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Abstract 

Magnesium and its alloys are becoming more and more used in the aerospace and automobile 

industry because of its low weight. The technology has suffered many improvements allowing 

magnesium alloys to have a mechanical performance close to aluminum alloys and corrosion 

protection. This allows many possible applications for magnesium alloys subjected to multiaxial fatigue.  

The objective of this work is to perform multiaxial fatigue simulations in ANSYS and in a Plasticity 

program using Jiang & Sehitoglu plasticity model adapted for nonproportional effects of an AZ31 

magnesium alloy. The damage parameters of Findley, Brown & Miller, Smith-Watson-Topper, Fatemi 

& Socie, Liu I and Liu II are applied.  

The life cycles number results show that all the damage parameters don’t take into account how 

much time the multiaxial loading is above the yield value. New damage parameters which take 

account this effect are presented. The results shown during ANSYS and Plasticity program 

simulations that for the same cases the work done not considering nonproportional effects (ANSYS) is 

greater than considering them. However other cases show the opposite.  
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Resumo 

O magnésio e as suas ligas estão a tornar-se cada vez mais usadas nas indústrias automóvel e 

aeroespacial devido à sua baixa densidade. A tecnologia sofreu grande evolução permitindo às ligas 

de magnésio terem uma performance mecânica e protecção contra a corrosão próximas das ligas de 

alumínio. Tal poderá permitir variadas aplicações de ligas de magnésio sujeitas a fadiga multiaxial. 

O objectivo deste trabalho consiste em obter simulações de fadiga multiaxial em ANSYS e num 

programa de plasticidade que usa o modelo de plasticidade de Jiang & Sehitoglu adaptado a efeitos 

não proporcionais de uma liga de magnésio AZ31. Os parâmetros de dano de Findley, Brown & Miller, 

Smith-Watson-Topper, Fatemi & Socie, Liu I e Liu II são aplicados. 

Os resultados do número de ciclos de vida mostram que os parâmetros de dano não têm em 

conta quanto tempo o carregamento multiaxial está acima do valor da cedência. Novos parâmetros de 

dano a ter em conta este efeito são apresentados. Os resultados mostrados durante as simulações 

de ANSYS e do programa Plasticity mostram que, para alguns casos, o trabalho realizado, não 

considerando efeitos não proporcionais (ANSYS), é maior do que considerando estes. No entanto, 

noutros casos observa-se o oposto.  
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1 Introduction 

Nowadays the demand for low fuel consumption led to the continuous search of low density 

materials. In this context magnesium and its alloys are of great interest because magnesium and its 

alloys have the lowest density of all metallic constructional materials. They have other advantages too 

[1]: 

1. high specific strength; 

2. good castability, suitable for high pressure die-casting; 

3. can be turned/milled at high speed; 

4. good weldability under controlled atmosphere; 

5. much improved corrosion resistance using high purity magnesium; 

6. readily available; 

7. compared with polymeric materials: 

a) better mechanical properties; 

b) resistant to ageing; 

c) better electrical and thermal conductivity; 

d) recyclable. 

Because of these advantages magnesium and its alloys were used in the World War I and World War 

II extensively. However magnesium and its alloys have not become widely used because of their 

disadvantages [1]: 

1. low elastic modulus; 

2. limited cold workability and toughness; 

3. limited high strength and creep resistance at elevated temperatures; 

4. high degree of shrinkage on solidification; 

5. high chemical reactivity; 

6. in some applications limited corrosion resistance. 

To make magnesium alloys more competitive in the market, research work is being done to overcome 

some of the disadvantages pointed above. Nowadays the magnesium alloys are reaching a 

mechanical performance similar to that of aluminum alloys, the major opponent in automobile and 

aerospace applications. To illustrate that, a mechanical performance comparison between magnesium 

and aluminum alloys is presented in figure 1.1. To measure the mechanical performance a coefficient ܳைௌ is used. The higher the coefficient, the higher mechanical performance of the material. As it can 

be observed in figure 1.1, magnesium alloys are reaching a mechanical performance coefficient value 

approximate of the aluminum alloys. However as it can be observed in table 1.1, limitations continue 

to exist due to limits in the yield strength ሺܴ௣ሻ and strain energy density ሺܹሻ relative to aluminum 

alloys.   
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Figure 1.1 ʹ Mechanical performance of aluminum and magnesium alloys [2] 

 

 

Table 1.1 ʹ Mechanical properties of magnesium and aluminum alloys [2] 

Alenia, Eurocopter and Airbus with the EADS (European Aeronautic Defence and Space 

Company) Research Centers defined the requirements for new magnesium alloys to be applied within 

interior and systems or secondary structural aeronautic applications [3]. These data are presented in 

table 1.2. Note that some magnesium alloys of table 1.1 have yield strength value between 200 to 310 

MPa, the interval mentioned in table 1.2 for systems application. 
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Table 1.2 ʹ Requirements of magnesium alloys for aeronautic applications [3] 

They summarize the most promising magnesium alloys for aeronautic applications in figure 1.2 and 

compare with commonly used aluminum alloys. The magnesium alloys were selected due to corrosion 

behavior, environmental friendliness and mechanical performance. 

 

Figure 1.2 ʹ Comparison between magnesium and aluminum alloys in terms of tensile yield strength (YTS), tensile 

ultimate strength (UTS) and elongation to fracture (A) [3] 

Another important development of magnesium alloys is in corrosion resistance. This was the main 

reason for magnesium use restriction in the past [4] on the aerospace industry. The major concerns of 

magnesium corrosion protection are firstly with galvanic corrosion and secondly with general corrosion. 

In terms of general corrosion, the current magnesium and aluminum alloys are compared in figure 1.3. 

As it can be observed there are some magnesium alloys that have similar corrosion rates to the 

aluminum alloys.  
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Figure 1.3 ʹ Corrosion rate of ASTMB117 salt fog test for magnesium and aluminum alloys [5] 

Galvanic corrosion, as it is said, is the primary concern in terms of corrosion. Galvanic corrosion [6] 

happens when two different metals are electrically connected and there is an electrochemical potential 

difference between them. So that the metals can have an electrical connection, an electrolyte is 

needed, so that ions can flow from the anode to the cathode, i. e., the anode and cathode have to be 

immersed in the electrolyte. Note that water or moisture can be that electrolyte. This process leads to 

the anodic metal corrosion with the corrosion of the cathode metal being retarded. In table 1.3 it is 

presented the galvanic series of metals to compare the potential corrosion of two metals in the 

presence of each other.  

Anodic - Least Noble Manganese Bronze , Tin Bronze  

Magnesium Nickel Silver 

Magnesium Alloys Copper - Nickel Alloy 90-10 

Zinc Copper - Nickel Alloy 80-20 

Cadmium Stainless Steel 431 

Aluminum Nickel, Aluminum, Bronze 

Mild Steel , Wrought Iron Monel 

Cast Iron, Low Alloy High Strength Steel Silver Solder 

Chrome Iron (active) Nickel (passive) 

Stainless Steel, 431 Series (active) 60 Ni- 15 Cr (passive) 

Stainless Steel 312, 313, 332, 357, 410,416, (Active) Inconel 600 (passive) 

Ni - Resist 80 Ni- 20 Cr (passive) 

Stainless Steel 326, 328, (Active) Chrome Iron (passive) 

Aluminum Bronze Stainless Steel 312, 313, 314, 332, 357,(PASSIVE) 

Hastelloy C (active) Inconel 625 (active) Stainless Steel 326, 328,(PASSIVE) 

Titanium (active) Incoloy 825nickel - Molybdeum - Chromium 

Lead - Tin Solders Iron Alloy (passive) 

Lead Silver 

Tin Titanium (pass.) Hastelloy C (passive) 

Inconel 600 (active) Inconel 625(pass.) 

Nickel (active) Graphite 

Hastelloy B (active) Zirconium 

Brasses Gold 

Copper Platinum 

Manganese Bronze , Tin Bronze Cathodic Most Noble. 

Table 1.3 ʹ Galvanic series of metals [7]  
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The galvanic series lists the metals in order of their electrical potential relative to a recognized 

standard, that can be, for example, seawater electrolyte. Metals that are farther away from each other 

in the list of table 1.3 will cause more anodic metal corrosion in the presence of an electrolyte. Note 

that magnesium and its alloys are at the top of the list, being the most anodic metals. There are 

several ways to solve this problem. Two methods are referred here. One is to design in a manner to 

minimize galvanic corrosion. In figure 1.4 it can be seen that the improper location of a bolt can result 

in galvanic corrosion. In figure 1.5 it can be seen that this can happen in real helicopter component. 

Another method consists of applying a coating protection for magnesium alloy surface. Examples of 

that are Tagnite coating, the most corrosive and abrasive resistant anodic coating for magnesium 

alloys [8], Magoxid coating and Keronite coating [9].  

Along with these developments, several development studies produce technologies to help 

magnesium alloys to become more used in the industry: 

- MagForming – a project to develop new magnesium forming technologies for the aeronautics 

industry [10]; 

- MagForge – a project to develop forged components for structural lightweight transport 

applications [11]; 

- The United States Materials Automotive Partnership´s (USAMP) Structural Cast Magnesium 

Development Project – this project ended with the successful development and production of 

prototype magnesium engine cradles. General Motors put a similar magnesium engine cradle 

into production for the 2006 Corvette Z06 [12]; 

- More projects can be found in http://www.ist-world.org/default.aspx searching for magnesium 

in the projects section. 

There are some internet websites that have news information about magnesium alloys: 

http://www.intlmag.org/index.cfm International Mg Association, http://www.magnesium.com/w3/ 

Magnesium.com and Efunda website [13] for magnesium alloys mechanical properties. 

Figure 1.4 ʹ Two possible bolt locations [5] Figure 1.5 ʹ Water trap in a helicopter tail rotor [5] 

http://www.ist-world.org/default.aspx
http://www.intlmag.org/index.cfm
http://www.magnesium.com/w3/
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To understand what development studies are needed for magnesium alloys to become more used 

in the industry, the report Magnesium Vision 2020 [14] is a reference. In this report it is mentioned that 

performing life-cycle analyses or fatigue analyses of magnesium alloys is a major research need to 

reduce cost/ quality challenge. In the next paragraph the fatigue concept is explained. The intuitive 

idea presented is based on reference [15]. 

The components of transports, machines and structures are often subjected to repeated loads. 

The loadings can cause microscopic physical damage to the materials involved which can accumulate 

with continued cyclic loads in spite of stresses well lesser than material ultimate strength. The damage 

accumulation with continued cyclic loads can result in a crack or other macroscopic damage that leads 

to failure of the component. This process of damage and failure due to cyclic loading is called fatigue. 

The technical definition of fatigue by the American Society for Testing and Materials (ASTM) is “the 

process of progressive localized permanent structural change occurring in a material subjected to 

conditions which produce fluctuating stresses and strains at some point or points and which may 

culminate in cracks or complete fracture after a sufficient number of fluctuations”. Fatigue study is very 

important because it is estimated [16] that 50 to 90 % of all mechanical failures are caused by fatigue 

phenomenon. Fatigue can have different causes which can happen simultaneously. The different 

fatigue causes have originated different fatigue areas. Examples of them are time-varying loading 

fatigue, thermal fatigue, corrosion fatigue, surface/contact fatigue and combined creep & fatigue. The 

time-varying loading fatigue is divided in two areas dependent on the number of loading cycles of the 

component until failure. Typically if the cycles number is ൐ ͳͲଶ ݋ݐ ͳͲସ , fatigue is called high cycle 

fatigue (HCF); however the HCF begins in a number range that changes with the material. The other 

area is the low cycle fatigue (LCF) and it happens for a number of cycles below of HCF. 

Nowadays there are 3 major methodologies to study fatigue [15]. They are stress-based approach, 

strain-based approach and fracture mechanics based approach. The stress-based approach is based 

on the average stresses which affect a region of a component. The strain-based approach is based on 

a detailed analysis of the localized yielding. The approach of fracture mechanics studies the growing 

of the cracks with the help of fracture mechanics methods.  

There are several fatigue design philosophies [13]: 

- Infinite-life design – considers that all stresses are enough below to ensure an “infinite” service 

life; 

- Safe-life design – expects and allows that cracks occur during service but never grow to 

critical length during the service life; 

- Fail-safe design – expects and allows that cracks occur during service but never result in 

failure before the scheduled maintenance; 

- Damage-tolerant design – based in fracture mechanics; counts initial imperfections; is more 

accurate than the other philosophies.  
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Fatigue problems can have a uniaxial or multiaxial loading. In the case of uniaxial loading there is 

consensus in which theory has to be applied depending on the context to give accurate determination 

to the fatigue life. However in multiaxial loading case there is no consensus about what is the best 

theory to determine fatigue life. This problem will be better explained in the next chapters.  

 

1.1 Applications 

There are several applications for magnesium alloys and multiaxial fatigue. Focus is made here in 

aircraft and automobile applications. In figure 1.6, some aerospace applications of magnesium and 

magnesium alloys can be observed. In figure 1.6 a) it is the airplane TU-135 (43100 Kg). The red 

zones represent the location of magnesium components (780 Kg). Figure 1.6 b) shows a utility aircraft 

gearbox, the figure 1.6 c) shows a service door inner panel and the figure 1.6 d) an experimental F-80-

C aircraft of complete magnesium construction. 

 

Figure 1.6 ʹ Magnesium alloys in aerospace applications; a) Mg components in the TU-135 [4]; b) utility aircraft gearbox 

[17]; c) service door inner panel [17]; d) experimental modification of the Lockheed F-80-C [4] 

a) b) 

c) 

d)  
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In figure 1.7 automobile applications for magnesium alloys are presented. Figure 1.7 a) represents 

possible locations to use magnesium alloys in a car. Figure 1.7 b) shows the magnesium wheel of the 

Porsche Carrera GT. There are various magnesium alloys that are used to forge wheels, e. g., ZK60, 

AZ31 or AZ91. Figure 1.7 c) shows a door inner component made from a magnesium single sheet of 

the alloy AZ31B-O. 

 

Figure 1.7 ʹ Magnesium alloys automotive applications; a) applications in automobile structure [14]; b) wheel of a 

Porsche Carrera GT [18]; c) door inner component [19] 

Magnesium has other areas of applications too [19]. The Sony Mini-Disc Walkmans MZ-R90 and 

MZ-E80 (launched in 1999) were manufactured by press forging the magnesium wrought alloy AZ31. 

Magnesium alloys AZ80, AZ61 and AZM are used in extruded bar form to make anti tank ammunition 

rounds. Magnesium wrought alloys AZ31, AZM and AZ61 are used in the construction of satellite 

components.  

As it can be seen in figure 1.7 magnesium alloys have many applications. To extend its 

applications range and build lighter objects and vehicles it is important to understand its behavior in 

multiaxial fatigue. Two applications of multiaxial fatigue are presented next.  

a) 

b) c) 
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In figure 1.8 an example of multiaxial fatigue acting in the wing of an aircraft is illustrated. It is placed a 

strain gauge in a wing, see figures 1.8 a) to c), to measure the loading stresses. Using the convention 

of fig. d), the stresses measurements e) were obtained. As it can be seen the wing is subjected at 

least to shear stresses and stresses along X-axis, so a multiaxial loading is observed. This multiaxial 

loading changes with the time causing multiaxial fatigue. 

 

Figure 1.8 ʹ Multiaxial fatigue on a wing; a) British Aerospace Hawk Mk.51; b) & c) location of strain gauge; d) stress 

components near strain gauge location; e) stresses obtained in flight measurements [20] 

In figures 1.9 a) and b) a finite element modeling of a railroad wheel can be observed. The stresses 

presented in fig. 1.9 c) are at a point 3 mm below tread surface. The wheel is subjected to shear 

stresses in the YZ plane and stresses along Y axis, so a multiaxial loading is observed. This multiaxial 

loading changes with the time causing multiaxial fatigue. 

 

Figure 1.9 ʹ Multiaxial fatigue on railroad wheels; a) full model of finite element modeling of wheel/rail contact; b) sub 

model; c) stress history [21] 

 

  

a) b) 

c) d) 

e) 

a) 

b) 

c) 
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1.2 Objectives 

The main objective of this work is to perform a multiaxial fatigue analysis of a magnesium alloy. As 

it can be noted in the text above, the alloy AZ31 has many applications. Because of that the 

magnesium alloy AZ31B-F is chosen. To achieve this objective there are various tasks that have to be 

done: 

1. Study the multiaxial fatigue theory and understand its physical basis; 

2. Determine fatigue damage criteria; 

3. Do multiaxial loading simulations using ANSYS and a C++ programmed plasticity model; 

4. Determine the fatigue life based on the stress states simulated applying different damage 

criteria; 

5. Perform a tension test to the AZ31B-F alloy; 

6. Find possible applications of multiaxial fatigue in aerospace and automobile industries. 

 

  



25 

 

2 Multiaxial Fatigue Bibliographical Revision 

Fatigue studies started in XIX century. The continuous studies led to the technologies presented in 

this chapter. In figure 2.1 it can be seen that the study of fatigue involves studies in different size 

scales. The objective of the engineer is to construct structures based on specimen experiments. The 

theories that are used to extrapolate the results of the specimens to the structures have to be in 

accordance with the observed phenomena at size scales of crystals, dislocations and atoms. 

 

Figure 2.1 ʹ Size scale for studying fatigue [22] 

 

2.1 Fatigue History & Recent Works 

Fatigue history is presented here by a chronological date. The history presented is based on 

references [16] and [23] to [26]. Focus is made in multiaxial fatigue and general fatigue advancements. 

1837 – Albert, a German mining administrator, published the first fatigue test results. To do the 

tests he constructed a test machine for the conveyor chains which had failed in service at the 

Clausthal mines. 

1842 and next years – In this period many disastrous railroad accidents happened due to fatigue, 

e. g., on 5th October 1842, a locomotive axle broke at Versailles killing 60 people. 

1854 – Braithwaite, an Englishman, used by the first time the term “fatigue” in his published 

papers where he describes many service fatigue failures of brewery equipment, water pumps, 

propeller shafts, crankshafts, railway axles, levers, cranes, etc. 

1858 to 1870 – Whöler, a German engineer, measured service loads of railway axles with self 

developed deflection gages at 1858 and 1860. In 1860 Whöler published the results of fatigue tests 

with railway axles. In 1870 he presented a final report concluding: “material can be induced to fail by 

many repetitions of stresses, all of which are lower than the static strength. The stress amplitudes are 

decisive for the destruction of the cohesion of the material. The maximum stress is of influence only in 

so far as higher it is, the lower are the stress amplitudes which lead to failure”. According to Whöler, 

the stresses amplitudes are the most important parameter for fatigue life, but a mean stress also has a 
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significant influence. Whöler represented his test results in form of tables but never plotted them, i. e., 

the stress vs life cycles number or S-N curve. His successor Spangenberg will have done it. 

1881 – Bauschinger, a German engineer, named the Bauschinger effect. This effect is “the 

change of the elastic limit by often repeated stress cycles” by author’s words. 

1903 – Ewing and Humfrey, from England, observed the slip bands on the surface of rotating 

bending specimens. This was probably the first metallurgical description of the fatigue process. 

1918 – The first full-scale fatigue test with a large aircraft component was carried out at the Royal 

Aircraft Establishment in the U.K. and the analysis was published: “Methods employed at the Royal 

Aircraft Establishment for the experimental determination of the ultimate strength of aeroplane 

structures”.  

1910 – Basquin, an American, represented the type of Whöler data table in the form ݈݃݋ሺߪ௔ሻ on 

the ordinate and ݈݃݋ሺܰሻ on the abscissa. He describes the plotted data by the formula: 

௔ߪ ൌ  ௡ܰܥ

which is still used nowadays. In a large table Basquin presented values for ܥ and ݊ based on 

Whöler data. 

1917 – Haigh, an Englishman, mentioned by the first time the term corrosion fatigue.  

1920 – Griffith, a Welshman, working in the Royal Aircraft Establishment in the U.K., developed 

the basis of fracture mechanics. He showed by tests on the brittle material glass that small cracks like 

scratches considerably reduced the breaking strength and that the crack size also had an influence. 

He described this process by a formula. 

1921 – Mason did a study of cyclic deformations in combined bending and torsion tests with a 

steel material. The first work considering the out of phase angle between loadings appears this year 

due to Mason and Delaney. 

1941 to 1945 – Gassner, a German, established the topic of operational fatigue strength. This is 

described by several steps: dimensioning (sizing) of a component for finite, but sufficient fatigue life 

under variable loads. That is accomplished following the steps: 

1. measuring the service stresses in the form of a stress spectrum employing the correct 

counting method, also counting the number of cycles per flying hr, Km, etc; 

2. determining the corresponding forces or moments for obtaining generally valid load 

assumptions for similar components; 

3. extrapolating the always too short measured spectrum to the one to be expected in service; 
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4. selecting a suitable return period containing rare high stress cycles in order to include their 

nonlinear damaging effects; 

5. if it is possible, standardizing the shape of the spectrum, for example, specific spectra for civil 

aircraft, military aircraft and automobile components, respectively; 

6. simulating the service spectrum by a blocked variable-amplitude test (program test) and – 

after this it is possible with suitable test machines – by a random fatigue test with the 

component; 

7. plotting the results in the form of “Gassner” – curves with the maximum amplitude of the 

spectrum on the ordinate and the total number of cycles on the abscissa, both to a logarithmic 

scale; 

8. considering the scatter of fatigue lives by a safety factor, calculated on a statistical basis, to 

obtain the necessary probability of survival. Its numerical value depends on the component in 

question, i. e., an automobile component has to have a high probability of survival and a ship 

component a low one. 

1934 to 1951 – Gough et al. did a study of fatigue for combined bending and torsion in phase 

loadings. They concluded that the known yield criteria when applied to fatigue were impropriate to 

describe the obtained results.  

1944 – Zapffe introduced the term fractography. The objective of fractography is to analyze the 

fracture features and relate the material crack surface topography with the mechanisms and causes of 

fracture. The fractography enables the study of crack origins and the direction of its propagation.  

1954 – Manson & Coffin presented the linear equation in log-log coordinates for the plastic 

deformation versus fatigue life.  

1955 – Sines published a report in which he reviews experimental data available in alternated 

biaxial loadings and combined static and alternated stresses. He concluded that for brittle material, in 

spite of yield occurring near maximum theoretical normal stress, the failure could not be caused by 

normal stresses; the shear cyclic stress appears to be the fatigue failure cause. Because of the last 

statement Sines analyzed the static stresses influence in geometric planes where cyclic shear 

stresses are bigger. 

1956 – Findley reviewed many experimental works in fatigue. He concluded that none previous 

result is in contradiction with a shear stress limit. He investigated the Aluminum alloy 7075-T6 fatigue 

behavior subjected to combined bending and torsion. All the loadings were in-phase. Findley extended 

some yield known criteria to fatigue analysis. Trying to determine a better criterion for multiaxial 

fatigue analysis, he observed in the plane of maximum shear stress amplitude the influence of normal 

tension. 

1968 – Elber observed that after a high traction load the crack closed before the load return to 

zero. Today this phenomenon is known as crack closure. 



28 

 

1969 to 1974 – The American Society of Mechanical Engineers (ASME) debated about applying 

Tresca criterion to the project of pressurized reservoirs involving multiaxial fatigue. Because of its 

simplicity, conservatism and flexibility, Tresca criterion gained advantage to von Mises criterion. In 

1974 it was chosen to estimate multiaxial fatigue life based on a procedure code. 

1970 – Smith, Watson and Topper (SWT) presented a fatigue damage parameter for materials 

that generally fail in mode I. In this mode crack nucleates in shear directions and fatigue life is 

controlled by the crack growth in perpendicular planes to maximum principal stress and maximum 

principal strain. 

1972 – McDiamird reviewed the available experimental data in multiaxial HCF and presented a 

new damage parameter based on stresses. This new damage parameter was in accordance with the 

available results up to date. 

1967 to 1973 – Brown and Miller presented a new theory for multiaxial fatigue based on a physical 

understanding of the crack growth causes. The new theory suggested that the multiaxial fatigue failure 

could be described by a relation between the maximum shear deformation range and the normal 

deformation range that occur in the plane of maximum shear deformation range. They classified shear 

cracks in Case A and Case B. They concluded in their work that there was a lack of more 

experimental results related to anisotropy, average deformation, out of phase loadings and 

temperature effects.  

1974 – At the United States Air Force, the concept damage tolerance was introduced. This means 

that is assumed that mechanical components can have defects (cracks) in the materials, present in 

critical points of the components. Supervision is made to guarantee the safety of the component. 

1975 – Grubisic and Simbüler by studying multiaxial fatigue concluded that the phase angle 

between shear stresses and normal stresses can have a high impact in fatigue life. 

1977 – Kanazawa et al. studied LCF considering phase angle in multiaxial loadings. Steel 1% 

CrMoV specimens were subjected to combined torsion and axial loadings. They concluded that fatigue 

cracks initiate in the planes of maximum shear stresses subjected to all loading conditions and that 

fluctuations around this plane can be found in some cases; Tresca criterion and von Mises are not 

conservative under out of phase cyclic loadings; the multiaxial combined tension and torsion out of 

phase loadings produce more damage than the in phase loadings, specifically the 90º out of phase 

loading. 

1976 – Blass and Zamrik studied multiaxial fatigue of AISI (American Iron and Steel Institute) 314 

steel subjected to combined tension and torsion and combined compression and torsion loadings and 

concluded that the concept of equivalent deformation amplitude (ASME) doesn’t apply to several 

results of multiaxial fatigue. 
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1981 – Garud proposed a new form to approach the multiaxial fatigue analysis. Garud presented a 

failure criterion to multiaxial fatigue based on an energetic model. He suggested applying the concept 

of uniaxial cyclic hysteresis energy (of Morrow) to multiaxial fatigue. Naturally plastic work per cycle is 

the fatigue life (crack nucleation) parameter. The calculations were made with the help of a plasticity 

model. The author obtained good correlations for proportional and nonproportional loadings applied to 

a 1 % CrMoV steel. After this work Garud concluded that traction work causes more damage than 

shear work. Because of that he applied a weight factor to the term representing shear work. This 

model however is not suitable for HCF because the work per cycle is very small and so it is very 

difficult to calculate accurately.  

1988 – Fatemi and Socie presented a multiaxial fatigue damage parameter based on Brown and 

Miller work. They replaced the normal deformation term by normal stresses. The physical justification 

is that normal stresses make the surfaces of the crack to deviate, reducing the friction forces. 

Accounting the stresses instead of deformations makes the damage parameter calculus more suitable. 

1989 – Dang Van developed a multiaxial fatigue failure criterion in a mesoscopic scale. The 

criterion is based on a critical volume where stresses are analyzed at a mesoscopic scale. Dang Van 

suggested that crack begins in the grains that suffer plastic deformation and form the slip bands 

(fatigue is a local phenomenon). He concluded that at mesoscopic scale shear stresses and 

hydrostatic stresses are relevant variables. 

1993 – Liu and Zenner presented a criterion based on a double integral. Reviewing the previous 

works they concluded that there were two ways to formulate a multiaxial fatigue damage parameter, i. 

e., by an integral formulation or by a critical plane formulation. The advantage of integral formulation is 

that damage is calculated at all planes of a critical volume. The critical plane formulation only 

considers the plane where the damage parameter is maximum.  

1995 to 1997 – Papadopoulos presented a microscopic integration model in 1995. In 1997 he 

presented the critical plane model named the Minimum Circumscribed Circle (MCC) to estimate the 

shear stress amplitude. 

1997 – Palin-Luc and Morel working in multiaxial fatigue concluded that for HCF a model based on 

a critical plane is not enough to explain all the experimental observations. Because of that they 

proposed a model based on the analysis of the volume around a critical point (that influences crack 

propagation initiation). The damage parameter is calculated per cycle and it is the energy density of 

volumetric elastic deformation that exceeds a limit value. This limit value depends on the material and 

it is based on a new fatigue limit which is less than the considered normal fatigue limit. This is because 

(according to the authors) conventional considered fatigue limit is not a limit to damage initiation, but a 

limit of not propagation of damage. The presented model is based on Papadopoulos mesoscopic 

criterion. There are problems with the determination of the volume because it is needed a good 

computational equipment and the model was still in development. 
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2000 – Freitas, Li and Santos proposed a new damage parameter based on the MCC of 

Papadopoulos. They proposed the Minimum Circumscribed Ellipse (MCE) parameter to take into 

account the nonproportional loading effects that are not considered in the MCC model.  

2003 – Reis, Li and Freitas studied the effects of nonproportional loadings in the steel 42CrMo4. 

The conclusions changed the ASME code.  

2004 – Reis, in his PhD thesis, [16] studying steels behaviors subjected to axial-torsion 

nonproportional and proportional loadings, concluded that the model which showed better results in 

accordance with experimental data was the minimum circumscribed ellipse model. 

2006 – Wang et al. concluded that for the same equivalent Von Mises stress (of multiaxial 

loadings), fatigue life became shorter with the increase in the loading nonproportionality, being the 

minimum fatigue life obtained for the 90º out of phase loading. This was based on tests done with 

Aluminum LY12CZ specimens. They proposed a new critical plane damage parameter based on 

shear stress range, normal stress and normal stress range which acts perpendicularly to the critical 

plane. The new parameter showed good correlation for the tests they had done. 

In this same year Reis et al. [27] did a multiaxial loading experimental study of the steels 42CrMo4 

and CK45. By fractography analysis they concluded that initial crack planes were determined with a 

high precision by the multiaxial fatigue damage models that were based mainly in shear, i. e., Findley, 

Brown Miller, Fatemi-Socie and Liu II. The models based mainly on the axial strengths, i. e., SWT and 

Liu I didn’t show so good critical plane location determination. 

2007 – In the study [28] S. Hasegawa et al. presented several conclusions on uniaxial LCF of an 

extruded AZ31 magnesium alloy which have been obtained for stress controlled loads:  

- easy yielding in compression by twinning makes the hysteresis curve asymmetric. The curve 

is further characterized by quasi-elasticity during unloading from compression; 

- the asymmetry of the hysteresis curve fairly disappears at half life with the stress controlled 

loads; the fatigue lives and deformation characteristics can be expressed by Coffin-Mason 

type equation. 

2009 – In the study [29] S. Begum et al. observed asymmetrical cyclic behavior as in reference 

[28] doing strain controlled axial tests of an extruded AZ31 magnesium alloy. 

2010 – In the study [30] J. Albinmousa et al. did cyclic axial and cyclic shear tests to a tubular 

specimen of an extruded bar of AZ31B magnesium alloy. They observed that cyclic axial test results 

exhibit asymmetrical cyclic behavior due to twinning as in the references [28] and [29]. Plastic strain 

recovery is also observed in axial hysteresis loop (the size of the half life hysteresis loop is smaller 

than the 1st cycle size) as in figure 2.2 a). The cyclic torsional behavior exhibits a symmetric behavior 

as in figure 2.2 b).  
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Figure 2.2 ʹ Hysteresis curves for: a) cyclic stress controlled axial test [28] and b) cyclic strain controlled shear test [30] 

In the reference [30], studies are also made about strain controlled multiaxial fatigue for 

proportional and nonproportional loadings. Asymmetric hysteresis loop is observed for axial mode or 

axial hysteresis loop; it is also observed plastic strain recovery for axial mode. The hysteresis curve of 

shear mode is observed to be asymmetric in contradiction of the symmetric behavior shown in cyclic 

shear test. The asymmetry of the shear mode tends to vanish with the increase of cycles number (by 

half life symmetric observation); this is due to large plastic strain recovery in the compression cycle, 

leading to an increase in the compression yield value.  

In terms of damage parameters the opinion of the authors [30] is that any damage parameter must 

accommodate the yield asymmetry observed in the hysteresis cycles. They proposed total cyclic 

energy (plastic strain and positive elastic energies) as damage parameter ܦ and established a fatigue 

life time equation: 

ሻܦሺ݃݋݈ ൌ ൫݃݋݈ൣ݉ ௙ܰ൯൧௡   ሺʹǤͳሻ 
In the equation 2.1, ݉ and ݊ are fatigue parameters and have values, e. g., respectively 20.5 and  -

0.45. The relation 2.1 presented a correlation factor value of ܴଶ ൌ ͲǤͺ͵Ͳ for the multiaxial proportional 

and nonproportional loadings data. 

In the work [31] Reis et al. did a multiaxial fatigue analysis of a specimen using the finite elements 

method and the plasticity model of Jiang and Sehitoglu’s. They concluded that the state of stresses 

evolution observed in these simulations agreed well with experimental results obtained in the case of 

the steel 42CrMo4. 

  

a) b) 
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2.2 Proportional and Nonproportional Loadings 

From history it has been observed that multiaxial fatigue loads can be proportional or 

nonproportional. To understand the concept of proportional and nonproportional loads a simple 

example is given. Consider the shaft in figure 2.3. The shaft has axial and shear loadings. Since 

fatigue is generally a surface phenomenon, the state of stresses can be considered 2D because the 

normal stress to the surface is zero. Consider a coordinate system XY fixed with the shaft. Consider a 

coordinate system X´Y´ defined so that, stress along X´ axis ߪ௑ᇱ ൌ  ଵ the first (the biggest) principalߪ

normal stress. As can be observed in figure 2.3 from point A to B and from point B to C, X´ axis 

remains fixed relative to X. Since principal normal stresses axes are perpendicular to one another, it 

can be concluded that the orientation of the principal stresses axes hasn’t changed with time. Because 

principal stresses axes are fixed in space along time, the loading is named proportional loading. 

 

Figure 2.3 ʹ Proportional loading [32] 

However as it can be seen in figure 2.4, if axial stress is made constant and shear stress sinusoidal 

(considering that ߪ௑ᇱ ൌ  ଵ and the same axis too) from point A to E it can be observed that X’ doesn’tߪ

always coincide with the maximum principal normal stress. This means that there is a rotation of the 

principal stress axis in space or a rotation relative to the coordinate system XY. Because principal 

stresses axes rotate in space along time, these types of loadings are called nonproportional loadings. 

 

Figure 2.4 ʹ Nonproportional loading [32]  

time 

time 

time 

time 
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To illustrate the principal stresses orientation changes with multiaxial sinusoidal loadings, let´s 

consider a generic multiaxial sinusoidal load applied to the shaft in such a way that in the surface of 

the shaft the present loads are as in figure 2.5 a). ߪ represents axial stress and is the same for all 

loading cases. ̴߬݅ in figure 2.5 b) is the shear stress that is ݅ degrees out of phase with axial stress. A 

combination of a ߪ and one ̴߬݅  is a multiaxial stress state, so there are 4 different stress states 

presented in figure 2.5. Other variables referenced to the ̴߬݅ multiaxial load case will have the ݅ index. 

In the abscissas, time is represented in a variation from Ͳ      ʹɎ seconds. The stress states obey to 

the relation ߪ ൌ ξ͵ כ ߬. Representation in typical form ξ͵ כ  .(is presented in figure 2.5 b ߪ ݏݒ ߬

 

Figure 2.5 ʹ a) Stresses vs time; b) shear stresses vs axial stress 

The respective principal axis angle can be determined by the equation (see annex A): 

ߠ ൌ ͳʹ ଵି݊ܽݐ ൬ʹ߬ߪ ൰   ሺʹǤʹሻ 
Applying this relation, the figure 2.6 a) is obtained. As it can be seen the angle doesn’t change for the 

case of ̴߬Ͳ as discussed about figure 2.3. As the shear stress ߬ out of phase angle becomes near 90 

from 0 degrees, more principal axis angles are traversed. Velocity of how these angles are traversed 

can be determined by the equation 2.3, which is represented in figure 2.6 b). 

ܸ ൌ ௜ାଵߠ െ ௜ାଵݐ௜ߠ െ ௜ݐ    ሺʹǤ͵ሻ 
The velocity is approximately constant for the case of 90 degrees. As soon as stress state becomes 

more near 0 degrees from 90 degrees, the velocity tends to go near zero with more quick variations. 
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Figure 2.6 ʹ Description of multiaxial sinusoidal loads a) principal stresses angle; b) angle velocity 

 

2.3 Material Behavior 

To characterize the cyclic deformation of a material, it is needed to understand the material 

behavior. This information is used to build plasticity models that simulate the change of material 

stresses states because of a loading acting on it during the cyclic deformation. Material behavior in 

cyclic deformation can generally be characterized by a group of different phenomena: 

- isotropic hardening; 

- kinematic hardening; 

- cyclic creep or ratcheting; 

- mean stress relaxation; 

- nonproportional hardening. 

These features will be analyzed in the next sections. A particular case of 2D stress state of torsion and 

tension loading is used to describe the concepts previously mentioned. 

 

2.3.1 Isotropic Hardening 

Isotropic hardening is the change in the material yield strength due to strain of the material after its 

yield limit. Figure 2.7 shows an example. On the left it is the equivalent stress vs equivalent strain 

response to isotropic hardening. On the right it is the response in the ξ͵ כ ߪ ݏݒ ߬  plane as 

circumferences representing von Mises yield surface. The yield surface is determined equaling von 

Mises yield stress (defined by the equation 2.4) of torsion & tension stress state to the yield stress 

verified in a tension test. The result is the equation 2.5, which represents a circle in the ξ͵ כ  ߪ ݏݒ ߬

plane. At point A plastic deformation begins causing hardening work in the material as dislocations are 

interacting with each other. At point B material is unloaded to a zero stress state. Next it is reloaded to 
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ത஻ߪ  stress state, which will make the material yield at ߪത஻  (a new yield strength) and the plastic 

deformation will continue along its original stress-strain path; this effect is called material memory.  

௩௢௡ ெ௜௦௘௦ߪ ൌ ͳξʹඥሺߪ௑ െ ௒ሻଶߪ ൅ ሺߪ௒ െ ௓ሻଶߪ ൅ ሺߪ௑ െ ௓ሻଶߪ ൅ ͸ሺ߬௑௒ଶ ൅ ߬௒௓ଶ ൅ ߬௑௓ଶሻ   ሺʹǤͶሻ ߪଶ ൅ ͵ሺ߬ଶሻ ൌ  ௬௜௘௟ௗଶ   ሺʹǤͷሻߪ

 

Figure 2.7 ʹ Isotropic hardening [32] 

Continuing loading to point C will make ߪത஼ the new yield strength. Note that the yield surface has 

changed size as in figure 2.7. If now the material is compressed, since it is isotropic, will have yield 

strength value as െߪത஼ (point D). Note that isotropic hardening only makes the yield surface expand in 

all directions.  

 

2.3.2 Kinematic Hardening 

Kinematic hardening models the Bauschinger effect and material memory. There is a yield surface 

translation with no change in shape or size which happens only when there is plastic straining. Figure 

2.8 illustrates this type of hardening. Material begins to yield at point A. Next it is loaded to point B 

where the plastic deformation results in a translation of the yield surface. Now the material is unloaded 

to zero stress state. Reloading it to point B will make it yield at ߪത஻. However if at point B material is 

compressed to C, it will yield at ߪത஻ െ  ௬ because of the translation of the yield surface. Translation ofߪʹ

the yield surface is generally represented by a vector ߙ and occurs in the direction of the plastic strain.  

 

Figure 2.8 ʹ Kinematic hardening [32] 
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Real materials show aspects of both kinematic and isotropic hardening until they become 

cyclically stable. After that they only show kinematic hardening effects. Because of that if transient 

material response is not of interest (most cases of fatigue analysis), only kinematic hardening is 

modeled.  

 

2.3.3 Cyclic Creep or Ratcheting 

Ratcheting or cyclic creep models the mean plastic strain increase during each cycle of a stress 

controlled deformation with a mean stress. It is the accumulation of plastic deformation and it is 

observed in materials subjected to a mean stress. In figure 2.9 it is illustrated the stress state of a thin 

walled tube subjected to a cyclic shear strain with a static axial stress. Consider that shear strain 

range is enough to do plastic deformation during each cycle. As can be observed in figure 2.9 total 

axial deformation is increasing during each cycle. First the specimen is loaded both in axial and shear 

strains to point A. After that the specimen shear strain is cycled with a constant axial stress. Loading 

the specimen to point B as in figure 2.9 it is an elastic phenomenon. However as soon as point B is 

passed, plastic deformation occurs and shear loadings produce axial deformation. The cyclic creep 

decreases after some cycles and becomes stable. 

 

Figure 2.9 ʹ Ratcheting [32] 

 

2.3.4 Mean Stress Relaxation 

Mean stress relaxation models the tendency of the mean stresses to go to zero during stress 

controlled deformation with a mean strain. This is illustrated by figure 2.10. In figure 2.10 it can be 

seen that the mean stress tends to zero after each cycle.  
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Figure 2.10 ʹ Mean stress relaxation [32] 

Plasticity models of mean stress relaxation and cyclic creep have been built for years, but none of 

them has gained widespread use.  

 

2.3.5 Nonproportional Cyclic Hardening 

As it has been explained in section 2.2, nonproportional loadings are the load paths that cause the 

principal stress axis to rotate. In figure 2.11 stress vs strain curves are presented for proportional and 

nonproportional loadings. Nonproportional loading as it can be observed causes additional cyclic 

hardening relative to an in phase load. The 90º out of phase loading has been verified as the loading 

path to produce the largest degree of nonproportional hardening. The magnitude of this hardening 

effect is highly dependent on the material microstructure and the ease with which slip systems develop 

in a material.  

 

Figure 2.11 ʹ Proportional and nonproportional loading stress-strain curves [32] 

To quantify this new nonproportional hardening several factors were developed. One of them is 

Kanazawa nonproportionality factor. Other measures of nonproportionality have been proposed but 
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due to high complexity they have not become widely used. Kanazawa factor is based on the 

interaction of slip on different planes in the material. It can be calculated using the equation: 

ܨ ൌ ݁݃݊ܽݎ ݊݅ܽݎݐݏ ݎ݄ܽ݁ݏ ݉ݑ݉݅ݔܽܯ݈݁݊ܽ݌ ݎ݄ܽ݁ݏ ݉ݑ݉݅ݔܽ݉ ݋ݐ Ͷͷ͑ ݐܽ ݁݃݊ܽݎ ݊݅ܽݎݐݏ ݎ݄ܽ݁ܵ    ሺʹǤ͸ሻ 
The factor ܨ depends on both phase angle and amplitude. To illustrate this, a series of sinusoidal 

loading paths are presented in figure 2.12. On the left loadings of equal amplitude ሺߛ ൌ ሻߝʹ  are 

presented with different phase angles. On the right the figure shows loading paths of different shear  

 

Figure 2.12 ʹ Nonproportional loading histories; a) with ࢽ ൌ ૛ࢿ; b) with the same phase angle  [32] 

strain amplitudes with equal phase angle. Calculating Kanazawa factor for the different loading paths 

the results presented in table 2.1 can be obtained. As it can be observed in table, ܨ is a measure of 

the ellipticity of the loading history in the 
ఊଶ  plane because as soon as the ellipse becomes more ߝ ݏݒ

similar to a circumference the factor goes from 0 to 1. 

Phase angle 0º 31º 60º 90º ࢽ ൌ ૚Ǥ ૜ࢽ ࢿ ൌ ૙Ǥ ૠ0.33 0.67 1.0 0.57 0.27 0 ࡲ ࢿ 

Table 2.1 ʹ Kanazawa factor for strain histories in figure 2.11 [32] 

Experiments have shown that Kanazawa factor can be used to model the increase in the cyclic 

strength coefficient using the equation: 

௡௣ᇱܭ ൌ ᇱሺͳܭ ൅  ሻ   ሺʹǤ͹ሻܨߙ
In the equation 2.7, ߙ is a constant dependent on the material and temperature. The nonproportional 

hardening coefficient ߙ has values from zero to 1. Several examples are presented in table 2.2. 

Material ࢻ 

314 stainless steel 0.5-1.0 
OFHC copper 0.3 

6061-T6 aluminum 0.2 
1% Cr-Mo-V steel 0.14 
1100 aluminum 0.0 

Table 2.2 ʹ Nonproportional hardening coefficient [32] 
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2.4 Plasticity Model 

A cyclic plasticity model is generally build by 3 components:  

o Yield function; 

o Flow rule; 

o Hardening rule. 

Before yielding occurs, Hook´s Law can be used to calculate stresses. To determine when yield 

occurs a yield function is used. The function describes the combinations of stresses that cause the 

material to yield or to begin plastic deformation. Typical yield function is von Mises criterion which 

states that yield occurs when the equality is verified: 

݊݋݅ݐܿ݊ݑܨ ݈ܻ݀݁݅ ൌ ிܻ ൌ ௑ଶߪ ൅ ௒ଶߪ ൅ ௓ଶߪ െ ௒ߪ௑ߪ െ ௓ߪ௒ߪ െ ߪ௓ߪ௑ ൅ ͵ሺ߬௑௒ଶ ൅ ߬௒௓ଶ ൅ ߬௑௓ଶሻ ൌ  ௬௜௘௟ௗଶ   ሺʹǤͺሻߪ
Stresses and strains during material plastic deformation show a dependence on the prior loading 

history. Because of that typically an incremental plasticity procedure is implemented. To make this 

incremental plasticity model procedure, relations between the stresses and plastic strains are needed, 

i. e., constitutive equations. These relations are called the flow rule. Typically increments of strain are 

decomposed in elastic and plastic components: 

ߝ݀ ൌ ௘ߝ݀ ൅  ௣   ሺʹǤͻሻߝ݀
Commonly the flow rules are based on the normality postulate by Drucker [32], i. e., it is supposed that 

plastic strain increment vector ݀ߝ௜௝௣  is normal to the yield surface during plastic deformation. For axial & 

torsion loadings this statement can be represented by the equations: 

௑௣ߝ݀ ൌ ߣ݀ ߲ ிܻ߲ߪ௑    Ƭ   ݀ߛ௑௒௣ ൌ ߣ݀ ߲ ிܻ߲߬௑௒    ሺʹǤͳͲሻ 
where the positive scalar  ɉ is given by: 

ߣ݀ ൌ ͳܥ ߲ ிܻ߲ߪ௑ ௑ߪ݀ ൅ ߲ ிܻ߲߬௑௒ ݀߬௑௒ቀ߲ ிܻ߲ߪ௑ቁଶ ൅ ቀ ߲ ிܻ߲߬௑௒ቁଶ    ሺʹǤͳͳሻ 
where C is the tangent modulus of the stress vs strain curve. 

To describe the changes in yield criterion during plastic straining there are hardening rules. So 

they describe changes in the yield surfaces. Detailed description of the hardening plasticity models will 

not be mentioned here. The reference [32] can be consulted for further details. 
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The incremental plasticity procedure used in this work is the model of Jiang & Sehitoglu [33], [34] 

which uses von Mises yield function. The model has been programmed in C++ language by Darrell F. 

Socie. The only task left is to program the input data and material properties. 

 

2.5 Damage Parameters & Fatigue Life Estimation 

To determinate how much damage a multiaxial fatigue load path does to the material, fatigue 

damage parameters are used. There are several damage parameters which have been described in 

the section fatigue history. In this work focus is made in parameters based on the critical plane 

approach. Remember that the critical plane approach considers only one or more planes within a 

material subject to a maximum value of a damage criterion. Naturally fatigue life is determined by the 

combination of stresses and strains acting on a critical plane.  

 

2.5.1 Findley Model 

Observing the fatigue crack initial orientation in the steel, Findley (1956) and in aluminum Findley 

& Tracy (1973) discussed the influence of normal stresses that load the maximum shear stress plane. 

According to Findley the material damage is caused by normal stress acting on a plane that has a 

linear contribution relative to the shear stresses present in that plane. Failure is verified for: 

൬߬߂ʹ ൅ ௡൰௠௔௫ߪ݇ ൌ ݂   ሺʹǤͳʹሻ 
By this equation, the previous critical plane formulation states that initial crack begins with ߠ 

orientation which corresponds to the maximum damage parameter: 

൫߬௔ݔܽ݉ ൅  ௡ǡ௠௔௫൯   ሺʹǤͳ͵ሻߪ݇
The constant ݇ is a material constant. ߬௔ is the alternating stress and ߪ௡ǡ௠௔௫ is the maximum normal 

stress acting in plane ߠ. The constant ݇ can be determined by using a torsion test and a axial or 

bending test. The equations to calculate ݂ are respectively: 

ඥͳ ൅ ݇ଶ ʹ߬߂ ൌ ݂   ሺʹǤͳͶሻ 
ඥሺߪ௔ሻଶ ൅ ݇ଶሺߪ௠௔௫ሻଶ ൅ ௠௔௫ߪ݇ ൌ ʹ݂   ሺʹǤͳͷሻ 

Combining the equations 2.14 and 2.15 the equation 2.16 is obtained. 
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௔ǡோୀିଵ߬௔ǡோୀିଵߪ ൌ ʹͳ ൅ ݇ξͳ൅ ݇ଶ    ሺʹǤͳ͸ሻ 
Which can be solved to determine ݇.  

To determine fatigue life or fatigue life cycles number in LCF the fatigue life equation is: 

൬߬߂ʹ ൅ ௡൰ߪ݇ ൌ ߬௙כ൫ ௙ܰ൯௕   ሺʹǤͳ͹ሻ 
Where the variable ߬௙כ  is determined using the torsional fatigue strength coefficient, ߬௙ᇱ , in the 

equation: 

߬௙כ ൌ ඥͳ൅ ݇ଶ כ ߬௙ᇱ   ሺʹǤͳͺሻ 
 

2.5.2 Brown & Miller Model 

Brown and Miller (1973) analyzed many works in LCF with focus made in the crack formation and 

early growth. In some cases octahedral shear stress shows being effective in describing HCF. The 

octahedral shear strain and maximum shear strain show not to be effective in describing LCF. Brown 

and Miller made tests of combined tension and torsion loading with a constant shear strain range. 

After observing the results they concluded two strain parameters were necessary to describe fatigue 

failure. They chose as the two parameters both the cyclic shear strain and the cyclic normal strain 

acting on the plane of maximum shear.  

Brown and Miller suggested that there are two different types of cracks, i. e., Case A and Case B 

cracks. They are illustrated in figure 2.13. Case A crack type ሺߪଷȀߪଵ ൏ Ͳሻ tends to be shallow and have 

a small aspect ratio; shear stress acts perpendicular to the free surface along the crack depth; Case A 

crack type is always present in combined axial & torsion loadings. Case B crack type ሺߪଶȀߪଵ ൐ Ͳሻ 
tends to grow into depth due to shear stresses; Case B cracks always intersect the surface at an 

angle of 45º. Tension loading can present either modes of cracking. 

 

Figure 2.13 ʹ a) Case A cracks; b) Case B cracks [32] 
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Based on the new information, Brown and Miller proposed a criterion for each type of cracking: 

۔ە
൰௝ߛ݃߂ǣ   ൬ܣ ݁ݏܽܥ      ۓ ൅ ቀߝ௡݄ቁ௝ ൌ ͳܤ ݁ݏܽܥǣ   ߛʹ߂ ൌ  ሺʹǤͳͻሻ     ݐ݊ܽݐݏ݊݋ܿ

In the equations 2.19 ݃, ݄ and ݆ are constant. ݆ has values in the range from 1 for brittle materials to 2 

for ductile materials.  

After this model Kandil, Brown and Miller proposed a simple formulation for Case A cracks: 

ොߛ߂ ൌ ሺߛ߂௠௔௫ఈ ൅  ௡ఈሻଵఈ   ሺʹǤʹͲሻߝ߂ܵ
In the equation 2.20 ߛ߂ො is the equivalent shear strain range and ܵ is a material dependent parameter. ܵ represents the influence of the normal strain on material crack growth and is determined correlating 

axial and torsion data. Wang and Brown simplified plus the above formulation, considering ߙ ൌ ͳ and 

adding a mean stress term. They obtained: 

ʹොߛ߂ ൌ ߛʹ߂ ൅ ௡ߝ߂ܵ ൌ ܧ௙ᇱߪܣ ൫ʹ ௙ܰ൯௕ ൅ߝܤ௙ᇱ൫ʹ ௙ܰ൯௖   ሺʹǤʹͳሻ 
In the equation 2.21: 

ቄܣ ൌ ͳǤ͵ ൅ ͲǤ͹ܵܤ ൌ ͳǤͷ ൅ ͲǤͷܵ    ሺʹǤʹʹሻ 
According to Brown and Miller the damage critical plane is determined by: 

ݔܽ݉ ൬ߛʹ߂ ൅  ௡൰   ሺʹǤʹ͵ሻߝ߂ܵ
The Brown and Miller constant ܵ  can be determined by the expression 2.24 doing ௙ܰ ՜ λ  and ߭௘ ൌ ߭௣ ൌ  :ߥ

ܵ ൌ ߬௙ᇱܩ ൫ʹ ௙ܰ൯௕ఊ ൅ ʹ௙ᇱ൫ߛ ௙ܰ൯௖ఊ െ ሺͳ ൅ ߭௘ሻ ܧ௙ᇱߪ ൫ʹ ௙ܰ൯௕ െ ൫ͳ ൅ ߭௣൯ߝ௙ᇱ൫ʹ ௙ܰ൯௖ሺͳ ൅ ߭௘ሻ ܧ௙ᇱߪ ൫ʹ ௙ܰ൯௕ ൅ ൫ͳ ൅ ߭௣൯ߝ௙ᇱ൫ʹ ௙ܰ൯௖    ሺʹǤʹͶሻ 

To determine fatigue life for Case A crack type and include mean stresses effects the expression 2.25 

can be used: 

௱ఊ೘ೌೣଶ ൅ ௡ߝ߂ܵ ൌ ܣ ఙ೑ᇲா ሺʹ ௙ܰሻ௕ ൅ߝܤ௙ᇱሺʹ ௙ܰሻ௖    ሺʹǤʹͷሻ  
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2.5.3 Fatemi & Socie Model 

Fatemi and Socie studied the model of Brown and Miller. They proposed that the normal strain 

term should be replaced by the normal stress. The justification for this change is that during shear 

loading the irregular crack surface results in resistive forces that reduce crack stresses, retarding 

crack growth and as a result increasing fatigue life. The phenomenon is illustrated in figure 2.14. 

Fractography evidence for this phenomenon has been obtained. They verified that in the case of pure 

torsion, the specimens showed an extensive rubbing. In the case of tension tests the fractography 

shows individual slip bands that were observed in the fracture surface. 

 

Figure 2.14 ʹ The irregular crack surface acting as an ͞obstacle͟ to shear motion [32] 

 

The critical plane can be determined by the equation: 

ݔܽ݉ ቈߛʹ߂ ቆͳ ൅ ݇ ௬௜௘௟ௗߪ௡ǡ௠௔௫ߪ ቇ቉   ሺʹǤʹ͸ሻ 
The Fatemi and Socie constant ݇ can be determined by the expression 2.27 doing ௙ܰ equal to the 

number of cycles close to the obtained by the other damage parameters: 

݇ ൌ ൦ ߬௙ᇱܩ ൫ʹ ௙ܰ൯௕ఊ ൅ ʹ௙ᇱ൫ߛ ௙ܰ൯௖ఊͳǤ͵ߪ௙ᇱܧ ൫ʹ ௙ܰ൯௕ ൅ ͳǤͷߝ௙ᇱ൫ʹ ௙ܰ൯௖ െ ͳ൪ܭᇱሺͲǤͲͲʹሻ௡ᇲߪ௙ᇱ൫ʹ ௙ܰ൯௕    ሺʹǤʹ͹ሻ 
This damage model can be understood as the cyclic shear strain modification by the normal stress to 

include crack closure effects. This model can be described by the following equation of fatigue life 

determination: 

ߛʹ߂ ቆͳ ൅ ݇ ௬௜௘௟ௗߪ௡ǡ௠௔௫ߪ ቇ ൌ ߬௙ᇱܩ ൫ʹ ௙ܰ൯௕ఊ ൅ ʹ௙ᇱ൫ߛ ௙ܰ൯௖ఊ   ሺʹǤʹͺሻ 
The shear properties can be estimated by the axial properties or vice-versa using the table 3.3. 
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 Axial Shear 

Fatigue strength coefficient ߪ௙ᇱ ߬௙ᇱ ൎ  ͵௙ᇱȀξߪ

Fatigue strength exponent ܾ ܾߛ ൎ ܾ 

Fatigue ductility coefficient ߝ௙ᇱ ௙ᇱߛ  ൎ ξ͵ߝ௙ᇱ  
Fatigue ductility exponent ܿ ܿߛ ൎ ܿ 

Modulus ܩ ܧ ൎ Ȁሾʹሺͳ൅ܧ  ሻሿߥ
Table 2.3 ʹ Formulas to estimate shear fatigue properties by axial fatigue properties [32] 

 

2.5.4 Smith, Watson & Topper Model 

Brown & Miller and Fatemi & Socie critical plane models have been modeled using materials 

which have a dominant failure mechanism of shear crack nucleation and growth. A different model is 

needed for materials of crack growth on planes of maximum tensile strain or stress. Smith, Watson & 

Topper present that cracks nucleate in shear but initial life is determined by crack growth on 

perpendicular planes to the maximum principal stress and strain as illustrated in figure 2.15. 

 

Figure 2.15 ʹ Tensile crack growth [32] 

The critical plane is determined by the expression: 

ݔܽ݉ ൬ߪ௡ ʹଵߝ߂ ൰   ሺʹǤʹͻሻ 
Where ߝ߂ଵ is the principal strain range. Fatigue life can be determined by the equation: 

௡ǡ௠௔௫ߪ ʹଵߝ߂ ൌ ܧ௙ᇱଶߪ ൫ʹ ௙ܰ൯ଶ௕ ൅ ʹ௙ᇱ൫ߝ௙ᇱߪ ௙ܰ൯௕ା௖    ሺʹǤ͵Ͳሻ 
 

2.5.5 Liu I & Liu II Models 

Liu virtual strain energy (VSE) model is based on combined critical plane and energy models. 

They are critical plane models in the sense that work quantities are defined for specific planes within 

the material. In the case of multiaxial loading, VSE model considers two possible failure modes. A 

mode for tensile failure ȟ ୍ (axial work) and a mode for shear failure ȟ ୍୍ (shear work).  
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In the case of axial work, to determine work, firstly it is identified the plane where the axial energy 

is maximum and next it is added the respective shear energy in that plane: 

߂ ூܹ ൌ ௡ሻߝ߂௡ߪ߂ሺݔܽ݉ ൅  ሺʹǤ͵ͳሻ   ߛ߂߬߂
The fatigue life is given by: 

߂ ூܹ ൌ Ͷߪ௙ᇱߝ௙ᇱ൫ʹ ௙ܰ൯௕ା௖ ൅ Ͷߪ௙ᇱଶܧ ൫ʹ ௙ܰ൯ଶ௕   ሺʹǤ͵ʹሻ 
In the case of shear work, to determine work, firstly it is identified the plane where shear energy is 

maximum and next it is added the respective axial energy in that plane: 

߂ ூܹூ ൌ ሻߛ߂߬߂ሺݔܽ݉ ൅ ௡ߝ߂௡ߪ߂    ሺʹǤ͵͵ሻ 
The fatigue life is given by: 

߂ ூܹூ ൌ Ͷ߬௙ᇱߛ௙ᇱ൫ʹ ௙ܰ൯௕ఊା௖ఊ ൅ ൫Ͷ߬௙ᇱ ൯ଶܩ ൫ʹ ௙ܰ൯ଶ௕ఊ    ሺʹǤ͵Ͷሻ 
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3 Material, Software Analysis & Experiments Procedures 

In this chapter firstly an analysis of the material properties of the extruded magnesium alloy AZ31 

is made. The extruded magnesium alloy AZ31B-F is chosen. However the alloy order only arrived one 

month before ending the deadline to deliver this work. So a decision is taken to do ANSYS and C++ 

Plasticity program simulations with the available information of the AZ31 extruded magnesium alloy. 

The alloy arrived in a date enough to do a monotonic tension test, so the tensile test procedure is 

presented. Next the ANSYS and Plasticity program procedures are presented to run simulations. The 

last section presents how the damage parameters are programmed and how they are obtained. 

 

3.1 Material 

The material properties used for the Plasticity program analysis are the ones of the extruded AZ31 

bar of reference [29] presented in figure 3.1. This bar is extruded in a temperature range of 360 to 382 

ºC at an extrusion speed of 50.8 mm/s. The applied extrusion process ratio is about six, and after 

extrusion the alloy is air quenched.  

 

Figure 3.1 ʹ AZ31 extruded test material selected in the paper [29] 

The chemical composition of the alloy is presented in table 3.1. 

Al Zn Mn Fe Ni Cu Mg 

3.1 1.05 0.54 0.0035 0.0007 0.0008 Balance 

Table 3.1 ʹ Chemical composition (wt%) of the extruded AZ31 magnesium alloy [29] 

The test specimens are taken from the plate shaped part excluding the bar sections. Fatigue 

samples of 140 mm in length are machined in the extrusion/longitudinal direction. The sub-sized 

samples for both tensile and fatigue tests followed the ASTM E8 standard. The thickness of the 

samples is kept unchanged (7mm). In figure 3.2 typical microstructures of the extruded AZ31 

magnesium alloy are observed across the thickness. 
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Figure 3.2 ʹ Light microscope images of the microstructure of the extruded magnesium alloy AZ31 a) near the top surface 

showing large grains; b) below the top surface showing large to small grain transition; c) at the center of the specimen 

showing the small grains; d) near the bottom surface showing the small and large grains [29] 

Figure 3.2 shows that the microstructure is non-uniform along the thickness of the specimen (grain 

size changes). The black dots presented in figure 3.2 are Mn- and Al- containing particles.  

Tensile stress vs strain curve is determined at a strain rate of ͳ ൈ ͳͲିଶ  ିଵ. Figure 3.3 shows this 

curve. Correspondent monotonic material properties are presented at table 3.2. 

 

Figure 3.3 ʹ Tensile stress vs strain curve of AZ31 Mg alloy [29] 
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Yield 
Strenght 

(Mpa) 

Ultimate 
Tensile 

Strenght 
(MPa) 

Elongation 
(%) 

Young´s 
Modulus 

(GPa) 

Strain 
Hardening 
Exponent 

(n) 

201 264 15.2 45 0.13 

Table 3.2 ʹ Monotonic mechanical properties of AZ31 Mg alloy [29] 

In reference [29] the LCF parameters are also determined for the extruded AZ31 magnesium alloy 

too. They are presented in table 3.3. 

Low Cycle Fatigue Parameters Extruded Mg Alloy AZ31 

Cyclic strain hardening exponent, ࢔ᇱ 0.34 
Cyclic strength coefficient, ࡷᇱ (MPa) 1976 

Fatigue strength coefficient, ࣌ࢌᇱ  (MPa) 616 

Fatigue strength exponent, 0.15- ࢈ 
Fatigue ductility coefficient, ࢌࢿᇱ  (%) 1.78 

Fatigue ductility exponent, 0.40- ࢉ 

Table 3.3 ʹ Low cycle fatigue parameters for the extruded AZ31 magnesium alloy [29] 

 

3.2 Tensile Test 

The tensile test is done in the electro-mechanics machine INSTRON 3360 illustrated in figure 3.4. 

The test followed the standard NP EN 10 002-1 (1990). To measure strain, an INSTRON 

extensometer with 25 mm of gauge length is used.  

 

Figure 3.4 ʹ INSTRON 3360 machine [35] 

The specimen dimensions are presented in figure 3.5. 

 

Figure 3.5 ʹ Tensile test specimen; dimensions in mm  
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3.3 Stress Controlled Loadings 

This is the section in which the stress controlled loadings to apply in ANSYS and C++ Plasticity 

program are defined. They are presented in table 3.4 in ξ͵ כ ɒ    ɐ plane. The loadings compare 

different equivalent states of stresses by changing loading path. Loadings are determined using 

Matlab software. The period of the loads is 0.1 s for cases 1 to 6 and 1.4 s for cases 7 and 8. A von 

Mises maximum load of 1 MPa is used to illustrate them. 

 

Table 3.4 ʹ Stress controlled loads in the ξ૜ כ ૌ ܛܞ ો plane 

The loading cases are also presented in table 3.5 in loads vs time form.  

       Case 1             Case 2        Case 3 

       Case 4              Case 5         Case 6 

          Case 7           Case 8 
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Table 3.5 ʹ Stress controlled loads as a function of time  

                    Case 1                           Case 2 

                    Case 3                           Case 4 

                    Case 5                           Case 6 

Case 7 

Case 8 
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3.4 ANSYS  

To simulate using ANSYS multiaxial loading of a magnesium alloy several data are needed to set 

up the simulation: hardening model, specimen geometry and material properties. As it was said in 

section 2.1, multiaxial loading of magnesium has axial asymmetric stress vs strain curve and a shear 

curve that becomes symmetric along the cycle numbers. ANSYS doesn’t have any simple hardening 

model for this type of material behavior. So the curve is modeled as symmetric. The hardening curve 

and material data used to simulate in ANSYS are the real stress vs real strain curve of the data 

presented in figure 3.3 and table 3.2 except the Young modulus. The value of Young modulus used is 

44.8 GPa since it is the value of the AZ31B-F alloy and is near that of table 3.2, 45 GPa. The curve is 

configured in ANSYS using the ANSYS Multilinear Kinematic Hardening Material Model. The curve is 

represented in figure 3.6. Note that ANSYS values are in the SI unit system. The real stress vs real 

strain curve is determined based on engineering stresses and strains or respective nominal values 

using the equations: 

௥௘௔௟ߪ ൌ ௡௢௠௜௡௔௟ሺͳߪ ൅  ௡௢௠௜௡௔௟ሻ   ሺ͵Ǥͳሻߝ
௥௘௔௟ߝ ൌ ݈݊ሺͳ ൅  ௡௢௠௜௡௔௟ሻ   ሺ͵Ǥʹሻߝ

 

Figure 3.6 ʹ ANSYS hardening stress vs strain curve; stress (SIG) vs strain (EPS) 

The specimen modeled using ANSYS is chosen to be the same used for typical multiaxial stress 

controlled fatigue experiments and used in previous master theses, e. g., [25] and [26]. The specimen 

is presented in figure 3.7 plus the ANSYS geometric model. 
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Figure 3.7 ʹ Multiaxial fatigue a) experiment specimen geometry; b) experiment specimen modeled in ANSYS; 

dimensions in mm 

Additional material properties are obtained searching in Efunda website [13] for the alloy AZ31B-F. 

These properties are in table 3.6. The Poisson coefficient is necessary for the ANSYS simulation. 

 AZ31B-F Magnesium Alloy 

Density, ሺ۹܏Ȁܕ૜ሻ 1770 

Poisson coefficient 0.35 

Table 3.6 ʹ Material properties for ANSYS simulation [13] 

The next step is to choose the finite element to use. Reis [16] has done previous finite element 

simulations with multiaxial loading of fatigue specimens. Based on this report it is decided that the 

finite element to use is a 20 nodes element of quadratic displacement behavior. The element is the 

SOLID 186 of the ANSYS library and has 3D displacements as degrees of freedom. It is presented in 

figure 3.8. 

 

Figure 3.8 ʹ SOLID 186 ANSYS structural element from ANSYS Help 

The mesh is constructed in a manner to avoid elements distortion and irregular mesh fitting to the 

original geometry. In reference [16] the number of elements used for a 50 mm specimen in a multiaxial 

loading analysis is 1944. In this report since it is used 8424 elements for a 100 mm specimen it is 

assumed that the mesh is converged. The final mesh is represented in figure 3.9. Mesh is made close 

to 3D uniform shape so that elements rigidity can be isotropic.  

a) 

b) 
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Figure 3.9 ʹ Multiaxial fatigue specimen mesh a) general mesh; b) center section; c) top section 

To apply multiaxial loadings it has to be defined how to apply the boundary conditions. The 

boundary conditions are applied at the bottom and at the top of the specimen as it is shown in figure 

3.10 a). At the bottom all the displacements are fixed to be zero; see figure 3.10 c). At the top axial 

and shear loadings are applied as pressures; see figure 3.10 b). Since many loading cases cannot be 

defined using ANSYS Function Editor, the values have to be upload in a table TIME vs PRESSURE 

from text files. These text files are built with the help of Microsoft Excel and the Matlab program. The 

pressures boundary conditions are represented as lines across the elements the pressure acts. In 

figure 3.10 b) green lines represent axial pressure; red and blue lines represent shear pressure.  

 

Figure 3.10 ʹ Boundary conditions at the specimen a), top b) and bottom c)  

a) b) 

c) 

a) 

b) 

c) 



55 

 

The boundary conditions to be applied are calculated with the help of an excel spreadsheet which 

follows the general calculations described: 

1. The input to the spreadsheet is the axial pressure in the smaller cross-sectional area ܣ௔ of the 

specimen ௔ܲ; 

2. Knowing ௔ܲ, the force in ܣ௔ can be calculated by the equation: ܨ ൌ ௔ܲ כ ௔ܣ    ሺ͵Ǥ͵ሻ 
3. The pressure is calculated at the top area of the specimen ܣ஺  to be applied as the axial 

boundary condition: 

஺ܲ ൌ  ஺   ሺ͵ǤͶሻܣȀܨ
4. Knowing ௔ܲ, then the maximum shear pressure in the smaller cross-sectional area can be 

calculated by: 

ܲܵ௔ ൌ ௔ܲȀξ͵   ሺ͵Ǥͷሻ 
5. The applied torque in ܣ௔ is then given by: ܶ ൌ ܲܵ௔Ȁʹ כ  ௔ȀሺͲǤͲͲ͹ͷȀͶሻ   ሺ͵Ǥ͸ሻܬ

where ܬ௔ is the polar moment of inertia. 

6. Now the necessary shear pressure at the top of the specimen can be applied in the elements 

of figure 3.10 as a boundary condition: ܲ ஺ܵ ൌ ܶȀሺͲǤͲͲ͵ כ ஺ܵሻ   ሺ͵Ǥ͹ሻ 
Where 0.003 is the medium radius of the elements subjected to shear pressure and ஺ܵ the elements 

area where shear pressure is applied. Next the maximum shear and axial pressures calculated in the 

spreadsheet are used in the Matlab program to calculate the load path. 

The general input file for ANSYS is presented in annex B. 
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3.5 Plasticity Program 

The interaction with the Plasticity program was done programming new loads and changing 

material properties. The material properties to be introduced to this program are based on table 3.3 

and table 3.6 and are presented in table 3.7 as program introduced variables. Units are as program 

units. Young modulus is of the AZ31B-F magnesium alloy. 

Variable Description Value 

Mat->E Young modulus (MPa) 44800 
Mat->KP Proportional cyclic strength coefficient (MPa) 1976 
Mat->np Proportional cyclic hardening exponent 0.34 

Mat->KP90 90 º Nonproportional cyclic strength coefficient (MPa) 2173.6 
Mat->np90 90 º Nonproportional cyclic hardening exponent 0.34 
Mat->nu Poisson Coefficient 0.35 
Mat->G Shear modulus (MPa) 16592.5 

Table 3.7 ʹ Material properties of Plasticity C++ program 

In table 3.7 it is assumed that the cyclic hardening exponent is constant for proportional and 

nonproportional loads. The 90º nonproportional cyclic strength is calculated supposing an Kanazawa 

nonproportionality constant as in equation 2.7 with a value Ƚ ൌ ͲǤͳ. The shear modulus is calculated 

by the classic equation presented in table 2.3. 

 

3.6 Matlab Programming of Damage Parameters 

Damage parameters are programmed in Matlab using various functions. The principal function or 

main program which calls the others is in Annex C. All the loads and criteria are programmed as 

functions so that it is possible to program a new load and apply the criterion that is wished. To do 

validation of the program, the case 1 of reference [16] with the steel CK45 material properties is tested. 

The results are presented in table 3.8. A von Mises maximum load of 1 MPa is used. A mesh of 41 

points in time discretization and 91 points discretization in angles (between -90º and 90º) is used. By 

observing relative error, it can be concluded that the Matlab program is calculating angles with good 

accuracy (relative error < 13%). The error can be explained by the use of a different mesh in the mesh 

time vs angle discretization. 

Damage Parameter Ref. [16] Matlab Relative Error (%) 

Findley -18/66 -18/66 0/0 

Brown & Miller -18/66 -18/66 0/0 

Fatemi & Socie -18/66 -16/64 -12.5/-3.125 

SWT +25 25 0 

Liu I +25 25 0 

Liu II -21/69 -20/70 -5/1.43 

Table 3.8 ʹ Matlab critical plane angle results validation using the CK45 steel (degrees) 
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Since validation of damage parameters is done, the different parameter values for the ANSYS and 

Plasticity program loadings cases ሺߪ௩௢௡ ெ௜௦௘௦ǡ௠௔௫ ൌ ʹͲͶ ܽܲܯሻ can be plotted. However Findley, Brown 

& Miller and Fatemi & Socie have constant in their damage parameter to be determined before 

calculating the respective damage parameters. For Brown & Miller the constant is determined doing 

௙ܰ ՜ λ in equation 2.24. For Fatemi & Socie the constant value can be determined introducing in 

expression 2.27 the approximate number of life cycles given by the other parameters, i.e, around 1000 

life cycles. Findley constant can be determined iteratively supposing a constant value and verifying if 

the fatigue life value is close to the range of the other damage parameters. So the calculated 

constants obtained are in table 3.9. 

Constant of Damage Parameters Value 

Brown & Miller 0.321 
Fatemi & Socie 0.231 

Findley 0.15 

Table 3.9 ʹ Damage parameters constants 
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4 Results & Discussion 

This chapter is divided in four sections. The first presenting the tensile test results, the second the 

stresses results with the focus made in stresses behavior and comparison between ANSYS and 

Plasticity program results. The third section shows the critical plane results for the loading cases and 

the final and fourth section the fatigue life results and plasticity work results for ANSYS simulation.  

 

4.1 Tensile Test Results  

The tensile test is done at a strain rate of 1 mm/minute. Two specimens (S1 and S2) are tested. 

The engineering stress vs strain curves obtained and the curve of figure 3.3 are presented in figure 

4.1. As it can be seen the magnesium alloy of paper [29] has a similar behavior of the AZ31B-F alloy. 

 

Figure 4.1 ʹ Stress vs strain curves for tension tests and of ref. [29] 

Table 4.1 lists the diameter and monotonic mechanical properties for the two tested specimens. 

Specimen Diameter 
(mm) 

Yield 
Strenght 
(MPa) 

Ultimate 
Tensile 
Strenght 
(MPa) 

Elongation 
(%) 

Young´s 
Modulus 
(GPa) 

Fracture 
Tensile 
Strength 
(MPa) 

S1 6.59 210 293 13.7 45 267 
S2 6.29 209 288 14.3 45 219 

Table 4.1 ʹ Tensile test specimen diameter and monotonic mechanical properties of AZ31B-F alloy 

Several photographs of the specimens were taken after fracture. Specimen 1 photos are 

presented in figure 4.2. The photos of specimen 2 are presented in figure 4.3. 
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Figure 4.2 ʹ Fracture angles of specimen S1; a) & b) side A; c) &d) side B 

 

 

Figure 4.3 ʹ Fracture angles of specimen S2; a) & b) side A; c) & d) side B 

As it can be observed the general fracture angle is for both specimens around 45º, indicating a ductile 

fracture, which is in accordance with the high elongation (around 15%) and that ultimate tensile 

strength is around 50% higher than yield strength, showing a ductile behavior too. 
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4.2 Stress-Strain Results 

In the next pages the results are presented for the stresses simulation using ANSYS and the 

plasticity model. ANSYS results are presented in parallel with Plasticity program results to compare 

more easily the obtained data. Both models represent real stress but they are based on different data 

as described in the previous chapter. A qualitative and quantitative comparison is searched. A variable 

suitable to preview fatigue life is searched. All the ANSYS results are obtained from the output file 

except the principal stresses angle. These ones are obtained using the equation 2.2. This equation is 

used to calculate principal stresses angle for Plasticity program results too. The ANSYS results are 

from node 3800 of specimen surface in the middle of the throat section. For the Plasticity program von 

Mises equivalent stress is calculated using the equation 2.4. The principal stresses are calculated for 

the Plasticity program using the equation A.6 (see annex A). 

The ANSYS maximum von Mises stress used for each simulation at the boundary is presented in 

table 4.2. 

Case ࣌ ሺࢇࡼࡹሻ 
1 230 
2 230 
3 215 
4 230 
5 230 
6 230 
7 205 
8 205 

Table 4.2 ʹ ANSYS maximum von Mises stress applied 

The period of case 1 to case 6 loads is 0.1 s. The period of case 7 and case 8 loads is 1.4 s.  

Plasticity program simulations need 3 s to run, to compute the data. ANSYS simulations for cases 

1 to 6 need 1h40min to simulate 3 cycles. ANSYS simulation for cases 7 and 8 need 12h to simulate 1 

cycle. So, only one cycle is simulated for cases 7 and 8 loads. Remember that the ANSYS hardening 

model doesn’t have nonproportional effects as the Plasticity program.  

From figures 4.4 to 4.19 the results for both ANSYS and Plasticity program are presented. In 

these figures the letters a), c), e) and g) correspond to ANSYS simulation results. The letters b), d), f) 

and h) correspond to Plasticity program results. Note that the second principal normal stress ߪଶ is not 

presented because it is analyzed the stresses at a surface, so ߪଶ ൌ Ͳ. 

  



62 

 

 

 

 

 

Figure 4.4 ʹ Case 1 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.5 ʹCase 1 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 1 results show similar behavior for both ANSYS and Plasticity program simulations as it was 

expected, i. e., since case 1 is a proportional loading. The range of stresses and strains is similar too. 
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Figure 4.6 ʹ Case 2 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.7 ʹ Case 2 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 2 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. In 

the hysteresis loop for both shear and axial modes loops it is observed that without nonproportional 

hardening effects, the work done by the material is greater, as it is observed for the ANSYS case. For 

the ANSYS axial stress vs axial strain, twice strains results are observed in comparison to Plasticity 

program. In the shear strain/ξ͵ vs axial strain figures, the range of strains is very different. For the 

figures where similar behavior is found, variables have similar range.  
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Figure 4.8 ʹ Case 3 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.9 ʹ Case 3 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 3 results show similar behavior and stresses & strains ranges for both ANSYS and Plasticity 

program simulations only for shear stress*ξ͵ vs axial stress, principal stresses and von Mises stress. 

The shear strain/ξ͵ vs axial strain shows a similar behavior but different strains range. The principal 

stresses plane angle for ANSYS simulation shows that some angles near 50 degrees are traversed. 

The axial stress vs axial strain and shear stress vs shear strain figures show greater work results for 

Plasticity program. The ANSYS shear stress vs shear strain doesn’t show plastic deformation. 
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Figure 4.10 ʹ Case 4 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.11 ʹ Case 4 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 4 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. In 

the hysteresis loop for both shear and axial modes loops it is observed that without nonproportional 

hardening effects, the work done by the material is lesser, as it is observed for the ANSYS case. In the 

shear strain/ξ͵ vs axial strain figures the range of strains is similar but in the case of the Plasticity 

program it is observed a rotation of the loading path. For figures where similar behavior is found, 

variables have similar ranges.  
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Figure 4.12 ʹ Case 5 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.13 ʹ Case 5 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 5 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. The 

Plasticity program doesn’t show a strains translation effect as it can be observed in the ANSYS results 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain . 

However the range of values (max-min) for the cases mentioned before are similar. For figures where 

similar behavior is found, variables have similar ranges.  
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Figure 4.14 ʹ Case 6 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.15 ʹ Case 6 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 6 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. The 

Plasticity program doesn’t show a strains translation effect as it can be observed in the ANSYS results 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain . 

However the range of values (max-min) for the cases mentioned before is similar. For the figures 

where similar behavior is found, variables have similar ranges.  
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Figure 4.16 ʹ Case 7 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 
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Figure 4.17 ʹ Case 7 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 7 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. In 

the hysteresis loop for both shear and axial modes loops it is observed that without nonproportional 

hardening effects, the work done by the material is greater for the Plasticity program case. In the 

shear strain/ξ͵ vs axial strain figures, the range of strains is different. For figures that show similar 

behavior the results show the same ranges.  
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Figure 4.18 ʹ Case 8 results: a) & b) shear stress*ξ૜ vs axial stress, c) & d) shear strain/ξ૜ vs axial strain, e) & f) principal 

stresses, g) & h) principal stresses plane angle 

 

 

  

-300

-200

-100

0

100

200

300

-400 -200 0 200 400

Ĳ_
xy

√(
3)

 (M
Pa

)

ı_y (MPa) -300

-200

-100

0

100

200

300

-400 -200 0 200 400

Ĳ_
xy

√(
3)

 (M
Pa

)

ı_y (MPa)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0

Ȗ_
xy

/√
(3

) (
%

)

İ_y (%) -0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
Ȗ_

xy
/√

(3
) (

%
)

İ_y (%)

-300

-200

-100

0

100

200

300

0.0 0.5 1.0 1.5

P
ri

nc
ip

al
 S

tr
es

se
s 

(M
P

a)

Time (s)

ʍ;ϭͿ
ʍ;ϯͿ

-300

-200

-100

0

100

200

300

0 50 100 150

P
ri

nc
ip

al
 S

tr
es

se
s 

(M
P

a)

Time (steps)

ʍ;ϭͿ
ʍ;ϯͿ

-50.00

0.00

50.00

0.0 0.5 1.0 1.5ș 
(d

eg
re

es
)

Time (s)
-50.00

0.00

50.00

0 50 100 150ș 
(d

eg
re

es
)

Time (steps)

a) b) 

c) d) 

e) f) 

g) h) 



77 

 

 

 

 

Figure 4.19 ʹ Case 8 results: a) & b) axial stress vs axial strain, c) & d) shear stress vs shear strain, e) & f) von Mises stress 

Case 7 results show similar behavior for both ANSYS and Plasticity program simulations except 

for the shear strain/ξ͵ vs axial strain, axial stress vs axial strain and shear stress vs shear strain. In 

the hysteresis loop for both shear and axial modes loops it is observed that without nonproportional 

hardening effects, the work done by the material is greater for the Plasticity program case. In shear 

strain/ξ͵ vs axial strain figures, the range of strains is different. For the figures that show similar 

behavior the results show the same ranges.  
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4.3 Critical Plane Results 

The determined critical planes using a maximum von Mises stress of 204 MPa are presented in 

table 4.3 for the case of ANSYS loads. Critical planes for the cases of Plasticity program simulations 

are the same since the maximum von Mises stress applied is the same for all load cases. 

Model Findley Brown & Miller Fatemi & Socie SWT Liu I Liu II 

Case 1 -16/66 -12/60 -18/66 25 25 -20/70 

Case 2 0 0 0 0 0 +-90/0 

Case 3 0 0 0 0 0 +-90/0 

Case 4 +-20 +-22 +-20 +-24 +-24 +-20/+-70 

Case 5 +-28 +-28 +-30 +-8 +-12 +-58/+-32 

Case 6 +-32 +-28 +-32 +-18 +-12 +-58/+-32 

Case 7 +-4 +-4 +-6 0 0 +-84/+-6 

Case 8 +-4 +-4 +-6 0 0 +-84/+-6 

Table 4.3 ʹ Critical plane angles (degrees) 

In figures 4.20 to 4.25 the various damage parameters evolution is presented for all load cases. 

 

Figure 4.20 ʹ Findley damage parameter 
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Figure 4.21 ʹ Brown & Miller damage parameter 

 

 

 

Figure 4.22 ʹ Fatemi & Socie damage parameter 
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Figure 4.23 ʹ SWT damage parameter 

 

 

 

Figure 4.24 ʹ Liu I damage parameter 
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Figure 4.25 ʹ Liu II damage parameter 

As it can be seen in figures 4.20 to 4.25 the damage parameters of Findley, Brown & Miller, Fatemi & 

Socie and Liu II show similar behavior for the different loading cases. This happens because in these 

damage parameters the term that has a higher contribution to the parameters corresponds to a shear 

mode, i. e., a shear stress range or shear strain range. The same is observed for the damage 

parameters of SWT and Liu I, but in this case the term that has a higher contribution to the parameters 

corresponds to an axial mode, i. e., a normal stress range or normal strain range. 
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4.4 Fatigue Life Results 

The obtained fatigue life or life cycles number for the ANSYS and Plasticity load cases are 

presented in table 4.4 considering different damage parameters. 

Fatigue 
Life 

Findley Brown & Miller Fatemi & Socie SWT Liu I Liu II Minimum 

Case 1 1332 1366 2084 2171 2171 2134 1332 

Case 2 365 345 771 1370 1370 1439 345 

Case 3 365 345 771 1370 1370 1439 345 

Case 4 613 468 1215 2171 2171 2134 468 

Case 5 1564 964 2869 1940 2440 4706 964 

Case 6 1257 964 2473 2702 2440 4706 964 

Case 7 383 358 804 1370 1370 1493 358 

Case 8 383 358 804 1370 1370 1493 358 

Table 4.4 ʹ Life cycles number results 

The plasticity work obtained in ANSYS for each loading case is illustrated in figures 4.26 and 4.27. 

 

Figure 4.26 ʹ Plastic work/volume for the ANSYS cases 1 to 6 simulations 

Observing figure 4.26 it can be seen that the load that causes more plastic work is the case 2 and the 

load that causes less plastic work is the case 3. There is a high difference in the work done by these 

two cases (100x). 
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Figure 4.27 ʹ Plastic work/volume for the ANSYS cases 7 and 8 simulations 

Observing figure 4.27, it can be seen that case 8 causes more plastic work to the material than case 7. 

The cases that cause more plastic work are not necessarily the cases that have less fatigue life 

according to ANSYS results. This can be seen, for example, for cases 2 and 3 that have the same 

fatigue life but cause very different plastic work to the material. 
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5 Conclusion 

From the stresses results it can be concluded that for proportional loads the Plasticity program 

provides very similar results to ANSYS. However for nonproportional loads all the results differ much 

except von Mises stress, principal stresses and principal stresses plane angle.  

As described in section 2.1, magnesium AZ31 alloys exhibit asymmetric hysteresis loops. The 

Plasticity program needs to be changed so that asymmetric hysteresis loop can be simulated. A 

method to introduce this asymmetric behavior in ANSYS needs to be searched too.  

For the stresses results it is observed that for nonproportional loadings the material behavior 

results for ANSYS and Plasticity program are different. A method to include nonproportionality effects 

on ANSYS should be searched. Comparison of experimental results and the obtained data should be 

done. The plastic work observed for case 2 in ANSYS simulation results is higher than Plasticity 

program results. The opposite happens for case 4. The reason why this happens should be 

investigated with experiments.  

All the damage parameters present a minimum fatigue life result for case 2 loading. However the 

maximum fatigue life result changes between cases 1, 5 and 6 for different damage parameters.  

For loading case 2 and 3 all the damage parameters give equal results. This happens because 

damage parameters are based on stresses and strain ranges and they don’t count the time the 

applied load is on a value that causes plastic strain. The same is observed for loading cases 7 and 8. 

To quantify the plastic strain caused by the time a loading path is on a value that causes plastic strain, 

an expression of type 5.1 should be investigated. ߪ௩௢௡ ெప௦௘௦തതതതതതതതതതതതߪ௩௢௡ ெ௜௦௘௦ ௔௧ ௬௜௘௟ௗ    ሺͷǤͳሻ 
However this expression doesn’t quantify the nonproportional hardening effects. This new von Mises 

expression is presented in figures 5.1 and 5.2 for all load cases. It can be observed that von Mises 

expression changes along the principal stresses plane angle ߠ. For loading cases 5 and 6 von Mises 

expression has the same values. The same happens for loading cases 7 and 8.  

Figure 5.1 ʹ von Mises expression for loading cases 1 to 4 Figure 5.2 ʹ von Mises expression for loading cases 5 to 8 
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A simple method to insert this expression in the damage parameters is multiplying the damage 

parameters defined by the expression 5.1. The critical plane results are presented in table 5.1 

considering von Mises stress at yield, having a constant value for all the loading cases.  

Model Findley Brown & Miller Fatemi & Socie SWT Liu I Liu II 

Case 1 -14/64 -12/60 -16/64 25 25 -18/68 

Case 2 +-10 +-10 +-10 +-10 +-10 +-6 

Case 3 0 0 0 0 0 0/+-90 

Case 4 +-18 +-18 +-18 +-20 +-20 +-18/+-90 

Case 5 +-28 +-28 +-30 +-8 +-12 +-32 

Case 6 +-30 +-28 +-32 +-20 +-12 +-32 

Case 7 +-8 +-10 +-8 0 0 +-8 

Case 8 +-8 +-10 +-8 0 0 +-8 

Table 5.1 ʹ Critical plane angles (degrees) for modified damage parameters 

The fatigue life results are presented in table 5.2. 

Fatigue 
Life 

Findley Brown & Miller Fatemi & Socie SWT Liu I Liu II Minimum 

Case 1 1023 1080 1714 2910 2910 2002 1023 

Case 2 284 285 646 1235 1235 1324 284 

Case 3 331 321 715 1311 1311 1378 321 

Case 4 521 419 1074 2167 2167 2002 419 

Case 5 961 664 1934 1708 2134 3780 664 

Case 6 770 664 1678 2289 2134 3780 664 

Case 7 292 294 656 1288 1288 1334 292 

Case 8 292 294 656 1288 1288 1334 292 

Table 5.2 ʹ Life cycles number results for modified damage parameters 

The fatigue life results change for cases 2 and 3 for the new damage parameters as expected. The 

loading case 2 shows less fatigue life than loading case 3. Experimental work needs to be done to 

study the possible application of this von Mises expression and how accurate it is. 
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Annex A – 2D Stress State Equations 

 

Figure A1 ʹ Plane stress loading of a plate [32] 

Static equilibrium on figure A1 b) is used to determine the stresses acting on a plane with an angle ߠ measured counterclockwise. The stresses are: 

ఏߪ ൌ ௑ߪ ൅ ʹ௒ߪ ൅ ௑ߪ െ ʹ௒ߪ ሻߠʹሺݏ݋ܿ ൅ ߬௑௒݊݅ݏሺʹߠሻ   ሺܣǤ ͳሻ 
߬ఏ ൌ ௑ߪ െ ʹ௒ߪ ሻߠʹሺ݊݅ݏ െ ߬௑௒ܿݏ݋ሺʹߠሻ   ሺܣǤ ʹሻ 

Strains can be determined substituting ߪ௑ for ߝ௑ ௒ߝ ௒ forߪ ,  and ߬௑௒  for 
ఊഇଶ  in the expressions A.1 and 

A.2: 

ఏߝ ൌ ௑ߝ ൅ ʹ௒ߝ ൅ ௑ߝ െ ʹ௒ߝ ሻߠʹሺݏ݋ܿ ൅ ʹ௑௒ߛ Ǥܣሻ   ሺߠʹሺ݊݅ݏ ͵ሻ 
ఏߛ ൌ ሺߝ௑ െ ሻߠʹሺ݊݅ݏ௒ሻߝ െ Ǥܣሻ   ሺߠʹሺݏ݋௑௒ܿߛ Ͷሻ 

The coordinate system having the maximum magnitude of normal stresses can be found doing 
ௗఙഇௗఏ ൌ Ͳ, 

obtaining: 

ߠ ൌ ͳʹ ଵି݊ܽݐ ൬ ʹ߬௑௒ߪ௑ െ Ǥܣ௒൰   ሺߪ ͷሻ 
So the principal normal stresses can be found substituting A.5 into A.2, obtaining: 

ଵǡߪ ଷߪ ൌ ௑ߪ ൅ ʹ௒ߪ േඨቀߪ௑ െ ʹ௒ߪ ቁଶ ൅ ߬௑௒ଶ   ሺܣǤ ͸ሻ 
Since a 2D stress state is supposed: ߪଶ ൌ Ͳ   ሺܣǤ ͹ሻ 
  

a) b) 
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Annex B – ANSYS APDL Code 

FINISH  

/clear,all   

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!GEOMETRY, MESH & MATERIAL PROPERTIES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!Pre-Processor 

/PREP7  

ET,1,SOLID186  

 

!Material Properties 

Eyoung=44.8e9 

niu_P=0.35 

Rho=1770 

T_yield=201e6 

 

MP,EX,1,Eyoung,          

MP,PRXY,1,niu_P, 

!Mkin 

TB,MKIN,1                               ! Activate a data table 

TBTEMP,,STRAIN                             ! Next TBDATA values are strains 

TBDATA,1,T_yield/Eyoung,2.956E-2,5.827e-2,9.985E-2! Strains for all temps 

TBTEMP,0.0                                 ! Temperature = 0.0 

TBDATA,1,T_yield,246.17E6,270.3e6,291.71e6! Stresses at temperature = 0.0   ! Stresses at 

temperature = 500 

TBPLOT,MKIN,1 

 

MPTEMP,,,,,,,,   

MPTEMP,1,0   
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MPDATA,DENS,1,,Rho   

!Specimen Geometry 

!Points 

K,1,0,-50e-3,0, 

K,2,6e-3,-50e-3,0, 

K,3,6e-3,-16e-3,0, 

K,4,3.75e-3,0,0, 

K,5,54.55e-3,0,0, 

K,6,0,-16e-3,0 

K,7,0,0,0 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!Controlled Geometry 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Ndiv=12!Ndiv must be even and Ndiv2 too;    !8;12;4  

Ndiv2=6                            !4;6;2  

!Lines 

L,1,2,Ndiv2 

L,2,3,Ndiv*50/22 

LARC,3,4,5,54.55e-3,Ndiv!*2    

L,6,3,Ndiv2 

L,4,7,Ndiv2 

L,7,6,Ndiv!*2 

L,6,1,Ndiv*50/22 

 

!Geometry(Areas & Volumes) ; Mesh 

AL,7,1,2,4 

AL,3,4,5,6 

 

ARSYM,Y,1, 2,1 , ,0,0   
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NUMMRG,all 

VROTAT,1,2,3,4,,,6,1,360,, 

NUMMRG,all 

VMESH,all 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!TRANSIENT ANALYSIS & SOLUTION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!      

 FINISH   

/SOL 

ANTYPE,4     

TRNOPT,FULL  

LNSRCH,1 !ACTIVATES LINE SEARCH 

LUMPM,0  

NLGEOM,1 

NEQIT,30  ! MAXIMUM ITERATIONS NUMBER: 31   

 

NUM_CILCOS=1 

DELTIM,0.005,0,0.1*NUM_CILCOS !Defines how time changes  

OUTRES,ERASE 

OUTRES,ALL,ALL   

TIME,0.1*NUM_CILCOS 

 

DA,5,all,0    

DA,18,all,0  

DA,44,all,0  

DA,31,all,0  

DTRAN 

 

*DIM,NIU_P_1,TABLE,60,1,1,TIME,PRESSURE,    
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*TREAD,NIU_P_1,'NIU_TETA_2','txt','.\Desktop\Tese Recta Final_2009_10_3\ANSYS\Excel\',2,   

SFA,27,1,PRES, %NIU_P_1%   

SFA,40,1,PRES, %NIU_P_1%   

SFA,51,1,PRES, %NIU_P_1%   

SFA,14,1,PRES, %NIU_P_1%  

SBCTRAN  

 

*DIM,M_TAU_1,TABLE,60,1,1,TIME,PRESSURE, 

*TREAD,M_TAU_1,'TAU_TETA_2','txt','.\Desktop\Tese Recta Final_2009_10_3\ANSYS\Excel\',2, 

*DIM,TAU_1,TABLE,60,1,1,TIME,PRESSURE, 

*TREAD,TAU_1,'M_TAU_TETA_2','txt','.\Desktop\Tese Recta Final_2009_10_3\ANSYS\Excel\',2,   

 

SFE,5750,4,PRES, ,%TAU_1%, , , 

SFE,5751,4,PRES, ,%TAU_1%, , , 

SFE,5500,5,PRES, ,%TAU_1%, , , 

SFE,5503,5,PRES, ,%TAU_1%, , ,                       

SFE,3397,5,PRES, ,%TAU_1%, , , 

SFE,3394,5,PRES, ,%TAU_1%, , , 

SFE,3645,4,PRES, ,%TAU_1%, , , 

SFE,3644,4,PRES, ,%TAU_1%, , ,  

SFE,3883,5,PRES, ,%M_TAU_1%, , , 

SFE,3880,5,PRES, ,%M_TAU_1%, , , 

SFE,3402,4,PRES, ,%M_TAU_1%, , , 

SFE,3401,4,PRES, ,%M_TAU_1%, , , 

SFE,1295,4,PRES, ,%M_TAU_1%, , , 

SFE,1296,4,PRES, ,%M_TAU_1%, , , 

SFE,1774,5,PRES, ,%M_TAU_1%, , , 

SFE,1777,5,PRES, ,%M_TAU_1%, , , 
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Annex C – Matlab Principal Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%Author: Agostinho Matos; 54808; Instituto Superior Técnico Lisboa; 2010%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all %clean all variables 

clc  %clean console 

%% LOADING VARIABLES & LOAD SELECTION->> PROGRAMME INPUT 

k_G=40;%20;%8*10;         %temporal discretization in k_G+1 points 

%In flowers case, the first petal has k_G+1 points and the rest k_G points 

  

TT_G=0.1;       %Period of the load 

Load_Select=3;  %Number of the selected load 

niu_x_G=204e6;  %Sigma.x Applied Stress 

%% RUNS SELECTED LOAD 

switch Load_Select 

    case 1 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_1(k_G,TT_G,niu_x_G); 

    case 2 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_2(k_G,TT_G,niu_x_G); 

    case 3 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_3(k_G,TT_G,niu_x_G); 

    case 4 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_4(k_G,TT_G,niu_x_G); 

    case 5 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_5(k_G,TT_G,niu_x_G); 

    case 6 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_6(k_G,TT_G,niu_x_G); 

    case 7 

        [XXaxial_G,YYaxial_G,YYtor_G]=Loads_7(k_G,TT_G,niu_x_G); 

    case 8 

        [XXaxial_G,YYaxial_G,YYtor_G,TT_G]=Loads_8(k_G,TT_G,niu_x_G); 

        XXaxial_G=XXaxial_G';  

        YYaxial_G=YYaxial_G'; 

        YYtor_G=YYtor_G'; 

    case 9 

        [XXaxial_G,YYaxial_G,YYtor_G,TT_G]=Loads_9(k_G,TT_G,niu_x_G); 

        XXaxial_G=XXaxial_G';  

        YYaxial_G=YYaxial_G'; 

        YYtor_G=YYtor_G'; 

    end 
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%% GRAPHICAL PLOTS OF THE APPLIED LOAD 

scrsz = get(0,'ScreenSize'); 

figure('Position',[10 scrsz(4)/2+30 scrsz(3)/5 scrsz(4)/2.812]) 

plot(YYaxial_G/1e6,sqrt(3)*YYtor_G/1e6)%,YA2/1e6,YT2*sqrt(3)/1e6) 

xlabel(texlabel('sigma (MPa)')) 

ylabel(texlabel('tau[3^(1/2)] (MPa)')) 

figure('Position',[10+290 scrsz(4)/4+100 scrsz(3)/3 scrsz(4)/3]) 

plot(XXaxial_G,YYaxial_G/1e6,'--bs',XXaxial_G,YYtor_G/1e6,'--ko') 

legend(texlabel('sigma (MPa)'),texlabel('tau (MPa)')) 

xlabel('Time (s)') 

ylabel('Loads (MPa)') 

%% DAMAGE PARAMETER VARIABLES & D.P. SELECTION->> PROGRAMME INPUT 

Parameter_select=2; %selection of the damage parameter 

k_2_G=90;      %angular parameter discretization in k_2+1 points% It is 

suitable to be an even number to avoid artifacts using griddata function 

const_F=0.15;   %Findley model constant 

const_B_M=0.321; %Brown Miller model constant 

E_yg=44.8e9; 

nn=0.35;        %Poisson coefficient 

const_F_S=0.231; %Fatemi Socie model constant 

niu_ced_G=201e6; %Yield stress  

%% DETERMINE SIGMA_TETA AND TAU_TETA && DO GRAPHICAL PLOT OF THEM 

[Vec_time_G,Vec_teta_G,niu_teta_G,tau_teta_G]=Tension_Teta(k_2_G,TT_G,XXaxi

al_G,YYaxial_G,YYtor_G); 

[X,Y]=meshgrid(-90:180/(k_2_G):90,0:TT_G/(size(XXaxial_G,1)-1):TT_G); 

Z=griddata(Vec_teta_G,Vec_time_G,niu_teta_G/1e6,X,Y); 

figure('Position',[10+800 scrsz(4)/2+100 scrsz(3)/3 scrsz(4)/4]) 

surf(X,Y,Z) 

xlabel(texlabel('theta (Degrees)')) 

zlabel(texlabel('sigma_theta (MPa)')) 

ylabel('Time (s)') 

colormap Summer 

Z=griddata(Vec_teta_G,Vec_time_G,tau_teta_G/1e6,X,Y); 

figure('Position',[10+800 scrsz(4)/4-100+100 scrsz(3)/3 scrsz(4)/4]) 

surf(X,Y,Z) 

xlabel(texlabel('theta (Degrees)')) 

zlabel(texlabel('tau_theta (MPa)')) 

ylabel('Time (s)') 

colormap Summer 

%% RUNS A DAMAGE PARAMETER FOR THE SELECTED LOAD 

switch Parameter_select 



97 

 

    case 1  

        [P_2D,P_3D]=P_Findley(k_2_G,const_F,TT_G,niu_teta_G,tau_teta_G); 

        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        %legend('Findley Parameter') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('Findley Parameter (MPa)') 

        colormap Summer 

    case 2 

[P_2D,P_3D]=P_Brown_Miller(k_2_G,const_B_M,E_yg,nn,TT_G,YYaxial_G,YYtor_G);       

        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('Brown & Miller Parameter (MPa)') 

        colormap Summer 

    case 3 

[P_2D,P_3D]=P_Fatemi_Socie(niu_ced_G,k_2_G,const_F_S,E_yg,nn,TT_G,YYaxial_G

,YYtor_G,niu_teta_G); 

        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('Fatemi & Socie Parameter (MPa)') 

        colormap Summer 

    case 4 

      [P_2D,P_3D]=P_S_W_T(nn,k_2_G,E_yg,TT_G,niu_teta_G,YYaxial_G,YYtor_G); 

        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('SWT Parameter (MPa)') 

        colormap Summer 

    case 5 

[P_2D,P_3D]=P_Liu_I(k_2_G,E_yg,nn,TT_G,YYaxial_G,YYtor_G,niu_teta_G,tau_tet

a_G); 

        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('Liu I Parameter (MPa)') 

        colormap Summer 

    case 6       

[P_2D,P_3D]=P_Liu_II(k_2_G,E_yg,nn,TT_G,YYaxial_G,YYtor_G,niu_teta_G,tau_te

ta_G); 
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        figure('Position',[10 50 scrsz(3)/5 scrsz(4)/3]) 

        plot(-90:180/(k_2_G):90,P_2D/1e6,'--bs') 

        xlabel(texlabel('theta (Degrees)')) 

        ylabel('Liu II Parameter (MPa)') 

        colormap Summer 

end 

figure('Position',[300 50 scrsz(3)/3 scrsz(4)/3]) 

Z=griddata(Vec_teta_G,Vec_time_G,P_3D/1e6,X,Y); 

surf(X,Y,Z) 

xlabel(texlabel('theta (Degrees)')) 

zlabel('Parameter (MPa)') 

ylabel('Time (s)') 

colormap Summer 

AUX_G=-90:180/(k_2_G):90; 

        [A,B]=max(P_2D); 

     for i=1:B-1 

        AUX_2(i)=(abs((P_2D(i)-A)/A*100));  

     end 

        AUX_2(B)=100; 

     for i=B+1:k_2_G+1 

        AUX_2(i)=(abs((P_2D(i)-A)/A*100)); 

     end       

[A2,B2]=min(AUX_2); 

K_ERR=min(AUX_2); 

Parameter_Maximum_Values_MPa={'TT1 (deg.)','P_TT1 (MPa)','TT2 

(deg.)','P_TT2 (MPa)','Relative 

error %';AUX_G(B),A/1e6,AUX_G(B2),P_2D(B2)/1e6,K_ERR} 

 

'PRESS ENTER IN THIS CONSOLE TO CLOSE THE GRAPHICAL INFO' 

pause 

close all 

%Fatigue Life calculation 

[NFFF]=Calcula_Vida(A,Parameter_select); 

vpa(NFFF,7) 


