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 Functional Magnetic Resonance Imaging has established itself as the most powerful technique available today to 

measure brain activity induced by a perceptual or cognitive state. The inverse problem is considered in this study; given 

the measured brain activity, our goal is to predict the perceptual state. Machine Learning algorithms were used to 

address this problem in this work. Multi-subject fMRI data analysis poses a great challenge for the machine learning 

paradigm, by its characteristics: the low Signal to Noise Ratio (SNR), high dimensionality, small number of examples and 

inter-subject variability. To address this problem, several methods of classification and feature selection were tested. The 

main criterion of feature selection was mutual information in a univariate method, but a multivariate feature selection 

was also proposed. Both a single classifier and an ensemble of classifiers were tested. The ensemble of classifiers approach 

consisted on training an optimized classifier for each class and then the combination was made. The data analysed was 

obtained from three multi-subject experiments of visual stimulation with 4 classes of stimuli, at different magnetic field 

strengths. The ensemble of classifiers performs best for most data sets and methods of feature selection. The multivariate 

method does not show overall improvement in the classification. In summary, the results suggest that a combination of 

classifiers can perform better than a single classifier, particularly when decoding stimuli associated with specific brain 

areas. 

 
Index Terms—Brain decoding, ensemble of classifiers, fMRI, machine learning, multivariate feature selection, retinotopic mapping, 

and visual localizer.  

 

I. INTRODUCTION 

rain Imaging is nowadays one of the most exciting fields 

in neurosciences, as it offers the possibility of measuring 

brain activity in awake human subjects in loco [1]. These 

measurements lead to the development of brain mapping 

methods, associating perceptual or cognitive states with spatial 

or temporal patterns of brain activity. 

     Neuroimaging techniques for measuring brain activity 

include methods as different as electro-encephalogram (EEG), 
positron emission tomography (PET), magneto-

encephalogram and functional Magnetic Resonance Imaging 

(fMRI). The later is probably the most common method of 

assessing brain activity in humans due to the good 

compromise between its temporal and spatial resolutions as 

well as its completely non-invasive nature.  

    In each fMRI experiment, Blood Oxygen Level Dependent 

(BOLD) signals are recorded while the subject performs a task 

or experiences a stimulus [1]. The identification of the active 

brain regions in response to the experimental manipulation 

relies on detecting the differences in BOLD signal 

significantly correlated with the experimental paradigm. These 
differences are small, on the order of 5%, hence the signal to 

noise ratio (SNR) is intrinsically low for this technique.  

The usual approach to detect the active brain regions is 

statistical analysis; this statistical analysis is carried out using 

a linear approach by a General Linear Model (GLM) that takes 

into account the experimental manipulation and any existing 

confound variables. Therefore for each voxel the model is 

adjusted and a 3-D map of parameters estimates is created [2]. 

The active patterns are then determined by using the 

appropriate inference procedures. 

    In the last few years, driven by the increasing number of 

available data and the advent of new machine learning 

techniques, there has been a growing interest in the application 

of machine learning algorithms to fMRI analysis [3, 4]. This 

interest is supported by studies that demonstrate the possibility 

of extraction of new information from neuroimaging data [5, 

6]. 
   While the established methods of fMRI analysis, like GLM 

based analysis, look to find the brain activity pattern that 

corresponds to a stimulus or task, in machine learning 

classification analyses the question is inverted and the goal is 

to find the stimulus or task that correspond to the recorded 

brain activity pattern. Although this is the most common 

scientific question in fMRI machine learning classifier 

analysis and by extension the main focus of this study, there 

are other relevant questions that can be posed, especially in 

what regards activation patterns. For example whether there is 

information about a variable of interest, (pattern 

discrimination; where is the information is, (pattern 
localization) and how the information is encoded, (pattern 

characterization) [7]. Although these questions are not the 

main focus of this study, they will not be forgotten and will be 

addressed, as they can provide important information about 

the brain inner organization and function. 

The visual cortex shows functional differentiation as 

distinct stimulus induce specific brain activation patterns [8]. 

Primary visual cortex is one of the best examples of such 

organization; it is well documented that this structure shows 

retinotopic organization. Each visual quadrant field, and 
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therefore retina, is mapped in a well defined region in the 

primary visual cortex. The stimulus suffers double inversion, 

first it is flipped upside down in the retina and the sides 

inverted in the optic chiasm. Another example of the human 

brain specialization is the different response patterns observed 

for distinct categories of visual stimuli like faces, houses or 
tools [9].  These patterns consist of a network of brain regions 

that are differentially activated according to the presented 

stimuli. In order to identify these specific patterns, fMRI 

experiments were conducted consisting in the alternated 

presentation of different categories of visual stimuli, such as 

faces, houses, objects or scrambled objects. This kind of 

experience is therefore denominated localizer experience. It 

was found that a small area in the fusiform cortex responds to 

the stimuli faces more than to any other, the so called face 

fusiform area (FFA). It was also observed that a region in 

parahhipocampal cortex activates more for houses than for 

faces or other objects, the parahhipocampal place area (PPA). 
When recognized objects images are compared with 

unrecognized, scrambled images of the same objects, a large 

are in the lateral occipital cortex (LOC) shows greater 

activation.  

A. BOLD signal 

The signal measured in an fMRI experiment, BOLD, has 

unique spatio-temporal properties. The BOLD signal has a 

temporal delay of 3-4 seconds associated with the neuronal 

underlying process. The theoretical representation of the 

BOLD signal response to an impulse stimulus is known as 

Haemodynamic Response Function, HRF. The BOLD signal 

also yields an intrinsic spatial blurring, in other words, 

neighbour voxels have highly correlated signals across time.  

B. Machine Learning Overview 

Machine Learning is a scientific discipline that is 

concerned with the production and study of algorithms with 

the ability to learn and predict behaviours and patterns from 

data. The definition for machine learning by  Tom Mitchell 

[10]  is probably the most accepted and states that “A 
computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured 
by P, improves with experience E”. In the particular 
problem presented in this work, the interest falls over the sub-

area of supervised learning. Supervised learning deals mainly 

with regression and classification problems; classification is 

the discrete analogue of regression in which the predicted 
variable assumes discrete values.  

The classification problem, in a more formal way, can be 

defined as given a distribution of labelled examples 

𝒳 randomly withdraw an example x and classify it correctly. 

In order to obtain a classification, a function that can learn 

and map characteristics from the distribution to the example 

set to classify is required. Such a function that receive as input 

an example and returns a label or category is called a 

classifier, 

𝑦 = 𝑓(𝐱)                                       (1) 

where 𝑦  is the predicted class label, 𝑓 the classifier and x the 

example to classify. 

The problem of assessing the performance of a classifier 

can be defined as the expected value of the classification error 

for an example 𝐱 randomly withdrawn from the example 

distribution 𝒳. The problem definition gives rises to 

immediate issues, first, in practice, the data set has a finite 
number of examples and classifiers cannot test and train with 

the same data. To approach this limit situation the cross 

validation procedure is used. In cross validation the 

distribution is divided in k equal parts, then the classifier trains 

with k-1 parts, training set, and test with the remainder one, 

testing set. This procedure is repeated for all the k parts, (k-

fold cross-validation) and the mean classification error is 

assumed as the error of the classifier. It is of the utmost 

importance that there are not any kind of information flow 

between training and test sets in order to obtain a good 

estimation of the expect classification accuracy.  
A good way to assess how well a classifier is performing is 

to compare its accuracy with the expected accuracy for the 

chance classifier. A chance classifier is a classifier that learnt 

nothing and so its estimate is equivalent to a random guess, for 

instance, in a two class classification the expected accuracy 

for the chance classifier is 50%, for a four class it is 25% and 

so on.  

C. State of the art 

The fMRI data analysis with machine learning algorithms 

poses a great challenge due to low SNR, small number of 

examples and high dimensionality of the problem. Hence 

feature selection processes became mandatory. Several feature 

selection methods are available for this particular problem. 

The filtering/scoring methods are among the most used; these 

methods rank the features according to a given criterion and 

the best ranked features are chosen. The most common 

methods consider the n most active, most discriminatory, with 
the highest search light accuracy or most stable voxels in the 

whole brain or in regions of interest, ROI, as well as the 

average of these criterions across a ROI [3, 7, 11, 12] . 

Wrapper methods have already been used [13]. These methods 

use a learning machine to evaluate sub sets of features and 

decide the feature selection by the impact of the new features 

in the previous selected features [14], however due to high 

computational costs their use is sometimes prohibitive.  

The classifiers more used in the fMRI analysis with 

machine learning algorithms are Support Vector Machines 

(SVM), k Nearest Neighbours (kNN), Gaussian Naive Bayes 

(GNB) and Fischer Linear Discriminant (FLD) [3, 7, 12, 15] . 
Although SVM is the most powerful classifier from this set of 

classifiers it is the one with greater computational costs. The 

choice of the best classifier for a given experiment is not clear 

and so several classifiers are tested and the best performing 

chosen. 

However it was observed in several cases, especially high 

dimensional, that an ensemble of classifiers performs better 

than the single classifier approach [16, 17]; the use of 

ensembles of classifiers is a poorly explored area in machine 

learning fMRI analysis. Nevertheless some studies have been 

made using ensemble of classifiers in fMRI data. In [18] 
ensembles of decision trees were used to decode connectivity 

in fMRI and, in [19], several ensembles of different classifiers 

were tested but only for single subject data. In multi-subject 
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studies the validation procedure is usually done by leave-one-

subject-out cross validation. In other words each subject data 

corresponds to one fold [3, 7, 12]. The feature extraction 

process can be made in very different ways. It is common to 

average images within a block but the utilization of a single 

image was also done [3, 7, 12]. Ultimately the choice of the 
feature extraction method depends on the data.   

D. Objectives 

The objective of the work presented in this Thesis is to 
develop machine learning methodologies to decode the 

stimulus presented to a subject at a given time point during a 

visual mapping experiment. In particular, the feature selection 

approaches, the type classifier and the possibility of 

combining sets of classifiers will be investigated.  

II. MATERIALS AND METHODS 

A. Materials 

1) Data sets 

The first data set correspond to the mapping of each of the 

four different quadrants of the primary visual cortex to assess 

the retinotopic organization of this structure (Mapping 

Experiment). The stimulus consisted on four black and white 

checkerboards wedges flashing at 8 Hz as represented in Fig.1. 

 
Figure 1 Stimuli used in the Mapping Experiement, checkerboard 
wedges corresponding, from left to right, Q1, Q2, Q3 and Q4 [20] 

The paradigm consisted on a block design with the four 

stimuli alternating with the fixation in 16 seconds block in the 

order shown in Fig. 2. 

 
Figure 2 Paradigm used in the Mapping Experiment with 

block of four stimuli alternating with fixation [20] 

The data was obtained from 5 healthy subjects in two 

different sessions each on a 1.5T Philips system using BOLD 

image to collect 672 volumes with TR=2000ms, 24 slices and 

a voxel resolution of 3.750x3.750x5.000 mm3, yielding an 

image size of 64x64x24.The second and third data sets come 

from visual localizer experiments (Localizer Experiment1, 

Localizer Experiment2). These visual localizer experiments 

look to find the areas in the visual cortex specialized in four 

visual stimuli: Faces, Houses, Objects and Scramble, 

represented in Fig. 3. 

The paradigm for the localizer experiments is very similar to 
the previous one consisting of different ordered, sequences of 

the four stimuli interspersed by fixation periods on a block 

design with each block having 18 seconds, as explicit in Fig. 

4. 

 
Figure 3 Stimuli used in Localizer Experiment1 and Localizer 

Experiment 2, from the left to the right Faces, Houses, Objects 
and Scramble [21] 

Localizer Experiment 1 was obtained from 10 healthy 

subjects in two sessions, on a 3.0 Philips system using BOLD 

imaging to collect 118 brain volumes with TR=3000ms, 38 

slices and a voxel resolution of 2.875x2.875x3.000 mm3 

yielding an image size of 80x80x38.  Localizer Experiment 2 

was obtained from 10 healthy subjects in one session, on a 7.0 

Siemens system using BOLD imaging to collect 112 brain 

volumes with TR=3200ms, 40 slices and a voxel resolution of 

2.019x2.019x2.000 mm3 yielding an image size of 

104x104x40 . 

 
Figure 4 Paradigm used in the Localizer Experiment1 and 

Localizer Experiment2 with blocks of four stimuli alternating 
with fixation [21] 

Localizer Experiment 1 and Localizer Experiment 2 

correspond to the same experience; however the different 

acquisition properties result in differences in the data 

consistency. 

In all the experiences, for co registration and anatomical 

reference purposes it was acquired for each subject a high 

resolution structural image using a T1 weighted imaging 

sequence. 

2) Pre-Processing 

Several pre-processing options are necessary before the 
data is fit to be fed to a classifier; before the feature extraction 

it is necessary to make the standard fMRI pre-processing 

procedure.  

The datasets were independently processed and analyzed 

using the FSL software package 

(http://www.fmrib.ox.ac.uk/fsl). 

The following pre-processing steps were performed on 

each BOLD time series: motion correction [22]; non-brain 

removal [23]; mean-based intensity normalization of all 

volumes by the same factor; spatial smoothing (Gaussian 

kernel, 5 mm FWHM) and high-pass temporal filtering 

(Gaussian-weighted least squares straight line fitting, 50 sec 
cut-off).  

As all the data sets are multi subject, registration became 

necessary; to perform registration the FLIRT tool from the 

FSL [22] . The reference image used for registration was the 

MNI standard available in FSL package with voxel definition 

of 2.000x2.000x2.000 mm2 [24]. For the Mapping Experiment 

and Localizer Experiment 1 data sets in order to avoid the 

unnecessary increase of dimension the MNI standard was re-

sampled to the data sets resolution, for the Localizer 

Experiment 2 data set it was used the MNI standard was used 

since they have similar resolution.  

http://www.fmrib.ox.ac.uk/fsl
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The functional images were first registered to the 

correspondent high resolution structural image using an affine 

rigid body transformation with 6 degrees of freedom. The 

structural image was registered to the standard MNI image 

with an affine transformation with 12 degrees of freedom, and 

the composition of the two transforming matrices was applied 
to the functional image to register them in MNI space.  

To access data consistency, after pre-processing, all the 

runs from all the datasets were analyzed using the FSL 

software to find patterns of activation by a common use GLM 

analysis. In this process two subjects were found to have 

incoherent activation patterns, one for the Mapping 

Experiment and another for the Localizer Experiment 2. 

Therefore these two subjects were excluded. In the end the 

Localizer Experiment 1 had the same number of subjects, 10; 

while the Mapping Experiment and the Localizer Experiment 

2 number of subjects was reduced to 4 and 9 respectively.  

To identify the voxels that correspond to brain matter, the 
MNI atlas was used. Besides this approach all the voxels that 

have zero value across all the examples were ignored. In the 

end the Mapping Experiment yields a total of 512 examples 

each on with 27851 features; the Mapping Experiment 1 has 

320 examples each on with 60922 features and the Mapping 

Experiment 2 yields 144 examples with 123494 features each 

one.  

B. Methods 

1) Classifiers used 

Three different classifiers were used in this study, GNB 

(Gaussian Naive Bayes), kNN (k-Nearest Neighbours) and 

SVM (Support Vector Machines). In addiction ensemble of 

classifiers for kNN and GNB were also used. All the 

classification methods, (kNN, GNB and ensembles) were 

implemented in MatLab® except for the SVM for which the 

toolbox LibSVM [25] was used.   

 Let x=𝑥1 , . . 𝑥𝑛  be a pattern, where n represents the number 

of features, in our problem and 𝜔𝑗 , j=1,...c, denotes the classes 

associated to different visual stimuli. 

a) GNB classifier 

The Gaussian Naive Bayes classifier is a probabilistic 

classifier based on the Bayes rule that has strong independence 

assumptions about the Gaussian distribution of the features.  
In other words, the classifier assumes that the features are 

independent, which accounts for the term naive in the name, 

and came from a Gaussian or a Gaussian mixture distribution. 

The final output of the GNB classifier is the conditional 

probability of the example x belonging to the class 𝜔𝑗 , for 

j=1,...c,  knowing x. According to Bayes rule this probability 

can be written as: 

 𝑃 𝜔𝑗 |𝐱 =
𝑃 𝜔𝑗  . 𝑃(𝑖 𝑥𝑖|𝜔𝑗 )

 𝑃 𝜔𝑘 . 𝑃(𝑖 𝑥𝑖|𝜔𝑘)𝑘
    (2) 

b) kNN classifier 

The kNN classifier is a very simple non-parametric 

classifier. This classifier treats examples as vectors in a feature 

space and the classification is determined by the most 

common class of the k nearest examples in the training set. So 

when an example x is presented to the kNN classifier, it will 

determine the nearest k examples in the training set and 

classify as the most common class among this sub-set. The 

distance measure can be chosen from a wide range of metrics 

like Euclidean, Mahalanobis or Minkowski.  

The output of this classifier, unlike the GNB, is a class and 

not a set of normalized probabilities for each class. This is 

indeed indispensable for the usage of an ensemble of kNN 
classifiers and its combination. To overcome this problem the 

distance based probability as proposed in [17] for the kNN 

classifier was implemented. 

 𝑃  𝜔𝑗  𝐱 =

 
1

𝑑(𝐱, 𝐱𝑗 )𝐱𝑗𝜖𝜔 𝑗

 
1

𝑑(𝐱, 𝐱𝑖)
𝒌
𝒊=𝟏

 (3) 

 

c) Classifier Ensemble 

In this study, in addiction o the single classifiers presented 

in the preceding section, two ensembles of classifiers were 

also used, one for kNN and one for GNB. The underlying idea 

is to optimize a classifier for each class, corresponding to a 

stimulus, and then combine the results of each classifier.  

The degree of support from a classifier for an example 

input x can be defined in different ways; in this study the 
estimates of the posterior probabilities for the classes were 

used.Both GNB and kNN formulations regard the possibility 

of posterior probability estimation and so are fit for the 

classifier ensemble methods proposed.  

The combination of classifiers can be done in several 

ways; the first step to the combination is the construction of a 

decision profile (DP(x)). Using the same notation as for the 

previous classifiers, let x ∈ 𝕽𝒏 be a feature vector and 

Ω =  𝜔1 , 𝜔2 , … ,𝜔𝑐  be the set of class labels. Each of the 

classifiers Di in the ensemble 𝔇 = {𝐷1 ,  𝐷2 , … ,𝐷𝐿} returns c 
degrees of support, that in this case are probabilities and 

so 𝐷𝑖 : 𝕽
𝒏 →  0 1 𝑐. If the support that a classifier  𝐷𝑖  gives to 

hypothesis that x come from the class 𝜔𝑗  is defined as a point 

position 𝑑𝑖,𝑗  in a matrix it is possible to build a decision profile 

like in (4). The lines of the matrix have sum one, and the 

columns represent the support given by each classifier to that 

class.  

 𝐷𝑃 x =  

𝑑1,1(𝐱) ⋯ 𝑑1,𝑐(𝐱)
⋮ ⋱ ⋮

𝑑𝐿,1(𝐱) ⋯ 𝑑𝐿,𝑐(𝐱)
  (4) 

In this work each classifier in the ensemble will be 
specialized for each class therefore the number of classifiers 

L=c, and 𝐷𝑃 x  a square matrix. 

Five different methods for classifier combination where 

tested in this study, four non trainable and one trainable. 

Trainable means that the classifier combiner needs to learn 
parameters from the data. For the non trainable methods of 

classifier combination the support given by the ensemble of 

classifiers to class 𝜔𝑗  is: 

 𝜇𝑗 = ℱ 𝑑1,𝑗 . , . . , 𝑑𝐿,𝑗   (5) 

where ℱ is a combination function and the class label of x is 

the index of the maximum of 𝜇 in equation (5). 

Comb 1 - Assuming that each classifier is trained in order to 
be optimized for a given class the relevant information is 

localized in the diagonal of the decision profile, this method of 
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classifiers combination simply considers that the support given 

by the ensemble of classifiers to a class 𝜔𝑗  is 𝑑𝑗 ,𝑗   .  

Comb 2 - Simple mean, ℱ =average. 

Comb 3 - Maximum, ℱ =maximum 

Comb 4 - Median, ℱ =median 

Comb 5 - This combination method is the only trainable 

method used in this study. The underlying idea is to find a 

weight for each of the positions of the decision profile with the 

constraint that the sum of the weights along a column be equal 

to one. This can be formulated as a regression problem where 

the target values are the posterior probabilities 𝑃 𝜔𝑗 |𝐱 . In the 

classification problems the posterior probabilities are 1 if the 

example has class label 𝜔𝑗  and 0 otherwise. Considering a 

noise free problem the expected posterior probability given by 

a classifier would be the same binary combination 0 or 1. So 

for class label 𝜔𝑗 , the support given by each classifier is 

subtracted to the expected posterior probabilities. Hence for 

each class 𝜔𝑗  there is an error matrix with L lines and m 

columns. The goal now is the error variance minimization, 

however is important to stress that this error is not the 

classification error but the approximation error. The next step 

is the computation of the covariance matrix for the 

approximation error matrix. If it is assumed that the expected 

error in approximating the posterior probability 𝑃 𝜔𝑗 |𝐱 −

𝑑𝑖,𝑗(𝐱) is normally distributed with mean 0, the problem can be 

solved by constrained regression. By minimizing the function 

(6), which already includes the Lagrange multipliers to 

constrain the sum of the weights of each column to be one. 

Where 𝜎𝑖𝑗  denotes the covariance between the classifiers 𝐷𝑖 

and 𝐷𝑘 . 

 𝐽 =   𝑤𝑖𝑤𝑗𝜎𝑖𝑘 − 𝜆  𝑤𝑖 − 1

𝐿

𝑖=1

 

𝐿

𝑘=1

𝐿

𝑖=1

 (6) 

A solution for this minimization problem is: 

 𝑤 = Σ−1𝑰 𝑰𝑇Σ−1𝑰 −1 (7) 

where w is weights vector, Σ is the covariance matrix and L is 
a L-element vector with ones [17]. The procedure of 

coefficients estimation was made in a nested cross validation 

procedure using leave-one-subject-out cross validation. For 

the nested cross validation the classification errors were 

averaged for all folds and the coefficients estimated. 

2) Feature Extraction 

The example creation, usually includes a feature extraction 

step where block image combination in order to reduce the 

noise. In this work four different methods to perform the block 

image combination were used.  

Mean – The most usual method to combine images in a block 

consists in using simply the mean image. 

Central Image – In this combination method only a single 

image from the block is used, the central image, if there is a 

pair number of images in a block the mean of the two central 
images is used.  

Gaussian Window – This method corresponds to the 

application of a Gaussian window to the image block, in 

practice it is a weighted mean in which the coefficients are 

driven from a Gaussian window using the MatLab ® 

implemented formulation [26]: 

 
𝑔[𝑕] = 𝑒

−
1
2
 𝛽

𝑕
𝐻

2 
 

2

 
(8) 

where −
𝐻

2
≤ 𝑕 ≤

𝐻

2
  and 𝛽 ≥ 2, and the length of the window 

is T=H+1. The 𝛽  parameter is the reciprocal to the standard 

deviation. 

Custom Window – The BOLD signal has well known 

temporal characteristics. In order to apply this information in 

the feature extraction process a custom window was idealized 

for this particular problem. Each image is acquired with an 

interval, TR, in this study 2 and 3 or 3.2 seconds, the delay of 

the haemodynamic response is about 3-4 seconds. Considering 

that the stimulus presented do not cause physiological 

habituation it was defined the mean of the block without the 
first image as feature extraction method. 

After the block image combination process, for each run 

the signal was transformed into Percentage Signal Changes, 

PSC, relative to the mean value for the baseline condition and 

as final procedure the PSC was scaled in order that of features 

have mean 0 and variance 1. All the process of feature 

extraction was performed for each fMRI run independently in 

order to reduce inter run differences and make sure that there 

is total separation between training and testing set. 

3) Feature Selection  

The feature selection process is a crucial step for the 

classification success due mainly to the noisy data and the 
high dimensionality of the problem. In this section the used 

methods to perform feature selection are described. 

a) Univariate Feature Selection Method and 

Search Light Algorithm 

The main criterion for feature selection used in this study 
was Mutual Information. Mutual Information measures how 

much information two variables share; hence a feature is more 

important if the mutual information between their labels and 

that feature distribution is larger [14]. Let f𝑖 be an m-

dimensional vector that contains all the examples for feature  

𝑥𝑖  and y a label vector with the same size as 𝑥𝑖  the class 

labels vector then, 

 𝑀𝐼 f𝑖 , 𝑦 = 𝐻 f𝑖 + 𝐻 𝑦 −𝐻 f𝑖 , 𝑦  (9) 

where H(.) is the entropy of a random variable and H(.,.) 

represents the joint entropy. Mutual Information range of 

values is between -1 and 1. 

Two other criteria for feature ranking were also 

implemented, accuracy and the search light accuracy method, 

in order to assess the performance of mutual information as a 

feature selection method for this particular problem.  

The considered feature selection methods rank the features 

according to a particular criterion but do not give any 

information about the number of features or threshold for the 

criterion to use, as they are scoring/filtering methods. The a 

priori definition of a number of features or threshold in MI to 

be used based on the experience is a usual procedure. 

Although simple and computationally efficient it assumes 

knowledge about the problem that cannot be extended to more 

general cases. Therefore it was desirable to estimate a number 

of features to use without a prior knowledge of the problem 
being addressed. 
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A common solution when there are parameters that need to 

be estimated is the use of nested cross validation inside the 

training set. This solution was applied to this particular 

problem. For the number of features estimation, Number 

Estimation, a range of values for the number of relevant 

features between 0.0005% and 10% of the total number of 
features was considered. This set was sampled in ten equally 

spaced points; for each point a nested cross validation 

procedure in the training set was applied and the accuracy 

assessed. The best performing number of features was 

identified and the procedure was repeated within the interval 

starting in the number of features considered before the 

maximum and ending in the next to the maximum considered 

value of features. The stop criterion was the variance of the 

interval classification being less than 1% or the number of 

features in interval less than 20. Other approach was the 

estimation of the MI threshold instead of the number of 

features, Threshold Estimation. In this work, the MI threshold 
is always relative to a fraction of the maximum MI for a given 

training set and vector of labels. The method was the same as 

the described for the estimation of the number of features, the 

initial interval considered was between the 0.0001 and 1 and a 

minimum threshold of the number of features was established 

at 10 to avoid overfitting.  

The feature selection process for the ensemble of classifier 

is identical to the described previously, but as each classifier is 

optimized for a given class label, the mutual information is 

calculated for each f𝑖 with a binary label vector that for 

classifier 𝐷𝑖 is 1 when y𝑖  is equal to 𝜔𝑖  and is 0 otherwise.  

b) Multivariate Feature Selection Method 

The proposed multivariate feature selection method was 
developed for the particular problem of feature selection in 

fMRI machine learning problems. The underlying idea is to 

take advantage of the spatial properties of brain structure and 

BOLD signal to find the most relevant features.  

 Wrapper methods for feature selection are most of the 

time prohibitive in what concerns computational cost and 

there is need to use filter/scoring methods. However hybrid 

filtering/wrapper methods have been developed for problems 

of high dimensionality [27]. The method proposed consists in 

combining the prior information about the problem spatial 

constrains and the filtering feature selection method to 
decrease the computational costs of the wrapper approach.  

The method starts by selecting the best ranked feature and 

its 3-D neighborhood and classify it in a nested cross 

validation procedure. Then a face of the cube is grown one 

voxel and the new set is classified. If the classification 

accuracy improves the new set is taken and becomes the 

reference, if not, this growing direction is labeled as non 

relevant and the data set will not go further more in this 

direction. The procedure is repeated for all the directions, until 

all of them are considered of non relevant growing. The 

method is then repeated for the next best ranked features that 

were not selected yet. In the end there is a set of candidate 
regions labeled by its classification accuracy. The stopping 

criterion was that the numbers of different features in the 

regions to surpass 10% of the total number of features or a 

threshold in the total number of regions.   

Regions were ranked its solo classification accuracy, 

taking the first one as the reference set of features and 

classifying by a nested cross validation, then joining the 

second region and classify, if an increase in classification 

accuracy is observed for the reunion of the two regions, this 

new set of features becomes the reference set of features, 
otherwise the first region is maintained as the reference set of 

features and the same for the rest of the candidate regions. In a 

more intuitive formulation, only regions that bring some 

classification benefit to the reference feature set are added. 

III. RESULTS 

In this section, the results obtained with the previously 

described methods are presented. All the accuracy results were 

obtained using leave-one-subject-out cross validation 

procedure. For the GNB classifier 𝑃 𝜔𝑗 |𝐱  was modelled by a 

univariate Gaussian distribution and consequently µi and σi 

were estimated for each feature. The kNN classifiers used k=9 

as number of neighbours and considering the Euclidean 

distance. The SVM classifier was only used as single classifier 
with a Gaussian kernel and parameters estimated by nested 

cross validation in the training set. For all the feature selection 

methods that required nested cross validation procedures the 

learning machine used was the same as the classifier in the 

final classification process, except for SVM due to the 

unaffordable computational cost. 

A. Feature Scoring 

The feature scoring method proposed, MI, was compared 

with two established methods: accuracy and the search light 

accuracy. Considering the 10% best scored features there is no 

significant differences between the three methods (results not 

shown) and since MI is much more efficient computationally 

this method is used in the rest of this work.  

B. Feature Extraction 

The four methods of image block combination for feature 

extraction were tested for all the three data sets with a fixed 

number of features. The best performing method was the 

Custom window closely followed by the Gaussian Window 

and Mean. The worst performing method is the Central Image 

(results not shown). Suggesting that the averaging process is 

important in the noise reduction; the first image is a transition 

image and introduces some noise to the example; and finally 

the last images as there is no physiological habituation to the 
stimulus contain useful information for the example 

construction process. 

C. Classification methods 

 

1) Single Classifier and Ensemble of Classifiers with 

fixed number of features. 
In order to assess the performance of single classifier and 

ensembles of classifiers the classification accuracy for both 

classification methods was determined for several numbers of 

features, using both GNB and kNN. The combination in the 

ensemble was made using Comb 1. The results for all the three 

data sets and for kNN and GNB are shown in Fig. 5. 

The results in Fig. 6 show that the maximum accuracy is 

achieved, for both Localizer Experiment 1 (ensemble of kNN 
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82.81%) and Localizer Experiment 2 (ensemble of kNN 

77.08%), for the ensemble of classifiers. In Mapping 

Experiment the accuracy is near to 100% preventing 

comparisons due to a ceiling effect. In general, for all the three 

data sets, the ensemble of classifiers outperforms the 

corresponding single classifiers for a small number of features. 
Motivated by these results the single class accuracy for the 

ensemble of classifiers was determined; the results are 

represented in Fig. 6. 
B

 
Figure 5 Classification Accuracy for various numbers of features 

for the three data sets for single and ensemble of kNN and GNB 

The classification accuracy has different behaviours for 

different classes for the Localizers Experiments. This fact 

suggests that a method capable of selecting different number 

of features for the different classifiers and therefore different 

classes could achieve better results. 
N

 
Figure 6 Classification accuracy for class for different number of 

selected features obtain by the ensembles of classifier for kNN 
and GNB, for all the data sets 

2)  Single Classifier and Ensemble of Classifiers with 

fixed MI threshold. 

Using a threshold in MI is a solution for each classifier in 

the ensemble to choose a different number of features. The 

threshold is always a fraction of the maximum and so it is 

constrained to values between 0 and 1, this range of values 

was explored starting in 0.01 and 0.95 in intervals of 0.05.  
In Fig. 7 the number of features selected as a function of 

the MI threshold for the Localizer Experiment 1 is 

represented. As expected each class as a different profile of 

feature selection.  

In Fig. 8 the classification results for different thresholds in 

MI are presented.  

Kill  
Figure 7 Number of features selected in function of the MI 

threshold for the Localizer Experiment 1 

The same procedure used for the fixed number of features 

was then applied to the MI threshold and the results are shown 

in Fig 8. 
jk

 
Figure 8 Classification Accuracy for different mutual 

information thresholds for the three data sets for single and 

ensemble of kNN and GNB 

As observed in the previous section for both the Localizer 

Experiment 1 (ensemble of kNN 82.81%) and Localizer 

Experiment 2 (ensemble of kNN (81.25 %) the classification 

accuracy maximum is achieved for the ensemble of classifiers. 

More the ensemble of classifiers shows overall improvement 

over the single classifier for both classifiers, kNN and GNB. 

Again the results for the Mapping Experiment data set are of 

difficult interpretation due to the ceiling effect. 
3) Single Classifier and Ensemble of classifiers with 

Estimated Number of features and MI Threshold 

The successes of the previous results lead to the 

development of a method that could automatically choose a 

number of features or MI threshold. For the ensemble of 

classifiers five different combination methods were tested as 

described in II.B.1)c).  

a) Mapping Experiment 

The classification accuracy for the Mapping Experiment 

with both estimation methods for single GNB and kNN and 

ensembles of the same classifiers are shown in Table 1. The 

classifier combination represented is the one that performs 

best for this data set, Comb 2.  

The ensemble of GNB outperforms the single GNB for 

both estimation methods. In what concerns kNN, with the 

Threshold Estimation method the ensemble of kNN performs 

as well as the single classifier and for Number Estimation 
method the ensemble of classifiers is outperformed. The fact 
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that Comb 2, mean, is the best performing method suggests 

that more than a classifier has important information about a 

single class. 

Table 1 Classification Accuracy for single classifier and ensemble 

of classifiers for Mapping Experiment 

Accuracy 
(%) 

Number of features Threshold in MI 

Best 
Fixed 

Estimation 
Best 

Fixed 
Estimation 

Single GNB 99.03 98.63 99.03 98.24 
Ensemble of 

GNB 
99.43 98.83 98.43 98.63 

Single kNN 99.41 99.41 99.22 99.41 
Ensemble of 

kNN 
99.41 98.63 97.81 99.41 

The features selected by the Threshold Estimation feature 

selection method for both single and ensemble of GNB are 

shown in Fig. 9. To avoid unnecessary repetition only a 

features map for the single classifier and ensemble of 

classifiers will be presented for each data set. 

K  
Figure 9 Voxels corresponding to the features selected for the 

Mapping Experiment by the Threshold Estimation method for 
GNB classifier 

The features selected for each one of the estimation 

method and classifiers used as learning machines in the nested 

cross validation procedure are very similar. The features 

selected are in concordance with the expected as they are 

localized in the primary visual cortex. More, the features 

selected for the ensemble of classifiers, although the overlap 

between classes, reflect the retinotopic organization of the 
primary visual cortex. The overlap between the features 

selected for different classes is natural and expected for this 

experiment due to the vicinity of the activated zones. The 

performances of the estimation methods are satisfactory as the 

classification accuracy is very close to the maximum of the 

best fixed number approaches. The SVM classification for this 

data was as good as for kNN for the Number Estimation 

method (99.41%)c and worst than kNN for the Threshold 

Estimation method (99.02%). 

b) Localizer Experiment 1 

The results for the Localizer Experiment 1 data set for the 

estimation methods and the best fixed number of features are 

represented in Table 2. The classifier combination represented 

is the one that performs best for this data set, Comb 1. 

Table 2 Classification Accuracy for single classifier and ensemble 

of classifiers for Localizer Experiment 1 

Accuracy 
(%) 

Number of features Threshold in MI 

Best 

Fixed 
Estimation 

Best 

Fixed 
Estimation 

Single GNB 76.25 75.31 75.00 74.69 
Ensemble of 

GNB 
80.00 78.13 79.37 78.13 

Single kNN 80.65 78.44 76.85 79.31 
Ensemble of 

kNN 
82.81 82.81 82.81 84.06 

The ensembles of classifiers outperformed the single 
classifier for all the methods of estimation and fixed number 

presented in Table 2. The best performing classifier 

combination method is Comb 1; this method bases the support 

for a given class solely in the support given by the respective 

classifier. Suggesting that each stimuli is best discriminated by 

a single or conjunct of brain regions.  

As in the previous section, only the results for the GNB 

classifier with Threshold Estimation as the feature selection 

method are represented in Fig. 10. 

K  
Figure 10 Voxels corresponding to the features selected for the 

Localizer Experiment 1 by the Threshold Estimation method for 
GNB classifier 

The voxels corresponding to the feature selected for the 

single classifier are localized in the expected activated areas. 

However besides the specific areas for each stimuli are also 

selected the neighbour voxels as consequence of the BOLD 
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signal spatial properties. In what concerns the features selected 

for the ensemble of classifiers, the number of features is much 

smaller and the regions selected for each show little or even 

any overlap, defining compact regions associated with each 

stimuli. Both estimation methods performed satisfactorily with 

the Threshold Estimation method outperforming for both 
single classifier and ensemble of classifiers the best value for 

fixed MI threshold. 

For this data set SVM was the best single classifier method 

with 91.56% of classification accuracy for the Number 

Estimation method and 93.44% for the Threshold Estimation 

method. These results were expected as consequence of the 

much more powerful formulation of this classifier 

c) Localizer Experiment 2  

The results for the Localizer Experiment 2 classification 

accuracy for both single classifier and ensemble of classifiers 

using kNN and GNB are shown in Table 3. The classifier 

combination represented is the best performing, Comb 1. 

Table 3 Classification Accuracy for single classifier and ensemble 

of classifiers for Localizer Experiment 2 

Accuracy 
(%) 

Number of features Threshold in MI 

Best 

Fixed 
Estimation 

Best 

Fixed 
Estimation 

Single GNB 70.83 68.09 71.53 71.53 
Ensemble of 

GNB 
75.89 71.53 75.69 73.61 

Single kNN 74.81 66.67 75.00 71.53 
Ensemble of 

kNN 
77.08 75.00 82.25 79.17 

As for the Localizer Experiment 1 the ensemble of 

classifiers outperforms the single classifiers for all the 
methods and classifiers and the Comb 1 is again the best 

performing classifier combination method. This concordance 

of methods performance is expected as the experience is the 

same. The features selected for this data set using the 

Threshold Estimation method of feature selection and the 

GNB classifier are shown in Fig. 11. 

For the single classifier the features selected are much 

similar to the ones found for Localizer Experiment 1, although 

the increase of resolution for the ensemble of classifiers are 

chosen a small amount of feature when compared with the 

previous data set. This fact is counter intuitive as for a higher 
resolution a given region is defined by a larger number of 

features. However the results are supported by the study with a 

fixed number of features as the best accuracies were achieved 

with a smaller number of features.  

The estimation methods have a poorer performance for this 

data set, in particular for the Number Estimation method. The 

differences between the estimation methods are related with 

the fact that Threshold Estimation method has better 

resolution in range of the small number of features, the interest 

zone for the ensemble of classifiers. The overall difference 

between Localizer Experiment 1 and Localizer Experiment 2, 
can be explained by the difference in the number of examples 

available, inter-subject variability and SNR differences. 

Although the increase of magnetic field is associated with the 

increase of SNR the increase of resolution has the contrary 

effect. 

 

 
Figure 11 Voxels corresponding to the features selected for the 

Localizer Experiment 2 by the Threshold Estimation method for 

GNB classifier 

D. Multivariate Feature Selection Method 

The results for the multivariate feature selection method 

for all the three data sets are shown on Table 4. The results for 

the best performing univariate single classifier data driven 

method are shown for comparison purposes.  

Table 4 Classification accuracy for all data sets using the 

Multivariate feature selection method 

Accuracy (%) 
Mapping 

Experiment 

Localizer 

Experiment 1 

Localizer 

Experiment 2 

GNB 
Multivariate 97.85 75.63 71.53 

Univariate 98.63 75.21 71.53 

kNN 
Multivariate 98.24 79.06 73.61 

Univariate 99.41 79.38 71.53 

SVM 
Multivariate 99.02 90.31 81.94 
Univariate 99.41 93.44 82.64 

The features selected for the three data sets for the GNB 

classifier are shown in Fig. 12.  

The features selected for the multivariate feature selection 

method are localized in the expected regions with a compact 

and geometric form as consequence of the method.  

Although the simplicity and the geometric constraints of 

the method the results are in overall as good as the best 

univariate single classifier data driven method even 
outperforming it in some cases.  For SVM there are no 

improvements probably a consequence of the non utilization 

of this classifier as learning machine in the feature selection 

method. 
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IV. CONCLUSION 

The main goal of this study was to detect cognitive states 

from a brain activation pattern; this goal was achieved, as the 

classification accuracy for all the methods was superior to the 

expected classification accuracy for the random classifier. 
Despite the inter-subject variability the classifiers are indeed 

learning and have predictive power. The features selected 

show good agreement with the expected activated zones. The 

classifier combination results suggest that an ensemble of 

classifiers can improve classification accuracy, while playing 

an important role in pattern localization and characterization. 

The automatic estimation method represents an attempt to 

reduce the requirement for prior knowledge of the problem 

with satisfactory results. The multivariate feature selection 

method proposed is very simple but is showed advantages in 

some contexts and thus could lead to a more accurate 

classification with further development. 

 
Figure 12 Voxels corresponding to the features selected for the 
data sets by the multivariate feature selection method for GNB 
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