Overall, the referred ratio was smaller in the malignant tumors. This may express a higher wash-
out rate in malignant tumors and a perfusion decrease especially in larger ones. More tests should be
performed with the purpose of determining the ability of this ratio to help in tumor characterization.
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In terms of the big carcinomas found in patients 1 and 5, the small ratio values may reveal the presence
of necrotic tissue.

Relatively to the arterial ratio, this revealed to be the distinguishing parameter in terms of malig-
nancy. Benign tumors had mean arterial ratios between 16.6% and 37.5%. On the contrary malignant
tumors revealed an arterial component in the range of 51.4% to 75.5%. These results are in accordance
with the known information about the liver malignant tumors: these tend to develop an arterial based
vasculature.

Patient Tumor Ben./ Volume Diam. Arterial Tum. Mean Liv. Mean Perf. ratio
Malig. (cm3) (cm) ratio Perf. Vol. Perf.Vol. (Tum./Liv.)

1 M 35.12 4.06 0.608± 0.471 7.03 15.55 0.45
2 1 B 326.33 8.54 0.202± 0.206 116.10 26.16 4.44
2 2 B 3.07 1.80 0.168± 0.166 117.76 26.16 4.50
3 B 6.26 2.29 0.375± 0.245 152.88 88.69 1.72
4 B 17.49 3.22 0.166± 0.208 263.23 85.62 3.07
5 1 M 73.28 5.19 0.660± 0.422 21.68 86.04 0.25
5 2 M 0.93 1.21 0.736± 0.175 147.35 86.05 1.71
5 3 M 2.40 1.66 0.755± 0.211 146.29 86.05 1.70
6 M 25.11 3.63 0.514± 0.362 86.18 36.32 2.37

Table 5.2: Summary table of the most relevant parameters in a tumor classification perspective. The
mean tumor arterial ratios are shown together with the corresponding standard deviation (std).The
tumor mean diameter was calculated considering a perfect sphere. The calculation of the tumor
dimensions considered the voxel dimensions and spacing between slices. Pathology abbreviations used:
Met - Metastase; NRH - Nodular Regenerative Hyperplasia; FNH - Focal Nodular Hyperplasia; Hem
- Hemangioma; HCC - Hepatocellular Carcinoma.
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Figure 5.3: Parameter maps obtained for the neuro-endocrine metastase found in patient 1.(malignant)
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Figure 5.4: Parameter maps obtained for a regenerative hyperplasia conglomerate nodule (tumor 1)
found in patient 2.(benign)
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Figure 5.5: Parameter maps obtained for a regenerative hyperplasia nodule (tumor 2) found in patient
2.(benign)
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Figure 5.6: Parameter maps obtained for an exemplar of a focal nodular hyperplasia tumor found in
patient 3.(benign)
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Figure 5.7: Parameter maps obtained for an hemangioma found in patient 4.(benign)
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Figure 5.8: Parameter maps obtained for an exemplar of an HCC tumor (tumor 1) found in patient
5.(malignant)
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Figure 5.9: Parameter maps obtained for an exemplar of an HCC tumor (tumor 2) found in patient
5.(malignant)
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Figure 5.10: Parameter maps obtained for an exemplar of an HCC tumor (tumor 3) found in patient
5.(malignant)
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Figure 5.11: Parameter maps obtained for an exemplar of an HCC tumor found in patient 6.(malignant)
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Figure 5.12: Projections of the tumor segmentated regions in the planes x0y, x0z and y0z.

49





Chapter 6

Conclusions and Future Work

This thesis had as initial objective the development of a method capable of classifying liver tumors in
terms of its malignancy. The approach to be developed should calculate the perfusion curves of the
tumors and use the information contained in them for the classification.

In order to gain insight into pharmokinetic tumor analysis, several subjects needed to be studied.
These included the imaging technique (DCE-MRI), the liver morphology and vascularization, the
main aspects of the tumors found in the liver and the main methods used to model tissue perfusion.
Moreover, the image alignment was also approached, being this a pre-requisite for a voxel-by-voxel
analysis of an image set.

Based on all the information collected, a strategy to assess liver tumor perfusion data was developed.
This consisted of three main steps: Image Pre-Processing, where the images were prepared for the
analysis; Retrievement of Perfusion Data, which was done by the application of the pharmokinetic
model; Analysis of Results, where the information obtained from benign and malignant was compared.

Having fixed the strategy it was needed to put it into practice. Consequently, the several compo-
nents of the algorithm were developed and a Graphical User Interface was created. The corresponding
application emerged not only as way to implement the method but also as a tool to manage the images
and perform the analysis.

Concluded the implementation, the program was tested using 6 DCE-MRI Images with confirmed
diagnosis (hospital Erasme, Brussels).

The results obtained showed that the model was capable of detecting differences between normal
liver tissue, benign and malignant tumors. Here the arterial ratio parameter played the main role.
The strategy used was able do detected a higher contribution of the hepatic artery in the perfusion of
malignant tumors. The differences between benign and malignant lesions, in terms of the blood supply,
were clear. The arterial ratio obtained from these two groups gave origin to two separate intervals.

Moreover, the analysis was performed in two complete slices of the liver. In these images three tu-
mors were evidenced, demonstrating that the ability to resolve hepatic arterial and portal components
of the blood, in the liver, can be useful in tumor detection and play an important role in applications
such as risk population screening.

In terms of the other parameters, these provided interesting physiological data concerning the tumor
perfusion. In almost every parameter map it is possible to distinguish differences between the tumor
and the surrounding tissue. Nevertheless the distinction of malignant features was not so clear as in
the arterial ratio maps. This may be a consequence of the lack of a higher temporal resolution. The
determination of the perfusion curves, with image sequences of only 6 acquisitions in about 3 minutes,
gives the fitting process more freedom than the one desired. Consequently, parameters gain a certain
variability that not only masks the distinguishing features but also jeopardize the use of the model in
perfusion quantification. Besides this, the model was able to identify the arterial and portal perfusion
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patterns allowing the distinction between malignant and benign tumors. This fact may indicate that
very interesting results may be obtained with high temporal resolution DCE-MRI images.

In conclusion, the main strength of this thesis consists in demonstrating the importance of con-
sidering the liver dual-blood supply in liver perfusion models. This is confirmed by the successful
application of such a model to low temporal resolution DCE-MRI images. Moreover, it was shown the
huge amount of data that can be retrieved from dynamic contrast images.

The development of this thesis allowed a reflection concerning the directions that pharmacokinetic
analysis shall follow in a near future. The evolution of rapid volume acquisitions that will allow
precise perfusion measurements, together with the standardization of perfusion models used, should
lead different research centers to create perfusion parameters databases. Moreover, the collection and
sharing of this perfusion information in a global basis shall provide the means to an early, reliable and
non-invasive tumor detection.

In cancer, the time of detection has a major influence in the chances of survival. As so, the use
of such strategies in screening applications has the potential to save a considerable number of lives
worldwide.
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