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Abstract— This paper addresses modelling and control prob-
lems for an model-scale Unmanned Air Vehicle (UAV) which is
intended to perform Vertical Take-Off and Landing (VTOL)
autonomously as well as transition to level flight. The first
contribution of this thesis is the description of an accurate UAV
nonlinear model which captures both hovering and level flight
behaviors. Furthermore, the Hybrid Automata framework is
introduced into the model by means of supervisory control which
provides dynamics switching between modes of operation. The
second contribution concerns the problems of i) hover and
level flight stabilization and, ii) Transition trajectory tracking
by means of linear control techniques. Finally, a control law
which renders the system locally Input-to-State Stable (ISS) is
designed within the Hybrid Systems’ framework allowing for
practical trajectory tracking.

I. INTRODUCTION

The demand for Unmanned Air Vehicles (UAVs) has
escalated in the past few years due to their contributions in
commercial and defense applications, including fire surveil-
lance and mitigation operations, agricultural fields spraying,
infrastructure inspection, among others (see e.g. [1] and [2]).
Several UAV configurations have been developed to meet
the requirements imposed by such applications, including
fixed-wing and tilt wing aircraft, rotorcrafts and ducted-fan
vehicles.

Recent developments described in [3] have shown that
fixed-wing Vertical Take-Off and Landing (VTOL) aircrafts
can perform both long endurance missions and precise ma-
neuvering within exiguous environments. The versatility of
such aircrafts combines helicopter precise trajectory tracking
with conventional fixed-wing airplanes ability to cover large
distances, delivering a final solution which largely exceeds
the capabilities of its predecessors. However, the problem
of achieving robust transitions between hover and leveled
flights is difficult for its exquisite dynamics. To this end,
several control methodologies have been employed, includ-
ing robust linear control, feedback linearization techniques
and adaptive controllers (see e.g. [4] and [5]) but these
different approaches still lack a formal proof of stability and
robustness.

The very different aircraft dynamics between hover and
leveled flights suggest that supervisory control (i.e. the
application of different control techniques for each operating
mode) is a plausible solution for the given problem. Similar
methodologies, like the ones described in [6] and [7], have
been successfully employed in a variety of applications.
Controller switching during operating mode transitions adds
discrete behavior to the continuous UAV model, creating a
new layer of complexity which must be dealt appropriately.

Systems which display both continuous and discrete be-
havior have been under an intense research effort over the last

decade. This study has given rise to several concepts such
as hybrid automata [8] and switched systems [9] which fall
within the broader category of Hybrid Dynamical Systems
described in [6]. The discrete behavior built into these
systems may appear naturally for certain applications such as
UAV landing and take-off (see e.g. [10]) but may also be the
consequence of digital control or supervisory control [11].

The solution proposed in this thesis employs supervisory
control by modeling the small-scale UAV within the Hybrid
Automata framework, dividing the aircraft flight envelope
into Hover, Transition and Level operating modes. Linear
optimal control techniques are employed for system stabi-
lization in hover and level flight while linear and nonlinear
control solutions are exploited for stabilization during tran-
sition flight.

This paper is organized as follows. Section II presents the
3-dimensional UAV nonlinear model, explaining thoroughly
the gravity, propeller and aerodynamic interactions with
the aircraft body while the Hybrid Automaton introduced
in Section III models the switching events introduced by
supervisory control. Section IV presents the controller struc-
tures which are employed during local stabilization and the
tracking of the reference trajectories. Finally, Section V
presents the nonlinear controller structure which renders the
closed-loop system Input-to-State Stable.

II. UAV NONLINEAR MODEL

The UAV under analysis is the model-scale fixed wing
aircraft depicted in Figure 1a which has a total of six
actuators: two propellers, the elevator, the rudder, the ailerons
and the flaps. The UAV nonlinear model introduced in the
following sections is described in the is represented by the
differential equations ξ̇ = f(ξ,µ) with system state ξ ∈ R14

and actuators input µ ∈ R6 given by

ξ = [n1 n2 u v w p q r φ θ ψ x y z]T (1)
µ = [τ1 τ2 δa δe δr δf ], (2)

where n1,2 is the propeller 1(2) speed, vB = [u v w]T is the
aircraft linear velocity, ωB = [p q r]T is the aircraft angular
velocity, φ is the roll angle, θ is the pitch angle, ψ is the
yaw angle, NpB = [x y z]T is the aircraft position (in the
North-East-Down reference frame), τ1,2 is the propeller 1(2)
input torque, and δa, δe, δr and δf are the aileron, elevator,
rudder and flap deflections, respectively.

The aircraft dynamic model includes not only the conven-
tional six degree of freedom dynamics but also the propeller
dynamics. The two inertial reference frames North-East-
Down {N} and Up-East-North {U} are required in order
to prevent parametrization singularities, provided that there



(a) Model-scale UAV picture (b) UAV model representation.

Fig. 1: The unmanned controlled vehicle.

exists appropriate switching between them. The North-East-
Down reference frame {N} is located at some point on the
Earth’s surface (which is assumed to be flat and still) and is
defined by the set of unitary vectors {iN , jN ,kN} where: iN
is tangent to the earth’s surface and points to the geographic
North; jN is normal to iN , tangent to the Earth’s surface and
points to the East; kN completes the right handed set.

The Up-East-North reference frame {U} origin is coinci-
dent with that of {N} and is defined by the set of unitary
vectors {iU , jU ,kU} where: kU is tangent to the earth’s
surface and points to the geographic North; jU is normal
to kU , tangent to the Earth’s surface and points to the East;
iU completes the right handed set.

The Body Reference Frame {B} has its origin in the
aircraft center of gravity and is defined orthogonal and right
handed set of unitary vectors {iB , jB ,kB} which satisfy the
following specifications: iB is collinear with the aircraft’s
zero lift axis (roll axis); jB is normal to the symmetry plane
(pitch axis); kB completes the right handed set (yaw axis).
For the sake of simplicity, the Body Reference Frame is
considered to be the principal axis of inertia.

The propellers, aerodynamic loads and gravity produce the
forces and moments which affect the aircraft’s behavior.

The gravity field produces a force which is directed
towards the nadir and is given by

N fg = [0 0 mg]T , (3)
U fg = [−mg 0 0]T , (4)

fg = B
I R

Ifg , (5)

in the reference frames {N}, {U} and {B}, respectively.
The gravity moment is null because the center of gravity
(CG) is coincident with the center of mass (CM).

The propellers dynamics and thrust are mainly character-
ized by their Coefficient of Thrust CT and Coefficient of
Power CP which are approximately given by

CT = CT0

(
1− J

JM

)
, (6)

CP = CP0
+

(
J

JM

)2

(CPM − CP0
), (7)

where J = u/nd is the propeller advance ratio, n is the
propeller’s speed, d is the diameter, CT0

is the Coefficient
of Thrust at zero velocity, CP0 is the Coefficient of Power
at zero velocity, JM is the advance ratio of zero thrust and
CPM is the Coefficient of Power at J = JM . CT and CP
are related with the propeller’s thrust and power according

to

T =ρn2d4CT (J), (8)
P =ρn3d5CP (J), (9)

where ρ is the atmospheric density. The propeller’s dynamic
model is approximated by

Ip2πṅ = τ −Q, (10)

where Ip is its moment of inertia, τ is the input torque and
Q is the aerodynamic drag torque acting on the propeller
which is given by

Q =
P

2πn
. (11)

The set of moments acting on the aircraft body due to pro-
peller rotation (mp) includes the acceleration torque (macc),
the drag torque (mdrag), the gyroscopic torque (mgyro)
and the displacement torque (mdis) which arises from the
displacement rp of the propeller’s center with respect to the
center of gravity. These torques are given by

mpi = macci + mdragi + mgyroi + mdisi , (12)
(13)

where subscript i ∈ {1, 2} in the formulæ above distin-
guishes each propeller and their moments’ sign change
according to the propeller’s rotation. The total thrust and
torque produced by the propellers is given by

fp =

 Tp1 + Tp2
0
0

 , (14)

mp =mp1 + mp2 . (15)

The aerodynamic forces are generated from the propeller
slipstream flow and the free-stream flow. The two contribu-
tions are calculated separately and combined together in the
end using superposition. Under this assumption, the propeller
slipstream velocity up is given by

up =

√
8T

ρπd2
, (16)

considering a steady, incompressible and inviscid flow.
The lifting surfaces’ lift Li and drag Di is given by the

following equations for any u ≥ 0

Li =
1

2
ρAiu

2
∞CLi , (17)

Di =
1

2
ρAiu

2
∞CDi , (18)

where Ai is the surface’s planform area and u∞ = u under
the small angle approximation. These aerodynamic forces
greatly depend on the surface’s Coefficient of Lift (CL) and
the Coefficient of Drag (CD), which are described by

CL = CL(α, δj), (19)

CD = CD0
+

C2
L

πAe
, (20)

where α = arctan(w/u) is the surface’s angle of attack1, δj
is the actuator deflection, CD0 is the parasitic Coefficient of

1For the vertical stabilizer the sideslip angle β = arcsin(v/‖vB‖) is
used instead of the angle of attack



Drag,A is the aspect ratio and e is the Oswald’s efficiency.
The Coefficient of Lift is given by

CL =

{
CLαα+ CLδj δj , if − CLmax ≤ CL ≤ CLmax
0, otherwise

.

(21)
CL is lower bounded at −CLmax and upper bounded at
CLmax . These limits induce loss of lift (stall) at angles of
attack such that α /∈ [α, ᾱ] where CL(ᾱ) = CLmax and
CL(α) = −CLmax . Applying (17) and (18) to the wing,
horizontal stabilizer and vertical stabilizer one computes the
Lift and Drag forces acting on the aircraft body Lw, Dw,
Lhs, Dhs, Lvs and Dvs. Thus, the aerodynamic forces acting
on the aircraft are given by (22) under the small angle
approximation.

fa =

 Dw +Dhs +Dvs

Lvs
Lw + Lhs

 (22)

The aerodynamic moment ma calculation requires the esti-
mation of the aileron’s mean pressure center location (ra), its
slipstream mean pressure center (rp,a) location, the horizon-
tal stabilizer’s aerodynamic center location (rhs), the wing’s
aerodynamic center location (rw) and the vertical stabilizer’s
aerodynamic center location (rvs). Given these parameters it
is then computed by

ma = mw + mhs + mvs +

 Ma

Mdampq

Mdampr

 , (23)

where Ma, mhs, mvs, mw, Mdampq and Mdampr define the
aileron moment, the elevator moment, the rudder moment,
the wing moment and the damping moments due to pitch
and yaw rotation, respectively. The previously defined forces
and moments complete the dynamic model description. The
next section formulates the UAV Hybrid Automaton which
accounts for controller switching during operating mode
transitions.

III. HYBRID AUTOMATON

The system’s discrete behavior is captured by means of a
Hybrid Automaton which is identified by: a set of the Oper-
ating Modes Q; a Domain Mapping D : Q⇒ Rn × Rm; a
Flow Map f : Q × D → Rn; a set of Edges E ⊂ Q × Q;
a Guard Mapping G : E ⇒ Rn × Rm and; a Reset Map
R : E ×Rn ×Rm → Rn (see [8] or [6] for further details).
The system state ξ ∈ R14 is defined in (1) and the actuator
input µ ∈ R7 is given by

µ = [τ1 τ2 δa δe δr δf q∗]T , (24)

where a new input variable q∗ ∈ Q∗ = {H,L} to inform
the controller which is the desired Operating Mode and
whether transition is required. The remaining state and input
variables were defined in Section II.The Hybrid Automaton
representation is provided in Figure 2.

A. Operating Modes
The Hybrid Automata operating mode q must belong to

the set Q = {H,X,L} which has the meaning
• H - Hover operating mode with Hover controller se-

lected, i.e. µ = µH(ξ, ξ∗(t));

• X - Transition operating mode with Transition con-
troller selected, i.e. µ = µX(ξ, ξ∗(t));

• L - Level operating mode with Level controller selected,
i.e. µ = µL(ξ, ξ∗(t));

The variable ξ?(t) represents the reference state trajectory
which the controller is tracking.

B. Domain Mapping
For each Operating Mode, the domain mapping D : Q⇒

R14 × R6 × Q∗ assigns the set where the variables (ξ,µ)
may range and it is defined by2

D(H) =[nmin, nmax]2 × R6 ×Bφ̄H (0)×Bθ̄H (0)×
Bψ̄H (0)× R2 × R≤0 × U

D(X) =[nmin, nmax]2 × R≥0 × R5 ×Bφ̄X (0)×Bθ̄X (0)×
Bψ̄X (0)× R2 × R<0 × U

D(L) =[nmin, nmax]2 × R>0 × R5 ×Bφ̄L(0)×Bθ̄L(0)×

Bψ̄L(0)× R2 × R<0 × U
⋂

{(u,w) ∈ R>0 × R : α < arctan(w/u) < ᾱ}
(25)

where the actuators domain is the set U ⊂ R3 × Q∗ given
by

U =[τmin, τmax]2 × [δamin , δamax ]× [δemin , δemax ]×
[δrmin , δrmax ]× [δfmin , δfmax ]×Q∗

(26)
The angle limits φ̄H , φ̄L, θ̄H , θ̄L, ψ̄H and ψ̄L are required
for the Hover and Level Operating Modes domains to lie
within the corresponding basin of attraction, i.e. if Bq is the
basin of attraction for the operating mode q then D(q) ⊂ Bq .

C. Flow Map
The Flow Map f : Q × R14 × U → R6 describes the

evolution of the state variables in each operating mode q ∈
Q, i.e. in each operating mode the state’s derivative is given
by

ξ̇ = f(q , ξ,µq ) (27)

where function f is the set of differential equations which
describe the aircraft dynamic model.

D. Edges
The set of edges E ⊂ Q × Q identifies any operating

mode transition from q1 to q2 represented in Figure 2 with
the pair (q1, q2). The possible operating mode transitions in
this model are: (H,X), (X,L), (L,X) and (X,H).

2Bε(p) represents a ball of radius ε around the point p, i.e. the set of
points x such that ‖x− p‖ < ε.

HOVER TRANSITION LEVEL

Fig. 2: The UAV Hybrid Automaton



E. Guard Mapping

The Guard Mapping G : E ⇒ R14 × R6 ×Q∗ determines
for each pair (q1, q2) the set to which the aircraft state must
belong in order to perform the transition. The switch from
Hover to the Transition operating mode is performed only
if the aircraft state verifies the controller restrictions on the
initial state which are denoted by χH→X . Therefore, given
a Transition to Level approach trajectory

v?X→L(t) = (ξ?X→L(t), µ?X→L(t)),

switching from Hover to Transition occurs when the aircraft
state is χH→X -close to v?X→L(0). The guard mapping is
similarly defined for the switch from Level to Transition.

Switching from Transition to either Hover or Level oper-
ating modes is performed whenever the aircraft state belongs
to some set

Xq ⊂ D(q) (28)

where q ∈ {H,L}. Under the previous considerations, the
Guard Mapping is defined by

G(H,X) =BχH→X
(v∗X→L(0))

G(X,L) =
{

(ξ,µ) ∈ D(L) : |φ| ≤ φ̄X→L∧

|θ| ≤ θ̄X→L ∧ |ψ| ≤ ψ̄X→L ∧ q∗ = L
}

G(L,X) =BχL→X
(v∗X→H(0))

G(X,H) =
{

(ξ,µ) ∈ D(L) : |φ| ≤ φ̄X→H∧

|θ| ≤ θ̄X→H ∧ |ψ| ≤ ψ̄X→H ∧ q∗ = H
}

(29)

where the pitch angle boundaries φ̄X→L, θ̄X→L, ψ̄X→L,
φ̄X→H , θ̄X→H and ψ̄X→L must verify

φ̄X→L < φ̄L θ̄X→L < θ̄L ψ̄X→L < ψ̄L

φ̄X→H < φ̄H θ̄X→H < θ̄H ψ̄X→H < ψ̄H

in order to meet the condition (28). A guard mapping
representation is given in Figure 3.

F. Reset Map

For each (q1, q2) ∈ E and (ξ, µ) ∈ G(q1, q2), the reset
map R : E ×R14×U → R14 identifies the jump of the state
variable ξ during the operating mode transition from q1 to
q2. State changes occur when switching from Transition to
Level due to different attitude parametrization between the

Fig. 3: Guard mapping representation

operating modes. The reset map is given by
R(H,X) =ξ,

R(X,L) =[n1 n2 u v w p q r arctan(BNR23/
B
NR33)

arcsin(−BNR13) arctan(BNR12/
B
NR11) x y z]T ,

R(L,X) =[n1 n2 u v w p q r arctan(BUR23/
B
UR33)

arcsin(−BUR13) arctan(BUR12/
B
UR11) x y z]T ,

R(X,H) =ξ,
(30)

where the symbol Rij is the matrix R element which is
found at the i-th row and j-th column.

IV. LINEAR QUADRATIC REGULATOR

A. Controller Structure
The LQR control structure has already been extensively

studied and is categorized as very reliable, for it has high
gain and phase margins [12]. This control solution requires
the system to be linear, however it has been proved that
stabilization of a nonlinear system is also feasible within
a neighborhood of the equilibrium point [13]. Classic LQR
techniques provide the full state feedback control law µ̃ =
−Kξ̃ which robustly stabilizes the aircraft within a sublevel
set of the Lyapunov function V ξ̃) = ξ̃T ξ̃ near the lineariza-
tion point (ξ0,µ0), where ξ̃ = ξ − ξ0 and µ̃ = µ− µ0.

Each operating mode has a different operating point and
specifications which require distinct weightings. Therefore
controller dimensioning requires:

1) Linearization around the chosen operating point
(ξq ,µq );

2) Integrator states (ξ̄) choice according to the operating
mode requirements;

3) Controllability evaluation;
4) (Q,R) weighting using Bryson’s trial-and-error

method, which employs the diagonal matrices

Q =

 ∆ξ−2
1max . . . 0
...

. . .
...

0 . . . ∆ξ−2
nmax

 , (31)

R =

 ∆µ−2
1max

. . . 0
...

. . .
...

0 . . . ∆µ−2
mmax

 , (32)

where ∆ξimax represents the i-th state maximum ex-
pected deviation from equilibrium and ∆µjmax repre-
sents the j-th input maximum expected deviation from
equilibrium.

The chosen control structure is that of D-methodology which
is presented in Figure 4 which has several advantages over
the classic LQR structure, including: it does not require the
equilibrium point to be known, controller gains changes due
to mode switching do not instantaneously change the actuator
input and it provides anti-windup to the control if integrator
output saturates whenever the actuators limits are reached.

B. Reference Maneuvers
The reference transition trajectories were generated with

some intuitive insight about the system and considering that
the transition is to occur in the vertical plane, i.e. the aircraft



ξ̃ d
dt

ξ̄
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Fig. 4: D-methodology control structure.

is laterally stabilized. Therefore, the triplet (u∗, w∗, θ∗) fully
defines the aircraft state at any given point. It is desirable that
the reference trajectories do not lead the aircraft to a stall
situation as it can be hazardous.

Considering firstly the transition from hover to level flight
and assuming that the aircraft is able to climb up at a speed
equal to that of level flight then the change in pitch angle
is not troublesome, requiring solely the change of the main
lifting force from thrust to wing lift. Under this assumption,
the trajectories become very simple as the transition can be
achieved with a step in the forward velocity u and a step in
the pitch rate q. A ramp which takes the downward velocity
w from the equilibrium value in hover to the equilibrium in
level flight is considered instead of a step input in order to
prevent stall during the transition.

The transition trajectory from level flight to hover is
symmetric to the previous trajectory. The aircraft keeps its
forward velocity while increasing steadily its pitch angle.
Again, a ramp which takes the downward velocity from its
equilibrium value in level flight to equilibrium in hover is
considered as the reference trajectory.

C. Simulation Results
This section is divided into three different subsections

which present the simulation results and numerical analysis
performed in each individual operating mode. The nonlinear
model presented in Section II was used given the parameter
estimation which was performed on the real world model-
scale UAV depicted in Figure 1a. Due to space constraints,
the transition from Level to Hover is not presented for its
similarity to the transition from Hover to Level.

D. Hover
The chosen operating point for the Hover controller di-

mensioning is given by
ξH0
'[154.7 154.7 0 0 0 0 0 0 0 π/2 0 0 0 − 1]T ,

µH0
'[0.12 0.12 0 0 0 0]T .

(33)
The controller structure introduced in Section IV is employed
with
ξ̃H = [n1 n2 u− u∗(t) v w − w∗(t) p q − q∗(t) r φ θ − θ∗(t) ψ]T

ξ̄H = [u− u∗(t) v w − w∗(t) φ θ − θ∗ ψ]T .
(34)

This particular choice of integrator states provides reference
tracking (u∗, w∗, θ∗) and the required position stabilization
when (u∗, w∗, θ∗) = (0, 0, 0). The trial-and-error method
provides the weighting: ∆n1 = ∆n2 = 200 rps, ∆ũ = 10
m/s, ∆ṽ = ∆w̃ = 1 m/s, ∆p = ∆r = 1 rad/s, ∆q̃ = 0.1
rad/s, ∆τ1 = ∆τ2 = 0.2 N.m, ∆δa = ∆δf = 7.5◦ and
∆δe = ∆δr = 15◦. Hover control simulations demonstrate

the controller’s ability to stabilize the aircraft at the operating
point (33) starting from any initial condition which lies
within Hover domain, ξ(0) ∈ D(H), namely with initial
conditions ψ(0) = ψ̄H and θ(0) = θ̄H . Simulations results
with the aforementioned starting angular values are depicted
in Figure 5.

E. Level
The chosen operating point for the Level controller dimen-

sioning is given by
ξL0
'[112.4 112.4 10.8 0 1.9 0 0 0 0 π/18 0 − 1]T ,

µH0
'[0.052 0.052 0 − 0.065 0 0]T .

(35)
The controller structure introduced in Section IV is employed
with

ξ̃L = [n1 n2 u− u∗(t) v w p q − q∗(t) r φ θ − θ∗(t) ψ z]T ,

ξ̄L = [u− u∗(t) v φ θ − θ∗(t) ψ]T .
(36)

The integrator states in the ũ and θ̃ stabilize the forward
velocity and the pitch angle at some desired value. The state
variable z stabilizes the aircraft at a given height. The trial-
and-error method provides the weighting: ∆n1 = ∆n2 =
200 rps, ∆ũ = 10 m/s, ∆ṽ = ∆w̃ = 1 m/s, ∆p = ∆r = 1
rad/s, ∆q̃ = 0.1 rad/s, ∆z = 0.1 m, ∆τ1 = ∆τ2 = 0.2
N.m, ∆δa = ∆δf = 7.5◦ and ∆δe = ∆δr = 15◦. Level
flight control must stabilize the aircraft at the equilibrium
point in equation (35) as long as its initial state lies within
the Level Flight domain, ξ(0) ∈ D(L), namely with initial
angles φ(0) = φ̄L and θ(0) = θ̄L. Simulations results with
the aforementioned starting angular values are depicted in
Figure 6.

F. Transition
The transition flight does not have an equilibrium point

in the same sense as level flight and hover but linearization
around some equilibrium point is required in order to obtain
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the Transition controller. The chosen operating point given
in (37) is very similar to the Hover operating point. However,
its forward velocity of 1 m/s provides the linear model with
characteristics which are present both in hover and level
flight.

ξX0
'[157.3 157.3 1 0 0 0 0 0 0 π/2 0 0 0 − 1]T

µX0
'[0.12 0.12 0 0 0 0]T

(37)
Again, the controller structure described in Section IV is
employed with

ξ̃X = [n1 n2 u− u∗(t) v w − w∗(t) p q − q∗(t) r φ θ − θ∗(t) ψ]T

ξ̄X = [u− u∗(t) v w − w∗(t) φ θ − θ∗ ψ]T ,
(38)

which is equal to the choice made for the Hover controller.
However, the transition flight controller spans a large set of
operating points which are defined by the reference maneu-
vers thus requiring different LQR weightings. The chosen
weightings are ∆n1 = ∆n2 = 200 rps, ∆ũ = ∆ṽ = ∆w̃ =
10 m/s, ∆p = ∆r = ∆q̃ = 1 rad/s, ∆τ1 = ∆τ2 = 0.2 N.m,
∆δa = ∆δf = 7.5◦, ∆δe = 15◦ and ∆δr = 45◦. Simulation
results show that the controller is able to stabilize the aircraft
for the whole flight envelope. However, this feature comes at
the cost of a more loosen reference tracking than that which
is provided during hover and level flight.

1) Transition: Hover to Level: The aircraft starts its
transition to level flight at the Hover equilibrium point and,
since the reference transition trajectory starts at u = 1 m/s,
a step input with the same magnitude is required when in
Hover. Figure 7 depicts the reference trajectory tracking and
Figure 8 depicts the actuator inputs. The aircraft starts in
Hover, switches to Transition at time t = 0.9 s when the
aircraft state enters the guard map D(H,X) and switches to
Level at t = 9.6 s when the guard map D(X,L) is breached.
Nonlinear behavior is highly noticeable during switching
from Hover to Transition due to input torque saturation.
The lateral variables are not presented because the deviations
from the vertical plane (x, z) are negligible.

V. NONLINEAR CONTROL

Despite the linear control solution feasibility, nonlinear
control techniques are also exploited. However, due to
its inherent complexity, model simplification is performed
in Section V-A before the controller design provided in
Section V-C. The nonlinear controller is tested within the
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Fig. 7: Transition from Hover to Level simulation - reference
tracking.

simulation environment against the full aircraft model.The
results are presented in V-D.

A. Simplified Model

The following simplifications are applied to the aircraft
model presented in Section II:
• Propellers’ dynamics are neglected. The thrust they

provide is given by T = T1+T2

2 ;
• Lateral motion is stabilized which in turn implies that
T1 − T2, δa, δr, v, p, r and y are null;

• The stall angle does not depend on the actuator deflec-
tion but only on the angle of attack which must verify
|α| < ᾱ, where ᾱ = 15 ◦;

• The horizontal and vertical stabilizers drag as well as
the flap contribution to the wing drag are neglected.

Under the previous assumptions, the configuration of the
body frame {B} with respect to {N} can be viewed as
an element of the Special Euclidean group, (R,p) =
(NBR,NpB) ∈ SE(2) where

NpB = [x z]T , N
BR =

[
cos θ sin θ

− sin θ cos θ

]
, (39)

thus eliminating the singularity in the rotation matrix
parametrization which occurs in three-dimensional rotations.
The kinematics are described by

N ṗB = N
BRvB , θ̇ = q, (40)

where NpB = [x z]T and vB = [u w]T . Under the
previous considerations, the main forces acting on the aircraft
body are the wing lift Lw, the horizontal stabilizer lift Lhs
and the wing drag Dw. The lifting forces Lhs and Lw
produce the moments Mhs and Mw, respectively, due to
their displacement with respect to the center of gravity. The
moment Mdampq remains valid in this analysis. The actuators
input variables δe and δf can be changed into forces Le and
Lf , respectively, according to (41) and (42).

δe = − Le
1
2ρ(2u2

p)Ap,hsCLδep,hs
+ 1

2ρu
2AhsCLδehs

(41)

δf = − Lf
1
2ρ(2u2

p)Ap,wCLδfp,w
+ 1

2ρu
2AwCLδfw

(42)
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The dynamics equations are rewritten in (43) for the longi-
tudinal case, under the aforementioned simplifications.

u̇ =
2T

m
+ hu(u,w, q, θ),

ẇ =
Lf + Le

m
+ hw(u,w, q, θ),

q̇ = −rw. iBLf + rhs. iBLe
Iy

+ hq(u,w, q),

θ̇ = q.

(43)

The new state variable to be monitored is

ξ = [u w q θ x z]T ,

thus, the Hybrid Automaton described in Section III is
required to change in order to meet the specified simplifi-
cations.

B. Robust Maneuvers

The problem of achieving robust transitions between hover
and level flights is twofold: i) the reference maneuver which
links the two sets must be at least ε-distant from the domain
limits and any guard sets leading to undesired operative
mode transitions; ii) the controller must be able to achieve
practical reference trajectory tracking with an error no larger
than ε, in the presence of external disturbances and uncertain
parameters.

Three different kinds of robust maneuvers are defined
within the Hybrid Automata framework.The first one, which
is denoted as ε-robust q1-single maneuver in [t0, t1), is such
that the state and the input do not intersect any guard condi-
tion in order to maintain the same "single" operating mode
q1. The second type, denoted as ε-robust q1 → q2 approach
maneuver in [t0, T ], is such that at time T the maneuver
belongs robustly to the desired guard set, G({q1, q2}), in
order to switch to the operating mode q2. The last one, the
q1 → q2 transition maneuver in [t0, t1), is obtained as a
combination of an ε-robust q1 → q2 approach maneuver and
a set of ε-robust q2-single maneuvers.

Although q1-single maneuvers and q1 → q2 transition
maneuvers are defined for the hybrid automaton presented in
Section III, the most important maneuvers are the X → L
and X → H approach maneuvers which are identified
by v?X→L(t) and v?X→H(t), respectively. These reference
maneuvers are computed by means of system inversion.
Given twice differentiable desired state trajectories u?(t)
and θ?(t), the downward velocity initial state w?(0) and
considering the flaps nominally at rest, i.e. L?f (t) = 0 for all
t ≥ 0, then the reference control inputs T ?(t) and L?e(t), and
the reference state variable w?(t) are computed numerically
by solving (43).

C. Controller Design

The controller design comprises two different methods:
linear optimal control techniques are used when in Hover or
Level operating modes, providing local stabilization; nonlin-
ear control is used to perform the transition between the two
disjoint operating modes.

In order to build the nonlinear controller and prove the
overall system stability and robustness the state equations

are rewritten in a simpler form by substituting the relations[
L
M

]
=

[
1 1

−rhs. iB −rw. iB

] [
Le
Lf

]
(44)

into (43). This substitution effectively rescales the control
input throughout the maneuver. The new control input is
described by

µ =

 T ?(t) + T̃

M?(t) + M̃

L?(t) + L̃

 ,

T̃ = −kuũ
M̃ = −kθ(θ̃ + kq q̃)

L̃ = −kww̃
, (45)

where T ?(t), M?(t) and L?(t) are the reference inputs ob-
tained by model inversion as explained in Section V-B and T̃ ,
M̃ and L̃ are the errors which result from practical reference
tracking. Proportional-derivative (PD) controllers are used
to track the reference trajectories. Substituting (45) into the
system state equations (43), the aircraft error dynamics are
described by

˙̃u =
2T̃

m
+ Ψu(ũ, w̃, q̃, θ̃, t) + δu(t), (46a)

˙̃w =
L̃

m
+ Ψw(ũ, w̃, q̃, θ̃, t) + δw(t), (46b)

˙̃q =
M̃

Iy
+ Ψq(ũ, w̃, q̃, t) + δq(t), (46c)

˙̃
θ =q, (46d)

where the functions Ψu, Ψw and Ψq described by (47) have
been introduced and the perturbation terms δu(t), δw(t) and
δq(t) have been added. These perturbations may appear due
to parametric uncertainty, external disturbances and/or due
to deviations from the vertical plane.

Ψu(ũ, w̃, q̃, θ̃, t) =hu(u?(t) + ũ, w?(t) + w̃, q?(t) + q̃, θ + θ̃)

− hu(u?(t), w?(t), q?(t), θ?(t))

Ψw(ũ, w̃, q̃, θ̃, t) =hw(u?(t) + ũ, w?(t) + w̃, q?(t) + q̃, θ + θ̃)

− hw(u?(t), w?(t), q?(t), θ?(t))

Ψq(ũ, w̃, q̃, t) =hq(u
?(t) + ũ, w?(t) + w̃, q?(t) + q̃)

− hq(u?(t), w?(t), q?(t))

(47)

The reference trajectory is one of equilibrium (if δu = δw =
δq = 0) because

[ũ w̃ q̃ θ̃] = [0 0 0 0]⇒ [ ˙̃u ˙̃w ˙̃q
˙̃
θ] = [0 0 0 0].

The previous set of equations provides the foundations
upon which the nonlinear controller’s robustness emerges.
Consider two separate but interconnected systems which
describe the pairs (ũ, w̃) and (θ1, θ2), where θ1 = θ̃ and
θ2 = q̃+ θ̃

kq
. Input-to-State Stability is proven firstly for each

of these system separately in Propositions 1 and 2. Input-
to-State Stability for the overall system then follows from
the Small Gain Theorem described in both [14] and [15],
which is applied to the feedback interconnection depicted in
Figure 9.

Proposition 1: For some c?u > 0 and c?w > 0 and any
numbers satisfying ∆ > 0, ‖(θ1, θ2)‖ > 0, 0 < cu < c?u and
0 < cw < c?w there exist ku > k?u and kw > k?w such that the
system with the dynamics (46a) and (46b) is rendered ISS
with restrictions cu in the initial state ũ(0), cw on the initial
state w̃(0), ∆ on the inputs δu(t) and δw(t) and ‖(θ1, θ2)‖
on the input (θ1(t), θ2(t)).



Proof: Consider the Lyapunov function (48) and the
level set definition given in (49).

V1(ũ, w̃) =
1

2
(ũ2 + w̃2) (48)

Ω1(l) = {(ũ, w̃) ∈ R2 : V1(ũ, w̃) ≤ l} (49)
(50)

It turns out that, due to radial unboundedness there exist
positive l1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ cu ∧ |w̃| ≤ cw} ⊂ Ω1(l1). (51)

Moreover, for any given reference trajectory it is possible to
find c?u, c?w and l?1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ c?u ∧ |w̃| ≤ c?w} ⊂ Ω1(l?1), (52)
and{

(ũ, w̃) ∈ Ω1(l?1) : u?(t) + ũ > 0 ∧
∣∣∣∣arctan

(
w?(t) + w̃

u?(t) + ũ

)∣∣∣∣ < ᾱ

}
,

(53)
hold true for all t ≥ 0.

The functions defined in (47) are locally Lipschitz
because the functions hu, hw and hq are continuous and
proper, therefore there exist positive Lu and Lw such that
for all (ũ, w̃) ∈ Ω1(l1) and ‖(θ1(t), θ2(t))‖ < ‖(θ1, θ2)‖
the following holds∥∥∥∥Ψu

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Lu‖(ũ, w̃, θ1, θ2, t)‖, (54)∥∥∥∥Ψw

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Lw‖(ũ, w̃, θ1, θ2, t)‖, (55)

for all t ≥ 0. The Lyapunov function derivative V̇1 is given
by

V̇1 = ũ

(
−2ku
m

ũ+ Ψu

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)
+ δu(t)

)
+ w̃

(
−kw
m
w̃ + Ψw

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)
+ δw(t)

)
.

(56)
Substituting (54) and (55) into (56) and using the triangle
inequality, the Lyapunov function’s derivative can be upper
bounded by

V̇1 ≤− λmin‖(ũ, w̃)‖2 + ‖(ũ, w̃)‖((Lu + Lw)‖(θ1, θ2)‖+
+ δu(t) + δw(t)),

(57)
where λmin is the smallest eigenvalue of the matrix[

2ku
m + Lu ± 1

2 (Lu + Lw)
± 1

2 (Lu + Lw) kw
m + Lw

]
.

(ũ, w̃)(δu(t), δw(t))

(θ1, θ2)δq(t)

Fig. 9: Interconnected systems (ũ, w̃) and (θ1, θ2).

It is easy to verify that for any ∆ > 0 and ‖(θ1, θ2)‖ >
0 there exist k?w > 0 and k?u(k?w) > 0 such that for any
ku > k?u, kw > k?w, (δu(t), δw(t)) satisfying ‖δu(t)‖∞ ≤ ∆,
‖δw(t)‖∞ ≤ ∆, and ‖(θ1(t), θ2(t))‖∞ < ‖(θ1, θ2)‖ and for
any (ũ, w̃) ∈ Ω1(l1) the following holds

V̇1 < 0 if ‖(ũ, w̃)‖ >
Lu + Lw

λmin
‖(θ1(t), θ2(t))‖+

δu(t) + δw(t)

λmin
. (58)

The system has a local ISS function, therefore it is ISS with
restrictions cu on the initial state ũ(0), cw on the initial state
w̃(0) and ∆ on the inputs δu(t) and δw(t) as long as the
conditions cu < c?u and cw < c?w are satisfied.

Proposition 2 employs similar arguments to those in Propo-
sition 1 proof in order to justify the Input-to-State Stability
of the closed-loop system (θ1, θ2).

Proposition 2: For any arbitrary positive numbers ∆,
‖ũ, w̃‖, kq , cq and cθ there exists k?θ(kq) > 0 such
that kθ > k?θ renders the system with the dynamics (46a)
and (46b) ISS with restrictions cq on the initial state q̃(0),
cθ on the initial state θ̃(0), ‖ũ, w̃‖ on the input (ũ(t), w̃(t))
and ∆ on the input δq(t).

Proof: Consider the Lyapunov function described
by (59) and the level set definition given in (60).

V2(θ1, θ2) =
1

2
(θ2

1 + θ2
2) (59)

Ω2(l) = {(θ1, θ2) ∈ R2 : V2(θ1, θ2) ≤ l} (60)

Due to radial unboundedness there exists positive l2 such
that{

(θ1, θ2) ∈ R2 : |θ1| ≤ cθ ∧
∣∣∣∣θ2 −

θ1

kq

∣∣∣∣ ≤ cq} ⊂ Ω2(l2).

(61)
The function Ψq is continuous and proper in Ω2(l2), there-
fore there exists positive Lq such that for all (θ1, θ2) ∈
Ω2(l2), ‖ũ(t), w̃(t)‖ < ‖ũ, w̃‖ the following holds∥∥∥∥Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)∥∥∥∥ ≤ Lq‖(ũ, w̃, θ1, θ2, t)‖, (62)

for all t ≥ 0. The Lyapunov function derivative V̇2 is given
by

V̇2 =θ1

(
θ2 −

θ1

kq

)
+ θ2

(
− kθkq

I
θ2+

+ Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)
+
θ2

kq
− θ1

k2
q

)
,

(63)

where the derivatives θ̇1 and θ̇2 are

θ̇1 =θ2 −
θ1

Kq
,

θ̇2 =− kθkq
Iy

θ2 + Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)
+
θ2

kq
− θ1

k2
q

.

(64)
Let Ω be the set defined by

Ω(l, l̄) =
{

(θ1, θ2) ∈ R2 : l ≤ ‖(θ1, θ2)‖ ≤ l̄
}

, (65)
and let l̄ = l2 and choose a number l ∈ R+ satisfying 0 <
l < l̄. The Lyapunov function derivative taken on the set
Ω(l, l̄) ∩ {(θ1, θ2) ∈ R2 : θ2 = 0} is

V̇2 = −θ
2
1

kq
, (66)



verifying that V̇2 < 0. By continuity, the Lyapunov function
derivative verifies this condition also in an open supersetM
of Ω(l, l̄) ∩ {(θ1, θ2) ∈ R2 : θ2 = 0}. Note that Ω(l, l̄)/M
is compact and let

θ2 = min
θ2∈Ω2((l),̄(l))/M

|θ2|,

θ̄2 = max
θ2∈Ω2((l),̄(l))/M

|θ2| and

θ̄2 = max
θ1∈Ω2(l2)

|θ1|.

Making use of the previous definitions it is possible to find
the upper bound of the Lyapunov function derivative given
in (67).

V̇2 ≤−

(
kθkq
Iy

θ2 −
(

1

kq
+ Lq

)
θ̄2 −

(
1 +

1

k2
q

+ Lq

)
θ̄1−

− Lq‖(ũ, w̃)‖ −∆

)
|θ2| −

θ2
1

kq
(67)

It is easy to see that for any ∆ > 0 and ‖(ũ, w̃)‖ > 0 there
exists a suitable choice of k?θ(kq) > 0 such that for kθ >
k?θ , ũ, w̃ and δq(t) satisfying ‖(ũ(t), w̃(t))‖∞ < ‖(ũ, w̃)‖
and |δq(t)| < ∆ the Lyapunov function’s derivative verifies
V̇2 < 0 for any (θ1, θ2) belonging to Ω2(l, l̄).

The system has a local ISS Lyapunov function therefore
it is ISS with restrictions cθ on the initial state θ̃(0), cq on
the initial state q̃(0), ‖(ũ, w̃)‖ on the input (ũ, w̃) and ∆ on
the input δq(t).
Notice that the restrictions on the inputs of the interconnected
systems

‖(ũ(t), w̃(t))‖∞ < ‖(ũ, w̃)‖, ‖(θ1(t), θ2(t))‖∞ < ‖(θ1, θ2)‖
are satisfied by taking

‖(ũ, w̃)‖ = max
(ũ,w̃)∈Ω1(l1)

‖(ũ, w̃)‖

and
‖(θ1, θ2)‖ = max

(θ1,θ2)∈Ω2(l2)
‖(θ1, θ2)‖.

Under the previous definitions and results, the input-to-state
stability for the overall system is established in Proposition 3.

Proposition 3: For some c?u > 0 and c?w > 0 and any
numbers satisfying ∆ > 0, 0 < cu < c?u, 0 < cw < c?w,
kq > 0, cq > 0 and cθ > 0 there exist k?u > 0, k?w > 0
and k?θ(kq) > 0 such that the system with dynamics (46) is
rendered ISS with restrictions cu on the initial state ũ(0), cw
on the initial state w̃(0), cq on the initial state q̃(0), cθ on
the initial state θ̃(0) and ∆ on the inputs δu(t), δw(t) and
δq(t).

Proof: Input-to-state stability with restrictions for the
individual systems (ũ, w̃) and (θ1, θ2) is proved in Proposi-
tions 1 and 2, respectively. The small gain theorem requires
that the condition

k1k2 < 1

is met, where k1 is the closed-loop system (ũ, w̃) asymptotic
gain relative to the input (θ1, θ2) and, similarly, k2 is
the closed-loop system (θ1, θ2) asymptotic gain relative to
the input (ũ, w̃). The asymptotic gain k1 decreases with

increasing ku or kw and k2 can be fixed arbitrarily with an
appropriate choice of kθ, therefore, the small gain theorem
condition is met. Moreover, the tracking error can be made
arbitrarily small.
Proposition 3 concludes the stability and robustness analysis.
We have proven that a transition trajectory can be tracked
with an arbitrary small error. This allows for the use of
the Hybrid Automata framework to achieve stability of the
overall hybrid system. The next section presents simulation
results which makes use of the open-source hybrid systems
simulator presented in [16].

D. Simulation Results
The simulations were performed using the open-source

tool provided in [16] employing the hybrid automaton equiv-
alence to the generic hybrid system which is given in [6].

The chosen reference trajectories for the transition maneu-
vers are described by

u?(t) =

u0, if t0 ≤ t < tu
u0 + (u∞ − u0) exp(−Φu(t− tu)).

(exp(Φu(t− tu))− Φu(t− tu)− 1) , if t ≥ tu
(68)

θ?(t) =

θ0 if t0 ≤ t < tθ
θ0 + (θ∞ − θ0) exp(−Φθ(t− tθ))

(exp(Φθ(t− tθ))− Φθ(t− tθ)− 1) , if t ≥ tθ
(69)

which are characterized by the initial forward velocity u0,
the final forward velocity u∞, the initial pitch angle θ0, the
final pitch angle θ∞, the transition start times tθ and tu
and the parameters Φu and Φθ which determine the speed
at which the transition is performed for each of the state
variables u and θ, respectively. These trajectories were used
for hover to level flight and level flight to hover transitions
with appropriate parameter choice. Due to space constraints,
only the hover to level flight transition maneuver is presented.
This maneuver has the following parametric values: u0 = 1
m/s, u∞ = 10.83 m/s, Φu = 1 s−1, tu = 0 s, θ0 = 90◦,
θ∞ = 10◦, Φθ = 0.7 s−1 and tθ = 0.1 s. The input variable
T must be transformed into the real input variables τ1,2. This
task is accomplished using the relation

τ =
ρd5CPn

2

2π
(70)

where n is the propeller speed which provides the thrust
T = T ∗ + T̃ and it is the solution of (8). This control
input disregards the propeller’s dynamic behavior and this
imprecision adds to the perturbation terms δu, δw and δq
which the control loop is able to handle. The simulations
also require the definition of the controller restrictions on
the initial states (cu = cw = 0.1 m/s, cq = 0.02 rad/s and
cθ = 0.02 rad) and on the controller gains (ku = kw = 10
N.s/m, kq = 1 s and kθ = 10 N.s/m).

Figure 10 depicts the aircraft state variables flow with time
and Figure 11. The aircraft starts in hover at u = 0 m/s
and the local controller increases thrust in order to achieve
a forward velocity of u = 1 m/s which is the transition
maneuver starting point. When the aircraft state is near
v?X→H(0) a switch occurs (at t ' 0.91 s) and the nonlinear
controller is used in order to follow the reference. Transition
to level flight occurs when θ < θ̄X→L (at t = 8.0 s) and the
local regulator stabilizes the aircraft at the equilibrium point.
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VI. CONCLUSION

This paper presented an Unmanned Air Vehicle (UAV)
model which described the aircraft dynamics during both
hover and level flights. The main forces and moments
affecting the aircraft dynamics can be divided into three
different classes - gravity, propeller and aerodynamics - ac-
cording to their nature. The aerodynamic forces and moments
arise from the free-stream flow and the propeller slipstream
which are computed separately and combined together in
the end using superposition. An appropriate choice of the
inertial and body-fixed coordinates frames was essential
for kinematic modeling, where the Euler angles provided
rotation parametrization. Moreover, this model also included
the propeller dynamics, increasing the model’s accuracy
with respect to the model presented in [3]. The Hybrid
Automata framework provided the means to handle controller
switching between the three operating modes: Hover, Level
and Transition.

Linear Optimal techniques successfully provided Hover
and Level stabilization as well as reference tracking during
the transition between these two operating modes. Fur-
thermore, this solution proved to be robust with respect
to parameters change. Similar solutions were employed
in [4], [17], [18] and [5] and their success was only proved
within a simulation environment. Successful real world
transitions between hover and level flights are presented
in [19], [3] and [20] which employ either open-loop or
remotely operated maneuvers.

Therefore, Section V constitutes the most important contri-
bution of this paper for it provides a formal proof of stability
and robustness within a 2-dimensional aircraft model. The
nonlinear controller designed in this chapter renders the
system locally input-to-state stable with restriction on the
disturbances inputs and initial state. Reference maneuvers
design by means of model inversion combined with practical

reference tracking provides robust transition between the two
disjoint operating modes Hover and Level.

Simulation results proved that both linear and nonlinear
control laws constitute a feasible solution to the transition
problem. Future work relies on:
• Controller analysis in the presence of wind disturbances

and sensor noise within the simulation environment;
• Transition trajectories optimization;
• Model verification and more accurate parameter esti-

mation with real world testing which would create a
reliable platform for controller design, verification and
validation;

• Controller implementation at the given aircraft platform
constitutes also the basis for future work.
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