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Resumo

A
presente tese aborda os problemas de modelação e controlo de um veículo aéreo não tripulado

(UAV) de asa fixa em voo vertical e em voo horizontal, assim como o voo de transição entre estes

dois estados distintos do envelope de voo. A primeira contribuição desta tese consiste na elaboração

de um modelo dinâmico que permita caracterizar o comportamento do UAV tanto em voo vertical

como em voo horizontal. O sistema é ainda modelado como um Autómato, no qual comportamento

discreto é introduzido através de um supervisor, i.e. um algoritmo que altera o controlador consoante

o modo de operação em que o UAV se encontra. A segunda contribuição consiste na realização de

um controlador que, através de técnicas de controlo linear permita i) estabilização em voo vertical

e horizontal e, ii) seguimento de uma trajectória de transição. A terceira contribuição consiste na

implementação de um controlador não linear que é localmente input-to-state stable (ISS), permitindo

o seguimento de uma trajectória de transição.

Palavras-chave: aeronaves VTOL, Sistemas Híbridos, Regulador Quadrático Linear, sistemas ISS.
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Abstract

This thesis addresses modelling and control problems for an model-scale Unmanned Air Vehicle

(UAV) which is intended to perform Vertical Take-Off and Landing (VTOL) autonomously as

well as transition to level flight. The first contribution of this thesis is the description of an accurate

UAV nonlinear model which captures both hovering and level flight behaviors. Furthermore, the Hy-

brid Automata framework is introduced into the model by means of supervisory control which provides

dynamics switching between modes of operation. The second contribution concerns the problems of

i) Hover and Level Flight stabilization and, ii) Transition trajectory tracking by means of linear con-

trol techniques. Finally, a control law which renders the system locally Input-to-State Stable (ISS) is

designed within the Hybrid Systems’ framework allowing for practical trajectory tracking.

Keywords: VTOL aircraft, Hybrid Automata, Linear Quadratic Regulator, ISS systems.
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Chapter 1

Introduction

The demand for Unmanned Air Vehicles (UAVs) has escalated in the past few years due to their

contributions in commercial and defense applications, including fire surveillance and mitigation

operations, agricultural fields spraying, infrastructure inspection, among others (see e.g. [1], [2], [3], [4]

and [5]). Several UAV configurations have been developed to meet the requirements imposed by such

applications, including fixed-wing and tilt wing aircraft, rotorcrafts and ducted-fan vehicles.

Recent developments described in [4], [6] and [7] have shown that fixed-wing Vertical Take-Off and

Landing (VTOL) aircrafts can perform both long endurance missions and precise maneuvering within

exiguous environments. The versatility of such aircrafts combines helicopter precise trajectory track-

ing with conventional fixed-wing airplanes ability to cover large distances, delivering a final solution

which largely exceeds the capabilities of its predecessors. However, the problem of achieving robust

transitions between hover and leveled flights is difficult for its exquisite dynamics. To this end, sev-

eral control methodologies have been employed, including robust linear control, feedback linearization

techniques and adaptive controllers (see e.g. [8], [9], [10] and [11]) but these different approaches still

lack a formal proof of stability and robustness.

The very different aircraft dynamics between hover and leveled flights suggest that supervisory control

(i.e. the application of different control techniques for each operating mode) is a plausible solution for

the given problem. Similar methodologies, like the ones described in [12] and [13], have been suc-

cessfully employed in a variety of applications. Controller switching during operating mode transitions

adds discrete behavior to the continuous UAV model, creating a new layer of complexity which must

be dealt appropriately.

Systems which display both continuous and discrete behavior have been under an intense research

effort over the last decade. This study has given rise to several concepts such as hybrid automata [14]

1
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and switched systems [15] which fall within the broader category of Hybrid Dynamical Systems de-

scribed in [12]. The discrete behavior built into these systems may appear naturally for certain appli-

cations such as UAV landing and take-off (see e.g. [16] and [17]) but may also be the consequence of

digital control or supervisory control [18].

The solution proposed in this thesis employs supervisory control by modeling the small-scale UAV

within the Hybrid Automata framework, dividing the aircraft flight envelope into Hover, Transition and

Level operating modes. Linear optimal control techniques are employed for system stabilization in

hover and level flight while linear and nonlinear control solutions are exploited for stabilization during

transition flight.

1.1 Problem Statement

A fixed-wing model-scale UAV is required to perform wide range missions as well as precise docking

maneuvers for battery recharging, for example. This mission scope relies on a UAV which has VTOL

capabilities, stable level flight, robust transition from hover to level flight and vice-versa. A plausible

application is described in Figure 1.1. UAV operation described in Figure 1.1 considers a remotely

operated UAV which may perform autonomous transitions from and to level flight according to the

operator’s commands. During the transition the operator does not interact with the UAV. This the-

sis addresses the problems which are posed by autonomous aircraft operation during the operating

modes highlighted in Figure 1.1. This problem is threefold:

1. Elaborate an aircraft dynamic model which accurately depicts its behavior during hover, level

flight and transition maneuvers;

2. Build a control law which stabilizes the aircraft dynamics during each operating mode;

3. Verify the controller’s robustness.

1.2 State of the Art

The advent of new sensor electronics and high thrust-to-weight small-scale motors has fueled the

research of VTOL aircrafts, namely model-scale unmanned air vehicles. The work presented in [4]

encompasses the first attempt to study and build a small aircraft with VTOL capabilities. The paper

discusses the advantages of a fixed wing aircraft over helicopter and insect-like flying platforms in

terms of endurance and maneuverability in near-Earth scenarios, i.e. within highly cluttered terrain.

Transition between cruise and hover is tackled with open-loop maneuvers which are tested with a
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Hover
Remote Operation

Hover - Feedback
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Flight - Feedback 

Stabilization

Level Flight
Remote Operation

Automatic
Transition

Manual
Transition

Figure 1.1: UAV Operation Diagram.

very simple model. However, a real world test shows the platform transition capabilities under manual

control. The work presented in [6] further develops the aircraft model and provides an implementation

for trajectory tracking in hover and level flights using linear control techniques. The transition between

the two different modes of operation is achieved by means of open-loop maneuvers and controller

switching near the desired operating points. This control strategy successfully provides autonomous

transition to a model-scale aircraft. More recently, the work developed in [7] also employed open-loop

maneuvers which seem to constitute the most popular option for autonomous transition.

Nevertheless, controlled transition by means of linear optimal techniques has been exploited in [8]

and [9] which resorted to computer simulations in order to test the controller’s reliability. The thesis [10]

and [11] develop adaptive gain-scheduled controllers which are computationally expensive and rely on

accurate parameter estimation in order to achieve stable reference tracking.

1.3 Thesis outline

This thesis is divided into three major chapters:

• Chapter 2 which describes the aircraft dynamic model;

• Chapter 3 which proceeds into linear control techniques development;

• Chapter 4 which introduces a novel method for nonlinear transition control.
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Each chapter is structured along the same lines. They begin with a brief introduction to concepts and

previous results which are relevant for the remaining analysis. Then, a description of the developed

work is presented. In Chapters 3 and 4 simulation results are also presented before the chapter

summary.

The appendixes provide complementary information to the subjects discussed throughout this text.



Chapter 2

Nonlinear UAV Model

Throughout this chapter a nonlinear model is developed for an UAV with a conventional wing/tail

configuration. The aircraft has two propellers mounted on each side of a trapezoidal wing which

provide thrust and whose backward driven flow (otherwise known as slipstream) interacts with the free-

stream flow resulting from the aircraft motion, creating aerodynamic forces and moments. The set of

available aircraft actuators are:

• Propellers - the aircraft has two propellers mounted on each fore side of the wing whose main

purpose is to provide thrust, but they may also provide lateral stabilization through differential

control;

• Rudder - it is located aft of the vertical stabilizer and provides lateral control;

• Elevator - it is located aft of the horizontal stabilizer and provides pitch control;

• Ailerons/flaps - these two terms are used to distinguish the differential mode (ailerons) and the

common mode (flaps) of the actuators located aft of the wing. The ailerons provide roll control

while the flaps control the amount of lift that the wing produces.

The propeller, aerodynamic and gravity forces are all accounted for when describing the vehicle dy-

namics and kinematics which are introduced in Sections 2.3 and 2.2. The UAV nonlinear model

introduced in these sections is represented by (2.1) with system state ξ ∈ R14 and actuators input

µ ∈ R6. The standard aircraft dynamics nomenclature described in [19] is employed in both state and

5
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Figure 2.1: Aircraft Body Reference Frame and Actuators.

input variables (see Table 2.1).

ξ̇ = f(ξ,µ) (2.1)

ξ = [n1 n2 u v w p q r φ θ ψ x y z]T (2.2)

µ = [τ1 τ2 δa δe δr δf ] (2.3)

Section 2.4 further extends the UAV nonlinear model to an UAV hybrid automaton.

2.1 Notation

Due to immense number of symbols which embody the parameters included in the aircraft model

equations, a set of rules is required to improve their clarity. Such rules are presented in this section.

• Scalar values are represented by either uppercase and lowercase letters (example: ρ and A);

• Vectors are represented by boldface lowercase letters (example: v);

• Matrices are represented by boldface uppercase letters (example: I);

• Coordinate frames are represented by a capital letter in closed brackets (example: {I});

• The identity ∂A
∂x = Ax will be often used to represent derivatives;
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• A set of subscript letters are used to identify the source of any given attribute. w, hs, vs, p, e,

r, a and f identify the wing, horizontal stabilizer, vertical stabilizer, propeller, elevator, rudder,

aileron and flaps, respectively (example: Aw is the wing’s planform area);

• Superscripts identify the vector’s coordinate frame (example: NvB is the aircraft velocity with

coordinates given in the NED reference frame and UvB is the same vector with coordinates

given in the UEN reference frame).

2.2 Aircraft Kinematics

The aircraft kinematics are a description of the aircraft’s position and attitude which depend on its linear

and angular velocities. This description requires the definition of the following coordinate reference

frames:

• North-East-Down (NED);

• Up-East-North (UEN);

• Body Reference Frame (BRF);

2.2.1 The NED frame

The North-East-Down reference frame {N} is an orthogonal reference frame defined by the right

handed set of unitary vectors {iN , jN ,kN} whose origin is at some point in the Earth’s surface with a

given latitude and longitude as depicted in Figure 2.2.

• iN is tangent to the earth’s surface and points to the geographic North;

• jN is normal to iN , tangent to the Earth’s surface and points to the East;

• kN completes the right handed set.

For the purpose of modeling the motion of a unmanned air vehicle, this reference frame will be con-

sidered an inertial reference frame, i.e. Earth is considered flat and still.

2.2.2 The UEN frame

The Up-East-North reference frame {U} is an orthogonal reference frame defined by the right handed

set of unitary vectors {iU , jU ,kU} whose origin is coincident with that of the NED frame.
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Variable Units Description

n1,2 Hz Propeller 1(2) speed.

vB = [u v w]T m/s Aircraft’s linear velocity.

ωB = [p q r]T rad/s Aircraft’s angular velocity.

φ rad Roll angle.

θ rad Pitch angle.

ψ rad Yaw Angle.

NpB = [x y z]T m Position in three dimensional space (NED reference frame).

τ1,2 N.m Propeller 1(2) input torque.

δa rad Aileron deflection.

δe rad Elevator deflection.

δr rad Rudder deflection.

δf rad Flap deflection.

Table 2.1: State and Input variables description.

N E

W S

iN

j

k

N

N

kU

iU

jU

Figure 2.2: North-East-Down and Up-East-North reference frames
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• kU is tangent to the earth’s surface and points to the geographic North;

• jU is normal to kU , tangent to the Earth’s surface and points to the East;

• iU completes the right handed set.

For the purpose of modeling the motion of a unmanned air vehicle, this reference frame will also be

considered an inertial reference frame.

2.2.3 The BRF frame

The Body Reference Frame {B} has its origin in the aircraft center of gravity and is defined orthogonal

and right handed set of unitary vectors {iB , jB ,kB} which satisfy the following specifications:

• iB is collinear with the aircraft’s zero lift axis which lies on the symmetry plane (roll axis);

• jB is normal to the symmetry plane (pitch axis);

• kB completes the right handed set (yaw axis).

Each of the axis in the Body Reference Frame are related with very well known angles from aircraft

flight mechanics literature.

2.2.4 Rotations in 3-Dimensional Space

Each of the reference frames defined earlier can be obtained from each other by means of linear

transformations which are represented by matrices with the properties:

1. Matrix B
I R maps vector coordinates in {I} to {B}, i.e. Bv = B

I R
Iv;1

2. Rotation matrix inverse is represented by changing the subscript with the superscript, i.e. (BI R)T =

I
BR;

3. Rotation matrix inverse equals its transpose, i.e. B
I R(BI R)−1 = B

I R
I
BR = E where E is the

identity matrix;

4. The rotation does not change the length of the base vectors, therefore det(BI R) = 1;

5. The rotation matrix is given by

B
I R =


I iB .

I iI
I iB .

IjI
I iB .

IkI

IjB .
I iI

IjB .
IjI

IjB .
IkI

IkB .
I iI

IkB .
IjI

IkB .
IkI

 . (2.4)

1The reference frame {I} is a representation of any given inertial reference frame.
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6. Its derivative is given by

B
I Ṙ = ST (ωB)BI R, (2.5)

where S(x) ∈ R3×3 is the skew symmetric matrix such that S(x)y = x× y for all x, y ∈ R3.

This set of linear transformations builds the well-known SO(3) group [20] which is parametrized by

three independent parameters which can be specified in different ways, each of which has its own

advantages and disadvantages. The most widely used parametrizations are

• Euler Angles

• Quaternions

• Angle-Axis

Using Euler Angles parametrization, the rotation matrix B
I R is the result of three rotations around the

basis vectors. These rotations can be ordered in several different ways, e.g. 3-2-1 is usually used

to indicate that the first rotation is performed around the Oz axis, then around the Oy axis of the

rotated frame and finally around the Ox axis. The 3-2-1 rotation is the most common choice in aircraft

applications for it is related with the very well-known yaw, pitch and roll angles whose representation

is the triplet (φ, θ, ψ). These parameters map the rotation matrix according to

B
I R =


cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ

cosφ sin θ cosψ + sinψ sinφ sinψ sin θ cosφ− cosψ sinφ cos θ cosφ

 . (2.6)

The 3-2-1 Euler angles derivatives are

φ̇ = p+ (r cosφ+ q sinφ) tan θ,

θ̇ = q cosφ+ r sinφ,

ψ̇ = (r cosφ+ q sinφ)/ cos θ.

(2.7)

This parametrization has the obvious drawback of having singularities when θ = ±90◦, but it has some

advantages with respect to the other options which are discussed in [8]. Using the inertial frame {U}
while in Hover and {N} while in Level Flight (with appropriate switching) avoids these singularities

and provides all the benefits of choosing such intuitive parameters.

2.2.5 Position in 3-Dimensional Space

The position description is much simpler than the attitude description. The current position is the

integral over time of the aircraft velocity after an appropriate change of reference frame. In the current

application, the aircraft position is computed in the NED reference frame by

N ṗB = N
BRvB . (2.8)
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2.3 Dynamics

The aircraft dynamic model is obtained from the application of the second Newton’s law to rigid bodies

which results into the equations

n∑
j=1

fj = m(v̇B + ωB × vB), (2.9)

m∑
j=1

mj = Iω̇B + ωB × (IωB), (2.10)

where I ∈ R3×3 is the vehicle’s tensor of inertia and m ∈ R is its mass. The propellers, aerody-

namic loads and gravity produce the forces and moments which affect the aircraft’s behavior and are

described by the equations
n∑
j=1

fj = fg + fp + fa, (2.11)

n∑
j=1

mj = mg + mp + ma, (2.12)

where the subscripts g, p and a stand for gravity, propellers and aerodynamic interactions, respectively,

which are discussed in the following subsections.

2.3.1 Gravity

The force fg is easily described in the inertial coordinate frames because it is directed downwards

along the positive Oz axis in {N} and along negative Ox axis in {U}. The gravity force must be

described in the coordinate frame {B} therefore the required axis transformation is given by (2.15).

N fg = [0 0 mg]T (2.13)

U fg = [−mg 0 0]T (2.14)

fg = B
I R

Ifg (2.15)

The moment mg is present due to center of gravity displacement with respect to the center of mass,

but for applications such as UAV motion control, this term is usually neglected.

2.3.2 Propeller

A propeller is a collection of infinitesimal airfoils distributed with a certain angle γ over its radius.

Blade element theory is usually used to find the Coefficient of Thrust (CT ) and Coefficient of Power
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(CP ) which depend on the propeller geometry, Reynolds number (Re) and Advance Ratio (J ) given

by

CT = CT (Re, J, shape), (2.16)

CP = CP (Re, J, shape), (2.17)

J =
u

nd
, (2.18)

where u is the free-stream velocity normal to the propeller’s plane (the propeller’s plane is therefore

assumed to be yOz in the aircraft body reference frame), n is the propeller’s rotation speed and d

denotes the propeller’s diameter. According to [21] the dependence with the Reynolds number may

be neglected and because the propeller’s geometry is usually known, CT and CP become functions

of the advance ratio only and are reasonably approximated by

CT = CT0

(
1− J

JM

)
(2.19)

CP = CP0
+

(
J

JM

)2

(CPM − CP0
) (2.20)

where CT0
is the Coefficient of Thrust at zero velocity, CP0

is the Coefficient of Power at zero velocity,
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Figure 2.3: Coefficient of Thrust and Coefficient of Power curves with data from Section 2.5.

JM is the advance ratio of zero thrust and CPM is the Coefficient of Power at J = JM . The coefficients

in (2.16) and (2.17) are related with the propeller’s thrust and power according to

T = ρn2d4CT (J), (2.21)
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P = ρn3d5CP (J), (2.22)

where ρ is the atmospheric density.

The propeller does not instantaneously change its velocity because it has to overcome resisting

torques which counteract the input torque. The propeller’s dynamic model is approximated by

Ip2πṅ = τ −Q, (2.23)

where Ip is its moment of inertia (along the symmetry axis), τ is the input torque and Q is the aerody-

namic drag torque acting on the propeller which is given by

Q =
P

2πn
. (2.24)

The set of moments acting on the aircraft body due to propeller rotation (mp) includes the acceleration

torque (macc), the drag torque (mdrag), the gyroscopic torque (mgyro) and the displacement torque

(mdis) which arises from the displacement rp of the propeller’s center with respect to the center of

gravity.

mpi = macci + mdragi + mgyroi + mdisi (2.25)

macci = (−1)i[Ip2πṅi 0 0]T (2.26)

mdragi = (−1)i[Qi 0 0]T (2.27)

mgyroi = (−1)iωB × [Ip2πni 0 0]T (2.28)

mdisi = rpi × [Ti 0 0]T (2.29)

The subscript i ∈ {1, 2} in the formulæ above distinguishes each propeller and their moments’ signs

change according to the propeller’s rotation. Although some forces in the propeller’s disk plane appear

when the free stream flow is not normal to it, these forces may be neglected because they are much

smaller than the aerodynamic forces acting on the aircraft body. Therefore, thrust will be considered

normal to the propeller’s disk from here on. The total thrust and torque produced by the propellers is

given by the following equations.

fp =


Tp1 + Tp2

0

0

 (2.30)

mp = mp1 + mp2 (2.31)

So far the discussion concerned solely the set of forces and moments acting on the aircraft body due

to the propeller’s rotation. However, this rotation produces a backward flow which is named slipstream

(which has velocity up) that acts upon the aircraft’s lifting surfaces. Equation (2.32) is derived in
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Appendix B and is valid under the assumptions that the airflow is inviscid, incompressible and steady,

that is, it does not vary over time.

T =
1

2
ρ
πd2

4
(u2
p − u2) (2.32)

2.3.3 Aerodynamics

Modeling the aircraft aerodynamics is usually the hardest but also the most important task in order to

achieve a reliable model. The work presented in this section has [6] as a major reference.

In general, the interaction between the propellers’ slipstream, the aircraft body and the free stream flow

is very complex but it is the control engineer duty to simplify the reality down to some basic relations

which capture the most important phenomenonæ occurring in the system. The most simple relation

which describes the interaction between the slipstream and the free-stream flows is achieved using

superposition, which means that the forces and moments produced by the aircraft’s lifting surfaces

are considered separately for the slipstream and for the free-stream flows and added together in the

end. Under this assumption the slipstream velocity is given by

up =

√
8T

ρπd2
, (2.33)

which is calculated by algebraic inversion of (2.32) considering null forward velocity u = 0.

Some relevant aerodynamic quantities are the angle of attack (α) and the sideslip angle (β) which are

defined by

α = arctan

(
w

u

)
, (2.34)

β = arcsin

(
v

||vB ||

)
. (2.35)

The lift produced when α = 0 is null because the axis Ox is collinear with the aircraft’s zero lift axis.

For α 6= 0 the lift and the drag of a generic surface i2, is given by (2.36) and (2.37), which greatly

depend on the surface’s Coefficient of Lift (CL) and the Coefficient of Drag (CD).

Li =
1

2
ρAi‖vB‖2CLi (2.36)

Di =
1

2
ρAi‖vB‖2CDi (2.37)

In their most generic description, CL and CD are functions of the actuator deflection and system’s

state, first order derivatives, second order derivatives and so on. However, a suitable description of

2The subscript i can be replaced by any identifier. w, a, hs, vs identify the wing, aileron, horizontal stabilizer and vertical
stabilizer surfaces. The subscript p is used to identify propeller dependent properties. The subscript j can be replaced by the
identifier a, e, r or f which identify the ailerons, elevator, rudder and flaps, respectively.
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Figure 2.4: Sideslip and Angle of Attack representation in the body axis.

these coefficients is achieved by the relations

CL = CL(α, δj), (2.38)

CD = CD0
+

C2
L

πAe
, (2.39)

where δj is the deflection of the surface’s actuator (if any), CD0
is the friction Coefficient of Drag,

A is the surface’s aspect ratio and e is its efficiency. Under the small angle approximation, the

relation (2.40) is valid and the surfaces’ lift and drag are easily calculated3.

CL =

CLαα+ CLδj δj , if − CLmax ≤ CL ≤ CLmax
0, otherwise

(2.40)

It is noticeable from (2.40) that CL is lower bounded at −CLmax and upper bounded at CLmax . These

limits induce loss of lift (stall) at angles of attack such that α /∈ [α, ᾱ] where

ᾱ(δj) =
CLmax − CLδj δj

CLα
, (2.41)

α(δj) = −
CLmax + CLδj δj

CLα
. (2.42)

The following equations are derived from the application of (2.36) and (2.37) to the wing, horizontal
3Under the small angle approximation other simplifications are performed: the transformation from the wind axis is not

performed, i.e. lift is created along the negative Oz axis of the Body Reference Frame and drag appears in the negative Ox
axis. Furthermore, it will be considered that ‖vB‖2 ' u2.



16 CHAPTER 2. NONLINEAR UAV MODEL

−20 −15 −10 −5 0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

α [deg]

C
oe

ffi
ci

en
t o

f L
ift

 

 
δ

j
=0 [deg]

δ
j
=4 [deg]

Figure 2.5: Coefficient of Lift vs Angle of Attack. The figure also shows an upward shift due to actuator

deflection which reduces the stall angle.

stabilizer and vertical stabilizer.

Lw = 1− 1

2
ρAwu

2CLw −
1

2
ρAp,w

(
u2
p1 + u2

p2

)
CLp,w (2.43a)

Dw = −1

2
ρAwu

2

(
CD0w

+
C2
Lw

πAwew

)
− 1

2
ρAp,w(u2

p1 + u2
p2)

(
CD0p,w

+
C2
Lp,w

πAwew

)
(2.43b)

Lvs = −1

2
ρAvsu

2
(
CLβvsβ − CLδrvs δr

)
+

1

2
ρAp,vs

(
u2
p1 + u2

p2

2

)
CLδrp,vs δr (2.43c)

Dvs = −1

2
ρAvsu

2

(
CD0vs

+
C2
Lvs

πAvsevs

)
− 1

2
ρAp,vs(u

2
p1 + u2

p2)

(
CD0p,vs

+
C2
Lp,vs

πAvsevs

)
(2.43d)

Lhs = −1

2
ρAhsu

2
(
CLδew δe + CLαhsα

)
− 1

2
ρAp,hs

(
u2
p1 + u2

p2

)
CLδep,hs

δe (2.43e)

Dhs = −1

2
ρAhsu

2

(
CD0hs

+
C2
Lhs

πAhsehs

)
− 1

2
ρAp,hs(u

2
p1 + u2

p2)

(
CD0p,hs

+
C2
Lp,hs

πAhsehs

)
(2.43f)

The aileron deflection δa does not contribute to the wing lift because a downward deflection on a side

of the wing is compensated with a upward deflection on the other side. The aerodynamic forces acting

in the aircraft are given by (2.44) under the small angle approximation.

fa =


Dw +Dhs +Dvs

Lvs

Lw + Lhs

 (2.44)
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In order to calculate the moments acting in the aircraft the distances of the aileron’s mean pres-

sure center (ra), its slipstream mean pressure center (rp,a), horizontal stabilizer’s aerodynamic center

(rhs),wing’s aerodynamic center (rw) and vertical stabilizer’s aerodynamic center (rvs) are included in

the equations that follow.

Ma = −1

2
ρu2Aara. jBCLδaw δa −

1

2
ρ
(
u2
p1 + u2

p2

)
Ap,arp,a. jBCLδap,w δa (2.45)

mhs = rhs × [0 0 Lhs]
T (2.46)

mvs = rvs × [0 Lvs 0]T (2.47)

mw = rw × [0 0 Lw]T (2.48)

The last term in the aerodynamic moments is a damping moment which is caused by the slipstream

lag 4 and also an angle of attack increase in the tail due to rotation. The stabilizing moment produced

due to this effect is depicted in Figures 2.6a and 2.6b and it is described by the relations

Mdampq = −1

2
ρAp,hsCLαhs q(rp. iB − rhs. iB) (up1 + up2)− 1

2
ρAhsCLαhs (rhs. iB)2qu (2.49)

Mdampr = −1

2
ρAp,vsCLαvs r(rp. iB − rvs. iB)(up1 + up2)− 1

2
ρAvsCLβvs (rvs. iB)2ru (2.50)

The aerodynamic moment ma is defined by

ma = mw + mhs + mvs +


Ma

Mdampq

Mdampr

 . (2.51)

(a) Damping pitch moment due to propellers lag. (b) Damping moment due to pitch rotation.

Figure 2.6: Damping pitch moment.

2.4 Hybrid Automaton

Although the differential equations which model the UAV dynamics are continuous, discrete behaviour

is built into the model due to controller switching when performing a transition between operating

4The time ∆t =
rp.iB−r(hs,vs).iB

up
the slipstream takes to reach the tail due to finite slipstream velocity up.
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modes. This discrete behaviour is modelled by means of a Hybrid Automaton represented in Fig-

ure 2.7 which requires the definition of the operating modes, the domain mapping, the flow map, the

guard mapping and the reset map. The full hybrid automata framework is presented in [14].

The controllers which are used in Hover, Transition and Level operating modes are identified by µH ,

µX and µL, respectively. These controllers are dependent on the current aircraft state ξ but also on

the reference trajectory for a given transition from the operating mode q1 to q2 the ξ∗q1→q2(t). Further-

more, a new input variable q∗ ∈ Q∗ = {H,L} is required to inform the controller which is the desired

Operating Mode and whether transition is required.

HOVER TRANSITION LEVEL

Figure 2.7: UAV Hybrid Automaton with three states: Hover (H); Transition(X); Level Flight (L)

2.4.1 Operating Modes

The hybrid automaton operating mode q must belong to the setQ = {H,X,L} which has the meaning

• H - Hover operating mode with Hover controller selected, i.e. µ = µH(ξ, ξ∗(t));

• X - Transition operating mode with Transition controller selected, i.e. µ = µX(ξ, ξ∗(t));

• L - Level operating mode with Level controller selected, i.e. µ = µL(ξ, ξ∗(t)).

2.4.2 Flow Map

The flow map f : Q×R14 ×U → R14 describes the evolution of the state variables in each operating

mode q ∈ Q, i.e. in each operating mode the state’s derivative is given by

ξ̇ = f(q , ξ,µq ) (2.52)

where function f is the the set of previously defined differential equations (2.7), (2.8), (2.9) and (2.10).
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Variable Value/deg

φ̄H 180

θ̄H 15

ψ̄H 15

φ̄X 180

θ̄X 90

ψ̄X 180

φ̄L 15

θ̄L 15

ψ̄L 180

Table 2.2: Domain Mapping variables definition. Notice that φ̄H = 180◦ and ψ̄L = 180◦ because the

corresponding states do not interfere with the dynamics, i.e. they are pure integrators.

2.4.3 Domain Mapping

For each operating mode, the domain mapping D : Q ⇒ R14 × R6 × Q∗ assigns the set where the

variables (ξ,µq ) may range. The actuators physical limits are therefore built into the model with the

domain mapping D and the definition of the set U in (2.53).

U = [τmin, τmax]2 × [δamin , δamax ]× [δemin , δemax ]× [δrmin , δrmax ]× [δfmin , δfmax ]×Q∗ (2.53)

The domain mapping defined below is built under the knowledge that Up-East-North inertial reference

frame is used to model aircraft kinematics during Hover and Transition while North-East-Down inertial

reference frame is used during Level5.

D(H) =[nmin, nmax]2 × R6 ×Bφ̄H (0)×Bθ̄H (0)×Bψ̄H (0)× R2 × R≤0 × U

D(X) =[nmin, nmax]2 × R≥0 × R5 ×Bφ̄X (0)×Bθ̄X (0)×Bψ̄X (0)× R2 × R<0 × U

D(L) =[nmin, nmax]2 × R≥0 × R5 ×Bφ̄L(0)×Bθ̄L(0)×Bψ̄L(0)× R2 × R<0 × U
⋂

{(u,w) ∈ R>0 × R : α < arctan(w/u) < ᾱ}

(2.54)

In the domain dapping D, a suitable choice of the variables θ̄H and θ̄L (see Figure 3.4 is required for

the Hover and Level operating modes domains to lie within the corresponding basin of attraction, i.e. if

Bq is the basin of attraction for the operating mode q then D(q) ⊂ Bq . The Transition controller should

work for the whole flight envelope. Furthermore, positive longitudinal velocity is required in Transition

and Level operating modes and the aircraft is required to be always above ground (otherwise it would

crash).

5BR(p) represents the Ball of radius R ∈ R around point p ∈ Rn, i.e. the set {x ∈ Rn : ‖x− p‖ < R}
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2.4.4 Edges

The set of edges E ⊂ Q × Q identifies any operating mode transition from q1 to q2 represented in

Figure 2.7 with the pair (q1, q2). The possible operating mode transitions in this model are

(H,X) (X,L)

(L,X) (X,H)

2.4.5 Guard Mapping

The Guard Mapping G : E ⇒ R14 × R6 × Q∗ determines for each pair (q1, q2) the set to which the

aircraft state must belong in order to perform the transition. The switch to Transition flight will be

performed only if the aircraft state is close enough to the reference trajectory which is described by

v∗X→q (t) = (ξ∗X→q (t),µ∗X→q (t)),

where X → q identifies the approach maneuver from the operating mode X to the operating mode

q ∈ {H,L}. Switching from Transition to either Hover or Level is performed whenever the aircraft

state belongs to some set Xq such that Xq ⊂ D(q) where q ∈ {H,L} identifies Hover or Level Flight

Operating points.

G(H,X) =BχH→X
(v∗X→L(0))

G(X,L) =
{

(ξ,µ) ∈ D(L) : |φ| ≤ φ̄X→L ∧ |θ| ≤ θ̄X→L ∧ |ψ| ≤ ψ̄X→L ∧ q∗ = L
}

G(L,X) =BχL→X
(v∗X→H(0))

G(X,H) =
{

(ξ,µ) ∈ D(L) : |φ| ≤ φ̄X→H ∧ |θ| ≤ θ̄X→H ∧ |ψ| ≤ ψ̄X→H ∧ q∗ = H
}

(2.55)

The variables φ̄X→H , φ̄X→L, θ̄X→H , θ̄X→H , ψ̄X→H and ψ̄X→L have a 13 degree value which is

consistent with the condition Xq ⊂ D(q). The variables χH→X and χL→X have different values

depending on the controller robustness. In Chapter 3 they take the value 0.1 while in Chapter 4

their value must be such that the controller restrictions on initial conditions are not violated. A guard

mapping representation is given in Figure 2.8a. As an example, Figure 2.8b depicts the pitch angle

domain and transition boundaries in Level which are identified by θ̄L and θ̄X→L, respectively. The

domains and boundaries in terms of roll and yaw angles are similarly defined.

2.4.6 Reset Map

For each (q1, q2) ∈ E and (ξ,µ) ∈ G(q1, q2), the reset map R : E ×R14 × U → R14 × U identifies the

jump of the state variable ξ during the operating mode transition from q1 to q2. State changes occur
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(a) Guard mapping representation. (b) Pitch angle domain and transition boundaries in Level.

Figure 2.8: Guard mapping and domain mapping representations.

when switching from Transition to Level due to different attitude parametrization between the operating

modes. The reset map is given by

R(H,X) = ξ,

R(X,L) = [n1 n2 u v w p q r arctan(BNR23/
B
NR33) arcsin(−BNR13) arctan(BNR12/

B
NR11) x y z]T ,

R(L,X) = [n1 n2 u v w p q r arctan(BUR23/
B
UR33) arcsin(−BUR13) arctan(BUR12/

B
UR11) x y z]T ,

R(X,H) = ξ,
(2.56)

where the symbol Rij is the matrix R element which is found at the i-th row and j-th column.

2.5 Model Parameters

The tables comprised in this section list the model parameters’ values which are used in subsequent

sections to perform aircraft dynamic simulations using the simulation environment described in Ap-

pendix C. The parameters have been estimated for the model-scale UAV depicted in Figure 2.9 ac-

cording to the details presented in Appendix A.

Figure 2.9: Model-scale UAV.
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Symbol Value Units Description

rp1 [0.1 0.21 0]T m Propeller 1 location

rp2 [0.1 − 0.21 0]T m Propeller 2 location

d 0.23 m Propellers diameter

Ip 10−5 kg.m2 Propellers moment of inertia

CT0 0.1 - Propeller’s initial Coefficient of Thrust

CP0 0.04 - Propeller’s initial Coefficient of Power

nmax 200 rps Propeller’s maximum speed (rotations per second)

nmin 0 rps Propeller’s minimum speed (rotations per second)

τmax 0.2 N.m Propeller’s maximum torque

τmin 0 rps Propeller’s minimum torque

Tmax 13.7 N Propeller’s maximum Thrust

Tmin 0 rps Propeller’s minimum Thrust

Table 2.3: Propellers parameters.

Symbol Value Units Description

m 1.64 kg Aircraft Mass

Ix 0.06 kg.m2 Aircraft’s Principal Moment of Inertia (Ox axis)

Iy 0.08 kg.m2 Aircraft’s Principal Moment of Inertia (Oy axis)

Iz 0.13 kg.m2 Aircraft’s Principal Moment of Inertia (Oz axis)

Table 2.4: Aircraft body parameters.

Symbol Value Units Description

rhs [−0.56 0 0]T m Horizontal Stabilizer aerodynamic center location

crhs 0.15 m Horizontal Stabilizer root chord

cths 0.1 m Horizontal Stabilizer tip chord

bhs 0.46 m Horizontal Stabilizer span

Λhs 6.2 deg Horizontal Stabilizer sweep

Ahs 0.0575 m2 Horizontal Stabilizer planform area

Ap,hs 0.015 m2 Slipstream washed area

Ahs 3.68 - Horizontal Stabilizer aspect ratio

CLαhs 4.07 rad−1 Horizontal Stabilizer ∂CL/∂α

CD0hs
0.01 - Horizontal Stabilizer Parasitic Coefficient of Drag

e 0.8 m Horizontal Stabilizer efficiency

CLδehs
4.07 rad−1 Horizontal Stabilizer ∂CL/∂δe

CLδep,hs
4.07 rad−1 Slipstream washed Horizontal Stabilizer ∂CL/∂δa

Table 2.5: Horizontal stabilizer parameters.
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Symbol Value Units Description

rvs [−0.63 0 0]T m Vertical Stabilizer aerodynamic center location

crvs 0.12 m Vertical Stabilizer root chord

ctvs 0.09 m Vertical Stabilizer tip chord

bvs 0.26 m Vertical Stabilizer span

Avs 0.0273 m2 Vertical Stabilizer planform area

Ap,vs 0.006 m2 Slipstream washed area

Ahs 2.48 - Vertical Stabilizer aspect ratio

CLαvs 4.07 rad−1 Vertical Stabilizer ∂CL/∂α

CD0vs
0.01 - Vertical Stabilizer Parasitic Coefficient of Drag

e 0.8 m Vertical Stabilizer efficiency

CLδrvs 3.48 rad−1 Vertical Stabilizer ∂CL/∂δr

CLδrp,vs 3.48 rad−1 Slipstream washed Vertical Stabilizer ∂CL/∂δa

Table 2.6: Vertical stabilizer parameters.

Symbol Value Units Description

rw [0.03 0 0]T m Wing aerodynamic center location

crw 0.33 m Wing root chord

ctw 0.22 m Wing tip chord

bw 1.07 m Wing span

Λw 5.9 deg Wing sweep

Aw 0.29 m2 Wing planform area

Ap,w 0.066 m2 Slipstream washed area

Aw 3.89 - Wing aspect ratio

CLαw 4.15 rad−1 Wing ∂CL/∂α

CD0w
0.01 - Wing Parasitic Coefficient of Drag

e 0.8 m Wing efficiency

CLδaw 2.88 rad−1 Wing ∂CL/∂δa

CLδfw
2.88 rad−1 Wing ∂CL/∂δf

CLδap,w 3.63 rad−1 Slipstream washed wing ∂CL/∂δa

CLδfp,w
3.63 rad−1 Slipstream washed wing ∂CL/∂δf

ra [0 0.3 0]T m Aileron center of pressure

rp,a [0 0.2 0]T m Aileron slipstream washed center of pressure

Table 2.7: Wing parameters.
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2.6 Summary

This chapter was focused on the aircraft dynamics and kinematics modeling which employed standard

flight dynamics nomenclature. The kinematics description required the definition of the coordinate

frames:

• North-East-Down (NED);

• Up-East-North (UEN);

• Body Reference Frame (BRF),

where the first two are considered to be inertial reference frames whose origin is located at the same

point on the Earth’s surface. The UEN is obtained from NED by means of the rotation matrix UNR while

BRF requires a translation by the vector IpB and a rotation which is given by the matrix BI R. Euler an-

gles constitute the chosen SO(3) parametrization instead of quaternions and angle-axis parametriza-

tions, providing the benefits of working with more intuitive parameters.

The system dynamics require the definition of external forces and moments acting on the aircraft which

are divided into three classes:

• Gravity;

• Propellers, and;

• Aerodynamics.

The aerodynamic forces have two contributions resulting from the free-stream flow and the propeller

slipstream flow. These contributions are calculated separately and combined together using the su-

perposition principle.

In the end, the system’s description is fine-tuned in order to include the switching events which are

induced by supervisory control. This task is accomplished within the Hybrid Automata framework,

which divides the flight envelope into three operating modes: Hover, Transition and Level. The Hover

and Level operating modes are identified by two disjoint sets which are connected together by means

of a reference maneuver to be executed within the Transition operating mode’s domain. The control

laws which allow Level and Hover stabilization as well as reference tracking are exploited in the next

chapters.



Chapter 3

Linear Quadratic Regulator

This chapter briefly describes the Linear Quadratic Regulator in Section 3.1 and then proceeds

into the required UAV model linearization in Section 3.2. Reference trajectories design, con-

troller synthesis and simulation results are presented in Sections 3.3, 3.4 and 3.5, respectively.

3.1 Description

Given a state-space model

ξ̇(t) = A(t)ξ(t) + B(t)µ(t)

z = C(t)ξ(t) + D(t)µ(t),
(3.1)

where µ ∈ Rm is the actuators input, ξ ∈ Rn is the system state and z ∈ Rk is the observations vector,

the Linear Quadratic Regulator (LQR) provides an optimal feedback control solution for it minimizes

the cost function

J =
1

2

∫ ∞
0

ξTQξ + µTRµdt. (3.2)

This solution requires the state-space model to be controllable1 and observable2, producing the full

state feedback control law (3.3) (see [22]).

µ = −Kξ (3.3)

The LQR control structure has already been extensively studied and is categorized as very reliable, for

it has high gain and phase margins [23]. This control solution requires the system to be linear, however

it has been proved that stabilization of a nonlinear system is also feasible within a neighbourhood of

the equilibrium point [24].

1The linear system in (3.1) is controllable if the matrix W = [B AB A2B . . . AnB] has rank n
2The linear system in (3.1) is observable if the matrix V = [CT ATCT (A2)TCT . . . (An−1)TCT ] has rank n

25
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3.2 UAV Linear Model

It is possible to linearize (2.1) around the operating point (ξ0,µ0) using a first order Taylor expansion.

˙̃
ξ ' ξ̃0 +

∂f

∂ξ

∣∣∣∣
ξ=ξ0

ξ̃ +
∂f

∂µ

∣∣∣∣
µ=µ0

µ̃ (3.4)

The terms ξ̃ = ξ − ξ0 and µ̃ = µ − µ0 in (3.4) depict the state and input deviations from the equi-

librium point. The matrix A = ∂f/∂ξ|ξ=ξ0
supplies important information about the aircraft dynamic

properties at a given equilibrium point through the inspection of its eigenvalues. In level flight these

can be sorted out according to very well-known aircraft modes [19]: Phugoid, Short-Period, Spiral,

Roll and Dutch Roll.

As stated in Chapter 1 the UAV transition should take the aircraft from an equilibrium point in Hover

to another equilibrium point in straight level flight. During the transition, the UAV spans a large set of

different operating points therefore posing a serious threat on aircraft stability within the flight envelope.

3.2.1 Hover

Given an operating point (ξH0
,µH0

) ∈ D(H) which lies within the aircraft Hover domain, the matrix

pair (AH ,BH) ∈ R14×14×R14×6 characterizes the system’s dynamics near the prescribed operating

point3.

ξH0
'[154.7 154.7 0 0 0 0 0 0 0 π/2 0 0 0 − 1]T

µH0
'[0.12 0.12 0 0 0 0]T

(3.5)

A generic description of matrices AH and BH is provided in (3.6) and (3.7) which gives useful insight

on the system dynamics near the hover operating point.

AH =



∂ṅ1
∂n1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 ∂ṅ2
∂n2

0 0 0 0 0 0 0 0 0 0 0 0

∂u̇
∂n1

∂u̇
∂n1

∂u̇
∂u

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 g 0 0 0

0 0 0 0 0 0 0 0 0 −g 0 0 0 0

0 0 0 0 0 ∂ṗ
∂p

0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂q̇
∂q

0 0 0 0 0 0 0

∂ṙ
∂n1

∂ṙ
∂n2

0 0 0 0 0 ∂ṙ
∂r

0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0



(3.6)

3The chosen operating point may or may not be an equilibrium point, i.e. the relation ˙̃
ξ0 = 0 does not necessarily hold.
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BH =



∂ṅ1
∂τ1

0 0 0 0 0

0 ∂ṅ2
∂τ2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 ∂v̇
∂δr

0

0 0 0 ∂ẇ
∂δe

0 ∂ẇ
∂δf

∂ṗ
∂τ1

∂ṗ
∂τ2

∂ṗ
∂δa

0 0 0

0 0 0 ∂q̇
∂δe

0 ∂q̇
∂δf

0 0 0 0 ∂ṙ
∂δr

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(3.7)

During hover the dynamics are characterized by a very small set of parameters which can be computed

using the data provided in Section 2.5. The results are listed in Table 3.1.

Parameter Value Units Description
∂ṅ1,2

∂n1,2
-24.7278 s−1 Stabilizing torque due to rotor friction.

∂u̇
∂n1,2

0.0634 m/s Longitudinal acceleration provided by increased

torque rotation.
∂u̇
∂u -0.3169 s−1 Longitudinal velocity damping.
∂ṗ
∂p 0 s−1 Roll damping is not present in the nonlinear model

therefore it is not part of its linearization.
∂q̇
∂q -8.0084 s−1 Pitch damping.
∂ṙ

∂n1,2
∓0.2143 rad/s Increased propeller 1 rotation provides negative yaw-

ing moment while increased propeller 2 rotation pro-

vides positive yawing moment.
∂ṙ
∂r -2.0976 s−1 Yaw damping.

∂ṅ1,2

∂τ1,2
15195 N−1m−1s−2 Increased input torque increases propeller rotation.

∂v̇
∂δr

2.5706 ms−2rad−1 Lateral acceleration due to rudder deflection.
∂ẇ
∂δe

-15.1889 ms−2rad−1 Vertical acceleration due to elevator deflection.
∂ẇ
∂δf

-57.7593 ms−2rad−1 Vertical acceleration due to flap deflection.
∂ṗ
∂τ1,2

∓20.8333 rad s−2N−1m−1 Rolling moment due to differential propeller acceler-

ation.
∂ṗ
∂δa

-399.2930 s−2 Roll acceleration due to aileron deflection.
∂q̇
∂δe

-217.9611 s−2 Pitch acceleration due to elevator deflection.
∂q̇
∂δf

44.8958 s−2 Pitch acceleration due to flap deflection.
∂ṙ
∂δr

-25.6826 s−2 Yaw acceleration due to rudder deflection.

Table 3.1: Hover linear model parameters.
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Taking into account the set of parameters provided in Table 3.1 it is possible to outline some dynamics

features which characterize the aircraft behavior while in hover.

• Despite having two propellers there are no cross-coupled torques which usually arise from gy-

roscopic effects because the propellers are counter-rotating at the same speed;

• Out of all lifting surface actuators, the highest torque is provided by the ailerons due to their

higher surface size;

• Both flaps and elevator act upon the same axis therefore creating lifting forces and pitch mo-

ments but their purposes are very different. The elevator is used mainly to provide pitching

moments while the flaps are used to provide wing lift control;

• Rudder, Ailerons and propellers differential control can be used to provide lateral stabilization.

A quantitative analysis is made by inspection of matrix AH eigenvalues λH . It has five poles on the

Left Half-Plane (LHP) which identify the damping of n1, n2, u, q and r while the remaining poles are

located at the complex plane’s origin identifying them as integrators (see Figure 3.1).

λH = [−24.7 − 24.7 − 0, 317 0 0 0 − 8.01 − 2.10 0 0 0 0 0 0]T (3.8)
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Figure 3.1: Hover operating point pole map. There are five stable poles and nine integrators over-

lapped at the complex plane’s origin.
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3.2.2 Level

Given an operating point (ξL0
,µL0

) ∈ D(L) which lies within the aircraft Level operating mode do-

main, the matrix pair (AL,BL) ∈ R14×14 × R14×6 characterizes the system’s dynamics near the

prescribed operating point. A low velocity for the straight level flight operating point was chosen be-

cause it requires additional control effort. The height z0 was arbitrarily chosen for it does not affect the

dynamics, i.e. it is a pure integrator.

ξL0
'[112.4 112.4 10.8 0 1.9 0 0 0 0 π/18 0 − 1]T

µH0
'[0.052 0.052 0 − 0.065 0 0]T

(3.9)

A generic description of matrices AL and BL is provided in (3.10) and (3.11) which also display

important information about the system near the level flight operating point.

AL =



∂ṅ1
∂n1

0 ∂ṅ1
∂u

0 0 0 0 0 0 0 0 0 0 0

0 ∂ṅ2
∂n2

∂ṅ2
∂u

0 0 0 0 0 0 0 0 0 0 0

∂u̇
∂n1

∂u̇
∂n1

∂u̇
∂u

0 ∂u̇
∂w

0 −w0 0 0 −g cos θ0 0 0 0 0

0 0 0 ∂v̇
∂v

0 ∂v̇
∂p

0 −u0 g cos θ0 0 0 0 0 0

∂ẇ
∂n1

∂ẇ
∂n2

∂ẇ
∂u

0 ∂ẇ
∂w

0 u0 0 0 −g sin θ0 0 0 0 0

0 0 0 ∂ṗ
∂v

0 ∂ṗ
∂p

0 ∂ṗ
∂r

0 0 0 0 0 0

∂q̇
∂n1

∂q̇
∂n2

∂q̇
∂u

0 ∂q̇
∂w

0 ∂q̇
∂q

0 0 ∂q̇
∂θ

0 0 0 0

∂ṙ
∂n1

∂ṙ
∂n2

0 ∂ṙ
∂v

0 ∂ṙ
∂p

0 ∂ṙ
∂r

0 0 0 0 0 0

0 0 0 0 0 1 0 tan θ0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1/ cos θ0 0 0 0 0 0 0

0 0 cos θ0 0 − sin θ0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 sin θ0 0 cos θ0 0 0 0 0 0 0 0 0 0



(3.10)

BL =



∂ṅ1
∂τ1

0 0 0 0 0

0 ∂ṅ2
∂τ2

0 0 0 0

0 0 0 ∂u̇
∂δe

0 ∂u̇
∂δe

0 0 0 0 ∂v̇
∂δr

0

0 0 0 ∂ẇ
∂δe

0 ∂ẇ
∂δf

∂ṗ
∂τ1

∂ṗ
∂τ2

∂ṗ
∂δa

0 0 0

0 0 0 ∂q̇
∂δe

0 ∂q̇
∂δf

0 0 0 0 ∂ṙ
∂δr

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(3.11)

The Level operating mode requires the calculation of more parameters than the Hover operating mode.

This set of parameters is listed in Table 3.2.
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Parameter Value Units Description
∂ṅ1,2

∂n1,2
-17.7306 s−1 Stabilizing torque due to rotor friction.

∂ṅ1,2

∂u 32.4560 s−1m−1 Propeller acceleration due to increased airspeed.
∂u̇
∂n1,2

0.0342 m/s Longitudinal acceleration due to increased propeller

rotation.
∂u̇
∂u -0.2530 s−1 Longitudinal velocity damping.
∂u̇
∂w -0.7508 s−1 Longitudinal velocity decceleration due to increased

angle of attack.
∂v̇
∂v -0.3781 s−1 Lateral velocity damping.
∂v̇
∂p 1.9103 ms−1rad−1 Lateral velocity acceleration due to roll rotation.
∂ẇ
∂n1,2

0.0048 ms−1 Vertical velocity acceleration due to increased pro-

peller rotation.
∂ẇ
∂u -0.8916 s−1 Vertical velocity acceleration due to increased for-

ward velocity.
∂ẇ
∂w -5.6191 s−1 Vertical velocity damping.

∂ṗ
∂p , ∂ṗ∂v , ∂ṗ∂r 0 s−1 Roll damping and roll acceleration due to lateral ve-

locity and yawing motion, respectively.
∂q̇

∂n1,2
0.0693 rad s−1 Pitch rate acceleration due to propeller rotation.

∂q̇
∂u 0.2602 rad s−1m−1 Pitch rate acceleration due to forward velocity.
∂q̇
∂w -9.5274 rad s−1m−1 Pitch rate acceleration due to downward velocity.
∂q̇
∂q -11.7192 s−1 Pitch damping.
∂q̇
∂θ 0 s−2 Pitch rate acceleration due to pitch angle.
∂ṙ

∂n1,2
∓0.1161 rad/s Increased propeller 1 rotation provides negative yaw-

ing moment while increased propeller 2 rotation pro-

vides positive yawing moment.
∂ṙ
∂v -3.7777 rad s−1m−1 Yaw rate acceleration due to lateral velocity.
∂ṙ
∂r -3.5064 s−1 Yaw damping.

∂ṅ1,2

∂τ1,2
15195 N−1m−1s−2 Increased input torque increases propeller rotation.

∂u̇
∂δe

-0.4370 ms−2rad−1 Forward acceleration due to elevator deflection.
∂u̇
∂δf

-5.4010 ms−2rad−1 Forward acceleration due to flap deflection.
∂v̇
∂δr

4.8361 ms−2rad−1 Lateral acceleration due to rudder deflection.
∂ẇ
∂δe

-14.2581 ms−2rad−1 Vertical acceleration due to elevator deflection.
∂ẇ
∂δf

-52.3694 ms−2rad−1 Vertical acceleration due to flap deflection.
∂ṗ
∂τ1,2

∓20.8333 rad s−2N−1m−1 Rolling moment due to differential propeller acceler-

ation.
∂ṗ
∂δa

-486.4866 s−2 Roll acceleration due to aileron deflection.
∂q̇
∂δe

-204.6042 s−2 Pitch acceleration due to elevator deflection.
∂q̇
∂δf

40.7063 s−2 Pitch acceleration due to flap deflection.
∂ṙ
∂δr

-48.3175 s−2 Yaw acceleration due to rudder deflection.

Table 3.2: Level linear model parameters.
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It is possible to identify the aircraft modes discussed in Section 3.2 by the analysis of matrix AL

eigenvalues λL which are plotted on the complex plane in Figure 3.2.

λL =



0

0

0

0

−8.6764 + 9.6698i

−8.6764− 9.6698i

−17.8711

−0.0491 + 0.7864i

−0.0491− 0.7864i

−17.7306

−2.0174 + 6.2281i

−2.0174− 6.2281i

0

0, 1501



(3.12)

Level flight eigenvalues for the operating mode under consideration can be sorted into the aircraft
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Figure 3.2: Level operating point pole map.

dynamic modes introduced in Section 3.2 decomposing the full matrix into lateral and longitudinal

sub-matrices. This requires, however, the forward velocity influence in the propellers’ dynamics to be

neglected. Under this assumption the newly computed matrix eigenvalues do not change significantly

which reiterates the validity of the approximation. Table 3.3 summarizes the result of this analysis.

Despite the Roll dynamic mode which is marginally stable unlike the most common aircrafts every

other dynamic mode has very acceptable values for each dynamic mode, i.e. Phugoid, Short-Period

and Dutch Roll are oscillatory being the Phugoid slightly damped and the Spiral mode is unstable.
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Eigenvalues Damping

Coefficient

(ζ)

Natural Fre-

quency (ωn)

Aircraft Mode

−8.7± 9, 7i 0.668 13.0 rad/s Short-Period

−0.049± 0.79i 0.062 0.79 rad/s Phugoid

−2.0± 6.2i 0.31 6.55 rad/s Dutch Roll

0.15 - - Spiral

0 - - Roll

Table 3.3: Level Flight Eigenvalues categorization according to usual aircraft dynamic modes

3.2.3 Transition

The transition flight does not have an equilibrium point in the same sense as level flight and hover

but linearization around some equilibrium point is required in order to obtain the Transition controller

explained in Section 3.4.2. The chosen operating point given in (3.13) is very similar to the Hover

operating point. However, its forward velocity of 1 m/s provides the linear model with characteristics

which are present both in hover and level flight.

ξX0
'[157.3 157.3 1 0 0 0 0 0 0 π/2 0 0 0 − 1]T

µX0
'[0.12 0.12 0 0 0 0]T

(3.13)

Matrices AX and BX in (3.14) and (3.15) provide relevant information about the system at the oper-

ating point in (3.13).

AX =



∂ṅ1
∂n1

0 ∂ṅ1
∂u

0 0 0 0 0 0 0 0 0 0 0

0 ∂ṅ2
∂n2

∂ṅ2
∂u

0 0 0 0 0 0 0 0 0 0 0

∂u̇
∂n1

∂u̇
∂n1

∂u̇
∂u

0 0 0 0 0 0 0 0 0 0 0

0 0 0 ∂v̇
∂v

0 0 0 −u0 0 0 −g 0 0 0

0 0 0 0 ∂ẇ
∂w

0 u0 0 0 −g 0 0 0 0

0 0 0 0 0 ∂ṗ
∂p

0 0 0 0 0 0 0 0

0 0 0 0 ∂q̇
∂w

0 ∂q̇
∂q

0 0 0 0 0 0 0

∂ṙ
∂n1

∂ṙ
∂n2

0 ∂ṙ
∂v

0 0 0 ∂ṙ
∂r

0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0



(3.14)
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BX =



∂ṅ1
∂τ1

0 0 0 0 0

0 ∂ṅ2
∂τ2

0 0 0 0

0 0 0 ∂u̇
∂δe

0 ∂u̇
∂δe

0 0 0 0 ∂v̇
∂δr

0

0 0 0 ∂ẇ
∂δe

0 ∂ẇ
∂δf

∂ṗ
∂τ1

∂ṗ
∂τ2

∂ṗ
∂δa

0 0 0

0 0 0 ∂q̇
∂δe

0 ∂q̇
∂δf

0 0 0 0 ∂ṙ
∂δr

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(3.15)

It is noticeable from the matrices’ analysis that system slightly resembles that of Hover. The system

eigenvalues (λX ) are computed after substituting the values in Table 3.4 into the matrices AX and

BX and presented in (3.16) and depicted in Figure 3.3.

λX =



0

0

0

0

−1.6586 + 0.9320i

−1.6586− 0.9320i

−25.1476

−25.1323

0.9596

−0.3096

−8.4646

−1.4879

0.7063

0



(3.16)

3.3 Reference Trajectories

The reference transition trajectories were generated with some intuitive insight about the system and

considering that the transition is to occur in the vertical plane, i.e. the aircraft is laterally stabilized.

Therefore, the triplet (u∗, w∗, θ∗) fully defines the aircraft state at any given point. It is desirable that

the reference trajectories do not lead the aircraft to a stall situation as it can be hazardous.
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Parameter Value Units Description
∂ṅ1,2

∂n1,2
-25.1323 s−1 Stabilizing torque due to rotor friction.

∂ṅ1,2

∂u 2.9958 s−1m−1 Propeller acceleration due to increased airspeed.
∂u̇
∂n1,2

0.0634 m/s Longitudinal acceleration due to increased propeller

rotation.
∂u̇
∂u -0.3249 s−1 Longitudinal velocity damping.
∂v̇
∂v -0.0354 s−1 Lateral velocity damping.
∂ẇ
∂w -0.5348 s−1 Vertical velocity damping.
∂ṗ
∂p 0 s−1 Roll damping.
∂q̇
∂w -0.9067 rad s−1m−1 Pitch rate acceleration due to downward velocity.
∂q̇
∂q -8.7115 s−1 Pitch damping.
∂ṙ

∂n1,2
∓0.2143 rad/s Increased propeller 1 rotation provides negative yaw-

ing moment while increased propeller 2 rotation pro-

vides positive yawing moment.
∂ṙ
∂v -0.3541 rad s−1m−1 Yaw rate acceleration due to lateral velocity.
∂ṙ
∂r -2.3221 s−1 Yaw damping.

∂ṅ1,2

∂τ1,2
15195 N−1m−1s−2 Increased input torque increases propeller rotation.

∂v̇
∂δr

2.6064 ms−2rad−1 Lateral acceleration due to rudder deflection.
∂ẇ
∂δe

-15.2785 ms−2rad−1 Vertical acceleration due to elevator deflection.
∂ẇ
∂δf

-58.0843 ms−2rad−1 Vertical acceleration due to flap deflection.
∂ṗ
∂τ1,2

∓20.8333 rad s−2N−1m−1 Rolling moment due to differential propeller acceler-

ation.
∂ṗ
∂δa

-402.6001 s−2 Roll acceleration due to aileron deflection.
∂q̇
∂δe

-219.2470 s−2 Pitch acceleration due to elevator deflection.
∂q̇
∂δf

45.1484 s−2 Pitch acceleration due to flap deflection.
∂ṙ
∂δr

-26.0403 s−2 Yaw acceleration due to rudder deflection.

Table 3.4: Transition linear model parameters.
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Figure 3.3: Transition operating point pole map.

HOVER

LEVEL TO HOVER

HOVER TO LEVEL

HOVER

LEVEL

Figure 3.4: Transition trajectories concept.
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3.3.1 Hover to Level Flight

Considering that the aircraft is able to climb up at a speed equal to that of Level Flight then the change

in pitch angle is not troublesome, requiring solely the change of the main lifting force from thrust to

wing lift. Under this assumption, the trajectories become very simple as the transition can be achieved

with a step in the forward velocity u and a step in the pitch rate q. A ramp which takes the downward

velocity w from the equilibrium value in Hover to the equilibrium in Level Flight is considered instead

of a step input in order to prevent stall. These trajectories are depicted in Figure 3.5.
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Figure 3.5: Hover to Level Flight reference forward velocity u(t), downward velocity w(t) and pitch

angle θ(t).

3.3.2 Level Flight to Hover

The same assumption which was made in order to build the Hover to Level Flight transition is used to

build the reference trajectories that will enable the transition from Level Flight to Hover, i.e. the aircraft

is able to climb up at a speed equal to that of Level Flight. The aircraft begins its change in pitch angle

and only near hover it decelerates to null speed. Similarly to the trajectories presented in the previous

section, a ramp reference input is considered for the downward velocity in order to prevent stall. The

reference trajectories for this maneuver are presented in Figure 3.6.
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Figure 3.6: Level Flight to Hover reference forward velocity u(t), downward velocity w(t) and pitch

angle θ(t).
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The step inputs may cause the actuators to saturate due to their large magnitude. The controller

structure which is explained in section 3.4.1 avoids saturation problems.

3.4 Controller Synthesis

The LQR is an optimal control solution in the sense that it minimizes the cost function (3.2) which is

highly dependent on the fully customizable matrix pair (Q,R). Closed loop dynamic properties are

bound to change radically with different matrix values. This issue is carefully studied in Section 3.4.2.

Actuator saturation is a part of the system which the LQR control alone is not able to handle therefore

D-methodology will be used as explained in Section 3.4.1.

3.4.1 Controller Structure: D-methodology

The control law employed in a Linear Quadratic Regulator Problem is given in (3.3) and it requires

full state feedback. However, the feedback states are not necessarily equal to the system state ξ but

rather the state ξH , ξX or ξL depending on the current Operating Mode. These states do not include

all the variables in ξ and moreover they may include several integrator states from a selected range of

variables ξ̄. This control structure is depicted in Figure 3.7.

ξ Σ

ξ0

∫ LQR CONTROL Σ

µ0

µ

+

ξ̄

+

−
+

Figure 3.7: LQR Control Structure.

This controller structure requires absolute knowledge of the equilibrium point (ξ0,µ0) which is seldom

known. A much more versatile controller structure is provided by the D-methodology depicted in

Figure 3.8.

The D-methodology has several benefits over the classic structure depicted in Figure 3.7:

• It does not require the equilibrium point to be known;

• Controller gains changes due to mode switching do not instantaneously change the actuator

input;
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ξ̃ d
dt

ξ̄

LQR CONTROL
∫

µ

Figure 3.8: D-methodology control structure.

• It provides anti-windup to the control if integrator output saturates whenever the actuators limits

are reached.

D-methodology controller structure is chosen due to its obvious advantages.

3.4.2 State and Input Weighting

The state and input weighting done by the matrices Q and R is performed in a trial and error basis,

making use of Bryson’s method [25] to come up with an initial weighting. This method builds diagonal

matrices whose elements are the inverse of the maximum deviation expected for a given state/input

variable squared as in (3.17) and (3.18). The new states and control dimensioning are fully described

in sections that follow.

Q =


ξ−2

1max 0 . . . 0

0 ξ−2
2max 0

...
. . .

...

0 0 . . . ξ−2
nmax

 (3.17)

R =


µ−2

1max
0 . . . 0

0 µ−2
2max

0
...

. . .
...

0 0 . . . µ−2
mmax

 (3.18)

The LQR weighting is different for each operating mode (Hover, Transition, Level) because each of

these modes has different goals and objectives but the maximum deviation of each integrator state

in matrices Q and R is ten times lower than the original state. This policy allows faster reference

tracking as the position has always a larger penalty than the velocity, otherwise the velocity would be

very rapidly brought close to zero while the position error remained large.
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Hover

During Hover the control law is modified to fit the structure depicted in Figure 3.8 with

ξ̃H = [n1 n2 u− u∗(t) v w − w∗(t) p q − q∗(t) r φ θ − θ∗(t) ψ]T

ξ̄H = [u− u∗(t) v w − w∗(t) φ θ − θ∗ ψ]T .
(3.19)

Several features which result from this choice are:

• The trajectory [x y z]T is not included in the control for the transition control is performed with

u∗(t), w∗(t) and θ∗(t) reference tracking;

• The integrator states in u, v and w ensure position stabilization;

• Integrator states in φ, θ and ψ ensure angular position stabilization;

• The system is still controllable through BH despite additional states have been added.

The considered maximum deviations from equilibrium state which are applied in Bryson’s method are

listed in Table 3.5.

Variable Maximum Deviation Observations

n1,2 200 rps Propeller speed should be allowed to span a large velocity

range because it provides both thrust control and yaw control.

u 10 m/s Forward velocity tracking is loosened when compared to either

downward velocity and lateral velocity because it is considered

that the aircraft remains in Hover despite its forward velocity.

v,w 1 m/s Lateral velocity and downward velocity should be more accu-

rately tracked in order to prevent the aircraft from leaving Hover

operating mode.

p,r 1 rad/s Roll rate and yaw rate are loosened tracked.

q 0.1 rad/s Pitch rate is more closely tracked for better transition perfor-

mance.

τ1,2 τmax N.m Maximum rotor input torque is considered.

δa, δf 7.5 deg Maximum allowable aileron and flap deflections are considered.

δe, δr 15 deg Maximum allowable elevator and rudder deflections are consid-

ered.

Table 3.5: Maximum state and input deviations from equilibrium for QH and RH matrix weighting.
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Transition

The Transition Operating Mode control must allow close reference tracking and provide a stable flight

during the maneuver. Linear models require linearization around some equilibrium point and do not

depict the aircraft behavior throughout the maneuver. Figure 3.9 depicts the change in system poles

which occurs during the transition from hover to level flight. Some features present in this pole map

are:

• There is a large reduction in propeller damping which is identified by two leftmost poles;

• The phugoid dynamic mode is unstable at the maneuver start but becomes stable with increas-

ing forward velocity;

• Spiral dynamic mode is always unstable;

The previous analysis is also valid for the transition from level flight to hover because the two maneu-

vers are identical. The Transition operating mode must provide stabilization for the full flight envelope,
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Figure 3.9: Operating points spanned during transition.

i.e. changes in aircraft dynamic modes during the maneuver must not render the aircraft unstable.

The trajectory tracking requires strict lateral stabilization for the transition to take place in the vertical

plane or with as little deviation as possible. These requirements imply the need for integrators in the
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variables ũ, v, w̃, φ, θ̃ and ψ. The controller structure depicted in Figure 3.8 is used with

ξ̃ = [n1 n2 u− u∗(t) v w − w∗(t) p q − q∗(t) r φ θ − θ∗(t) ψ]T

ξ̄H = [u− u∗(t) v w − w∗(t) φ θ − θ∗(t) ψ]T .
(3.20)

Several remarks can be made for this particular choice of state variables and integrator states:

• The system is still controllable through BX despite having additional states;

• The trajectory [x y z]T is not included in the control loop;

• The integrators in v, ψ and φ ensure that the transition flight is executed in the vertical plane;

• The integrators in ũ, w̃ and θ̃ ensure reference trajectory tracking.

The weights provided in Table 3.6 are used in the LQR algorithm which computes the feedback gain

KX . This feedback gain not only stabilizes the aircraft near the equilibrium point but also in all the op-

erating points spanned by the transition maneuver. The pole changes which occur during the transition

are depicted in Figure 3.10 which prove that stability is always guaranteed.
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Figure 3.10: Controlled Transition system poles.

Level Flight

The objective when in the level flight mode is to keep the path at a constant height to the ground,

therefore introducing the z state and integrators on the ũ, v, φ, θ̃ and ψ variables. This strategy leads

to the controller structure depicted in Figure 3.8 with

ξ̃ = [n1 n2 u− u∗(t) v w p q − q∗(t) r φ θ − θ∗(t) ψ z]T

ξ̄H = [u− u∗(t) v φ θ − θ∗(t) ψ]T .
(3.21)
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Similarly to Hover and Transition operating modes:

• The system is controllable through BL;

• The integrator state in w̃ was replaced by the state variable z which guarantees that the aircraft

keeps a constant height to ground;

Table 3.7 lists the maximum expected deviations from equilibrium which are used in Bryson’s method.

3.4.3 Controller Robustness

The controllers’ µH , µX and µL robustness is tested against parameters change with respect to nom-

inal values without changing the controllers’ gains KH , KX and KL. Due to the immense number

of parameters which characterize the system, the forthcoming analysis focuses on a restricted set of

these parameters which have more uncertainty. This particular choice includes every aerodynamic

coefficient and aircraft Moments of Inertia. Furthermore, collective changes in parameters are consid-

ered, i.e. no parameter is analyzed alone thus preventing the escalating number of analyzed it would

take to perform a full robustness test.

Figure 3.11 depicts the root locus for each Operating Mode given a change of ±20% in the model

parameters. Despite altering the system dynamics, this change does not render the system unstable.

The most prominent and hazardous change is that of the dominant pole which is seen to slide along

the real axis towards the right hand plane in Hover and Transition operating modes causing slower

responses to disturbances and input controls. These slower dynamics appear mainly due to a reduc-

tion in CLδrvs and CLδrp,vs which correspond to a reduction in lateral maneuverability which is not

pronounced in level flight.
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Figure 3.11: Controller robustness - the three root locus depict system poles with ±20% change in

parameters for Hover, Transition and Level Flight Operating Modes.
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Variable Maximum Deviation Observations

n1,2 200 rps Propeller speed should be allowed to span a large velocity

range because it provides both thrust control and yaw control.

u,v,w 10 m/s Velocity tracking is loosened when compared with Hover.

p,q,r 1 rad/s Angular velocity is more loosely tracked than in Hover.

τ1,2 τmax N.m Maximum rotor input torque is considered.

δa, δf 7.5 deg Maximum allowable aileron and flap deflections are considered.

δe 15 deg Maximum allowable elevator and rudder deflections are consid-

ered.

δr 45 deg Maximum variation was increased above the maximum al-

lowable rudder deflection in order to allow faster lateral sta-

bilization. Saturation problems are avoided when using D-

methodology.

Table 3.6: Maximum state and input deviations from equilibrium for QX and RX matrix weighting.

Variable Maximum Deviation Observations

n1,2 200 rps Propeller speed should be allowed to span a large velocity

range because it provides both thrust control and yaw control.

u 10 m/s Forward velocity tracking is loosened when compared to either

downward velocity and lateral velocity.

v,w 1 m/s Lateral velocity and downward velocity should be more accu-

rately tracked in order to prevent the aircraft from leaving Level

operating mode.

p,r 1 rad/s Roll rate and yaw rate are loosely tracked.

q 0.1 rad/s Pitch rate is more closely tracked.

τ1,2 τmax N.m Maximum rotor input torque is considered.

δa, δf 7.5 deg Maximum allowable aileron and flap deflections are considered.

δe, δr 15 deg Maximum allowable elevator and rudder deflections are consid-

ered.

Table 3.7: Maximum state and input deviations from equilibrium for QL and RL matrix weighting.
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3.5 Simulation Results

Simulations were run in order to test the controllers’ reliability in each one of the operating modes.

Sections 3.5.1, 3.5.2, 3.5.3 and 3.5.4 present some simulation results in Hover, Level and Transition,

respectively.

Throughout Sections 3.5.3 and 3.5.4 special emphasis is given to the aircraft’s longitudinal variables

[u w q θ x z] for the transition is to occur in the vertical plane. The variables which characterize the

lateral behavior should always be zero.

3.5.1 Hover

Hover control simulations demonstrate the controller’s ability to stabilize the aircraft at the operating

point (3.5) starting from any initial condition which lies within Hover domain, ξ(0) ∈ D(H), namely

with initial conditions ψ(0) = ψ̄H and θ(0) = θ̄H . Simulations results with the aforementioned starting

angular values are depicted in Figure 3.12.
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Figure 3.12: Hover simulation - Velocity and Euler Angles time evolution.

3.5.2 Level

Level flight control must stabilize the aircraft at the equilibrium point in equation (3.9) as long as its

initial state lies within the Level Flight domain, ξ(0) ∈ D(L), namely with initial angles φ(0) = φ̄L

and θ(0) = θ̄L. Simulations results with the aforementioned starting angular values are depicted in

Figure 3.13.



3.5. SIMULATION RESULTS 45

0 2 4 6 8 10
−2

0

2

4

6

8

10

12

Time [s]

V
el

oc
ity

 [m
/s

]

 

 

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Time [s]

E
ul

er
 A

ng
le

s 
[d

eg
]

 

 

u
u

0

v
v

0

w
w

0

φ
φ

0

θ
θ

0

Ψ
Ψ

0

Figure 3.13: Level Flight simulation - Velocity and Euler Angles time evolution.

3.5.3 Transition: Hover to Level

The Aircraft starts its transition to Level Flight in Hover configuration and since the reference transition

trajectory starts at u = 1 m/s a step input with the same magnitude is required when in Hover. The

system’s behavior is represented in Figure 3.14 for this particular case. The aircraft starts in Hover,

switches to Transition Flight at time t = 0.9 s when the aircraft state enters the Guard Map D(H,X)

and switches to Level Flight at t = 9.6 s when the Guard MapD(X,L) is breached. Nonlinear behavior

is highly noticeable during switching from Hover to Transition flight due to input torque saturation.

Figure 3.15 depicts the tracking errors which arise during the transition maneuver. The velocity tracking

is more loosened than the pitch angle tracking whose error is always below 1◦. It can also be noticed

the erratic behavior in w∗(t) tracking due to the very simple reference trajectories which are somewhat

far from the model dynamics.

Figure 3.16 depicts the aircraft’s trajectory during the transition which is seen to maintain the desired

constant height when Level Flight Operating Mode is reached.

3.5.4 Transition: Level to Hover

In the simulation results presented in this section, the aircraft switches from Level to Transition operat-

ing mode at t = 0 s because the initial state lies within the Guard Map G(L,X). The switch to Hover

Operating mode occurs at t = 7.7 s when the aircraft state enters the Guard Map G(X,H).

Figure 3.17 depicts the forward velocity flow which is seen to deviate slightly from the reference value

when the pitch angle starts to increase and has nonlinear behavior when the switch to Hover is per-

formed due to actuator saturation. Figure 3.18 depicts trajectory tracking errors which complement the

information given in Figure 3.17. The highest errors during the transition do not occur during transition

tracking but rather during operating mode switching. Yet again it is noticeable higher errors in velocity

tracking than in pitch angle tracking which is a desirable feature since slight deviations in the pitch
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Figure 3.14: Transition from Hover to Level Flight simulation. The upper row depicts the forward

velocity u, the downward velocity w and the pitch angle θ flow in time (blue line) and the references

(red dashed line). The second row depicts the actuators’ flow which have the highest influence on the

variable portraited directly above.
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Figure 3.16: Aircraft vertical trajectory.

angle are more disturbing than deviations in the vehicle’s velocity.

Figure 3.19 depicts the aircraft trajectory during the transition from Level Flight to Hover where it is

possible to verify that the UAV does not collide with ground.

3.6 Summary

This chapter introduced the Linear Quadratic Regulator as a possible solution for hover and level flights

stabilization as well as reference tracking. The aircraft linear model was obtained for three different

operating points which correspond to the three operating modes defined by the hybrid automaton. The

local system behavior was analyzed by the inspection of its eigenvalues, revealing that:

• The hover flight linear model is very simple depicting a slight damping in the n1,2, u, p and r

state variables;

• The level flight linear model is mainly affected by two slow modes: a slightly damped phugoid

mode and an unstable spiral mode;

• The Transition operating point is similar to that of Hover but with an ascending velocity of u = 1

m/s, which provides the linear model with characteristics that are present in both hover and level

flights.
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Figure 3.17: Transition from Level Flight to Hover simulation. The upper row depicts the forward

velocity u, the downward velocity w and the pitch angle θ flow in time (blue line) and the references

(red dashed line). The second row depicts the actuators’ flow which have the highest influence on the

variable portraited directly above.
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Figure 3.18: Tracking errors during transition from level flight to hover.
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Figure 3.19: Aircraft vertical trajectory.

Simple reference trajectories were built according to some intuitive insight of the system. Appropriate

controller dimensioning stabilized the aircraft in hover, level and all the equilibrium points spanned by

the transition maneuver, according to simulation results. Moreover, the controllers proved to be robust

to a collective change of ±20 in the aircraft parameters.





Chapter 4

UAV Nonlinear Control

D
e spite the linear control solution feasibility, nonlinear control techniques are also exploited.

However, due to its inherent complexity, model simplification is performed in Section 4.1. The

nonlinear control synthesis is presented in Section 4.4 considering the simplified model but tested

against the full model in Section 4.5.

4.1 Simplified UAV Model

Throughout this section the UAV model is described in the configuration manifold S1×R2 considering

that the aircraft motion occurs solely on the vertical plane, i.e. the lateral motion is assumed to be

non-existent which constitutes a reasonable approximation provided that there is additional lateral

stabilization. This simplification is particularly important in the aircraft kinematic. The configuration of

the body frame {B} with respect to {N} can be viewed as an element of the Special Euclidean group,

(R,p) = (NBR,NpB) ∈ SE(2) where

NpB = [x z]T ,

N
BR =

 cos θ sin θ

− sin θ cos θ

 ,
(4.1)

thus eliminating the singularity in the rotation matrix parametrization which occurs in three-dimensional

rotations. The kinematics are described by

N ṗB = N
BRvB

θ̇ = q,
(4.2)

where NpB = [x z]T and vB = [u w]T . Other simplifications made to the full system model described

in Chapter 2 include:

51
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• Propellers’ dynamics are neglected. The thrust they provide is given by

T =
T1 + T2

2
. (4.3)

• Lateral motion is stabilized which in turn implies that T1 − T2, δa, δr, v, p, r and y are all null;

• The stall angle does not depend on the actuator deflection but only on the angle of attack which

must verify |α| < ᾱ, where ᾱ = 15 ◦. Equation (2.40) was built under a very conservative view

which is hereupon relaxed;

• Since the main contribution to the aircraft drag is that of the wing, the horizontal and vertical

stabilizers drag as well as the flap contribution to the wing drag are neglected.

Under the previous considerations, the main forces acting on the aircraft body are the wing lift Lw, the

horizontal stabilizer lift Lhs and the wing drag Dw which are given by

Lw =− 1

2
ρAwu

2(CLαα+ CLδf δf )− 1

2
ρAp,w(2u2

p)CLδf δf (4.4)

Dw =− 1

2
ρAwu

2

(
CD0w

+
(CLαα)2

πAwew

)
(4.5)

Lhs =− 1

2
ρAhsu

2(CLαα+ CLδe δe)−
1

2
ρAp,hs(2u

2
p)CLδe δe. (4.6)

The lifting forces Lhs and Lw produce the moments Mhs and Mw, respectively, due to their displace-

ment with respect to the center of gravity. The moment Mdampq defined in (2.49) remains valid in this

analysis.

Mhs =− rhs. iBLhs (4.7)

Mw =− rw. iBLw (4.8)

The actuators input variables δe and δf can be changed into forces Le and Lf , respectively, according

to (4.9) and (4.10).

δe = − Le
1
2ρ(2u2

p)Ap,hsCLδep,hs
+ 1

2ρu
2AhsCLδehs

(4.9)

δf = − Lf
1
2ρ(2u2

p)Ap,wCLδfp,w
+ 1

2ρu
2AwCLδfw

(4.10)
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The dynamics equations (2.9) and (2.10) are rewritten in (4.11), (4.12) and (4.13) for the longitudinal

case, under the aforementioned simplifications.

u̇ =
1

m

(
2T − 1

2
ρAwu

2

(
CD0w

+
(CLαw arctan

(
w
u

)
)2

πAwew

))
− g sin θ − qw (4.11)

ẇ =
1

m

(
Lf + Le −

1

2
ρu2(AwCLαw +AhsCLαhs ) arctan

(w
u

))
+ g cos θ + qu (4.12)

q̇ =
1

Iy

(
− rw. iBLf − rhs. iBLe −

1

2
ρ(AwCLαw rw. iB +AhsCLαhsrw. iB) arctan

(w
u

)
(4.13)

− 1

2
ρAp,hsCLαp,hs(rp. iB − rhs. iB)upq −

1

2
ρAhsCLαp,hs |rhs. iB |uq

)

Figure 4.1 depicts the overall planar dynamics described in this section which are the basis for the

construction of the simplified Hybrid Automaton in Section 4.2

Figure 4.1: Aircraft two-dimensional representation.

4.2 Simplified Hybrid Automaton

The new state variable to be monitored is

ξ = [u w q θ x z]T

where the motion outside the vertical plane is assumed already controlled and the propellers dynamic

behavior is neglected. The Hybrid Automaton described in Section 2.4 is therefore required to change
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accordingly being the most prominent changes those of the flow map. Since the set of operating

modes and edges does not change their definition is not mentioned in this section.

4.2.1 Domain Mapping

The domain mapping is characterized by the set valued mapping D : Q ⇒ R6 × R3 ×Q∗ where the

actuators domain is the set U ⊂ R3 ×Q∗ given by

U = [Tmin, Tmax]× [δemin , δemax ]× [δfmin , δfmax ]×Q∗ (4.14)

The domain mapping is

D(H) = R3 ×Bθ̄H (π/2)× R× R≤0 × U ,

D(X) = R≥0 × R4 × R≤0 × U
⋂{

(u,w) ∈ R2 : | arctan(w/u)| < ᾱ
}

,

D(L) = R≥0 × R3 × Bθ̄L(0)× R× R≤0 × U
⋂

,
{

(u,w) ∈ R2 : | arctan(w/u)| < ᾱ
} (4.15)

where an additional constraint has been added to the Transition domain in order to prevent disconti-

nuities in the nonlinear controller.

4.2.2 Flow Map

The flow map f : Q × R6 × U → R6 describes the evolution of the state variables in each operating

mode q ∈ Q, i.e. in each operating mode the state’s derivative is given by

ξ̇ = f(q , ξ,µ), (4.16)

where function f is the the set of previously defined differential equations (4.11), (4.12), (4.13) and (4.2).

4.2.3 Guard Mapping

The guard mapping G : E ⇒ R6 × R3 ×Q∗ is defined below.

G(H,X) = BχH→X
(v∗X→L(0)),

G(X,L) =
{

(ξ,µ) ∈ D(L) : |θ| ≤ θ̄X→L ∧ q∗ = L
}

,

G(L,X) = BχL→X
(v∗X→H(0)),

G(X,H) =
{

(ξ,µ) ∈ D(H) : |θ − π/2| ≤ θ̄X→H ∧ q∗ = H
}

,

(4.17)
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4.2.4 Reset Map

The reset map is trivial because no changes in kinematics parametrization are required.

R(H,X) = ξ

R(X,L) = ξ

R(L,X) = ξ

R(X,H) = ξ

(4.18)

4.3 Robust Maneuvers

The robust maneuvers are divided into three types within the Hybrid Automata framework described

in [17]:

• ε-robust q1 single reference maneuver t ∈ [t0, t1);

• ε-robust q1 → q2 approach maneuver in t ∈ [t0, tf ];

• (ε, δe)-robust q1 → q2 transition maneuver in t ∈ [t0, t1).

A maneuver taking place in operative mode q is ε-robust if it is ε-distant from any guard sets for any

t ∈ [t0, t1). A q1 → q2 approach maneuver is ε-robust if its graph does not intersect any guard sets

other than G(q1, q2) during time t ∈ [t0, tf ]. Moreover, vq1(tf ) must belong to the Guard set G(q1, q2).

The q1 → q2 transition maneuver is the q1 → q2 approach maneuver union with a set of q2 single

maneuvers each of which is at most δε-distant to the trajectory v∗q2(t) starting point when the transition

occurs. It is possible to successfully accomplish these maneuvers with a feedback control method

which achieves reference trajectory tracking with an error lower than ε.

4.3.1 ε-robust H,L and X single maneuvers

A H single maneuver v∗H(t) is ε-robust if the following condition is verified

(gr v∗H +Bε)
⋂
G(H,X) = ∅, (4.19)

where gr v∗H is the reference maneuver graph. This condition is trivially satisfied if q∗ = H . However,

in the case that q∗ = L the maneuver must satisfy1

(gr v∗H +Bε)
⋂
BχH→X

(v∗X→L(0)) = ∅ (4.20)

1For any given setX ⊆ Rn we denote withX+Bε the set of all points ε-close toX, i.e. {y ∈ Rn : ∃x′ ∈ Xs.t.‖x′−y‖ ≤
ε}.
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which constitutes an uninteresting scenario since the controller is asked to take the aircraft to level

flight. A similar analysis may be built for the L single maneuver which is ε-robust if its graph v∗L(t)

verifies

(gr v∗L +Bε)
⋂
G(L,X) = ∅. (4.21)

Again, condition (4.21) is trivially verified if q∗ = L and is an uninteresting maneuver otherwise.

A X single maneuver is ε-robust if

(gr v∗X(t) +Bε)
⋂

(G(X,H) ∪ G(X,L)) = ∅. (4.22)

These trajectories are uninteresting since the final state of the aircraft is intended to be in either Hover

or Level and will not be further exploited.

4.3.2 ε-robust H → X and L→ X approach maneuvers

A H → X approach maneuver is ε-robust if is at least ε-distant to any guard set other than G(H,X)

and if

Bε(v∗H→X(tf )) ⊂ G(H,X) (4.23)

which in turn implies that

Bε(v∗H→X(tf )) ⊂ BχH→X
(v∗H→L(0)). (4.24)

Similarly, a L → X approach maneuver is ε-robust if it is ε-distant to any guard sets different from

G(H,X) and if the following condition is satisfied.

Bε(v∗L→X(tf )) ⊂ BχL→X
(v∗H→X(0)). (4.25)

An obvious consequence is that the conditions

ε < χH→X (4.26)

ε < χL→X (4.27)
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must be verified for the approach maneuvers to be ε-robust.

4.3.3 ε-robust X → H and X → L approach maneuvers

A X → L approach maneuver is ε-robust if in addition to being at least ε-distant to the Guard set

G(X,H) its graph also verifies

Bε(v∗X→L(tf ))
⋂
G(X,L). (4.28)

The first condition is trivially satisfied with q∗ = L. Similarly to the X → L maneuver, the X → H

approach maneuver is ε-robust if it is always ε-distant to any Guard set other than G(X,H) and

furthermore condition (4.29) is verified.

Bε(v∗X→H(tf ))
⋂
G(X,H) (4.29)

The second condition for either maneuver requires reference input µ∗X→L calculation by means of

system inversion. Given twice differentiable desired state trajectories u∗(t) and θ∗(t), the downward

velocity initial state w(0) and considering the flaps nominally at rest, i.e. Lf = 0, for the whole

approach maneuver, then the reference control inputs T ∗ and L∗e , and the reference state variable w

are computed numerically by solving (4.11), (4.12), (4.13) and (4.2). The chosen reference trajectories

are

u∗(t) =

u0 if t0 ≤ t < tu

u0 + (u∞ − u0) exp(−Φu(t− tu)) (exp(Φu(t− tu))− Φu(t− tu)− 1) if t ≥ tu
(4.30)

θ∗(t) =

θ0 if t0 ≤ t < tθ

θ0 + (θ∞ − θ0) exp(−Φθ(t− tθ)) (exp(Φθ(t− tθ))− Φθ(t− tθ)− 1) if t ≥ tθ
(4.31)

which are characterized by the initial forward velocity u0, the final forward velocity u∞, the initial pitch

angle θ0, the final pitch angle θ∞, the transition start times tθ and tu and the parameters Φu and Φθ

which determine the rate at which the transition is performed for each of the state variables u and

θ, respectively. Figures 4.2 and 4.3 depict the X → L and X → H approach maneuver reference

trajectories given the parameters listed in Tables 4.1 and 4.2. These reference maneuvers lie within

the Transition Operating Mode domain and are far from any of its boundaries.
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Variable Value

u0 1 m/s

u∞ 10.83 m/s

Φu 1 s−1

tu 0 s

θ0 90 deg

θ∞ 10 deg

Φθ 0.7 s−1

tθ 0.1 s

Table 4.1: X → L approach maneuver parameters.
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Figure 4.2: Hover to Level reference trajectories.
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Variable Value

u0 10.83 m/s

u∞ 1 m/s

Φu 1 s−1

tu 8 s

θ0 10 deg

θ∞ 90 deg

Φθ 0.7 s−1

tθ 0.1 s

Table 4.2: X → H approach maneuver parameters.
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Figure 4.3: Level to Hover reference trajectories.
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4.3.4 (ε, δε)-robust q1 → q2 transition maneuver

Any q1 → q2 transition maneuver with (q1, q2) ∈ E requires the corresponding q1 → q2 approach ma-

neuver to be ε-robust and the set Sq1→q2 defined in (4.33) to be populated with Jδε q2-single reference

trajectories which ensure that after Operating Mode switching the state lies at most δε-distant to some

of the reference trajectories.

Sq1 =
(

grv∗q1→q2(t) +Bε

)⋂
G(q1, q2) (4.32)

Sq1→q2 =

{
(ξ,µq2) ∈ D(q2) : ∀(ξ′,µ′

q1
)∈Sq1 , ξ = R((q1, q2), ξ′,µ′q1)

}
(4.33)

As an example, if the H → X transition maneuver if Jδε = 1 then δε ≥ χH→X .

4.4 Controller Design

Classic Linear Quadratic Regulator controllers are used in hover and level flight. A Transition Flight

nonlinear controller is developed throughout this section which renders the aircraft Input-to-State sta-

ble (ISS) with restrictions. Complete information on this topic can be found in [26]. The input-to-state

stability meaning outlined in Definition 2 requires the definition of class K functions given in Defini-

tion 1 and other mathematical constructions which evaluate the bounds of any given function. One

such mathematical construction is that of infinite norm of a bounded piecewise-continuous function

f : [0,∞)→ Rk, which is the quantity

‖f‖∞ = sup
t∈[0,∞)

‖f(t)‖. (4.34)

The set of all such functions is denoted by Lk∞. For any function f ∈ Lk∞ another important quantity

is the asymptotic norm ‖f‖a which is given by

‖f‖a = lim
t→∞

sup ‖f(t)‖. (4.35)

Definition 1. A continuous function γ : [0, d) → [0,∞) is said to belong to the class K if it is strictly

increasing and γ(0) = 0. If d =∞ and γ is proper, i.e. limr→∞ γ(r) =∞, then the function is said to

belong to the class K∞.

Definition 2. The dynamic system ξ̇ = f(ξ,µ) is said to be input-to-state stable with restrictions

X ⊆ Rn on the initial state and ∆ > 0 on the input if there exist class K functions γ0 : Rn → R and

γ : Rm → R such that, for any input µ ∈ Lm∞ satisfying ‖µ‖∞ < ∆ and for any ξ0 ∈ X, the response
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ξ(t) satisfies

‖ξ‖≤max {γ0(‖ξ0‖), γ(‖µ‖∞)}
‖ξ‖a≤γ(‖µ‖a).

(4.36)

Another important definition in the ISS systems framework establishment is that of local ISS-Lyapunov

function, given in Definition 3

Definition 3. . A C1 function V : Rn → R is called a local ISS-Lyapunov function for the dynamic

system ξ̇ = f(ξ,µ) if there exist class K∞ functions η̄ : Rn → R, η : Rn → R, η : Rn → R, a class K
function χ : Rm → R and positive numbers δξ and δµ such that, for all ξ ∈ Rn and µ ∈ Rm such that

‖ξ‖ < δξ and ‖µ‖ < δµ the following holds

η(‖ξ‖) ≤ V (ξ) ≤ η̄(‖ξ‖) (4.37)

and

‖ξ‖ ≥ χ(‖µ‖)⇒ ∂V

∂ξ
f(ξ,µ) ≤ −η(‖ξ‖). (4.38)

Proposition 1 follows from the local ISS-Lyapunov function definition.

Proposition 1. The dynamic system ξ̇ = f(ξ,µ) is ISS with restrictions if and only if there exists a

local Lyapunov function.

Proof. See [26].

In order to build the nonlinear controller and prove the overall system stability and robustness the state

equations are rewritten in a simpler form by substituting the relationsL
M

 =

 1 1

−xachs −xacw

Le
Lf

 (4.39)

into (4.11), (4.12) and (4.13), yielding

u̇ =
2T

m
+ hu(u,w, q, θ),

ẇ =
L

m
+ hw(u,w, q, θ),

q̇ =
M

Iy
+ hq(u,w, q),

θ̇ = q.

(4.40)

This substitution effectively rescales the control input throughout the maneuver. The new control input

is described by

µ =


T ∗(t) + T̃

M∗(t) + M̃

L∗(t) + L̃

 ,

T̃ = −kuũ

M̃ = −kθ(θ̃ + kq q̃)

L̃ = −kww̃

, (4.41)
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where T ∗(t), M∗(t) and L∗(t) are the reference inputs obtained by model inversion as explained in

Section 4.3 and T̃ , M̃ and L̃ are the errors which result from practical reference tracking. Proportional-

derivative (PD) controllers are used to track the reference trajectories. Substituting (4.41) into the

system state equations (4.40), the aircraft error dynamics are described by

˙̃u =
2T̃

m
+ Ψu(ũ, w̃, q̃, θ̃, t) + δu(t), (4.42a)

˙̃w =
L̃

m
+ Ψw(ũ, w̃, q̃, θ̃, t) + δw(t), (4.42b)

˙̃q =
M̃

Iy
+ Ψq(ũ, w̃, q̃, t) + δq(t), (4.42c)

˙̃
θ =q, (4.42d)

where the functions Ψu, Ψw and Ψq described by (4.43) have been introduced and the perturbation

terms δu(t), δw(t) and δq(t) have been added. These perturbations may appear due to parametric

uncertainty, external disturbances and/or due to deviations from the vertical plane.

Ψu(ũ, w̃, q̃, θ̃, t) =hu(u∗(t) + ũ, w∗(t) + w̃, q∗(t) + q̃, θ + θ̃)

− hu(u∗(t), w∗(t), q∗(t), θ∗(t))

Ψw(ũ, w̃, q̃, θ̃, t) =hw(u∗(t) + ũ, w∗(t) + w̃, q∗(t) + q̃, θ + θ̃)

− hw(u∗(t), w∗(t), q∗(t), θ∗(t))

Ψq(ũ, w̃, q̃, t) =hq(u
∗(t) + ũ, w∗(t) + w̃, q∗(t) + q̃)

− hq(u∗(t), w∗(t), q∗(t))

(4.43)

The reference trajectory is one of equilibrium (if δu = δw = δq = 0) because

[ũ w̃ q̃ θ̃] = [0 0 0 0]⇒ [ ˙̃u ˙̃w ˙̃q
˙̃
θ] = [0 0 0 0].

The previous set of equations provides the foundations upon which the nonlinear controller’s robust-

ness emerges. Consider two separate but interconnected systems which describe the pairs (ũ, w̃)

and (θ1, θ2), where θ1 = θ̃ and θ2 = q̃ + θ̃
kq

. Input-to-State Stability is proven firstly for each of these

system separately in Propositions 2 and 3. Input-to-State Stability for the overall system then follows

from the Small Gain Theorem described in both [26] and [27], which is applied to the feedback inter-

connection depicted in Figure 4.4.

Proposition 2. For some c∗u > 0 and c∗w > 0 and any numbers satisfying ∆ > 0, ‖(θ1, θ2‖ > 0,

0 < cu < c∗u and 0 < cw < c∗w there exist ku > k∗u and kw > k∗w such that the system with the

dynamics (4.42a) and (4.42b) is rendered ISS with restrictions cu in the initial state ũ(0), cw on the

initial state w̃(0), ∆ on the inputs δu(t) and δw(t) and ‖(θ1, θ2‖ on the input (θ1, θ2).
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Proof. Consider the Lyapunov function (4.44) and the level set definition given in (4.45).

V1(ũ, w̃) =
1

2
(ũ2 + w̃2) (4.44)

Ω1(l) = {(ũ, w̃) ∈ R2 : V1(ũ, w̃) ≤ l} (4.45)

It turns out that, due to radial unboundedness there exist positive l1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ cu ∧ |w̃| ≤ cw} ⊂ Ω1(l1). (4.46)

Moreover, for any given reference trajectory it is possible to find c∗u, c∗w and l∗1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ c∗u ∧ |w̃| ≤ c∗w} ⊂ Ω1(l∗1), (4.47)

and {
(ũ, w̃) ∈ Ω1(l∗1) : u∗(t) + ũ > 0 ∧

∣∣∣∣arctan

(
w∗(t) + w̃

u∗(t) + ũ

)∣∣∣∣ < ᾱ

}
, (4.48)

hold true for all t ≥ 0.

The functions defined in (4.43) are locally Lipschitz because the functions hu, hw and hq are con-

tinuous and proper, therefore there exist positive Lu and Lw such that for all (u,w) ∈ Ω1(l1) and

‖(θ1, θ2)‖ < ‖(θ1, θ2)‖ the following holds

∥∥∥∥Ψu

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Lu‖(ũ, w̃, θ1, θ2, t)‖, (4.49)

∥∥∥∥Ψw

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Lw‖(ũ, w̃, θ1, θ2, t)‖, (4.50)

for all t ≥ 0. The Lyapunov function derivative V̇1 is given by

V̇1 = ũ

(
−2ku
m

ũ+ Ψu

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)
+ δu(t)

)
+ w̃

(
−kw
m
w̃ + Ψw

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)
+ δw(t)

)
.

(4.51)

(ũ, w̃)(δu(t), δw(t))

(q̃, θ̃)δq(t)

Figure 4.4: Interconnected systems (ũ, w̃) and (θ1, θ2).
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Substituting (4.49) and (4.50) into (4.51) and using the triangle inequality the following relation is

derived

V̇1 ≤−
(

2ku
m
− Lu

)
ũ2 + |ũ|(Lu + Lw)|w̃| −

(
kw
m
− Lw

)
w̃2

+ |ũ|Lu‖(θ1, θ2)‖+ |ũ||δu(t)|

+ |w̃|Lw‖(θ1, θ2)‖+ |w̃||δw(t)|,

(4.52)

which can be rewritten as

V̇1 ≤− [ũ w̃]

 2ku
m − Lu ± 1

2 (Lu + Lw)

± 1
2 (Lu + Lw) kw

m − Lw

ũ
w̃


+ |ũ|Lu‖(θ1, θ2)‖+ |ũ||δu(t)|

+ |w̃|Lw‖(θ1, θ2)‖+ |w̃||δw(t)|.

(4.53)

The off-diagonal elements’ sign in (4.53) may change with changes in the product |ũw̃|. The symbol

± is used to account for this sign changes. The Lyapunov function’s derivative can be upper bounded

as by

V̇1 ≤− λmin‖(ũ, w̃)‖2 + ‖(ũ, w̃)‖((Lu + Lw)‖(θ1, θ2)‖+ δu(t) + δw(t)), (4.54)

where λmin is the smallest eigenvalue of the matrix in (4.53). It is easy to verify that for any ∆ > 0 and

‖(θ1, θ2)‖ > 0 there exist k∗w > 0 and k∗u(k∗w) > 0 such that for any ku > k∗u, kw > k∗w, (δu(t), δw(t))

satisfying ‖δu(t)‖∞ ≤ ∆, ‖δw(t)‖∞ ≤ ∆, and ‖(θ1, θ2)‖ < ‖(θ1, θ2)‖ and for any (ũ, w̃) ∈ Ω1(l1) the

following holds

V̇1 < 0 if ‖(ũ, w̃)‖ > Lu + Lw
λmin

|(θ1, θ2)|+ δu(t) + δw(t)

λmin
. (4.55)

The system has a local ISS function, therefore it is ISS with restrictions cu on the initial state ũ(0), cw

on the initial state w̃(0) and ∆ on the inputs δu(t) and δw(t) as long as the conditions cu < c∗u and

cw < c∗w are satisfied.

Proposition 3 employs similar arguments to those in Proposition 2 proof in order to justify the Input-to-

State Stability of the closed-loop system (θ1, θ2).

Proposition 3. For any arbitrary positive numbers ∆, ‖ũ, w̃‖, kq, cq and cθ there exists k∗θ(kq) > 0

such that kθ > k∗θ renders the system with the dynamics (4.42c) and (4.42d) ISS with restrictions cq

on the initial state q̃(0), cθ on the initial state θ̃(0), ‖ũ, w̃‖ on the input (ũ, w̃) and ∆ on the input δq(t).

Proof. Consider the Lyapunov function described by (4.56) and the level set definition given in (4.57).

V2(θ1, θ2) =
1

2
(θ2

1 + θ2
2) (4.56)
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Ω2(l) = {(θ1, θ2) ∈ R2 : V2(θ1, θ2) ≤ l} (4.57)

Due to radial unboundedness there exists positive l2 such that{
(θ1, θ2)) ∈ R2 : |θ1| ≤ cθ ∧

∣∣∣∣θ2 −
θ1

kq

∣∣∣∣ ≤ cq} ⊂ Ω2(l2). (4.58)

The function Ψq is continuous and proper in Ω2(l2), therefore there exists positive Lq such that for all

(θ1, θ2) ∈ Ω2(l2), ‖(ũ, w̃)‖ < ‖(ũ, w̃)‖ the following holds∥∥∥∥Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)∥∥∥∥ ≤ Lq‖(ũ, w̃, θ1, θ2, t)‖, (4.59)

for all t ≥ 0. The Lyapunov function derivative V̇2 is given by

V̇2 =θ1

(
θ2 −

θ1

kq

)
+ θ2

(
− kθkq

Iy
θ2 + Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)
+
θ2

kq
− θ1

k2
q

)
, (4.60)

where the derivatives θ̇1 and θ̇2 are

θ̇1 =θ2 −
θ1

Kq
,

θ̇2 =− kθkq
Iy

θ2 + Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)
+
θ2

kq
− θ1

k2
q

.
(4.61)

Let Ω be the set defined by

Ω(l, l̄) =
{

(θ1, θ2) ∈ R2 : l ≤ ‖(θ1, θ2)‖ ≤ l̄
}

, (4.62)

and let l̄ = l2 and choose a number l ∈ R+ satisfying 0 < l < l̄. The Lyapunov function derivative

taken on the set Ω(l, l̄) ∩ {(θ1, θ2) ∈ R2 : θ2 = 0} is

V̇2 = −θ
2
1

kq
, (4.63)

verifying that V̇2 < 0. By continuity, the Lyapunov function derivative verifies this condition also in an

open supersetM of Ω(l, l̄) ∩ {(θ1, θ2) ∈ R2 : θ2 = 0}. Note that Ω(l, l̄)/M is compact and let

θ2 = min
θ2∈Ω2((l),̄(l))/M

|θ2|,

θ̄2 = max
θ2∈Ω2((l),̄(l))/M

|θ2| and

θ̄1 = max
θ1∈Ω2(l2)

|θ1|.

Making use of the previous definitions it is possible to find the upper bound of the Lyapunov function

derivative given in (4.64).

V̇2 ≤−
(
kθkq
Iy

θ2 −
(

1

kq
+ Lq

)
θ̄2 −

(
1 +

1

k2
q

+ Lq

)
θ̄1 − Lq‖(ũ, w̃)‖ −∆

)
|θ2| −

θ2
1

kq
(4.64)
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It is easy to see that for any ∆ > 0 and ‖(ũ, w̃)‖ > 0 there exists a suitable choice of k∗θ(kq) > 0

such that for kθ > k∗θ , ũ, w̃ and δq(t) satisfying ‖(ũ, w̃)‖ < ‖(ũ, w̃)‖ and |δq(t)| < ∆ the Lyapunov

function’s derivative verifies V̇2 < 0 for any (θ1, θ2) belonging to Ω2(l, l̄).

The system has a local ISS Lyapunov function therefore it is ISS with restrictions cθ on the initial state

θ̃(0), cq on the initial state q̃(0), ‖(ũ, w̃)‖ on the input (ũ, ũ) and ∆ on the input δq(t).

Notice that the restrictions on the inputs of the interconnected systems

‖(ũ, w̃)‖∞ < ‖(ũ, w̃)‖ and ‖(θ1, θ2)‖∞ < ‖(θ1, θ2)‖

are satisfied by taking

‖(ũ, w̃)‖ = max
(ũ,w̃)∈Ω1(l1)

‖(ũ, w̃)‖

and

‖(θ1, θ2)‖ = max
(θ1,θ2)∈Ω2(l2)

‖(θ1, θ2)‖.

Furthermore, it is possible to estimate the asymptotic gains k1 and k2 of the systems (ũ, w̃) and

(θ1, θ2), respectively, analysing the Lyapunov functions and considering null disturbances. For the first

system, the asymptotic gain estimate is given by

k1 =
Lu + Lw
λmin

, (4.65)

where λmin decreases with increasing ku and kw. For the second system, the asymptotic gain esti-

mate given in (4.67) is derived from the Lyapunov derivative upper bound given by

V̇2 ≤ −
(
kθkq
Iy
− 1

kq
− Lq

)
θ2

2 −
1

k2
q

θ2
1 + |θ1θ2|

(
1 +

1

k2
q

+ Lq

)
+ |θ2|Lq‖(ũ, w̃)‖. (4.66)

k2 =
Lq

kθkq
Iy
− 1

kq
− Lq

. (4.67)

Under the previous definitions and results, the input-to-state stability for the overall system is estab-

lished in Proposition 4.

Proposition 4. For some c∗u > 0 and c∗w > 0 and any numbers satisfying ∆ > 0, 0 < cu < c∗u,

0 < cw < c∗w, kq > 0, cq > 0 and cθ > 0 there exist k∗u > 0, k∗w > 0 and k∗θ(kq) > 0 such that the

system with dynamics (4.42) is rendered ISS with restrictions cu on the initial state ũ(0), cw on the

initial state w̃(0), cq on the initial state q̃(0), cθ on the initial state θ̃(0) and ∆ on the inputs δu(t), δw(t)

and δq(t).

Proof. Input-to-state stability with restrictions for the individual systems (ũ, w̃) and (θ1, θ2) is proved

in Propositions 2 and 3, respectively. The small gain theorem requires that the condition
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k1k2 < 1

is met, where k1 is the closed-loop system (ũ, w̃) asymptotic gain relative to the input (θ1, θ2) and,

similarly, k2 is the closed-loop system (θ1, θ2) asymptotic gain relative to the input (ũ, w̃). The asymp-

totic gain k1 decreases with increasing ku or kw and k2 can be fixed arbitrarily with an appropriate

choice of kθ, therefore, the small gain theorem condition is met. Moreover, the tracking error can be

made arbitrarily small.

Proposition 4 concludes the stability and robustness analysis. We have proven that a transition tra-

jectory can be tracked with an arbitrary small error. This allows for the use of the Hybrid Automata

framework to achieve stability of the overall hybrid system. The next section presents simulation results

which makes use of the open-source hybrid systems simulator presented in [28].

4.5 Simulation Results

The controller is tested in the full model with the controller gains specified in Table 4.3 and an LQR

controller providing lateral stabilization during transition2. The input variable T must be transformed

Gain Value

ku 10 Ns/m

kw 10 Ns/m

kq 1 s

kθ 10 Nms/rad

Table 4.3: Controller gains.

into the real input variables τ1,2. This task is accomplished using the relation

τ =
ρd5CPn

2

2π
(4.68)

where n is the propeller speed which provides the thrust T = T ∗ + T̃ and it is the solution of (2.21)

therefore disregarding the propellers’ dynamic behavior which would require ṅ computation. This

imprecision adds to the perturbation terms δu, δw and δq which the control loop is able to handle.

2The linearization point is that of Section 3.2.3.
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4.5.1 Hover to Level Flight transition

The simulation results for the Hover to Level transition are presented in Figure 4.5. The aircraft starts

in Hover and its velocity immediately starts to increase up to 1 m/s which is the maneuver v∗X→L(t)

starting point. The aircraft operating mode switches to Transition at t = 0.9 s and to Level at t = 7.9

s. It is noticeable from Figure 4.5 that the time lag in u∗(t) tracking which increases tracking errors in

every other variables. Figure 4.6 depicts the tracking errors ũ, w̃ and θ̃ in the upper row and the input

errors T̃ , δ̃f and δ̃e are depicted in the bottom row. The major tracking error is ũ due to the propellers’

lag time. The maneuver trajectory on the vertical plane is depicted in Figure 4.7 which is very similar

to that presented in Chapter 3.
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Figure 4.5: Hover to Level Flight simulation. The upper row depicts the system state variables u, w

and θ, while the second row depicts the actuators input.

4.5.2 Level Flight to Hover transition

The simulation results for the Level to Hover transition are presented in Figure 4.8. The switching from

Level to Transition occurs at t = 0 s because the aircraft is at the equilibrium point which lies within

the guard map. Switching to Hover occurs at t = 4.4 s thus providing a faster transition between

Level Flight and Hover than that of Hover to Level Flight. However, this more demanding transition

induces higher errors in reference tracking. Figure 4.9 depicts the tracking errors during the maneuver,

complementing the information depicted in Figure 4.8. The maneuver trajectory on the vertical plane

is depicted in Figure 4.10 which is also very similar to that presented in Chapter 3.
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Figure 4.6: Tracking errors during transition from Hover to Level Flight.
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Figure 4.7: Aircraft vertical trajectory.



70 CHAPTER 4. UAV NONLINEAR CONTROL

0 5 10 15 20
−5

0

5

10

15

Time [s]

F
or

w
ar

d 
ve

lo
ci

ty
 [m

/s
]

 

 

HX
0 5 10 15 20

0

20

40

60

80

100

Time [s]

P
itc

h 
an

gl
e 

[d
eg

]

 

 

HX

flow
reference

0 5 10 15 20
−1

0

1

2

3

Time [s]
D

ow
nw

ar
d 

ve
lo

ci
ty

 [m
/s

]

 

 

HX

0 5 10 15 20
0

2

4

6

8

10

Time [s]

T
hr

us
t [

N
]

 

 

0 5 10 15 20
−5

0

5

10

Time [s]

δ f(t
) 

[d
eg

]

 

 

0 5 10 15 20
−10

−5

0

5

Time [s]

δ e(t
)

 

 

Figure 4.8: Level flight to hover simulation. The upper row depicts the system state variables u, w and

θ, while the second row depicts the actuators input.
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Figure 4.9: Tracking errors during transition from level flight to hover.
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Figure 4.10: Level to Hover -Aircraft vertical trajectory.

4.6 Summary

This chapter elaborates a simpler nonlinear aircraft model and hybrid automaton than that presented

in Chapter 2. Namely the general 3-dimensional dynamics are substituted by the 2-dimensional dy-

namics which characterize the aircraft motion in the vertical plane, assuming that the lateral motion is

fully stabilized.

Under these assumptions, the reference ε-robust approach maneuvers v∗X→L and v∗X→H are built by

means of model inversion. A locally input-to-state stable controller with restrictions on the initial state

and inputs provides practical reference tracking with arbitrarily small tracking error.

The controller is dimensioned in Appendix D and tested within the Hybrid Systems simulation envi-

ronment with the full 3-dimensional model implementation. The Linear Quadratic Regulator is used to

provide hover and level flights stabilization as well as lateral stabilization while in Transition. These

simulations demonstrate the controller’s ability to deal with the external disturbances.





Chapter 5

Conclusion & Future Work

This thesis presented an Unmanned Air Vehicle (UAV) model which described the aircraft dy-

namics during both hover and level flights. The main forces and moments affecting the aircraft

dynamics can be divided into three different classes - gravity, propeller and aerodynamics - according

to their nature. The aerodynamic forces and moments arise from the free-stream flow and the propeller

slipstream which are computed separately and combined together in the end using superposition. An

appropriate choice of the inertial and body-fixed coordinates frames was essential for kinematic mod-

eling, where the Euler angles provided rotation parametrization. Moreover, this model also included

the propeller dynamics, increasing the model’s accuracy with respect to the model presented in [6].

The Hybrid Automata framework provided the means to handle controller switching between the three

operating modes: Hover, Level and Transition.

Linear Optimal techniques successfully provided Hover and Level stabilization as well as reference

tracking during the transition between these two operating modes. Furthermore, this solution proved

to be robust with respect to parameters change. Similar solutions were employed in [8], [9], [10]

and [11] and their success was only proved within a simulation environment. Successful real world

transitions between hover and level flights are presented in [4], [6] and [7] which employ either open-

loop or remotely operated maneuvers.

Therefore, Chapter 4 constitutes the most important contribution of this thesis for it provides a for-

mal proof of stability and robustness within a 2-dimensional aircraft model. The nonlinear controller

designed in this chapter renders the system locally input-to-state stable with restriction on the distur-

bances inputs and initial state. Reference maneuvers design by means of model inversion combined

with practical reference tracking provides robust transition between the two disjoint operating modes

Hover and Level.
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Simulation results proved that both linear and nonlinear control laws constitute a feasible solution to

the problem which was stated in Chapter 1. Future work relies on:

• Controller analysis in the presence of wind disturbances and sensor noise within the simulation

environment;

• Transition trajectories optimization;

• Model verification and more accurate parameter estimation with real world testing which would

create a reliable platform for controller design, verification and validation;

• Controller implementation at the given aircraft platform constitutes also the basis for future work.



Appendix A

Model Parameters Estimation

The model parameters outlined in Chapter 2 are organized according the aircraft element they

describe. However, throughout this section the model parameters are organized into the follow-

ing categories:

• Geometry;

• Mass properties;

• Aerodynamics.

These categories group several parameters sharing similar methods, assumptions and procedures

throughout the estimation process. They are described in Sections A.1, A.2, and A.3, respectively.

A.1 Geometry

Model geometry measurement is a very straightforward procedure which requires only a ruler. During

this procedure the following variables were measured:

• Propellers’ locations rp1,2 ;

• Propellers’ diameter d;

• Lifting surfaces’ distance to the center of gravity rhs,vs,w
1;

• Lifting surfaces’ root chords crhs,vs,w ;

1This measurement was made under the assumption that the aerodynamic center of a lifting surface lies in the quarter-chord
line. The center of gravity is easily marked on the aircraft body.
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• Lifting surfaces’ tip chords cths,vs,w and;

• Lifting surfaces’ span bhs,vs,w.

Other geometric parameters were derived from this measurements, including:

• Lifting surfaces’ areas Ahs,vs,w and;

• Lifting surfaces’ aspect ratioAhs,vs,w, given by

A =
b2

A
. (A.1)

A design table built with Microsoft R© Excel was linked with Solidworks R© Computer Aided Design

software allowing automatic geometry generation. The result is presented in Figure A.1.

Figure A.1: Aircraft CAD model.

Figure A.2 depicts the aircraft top view with the propellers washed surfaces in grey. Propeller washed

areas are very hard to estimate and they generally depend on the current thrust and forward velocity.

Assuming that the propellers’ slipstream always fills a cylinder with the same radius as the propellers

then the washed areas are constant. Moreover, some flow is dragged by the propellers’ slipstream due

to viscous effects which interact with the vertical stabilizer. For the sake of simplicity it is considered

that the vertical stabilizer area affected by the slipstream is the projection of the slipstream cylinder

onto this surface. Under these assumptions, the parameters Ap,hs, Ap,vs, and Ap,w are computed

using the equations (A.2) and (A.3)

c(y) = cr

(
1 +

y

b/2
(λ− 1)

)
(A.2)
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A =
(y1 − y0)(c(y1) + c(y0))

2
(A.3)

where y0 and y0 are spanwise coordinates, c(y) is the surface’s chord at y, A is the trapeze area and

λ is the taper ratio which is given by

λ =
ct
cr

. (A.4)

The last geometry parameters are the aileron center of pressure distance to the symmetry plane

Figure A.2: Aircraft basic geometry - top view. The figure depicts important geometry dimensions and

the propeller washed areas which are greyed out.

ra. jB and its washed counterpart rp,a. jB2. Assuming a linear distribution of lift the center of pressure

is coincident with the surface geometric center cp which is given by

cp = y0 +
(y1 − y0)(2λ+ 1)

3(λ+ 1)
. (A.5)

2Although rp,a ∈ R3 only the y-coordinate is important in aerodynamic moments calculations (see Section 2.3.3)
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A.2 Mass properties

Model geometry provided the required data to build the rough three dimensional aircraft model pre-

sented in Figure A.1. The CAD model body parts were given the styrofoam physical properties out of

which the real-world model was built. The fuselage’s fore side is a simple representation of the aircraft

avionics. This conic element has a higher density which was chosen so as to match the CAD model’s

mass with that of the real aircraft. Another mass properties such as Moments of Inertia Ix, Iy and Iz

are calculated with the given software.

A.3 Aerodynamics

The aircraft aerodynamic parameters’ accurate calculation requires either Computational Fluid Dy-

namics methods or wind-tunnel testing. However, some simple calculations presented below provide

reasonable first estimates. The aircraft controllers are expected to deal with parametric uncertainty up

to some degree.

• The Oswald’s efficiency parameter e = 0.8 is assumed to be the same for every lifting surface.

This approximation is valid for trapezoidal surfaces according to [29];

• The parasitic coefficient of drag CD0
= 0.01 lies within the acceptable range of values according

to [29] and is the same for every lifting surface;

• The parameter CLα (and similarly CLβ ) is given by

CLα =
Clα

1 +
Clα
πA

(A.6)

where Clα = 2π is the derivative CLα of a infinite wing (see [30] for further details);

• Actuator deflection δj changes the airfoil curvature which corresponds to an angle of attack

increase given by3

∆α = −∂Cl
∂δj

K ′

Clα
δj (A.7)

where ∂Cl
∂δj

is a function of the ratio between the actuator chord and the lifting surface chord. The

derivative CLδj is given by

3The actuator is considered to be a plane flap.
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CLδj = CLα
∂α

∂δj

Aj
A

(A.8)

where Aj
A is a area correction which distinguishes the lifting surface’s area spanned by the

actuator Aj and the overall area A. The values K ′ = 1 and ∂Cl
∂δj

= 5.5 are taken from table

values in [29] considering cf/c = 0.4;

• The previous analysis is performed for flap deflections but not for rudder and elevator deflections

because these actuators have very high chord ratios. It is assumed that:

CLδe = CLδep = CLα

CLδr = CLδrp = CLβ ,
(A.9)

i.e. the actuators are assumed to move the whole lifting surface.





Appendix B

Propeller Slipstream Velocity

The propeller slipstream velocity up is computed using the Bernoulli’s law and the momentum

transfer theory. The Bernoulli’s law states that for an inviscid, incompressible, and steady fluid

flow equation (B.1) holds true along any streamline,

1

2
ρu2

i + ρghi + pi = constant (B.1)

where ui, hi and pi are the velocity, height and pressure at any given location i. Figure B.1 depicts

the thrust generation process where:

• The control volume in black dashed lines preserves the fluid mass within its boundaries;

• The control volume in blue dashed lines has a infinitesimal extension dx;

• The blue lines inside the control volume depict two different streamlines.

Starting with the infinitesimal control volume and applying the conservation of mass principle the fol-

lowing equation is derived,

ρ
πd2

4
uin = ρ

πd2

4
uout ⇒ uin = uout. (B.2)

Computing the momentum transfer in the flow direction which provides the thrust T around the same

control volume the following equation is derived,

T =
πd2

4
(pin − pout) + ρ

πd2

4

(
u2
in − u2

out

)
⇒ T =

πd2

4
(pin − pout) (B.3)

Applying Bernoulli’s law to both stream lines, the following relations hold true

p0 +
1

2
ρu2 = pout +

1

2
ρu2

out (B.4)
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Figure B.1: Propeller Thrust and slipstream velocity.

pin +
1

2
ρu2

in = p0 +
1

2
ρu2

p. (B.5)

By construction, the conservation of mass also applies to the black dashed control volume in Fig-

ure B.1

ρA1u = ρA2up = ρ
πd2

4
ū (B.6)

where A1 is the fore side area, A2 is the aft side area and ū = uin = uout. Combining equa-

tion (B.5), (B.4) and (B.6) the Thrust relation with slipstream velocity is derived

T =
1

2
ρ
πd2

4

(
u2
p − u2

)
. (B.7)



Appendix C

Simulation Environment

There are not any straightforward Hybrid Systems simulation tools to this date and this subject is

undergoing active research [28]. The Matlab/Simulink simulation environment provided in [31]

was used throughout the work reported in this thesis with slight modifications depicted in C.1.

Figure C.1: Simulation environment overview.

This simulation tool requires the Hybrid Automaton framework to be described as a generic Hybrid

System which is characterized by a Flow Map F , a Jump Map G, a Flow Set C and a Jump Set D,

where

Cq = D(q)

Fq = f(q , ξ,µ),for all (ξ,µ) ∈ Cq

Dq =
⋃

{(q,q′)∈E}
G(q , q ′)

Gq =
⋃

{q′:ξ∈G(q,q′)}

(
R(q , q ′, ξ), q ′

)
,for all (ξ,µ) ∈ Dq

(C.1)

83



84 APPENDIX C. SIMULATION ENVIRONMENT

The simulation blocks f, C, D, and g depicted in C.1 identify F , C, D and G, respectively. The block a

identifies the implemented control law and the block O is not included in the Hybrid System description

but may comprise logic assertions which render the current simulation either valid or invalid. Further

details on this simulation tool may be found in [12] or in the author’s web page [31].



Appendix D

Nonlinear controller analysis

This appendix presents a numerical analysis on the concepts exploited throughout Chapter 4.

D.1 Lipschitz constants estimation

The functions Ψu(ũ, w̃, q̃, θ̃, t), Ψw(ũ, w̃, q̃, θ̃, t) and Ψq(ũ, w̃, q̃, t) are Lipschitz but their Lipschitz con-

stants Lu, Lw and Lθ remain to be estimated during the forthcoming analysis. The Lipschitz constants

in (4.49), (4.50) and (4.59) verify

‖∇Ψu(ũ, w̃, q̃, θ̃, t)‖
∣∣∣
(ũ,w̃,q̃,θ̃)=(0,0,0,0)

≤ Lu

‖∇Ψw(ũ, w̃, q̃, θ̃, t)‖
∣∣∣
(ũ,w̃,q̃,θ̃)=(0,0,0,0)

≤ Lw

‖∇Ψq(ũ, w̃, q̃, t)‖|(ũ,w̃,q̃)=(0,0,0) ≤ Lq

(D.1)

for all t ≥ 0. This property suggests that near the equilibrium point (ũ, w̃, q̃, θ̃) = (0, 0, 0, 0) the

Lipschitz constants can be estimated by gradient computation at that point for the whole trajectory.

According to the results of this computation presented in Figure D.1, a plausible choice for the Lipschitz

constants is

Lu = Lw = Lq = 2. (D.2)

This particular choice is valid as long as the error variables do not stray too far from the equilibrium

and it allows the computation of another variables of interest.
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ũ
,w̃

,q̃
,θ̃
)=

(0
,0
,0
,0
)

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

Time [s]

‖∇
Ψ

q
‖| (

ũ
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Figure D.1: Functions ‖∇Ψu(ũ, w̃, q̃, θ̃, t)‖
∣∣∣
(ũ,w̃,q̃,θ̃)=(0,0,0,0)

, ‖∇Ψw(ũ, w̃, q̃, θ̃, t)‖
∣∣∣
(ũ,w̃,q̃,θ̃)=(0,0,0,0)

and ‖∇Ψq(ũ, w̃, q̃, t)‖|(ũ,w̃,q̃)=(0,0,0) representation.

D.2 Controller restrictions

The restrictions on the initial state are dependent on the selected gains and vice-versa. This loops

requires an iterative process which is stopped when a satisfiable solution for the given problem is

found. For the reader’s convenience only the final solution is presented.

Consider the following restrictions on the initial state

cu = 0.1 m/s

cw = 0.1 m/s

cq = 0.02 rad/s

cθ = 0.02 rad,

(D.3)

and the controller gains

ku = 10 N.s/m

kw = 10 N.s/m

kq = 1 s

kθ = 10 N.m.s/rad,

(D.4)

The computation of l1 and l2 allows the determination of the level sets Ω1(l1) and Ω2(l2) and the
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quantities ū, w̄, θ̄1 and θ̄2. Taking into account the Lyapunov function definitions (4.44) and (4.56) it is

possible to derive the relations (D.5).

l1 =
1

2

(
c2u + c2w

)
l2 =

1

2

((
cq +

cθ
kq

)2

+ c2θ

) (D.5)

Substituting the values in (D.3) and (D.4) into (D.5) one finds that l1 = 0.01 and l2 = 0.001. The

maximum velocity ‖(ũ, w̃)‖ and the maximum value of ‖(θ1, θ2)‖ within the level sets Ω1(l1) and

Ω2(l2), respectively, are given by

‖(ũ, w̃)‖ = max
(ũ,w̃)∈Ω1(l1)

‖(ũ, w̃)‖ =
√

2l1,

‖(θ1, θ2)‖ = max
(θ1,θ2)∈Ω2(l2)

‖(θ1, θ2)‖ =
√

2l2.
(D.6)

Furthermore, it is possible to find that

ū = w̄ =
√

2l1 ' 0.1414m/s,

θ̄1 =
√

2l2 ' 0.0447rad,

θ̄2 =
√

2l2 ' 0.0447rad/s,

where

ū = max
(ũ,w̃)∈Ω1(l1)

|ũ|, w̄ = max
(ũ,w̃)∈Ω1(l1)

|w̃|,

θ̄1 = max
(θ1,θ2)∈Ω2(l2)

|θ1| and θ̄2 = max
(θ1,θ2)∈Ω2(l2)

|θ2|.

Having in mind the previous values it is possible to verify that the conditions u∗(t) + ũ > 0 and

| arctan((w∗(t) + w̃)/(u∗(t) + ũ))| < ᾱ for every value ũ and w̃ belonging to the set Ω1(l1). The first

condition verification is trivial but the same is not true for the second condition. Notice that the angle

of attack is bounded as follows

arctan

(
w∗(t)− w̄
u∗(t) + ū

)
≤ arctan

(
w∗(t) + w̃

u∗(t) + ũ

)∣∣∣∣
(ũ,w̃)∈Ω1(l1)

≤ arctan

(
w∗(t) + w̄

u∗(t)− ū

)
. (D.7)

Plotting these bounds along the trajectories it is possible to find that the system remains within its

domain even in the worst case scenario. Figure D.2 depicts these bounds and the reference trajectory.

The maximum value for q̃ within the level set Ω2(l2) is found by means of a constraint satisfaction

problem which yields

q̄ = max
(θ1,θ2)∈Ω2(l2)

∣∣∣∣θ2 −
θ1

kq

∣∣∣∣ =

∣∣∣∣kq +
1

kq

∣∣∣∣
√

2l2
k2
q + 1

. (D.8)

Substituting the variables kq and l2 into (D.8) one gets q̄ = 0.0632 rad/s.

The system’s (ũ, w̃) input-to-state stability is indicated by the eigenvalues of the matrix
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Figure D.2: Angle of attack reference trajectory, upper and lower bounds.
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Figure D.3: (ũ, w̃) stability analysis.

gains decrease −λmin which in turn increases the system’s stability and robustness, justifying the

argument which was made in Section 4.4. Substituting the values in (D.4) into the matrix the following

eigenvalues are obtained,

λmin ' 3.5 and λmax ' 10.8,
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justifying the system’s input-to-state stability.

The Lyapunov function derivative in (4.60) can be upper bounded by (4.66) which is depicted in Fig-

ure D.4 for the worst case scenario kθ = 0 N.m/rad. The figure portraits some features which have

already been discussed, including:

• The origin is a saddle point, i.e. the scalar map increases along the θ2 direction and decreases

along θ1 and;

• It is possible to find a value θ2 within the set Ω(l, l2) for any arbitrary numberl satisfying 0 < l <

l2. Conversely, it is possible to find a value l for any given value θ2.

Fixing θ2 = 0.2 rad/s it is possible to find l such that 0 < l < l2 and also that k∗θ ∼ 5.1 N.m/rad for

∆ = 0. Any value kθ > k∗θ provides the ability to handle non-zero disturbances, i.e. even with ∆ > 0

the system state (θ̃1, θ̃2) remains within the level set Ω2(l2). It is noticeable in Figure D.4 the small set

near the origin where V̇2 < 0 may not hold true.
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Figure D.4: Lyapunov function derivative upper bound representation within the level set Ω2(l2) for

kθ = 0 (left hand side) and kθ = k∗θ (right hand side).

Input-to-state stability of the overall system (ũ, w̃, θ1, θ2) is guarateed if the conditionk1k2 < 1 holds

true which is in fact the case because k1k2 ' 0.019 taking into account the values presented through-

out this section. Moreover, it is possible to verify that under all the previous considerations, the actua-

tors do not reach saturation during the transition maneuvers. Similarly to the angle of attack analysis,

the actuators T , δe and δf can be lower bounded by Tmin, δe(t) and δf (t) and upper bounded by

Tmax, δ̄e(t) and δ̄f (t) such that for all possible values of (ũ, w̃, θ1, θ2), the following conditions

Tmin ≤ T ≤ Tmax
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δe(t) ≤ δe(t) ≤ δ̄e(t)
δf (t) ≤ δf (t) ≤ δ̄f (t)

hold true for all t ≥ 0. These results are presented in Figures D.5, D.6 and D.7
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Figure D.5: Thrust reference trajectory, upper and lower bounds.
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Figure D.6: Elevator deflection reference trajectory, upper and lower bounds.

D.3 Transition Maneuvers Simulation

In order to assess further the nonlinear controller’s performance a Transition operating mode simu-

lation was performed for the maneuvers v∗X→L(t) and v∗X→H(t) whose results are depicted in D.8

and D.9, respectively. The top row depicts the state variables u, w and θ evolution with time while
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Figure D.7: Flap deflection reference trajectory, upper and lower bounds.

the bottom row depicts the actuators input. The state variables starting points are not coincident with

the reference’s starting points because the maximum allowable tracking error which is imposed by

the controller restrictions is used. Moreover, the figures depict the upper and lower bounds where the

variables may range according to the calculations performed in the previous section.
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Figure D.8: Hover to Level flight transition maneuver simulation.
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Figure D.9: Level to Hover transition maneuver simulation.
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