
A High-Level Pedagogical 3D Modeling Language and
Framework

Filipe André Cabecinhas

May 14, 2010

1 Introduction
In the past, traditional architecture avoided com-
plex geometric objects due to the lack of tools and
excessive cost of materials and parts which had to
be made specifically to build these objects. Nowa-
days, with computer aided design (CAD) and com-
puter aided manufacturing (CAM) tools, it is pos-
sible to mass-produce unique parts for roughly the
same cost of producing the same quantity of iden-
tical parts [7], thus allowing a higher degree of free-
dom to the architect.

We believe architects should be able to express
themselves and realize their vision, whatever that
may be. And, to model shapes based on mathemat-
ical functions, architects must use programming
tools to aid them in building the desired model. It
is known that most vanguardist buildings such as
the “Pála Siza Vieira”, from Portugal’s Expo ′98
pavilion or the Guggenheim museums’ buildings in
Bilbao and New York are usually based on well-
defined mathematical functions that can be com-
puted, meaning that those buildings can be gener-
ated programmatically.

Experimentation is another important require-
ment that justifies the programmatic generation of
forms: when idealizing the form of a complex geo-
metric object, the designer may want to experiment
with different parameters for its components. How-
ever, with a programmatic approach, an architect
may design a fully-parametrized object definition
and then just change the parameters until the gen-
erated form satisfies the initial vision.

Nowadays architects need to hire a group of pro-
grammers if they want to model a complex, out of
the ordinary shape. This solution is costly and may
cause a mismatch between what the architect en-
visioned and the end result. To solve this problem,

architects must be taught how to program.

There has been an increasing effort on provid-
ing architects with programming background, by
teaching them how to program and how to use
these modeling tools. However, the programming
focus has been mostly on automating simple te-
dious tasks, such as long sequences of commands.

This thesis presents the VisualScheme program-
ming language, which intends to be a 3D model-
ing language oriented to architects. This program-
ming language is a domain specific language (DSL)
for 3D modeling built on top of the Scheme pro-
gramming language. VisualScheme provides mech-
anisms for a programmer to define a 3D model of
an object and then export it to a visualization pro-
gram (the worker program). This 3D model is not
composed of the definition of all the object’s ver-
texes or triangles, but as a tree of high-level prim-
itives and operations which will then be passed to
a back-end which will convert the tree of primitives
and operations to the commands to be sent to the
worker program.

This paper comprises 6 sections: section 1 in-
troduces the work and presents its goals. The re-
lated work is presented in section 2 and the four
main stages of this project in section ??. Section 3
presents the language proposed here, called Visu-
alScheme, describing the technical aspects related
to the implementation of the language, and how
a VisualScheme program is organized. Section 4
presents a case study (the Gare do Oriente model)
with VisualScheme, and compares it to a solution
in Grasshopper. Finally, section 5 concludes the
thesis and suggests some guidelines for future work.

1



1.1 Technical Contributions
With this work we designed and implemented the
VisualScheme programming language with facili-
ties for modeling 3D objects, as well as a back-
endfor AutoCAD. The language allows an architect
with average programming skills and a familiarity
with CAD tools the ability to produce complex ob-
jects. This language will be able to export its ob-
jects to several formats, maximizing the rewards of
learning it by allowing the programmer to export
to whatever format the client desires.

We also took into account pedagogical aspects
like the students’ needs, as this language is aimed
at classroom and industry usage. The language
was tested by students throughout its development
stages, which helped understand where inexperi-
enced users have more difficulty.

2 Related Work
In the following sections, several existing 3D mod-
eling programming languages will be analyzed from
the programmer’s point of view.

A program that draws a set of Greek columns
was written in every analyzed language so as to
compare the languages and their pragmatics.

2.1 AutoLISP and Visual LISP
Autodesk™1 is one of the leading vendors of
architecture-related software in the world. Its Au-
toCAD®2 line of products is one of the oldest and
most widely used in the area of CAD.

AutoLISP®3 [3] is a Lisp-based programming
language with a small kernel and a large set of
geometric primitives used in AutoCAD for script-
based geometric modeling. AutoLISP was designed
to be used in conjunction with CAD tools like Au-
toCAD to automate repetitive tasks or to be used
when precision is of the utmost importance and the
manual tools don’t fit the job..

Most architects only use AutoCAD with its
point-and-click interface or, for the few (compara-
tively) of those that use AutoLISP, have some small

1http://autodesk.com
2http://autodesk.com/autocad
3http://usa.autodesk.com/adsk/servlet/index?

siteID=123112&id=1911627

AutoLISP scripts to automate some simple repet-
itive tasks. These tasks are usually very easy to
accomplish either by hand or by programming.

With AutoLISP, programmers can write a script
that uses AutoCAD’s API to manipulate objects in
a document. An AutoLISP script has access to a
large number of AutoCAD’s object creation func-
tions, including functions to create primitive geo-
metric objects like circles, lines, spheres, poly-lines
and text. And operations on those objects, such as
unions, intersections and subtractions. AutoCAD’s
objects are also available in AutoLISP, represented
as entities.

2.1.1 Conclusions

Being the most used CAD program in the world,
AutoCAD and its programmability features must
be taken into account for this work. Despite show-
ing its age, AutoLISP is still used by many groups
of people with disparate programming skills, for
automating all kinds of tasks in AutoCAD. Al-
though widely used, its potential is very under-
utilised. Many architects either don’t know it’s
available or only use it by emulating what they
would do manually.

2.2 Generative Modeling Language
The Generative Modeling Language (GML)4 is a
simple stack-based language for describing 3D ob-
jects. Traditionally, lists of geometric primitives
are used to model 3D objects. Instead, with a gen-
erative approach [11], geometric models are created
by composing operations and the design becomes
focused on rules for transforming primitive objects
instead of focusing on combining these primitives.

GML is a PostScript based language which ex-
tends it with a set of operations, from vector alge-
bra to the handling of polygons, including several
conversions [6]. Being a postfix language, it’s not
very easy to learn to someone who is not famil-
iarised with programming, in general, at least.

2.2.1 Conclusions

Despite being an unusual programming language
(due to being stack-based), GML can accomplish

4http://www.generative-modeling.org/

2

http://autodesk.com
http://autodesk.com/autocad
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=1911627
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=1911627
http://www.generative-modeling.org/


what it’s designed to: Being a terse postfix pro-
gramming language, which enables programmers t
describe shapes with relative ease and without hav-
ing to model every used mesh. By modeling the
objects using a high-level language, GML doesn’t
need as much information as a mesh-based program
to store the objects.

2.3 Programming LAnguage for
Solid Modeling

The Programming LAnguage for Solid Modeling
(PLaSM) is a functional programming language
based on IBM’s®5 FL [1] programming language.
It is a functional design language for geometric and
solid parametric design developed at the Roma Tre
and La Sapienza universities [13, 12].

PLaSM takes on a programming approach to
generative modeling, where geometric objects are
generated by composing functions using the lan-
guage’s operators. It has a dimension-independent
approach to geometric representation. PLaSM has
support for higher-order functions in the FL style
so, one way to look at it, is to see PLaSM as a
geometric domain-specific language (DSL) for FL.
No free nesting of scopes or pattern matching is al-
lowed in PLaSM although an identifier can name
any language object.

2.3.1 Conclusions

Despite the long learning curve for anyone not fa-
miliar with the FP or FL languages, PLaSM is a
very expressive 3D modeling language where one
can design big, complex parametrized objects with
relative ease and make any change to the param-
eters, having the result just a render away. The
completely functional approach, although better
for parallelism and closer to the mathematical foun-
dations of geometry, is harder to grasp for most
people that learned to program in an imperative
language (e.g. C, Java, etc. ).

2.4 POV-Ray
The Persistence of Vision Raytracer (POV-Ray)™6

is an open source ray-tracing program that grew
5http://ibm.com
6http://povray.org

out of David Buck’s hobby ray-tracer, DKB-
Trace [15]. With its large comprehensive library of
objects, colors, textures, and many available special
effects and rendering effects, POV-Ray is one of the
most widely used ray-tracers around the world, and
has a very large community 7 where users can find
help.

2.4.1 Scene Description Language

POV-Ray’s Scene Description Language (SDL) is a
Turing-complete language that allows a program-
mer to describe the world in an efficient and read-
able way. The scene description language is a very
basic language with support for abstraction mech-
anisms (e.g. macros and functions). It’s mostly a
declarative language, which means most of the ob-
jects are defined at one time in the program execu-
tion and aren’t modified afterwards.

2.4.2 Conclusions

POV-Ray is a very good ray-tracer with a very
helpful community built around it. It is capable of
generating very high-quality photo-realistic render-
ings with small scripts due to its big high-quality
object and texture library. The language in itself is
declarative, although some support for imperative
programming is present, in the form of macros. It
is relatively easy for someone with some program-
ming experience to start scripting POV-Ray, and
start modeling parametrized objects programmati-
cally with ease.

2.5 X3D
X3D is a run-time architecture and file format to
represent 3D scenes. It is a royalty-free open stan-
dard ratified by the ISO committee [8], with vari-
ous standardized encodings (e.g. XML and Classic
VRML [9]) and bindings [10] for several languages
(e.g. ECMAScript and Java).

X3D has a rich set of general parametrizable
primitives that can be used for a variety of pur-
poses in engineering, scientific visualization, CAD
and architecture, and more. X3D was designed
to be compatible with the legacy VRML standard
and very extensible. Developed taking into account
the COLLADA [2] standard for 3D representation,

7http://www.povray.org/community

3

http://ibm.com
http://povray.org
http://www.povray.org/community


X3D is designed for real-time communication of 3D
data while maximizing interoperability among dif-
ferent tools.

Additionally to the primitives X3D makes avail-
able for creating different shapes, there are nodes
to group sets of nodes together for use as argu-
ments, or for optimizations and transformations.
A translation, rotation or scale transformation is
always executed to a set of nodes and in regard to
a certain point. The translation is absolute, with a
translation vector.

2.5.1 Conclusions

X3D is a simple, web oriented 3D file format, de-
signed for embedding 3D content in web-pages and
publishing content for use in any program that im-
plements this standard. The XML encoding facili-
tates integration in existing tools while the legacy
VRML encoding helps people who write X3D di-
rectly. Despite some criticisms, The X3D standard
is getting widely adopted, from 3D modeling pro-
grams to web browsers to GIS8 programs. There
is a lack of CSG functions, which makes it better
suited for modeling some kinds of objects with the
help of higher-level tools.

2.6 Grasshopper 3D
Grasshopper 3D is a plug-in for visual program-
ming built on top of the Rhinoceros 3D modeling
tool (Rhino). Rhino is a 3D modeling program
which widely used in many design fields, such as
marine and jewelry design, CAD/CAM and rapid
prototyping. It’s primitives are based on NURBS
and it has several rendering options. Rhino is also
used to convert between modeling program’s file
formats, since it can import from and export to a
wide variety of formats. [14]

Grasshopper’s programs are designed using a
“boxes and arrows” model. Boxes represent primi-
tives or operations and the arrows connect a box’s
output to another box’s input. The inputs may also
be fixed, using several widgets, instead of deriving
from another operation’s results.

Grasshopper lacks any mechanism for block ab-
straction in its programs. Programmers work
around this by drawing delimiters over sets of boxes
and inserting text in the model definition, but these

8Geographic Information System

have no semantic meaning for the program, which
makes it easy to get these annotations out of sync
with the program. Besides not being able to ab-
stract, there is no equivalent, in Grasshopper, to
higher-order functions.

2.6.1 Conclusions

Grasshopper is a simple, visual programming lan-
guage, which is designed with non-programmers in
mind. Any person who can use 3D modeling pro-
grams with a point-and-click interface (and there-
fore knows the terms used and the modeling con-
cepts involved) can create a simple parameterized
3D model with constraints between its properties
(e.g. the model of a building where one of its sides
is based on a mathematical equation and its height
is a function of its width). Unfortunately, like other
visual programming tools, when a model’s com-
plexity grows, the lack of user-defined abstractions
makes it difficult for a programmer to build com-
plex parameterized models (it is even impossible to
use a function (implemented as blocks) to parame-
terize any part of the model).

2.7 Comparative Table
In this subsection we present a small comparative
table (Table 1) of the high-level characteristics of
each of the analyzed programming languages.

These are very high-level characteristics of these
languages, viewed by an architect’s point of view.
It is assumed the architect is marginally familiar
with AutoLISP for the definition of each language’s
learning curve.

2.7.1 Available 3D Primitives

The primitives available from the analyzed pro-
gramming languages were separated in three dif-
ferent groups: 2D primitives, 3D primitives and
operations on objects. The languages were then
compared and a minimized set of primitives was
constructed. While, for example, AutoCAD has
several kinds of line objects, we joined, in Visu-
alScheme, these primitives into a single line ob-
ject which can have multiple points of passage and
exist in a 2D or 3D space. These primitives, in
AutoCAD, are kept mostly for legacy reasons, as
it evolved from 2D to 3D modeling and previous

4



Feature AutoLISP GML PLaSM POV-Ray X3D Grasshopper
Paradigm Multi-paradigma Stack-based Function-level Declarative Declarative Visual

Syntax Parenthesized Postfix Prefix Mixed XML N/APrefix
Usage Widespread Limited Limited Widespread Widespread Limited
Learning curve Short Long Long Short Short Short
Expressiveness High High High Moderate Moderate Moderateb

Abstraction HoF,c
HoF HoF Textual macros Node C#, VB.NET

Function creation Functions creation Blocks, lines

aFunctional and imperative paradigms, although some data structures are purely functional.
bGrasshopper may be more expressive if one takes into account C# and VB.NET blocks, which parts from the visual

programming paradigm.
cHigher-order functions

Table 1: High-level comparative table between AutoLISP, GML, PLaSM and POV-Ray

tools and plug-ins must be kept working. This hin-
ders architects in their daily work as they struggle
to understand why a certain operation on a certain
kind of line is not working as expected. The Vi-
sualScheme manual defines the available primitives
and contains references to some of the languages
where a form of the presented primitives can be
found.

3 VisualScheme
The objective of this work is to create a domain
specific language (DSL) for 3D modeling to enable
architects to design buildings in a programmatic
way, thereby reducing the amount of work needed
to experiment with different and elaborated shapes
and allowing the programmatic modeling of 3D ob-
jects.

VisualScheme programs are created by compos-
ing primitives and operations, creating a tree struc-
ture with primitives on its leaves and operations as
the branches. Several library functions are avail-
able for the programmer to use, e.g. functions to
iterate over sequences of points, generating them
using interpolation, and coordinate transformation.

In the following subsections, we present the ar-
chitecture of VisualScheme and its AutoCAD back-
end, as well as some examples of possible extensions
to VisualScheme which can be provided by library
writers.

3.1 Why Scheme?
The Scheme programming language was chosen due
to several factors:

A Familiar Language
Because AutoLISP’s users are already famil-

iar with Lisp-like programming languages, another
Lisp-like programming language such as Scheme
can attract them, since it has the syntax, semantics
and many of the features they already know how to
use. Additionally, programs can be built on top of
a modern programming language with many new
facilities and powerful constructs for writing read-
able, compact code and protecting against certain
kinds of bugs which plague AutoLISP programs.
A Lisp-like language’s learning curve will be much
shorter than another language with a much more
evolved syntax, at least for AutoLISP program-
mers. Taking all this into account, Scheme was
chosen as a modern Lisp-like language, as our lan-
guage of choice for parametric geometric modeling
in the XXI century.

A Simple and Functional Language
Since Visual LISP is already built into Auto-

CAD and used around the world, it was decided
to use a Lisp-like language for the 3D modeling
language that will be designed, so as to gather the
largest audience possible. As a Lisp dialect, the
Scheme language shares much of its simple syntax:
The program is written in S-Expressions, which
are then evaluated by the interpreter or compiled
and executed. Scheme is also an actively developed
programming language with a continually revised
specification [16].

Worker Program Independent
The high-level language must be independent of

the worker program. It should not be important for
the programmer to know if the worker program is a

5



CAD program, a 3D plotter, a simple visualizer, a
flat file or a web-browser. Scheme does not depend
on the worker program(unlike AutoLISP, which can
only be used with AutoCAD). VisualScheme is di-
vided in a back-end and a front-end, and the back-
end is further divided in a lower back-end and a
upper back-end. This lower back-end provides some
Scheme functions to make the bridge between the
Scheme process and the worker program, and the
upper back-end maps the primitives of the language
defined in this work into the worker program, using
the functions defined in the lower back-end.

A Fast Language Implementation
Due to the sheer amount of data generated and

operations executed when modeling a complex 3D
object, the implemented language must not be
a performance bottleneck. With a bottleneck in
the interpreter or compiler, the resulting language
would end up being unusable, because the ratio of
the script execution time and the rendering would
be high. If the language has a longer learning
curve than simple tools like AutoCAD’s basic draw-
ing features, the programs would be used mostly
for designing very complex objects, that would be
(almost) impossible to design by using the non-
automated AutoCAD drawing tools. This is es-
pecially significant because render times for drafts
are practically instantaneous.

3.2 Architecture
The approach chosen to address the 3D modeling
problem was to implement a compiler for a high-
level 3D modeling language that is based on the
Scheme programming language. This compiler will
consist of two modules: The front-end and the back-
end. The back-end will be dependent on the output
the programmer wants to generate. Several back-
ends may be implemented so the programmer just
has to write one program and then export it to the
desired format, as long as no back-end-dependent
features were used.

3.2.1 Basic Architecture

The 3D programming language will be based on
a Lisp-like language (the first implementation is
based on PLT Scheme) and will communicate with
AutoCAD (the first back-end to be implemented)

via a foreign function bridge (the first lower back-
end implementation uses Component Object Model
(COM)9 as the inter-process communication mech-
anism).

In the architecture, the front-end of the mod-
eling language is implemented as a set of macros
that transform programs written in the designed
language into regular Scheme programs (that use
the back-end and a run-time library that was writ-
ten to support the language). The language’s
programs are compiled and run by a Scheme in-
terpreter/compiler/virtual machine, outputting the
designed objects to the back-end (AutoCAD, in
the current implementation). The means of com-
munication from the front-endto the back-endis a
tree composed of VisualScheme’s objects and prim-
itives. This tree contains all the necessary informa-
tion to build the 3D model. The back-endwill, upon
receiving the tree, convert the tree into a sequence
of worker programcommands which will be sent to
it, creating the model in its working space.

3.2.2 Front-end

The front-end is responsible for most of the opera-
tions available in our language. Only after the ob-
jects are modeled in the front-end, with high-level
primitives, will they be marshaled to the back-end
and used according to what the programmer wants.

Every model starts in the front-end, by combin-
ing several primitives with operations which act on
them. The core language front-end provides sev-
eral primitives for creating and operating on points
and vectors, as well as the core primitive objects.
Several transforms and constructive solid geome-
try (CSG) operations are available for transform-
ing and combining the primitive (or compound) ob-
jects.

Our Front-end

The front-end is responsible for defining the lan-
guage that will be available to the programmer and
also the main structures that will be used by both
the front-end and the back-end. Our front-end de-
fines several basic primitive objects and operations
which work on them.

Transformations on objects, such as translations,
rotations an scales are available, as well as opera-

9http://microsoft.com/COM

6

http://microsoft.com/COM


tions on sets of objects, such as unions, intersec-
tions and differences. These operations accept any
created object as argument and, just like the prim-
itives, must be implemented in every back-end.

3.2.3 Back-end

The language is made back-end-independent by
having a distinction between the language core
(which provides the primitives and operations that
use them) and the back-end (which effectively seri-
alizes or draws the primitives).

The language core is the same regardless of what
back-end is in use. A user won’t have to change any-
thing in his program in order to change the back-
end if he only uses the language core.

The back-end may optimize the object and oper-
ations tree for itself (using more specialized back-
end commands) and provide additional primitives
for programs that don’t need to be portable and
require features that are only present in that back-
end, as will be seen in subsection 3.3.

The AutoCAD Back-end

The AutoCAD back-end is divided in 3 com-
ponents: A tiny DSL to facilitate writing code
which uses several functions for COM operations
from the MysterX library, bridges for the primi-
tive AutoCAD COM methods which model several
primitive objects on AutoCAD’s side and the up-
per part of the back-end, that acts as a compiler
which transforms our trees that are composed of
VisuaScheme’s primitives and operations to com-
mands to be sent to AutoCAD via COM.

Adding support for additional features (that may
be implemented in a further revision of the core
language or core-dependent primitives) is simple:
The new primitive must be added to the compiler
driver so it can be recognized and modeled on the
other side. The compiler driver will then call a
specialized function to model that object whenever
it is encountered.

3.3 Optimizations
In VisualScheme we have mechanisms in place to al-
low back-end developers to optimize the object and
operation trees and allow the objects to be modeled
in a more efficient way.

One optimization will be described: Collapsing
the creation of several objects into the creation of
one master copy and its subsequent copy and trans-
formations on these copy.

3.3.1 Caching

The caching optimization is a back-end-dependent
optimization which has been implemented as an
optimization test-case in the AutoCAD back-end.
This optimization was implemented in order to re-
duce COM calls to a minimum.

Our cache implementation is limited to caching
only parts of an object the user asked to model
(using the draw method that is exported by each
back-end), with the cache being zeroed before the
start of the draw routine. Support may easily be
added to have a “world cache” which would mem-
oize parts from every object, even if they’re shared
between objects in different calls to draw, even by
having a two-level caching approach (a cache for
global objects and a cache for local objects), simi-
lar to modern CPU [5].

To implement this optimization, the draw func-
tion that is exported by the back-end becomes a
trampoline function which sets up the local cache
and then dispatches to the effective modeling func-
tion of the back-end (in this case, the draw* func-
tion).

The optimized version of the draw function will
have an entry point (draw-top-level) where the
cache for the current (top-level) object is created
(if there is a whole-program cache, it is just main-
tained through calls to draw-top-level), the ob-
ject is then passed to the function which veri-
fies if we have a cache hit or a cache miss (the
memoized-draw function). If we have a cache hit,
we copy our template and return the copy. If it is a
cache miss, we will draw the object (using the same
draw function as before the optimization) and reg-
ister a copy of it in the cache for further use. The
draw-top-level function was exported from the
back-end with the name draw, in order to comply
with the back-end-front-end interface. We chose to
keep the previous draw function in order to change
the minimum amount of code. I we only want a
global cache and not a per-object cache, we can
simply delete the draw-top-level function and ex-
port the memoized-draw function as draw.

7



3.3.2 Measures and Conclusions

The caching optimization incurred in a significant
speedup in stress tests. Our test consisted of a grid
of 50 × 50 cylinders modeled by creating a matrix
of cylinder objects. At first, a cylinder object is
created, in the lower-left corner of the grid. The
structure that describes that object is then copied
several times and wrapped in translation structures
which move the contained object to another point
in space. After creating a whole row of 50 cylin-
ders, that row is then acted upon in the same way,
copying and translating it 50 times to finalize the
grid.

As we expected, the caching optimization is sig-
nificant. Many more optimizations can be imple-
mented in the AutoCAD back-end that may yield a
speedup in most or only a small part of programs.

3.4 Extensions
Extensions are a key feature of VisualScheme. The
language is designed in order to facilitate the de-
velopment and integration of extensions, which can
range from simple additional object definitions to
fully fledged model analysis and verification sys-
tems. In this subsection we will show how to extend
the VisualScheme language with additional objects.
All the relevant data structures are available to en-
able a developer to write sophisticated systems on
top of our object model and extend it with addi-
tional objects and operations.

Extensions may be made to the common frame-
work or only to a specific back-end. An extension
made to a specific back-end may use any function
that is not on the common framework but is avail-
able in that back-end to the end user. To create
an additional object definition, we just need to cre-
ate a function with the object’s parameters as ar-
guments and make the function return a descrip-
tion of that object obtained by combining language
primitives and operations on them. Any additional
object model available in an extension will be made
available by a Scheme library, which must be en-
abled at run-time.

3.4.1 Back-end dependent extensions

When designing a back-end-neutral language, we
have to deal with the lowest-common-denominator

problem: will the language be fully back-end-
neutral and stick to what can be achieved by every
back-end? To address this problem, we allow back-
ends to extend the language’s functionality with
additional primitives or operations that may not
be available in every other back-end. If a program
uses these features, it may not be portable to some
or all other back-ends. But on the other hand, it
may make available several features that the user
may want for that project. Also, the needed feature
may be implemented from the most basic primitives
(e.g. sets of triangles) of the other back-ends, if the
need arises.

To add a back-end-specific feature to Visu-
alScheme, we need to take care not to hinder other
back-end. First we implement the primitive struc-
ture to represent lofted surfaces. This structure will
contain a start argument, a function (f) which,
given an argument, will produce a two-dimensional
shape, a step function to step the argument and
a stop function, which tests if we have arrived at
the last shape of the loft. The dispatcher (the draw
function) also has to support the loft primitive but
that code was omitted for brevity (the dispatcher
tests if the structure passed as an argument de-
scribes a lofted surface and, if it does, calls the
draw-loft function, with that structure as its ar-
gument).

In the back-end, we unfold a list using the given
high-level functions and create the corresponding
shapes in AutoCAD. After creating the shapes that
will guide the loft, a loft command is then issued
to AutoCAD with the references to those shapes as
arguments, in the order they were unfolded. The
result is the creation of a lofted surface from a high-
level function which receives a parametrization of
the shapes and functions to generate the argument
for the next function and a stop condition.

3.4.2 Conclusions

Our VisualScheme language is designed with exten-
sibility in mind to allow for many future extensions
such as adding objects, operations, and primitive
hooks. The structure of the object and operations’
tree is exposed to facilitate the development of anal-
ysis libraries on top of it, using the same model that
will be marshaled to the back-end. We saw two ex-
amples of simple extensions, one to show how it
is straightforward to add composite objects which

8



can be used by any programmer and we saw how a
back-end can add back-end-specific primitives with
little additional effort.

Possible future extensions include support for
“livecoding” [4], which comprises live performances
involving music and visualizations, bi-directional
coding, where the back-end would have hooks to
recreate objects that were inserted in its workspace
by means other than the VisualScheme language,
or even computing deltas between the iterations of
a program and only sending to the worker program
the necessary commands to transform the objects
in its workspace to those described in the new iter-
ation of the program.

4 Evaluating the Work
The goal of this work is to design a 3D modeling
language.

In order to evaluate VisualScheme and its suit-
ability for 3D modeling and teaching, several ap-
proaches were taken: Several architecture students
were asked to opine on the designed language and
help steer the direction in which it is progress-
ing. Early feedback from the part of a group of
architects was positive and further developments
are expected in order for VisualScheme to be us-
able in the architecture course mentioned before;
Programs from that 3D modeling course for archi-
tecture students were converted into our language.
We also created several simple test programs and
a more complex one, a model of Lisbon’s Gare do
Oriente in VisualScheme to illustrate how we could
easily create a model with high-level parameters
which could be tweaked by the designer to cre-
ate several different objects. Designers with expe-
rience in other modeling languages and programs
were also asked to implement the same model and
provide feedback on the obstacles encountered.

The model of the Gare do Oriente was created in
the VisualScheme programming language, by pro-
gramming in an incremental fashion. That way,
the designer can easily experiment with several pa-
rameters and correct the model, if needed.

The model was divided in several basic shapes
which were implemented using VisualScheme prim-
itives. These shapes serve as abstractions over
the VisualScheme primitives, to facilitate future
changes, if needed.

After completing the Gare do Oriente model, the
same test case was given to architecture students,
with a background on Grasshopper. The students
were supplied with some reference pictures, not the
VisualScheme model.

The block structure is rigid and there are many
connections which are difficult to track when the
model’s complexity grows. Even when the student
tried to abstract parts of the model (by drawing a
box around a set of blocks and labeling it (annota-
tion)), the abstraction still forces the user to fully
understand how it works.

Also, while in the VisualScheme version, the
user only needed to change one function in or-
der to change the way these plates were built, in
the Grasshopper version, the user has to alter sev-
eral connections and blocks, possibly losing track
of some of them.

Eventually, the complexity forced the user to cre-
ate some VB.NET blocks with custom functions
for sweep-related problems which were encountered
during the modeling. The final model also had
some parameters which could be controlled by edit-
ing VB.NET blocks, which would behave as feature
selectors.

If, during model building, the designer wants to
add details to the model, the Grasshopper program
must always be redesigned (except for very basic
changes, such as changing the number of divisions
of a line segment or controlling the size of basic
shapes) and more connections must be added.

5 Conclusions
Most complex buildings are practically impossible
to design manually, even with CAD tools. Some
means must be available in CAD programs to allow
designers to express themselves without that limi-
tation. One way to remove that limitation is to pro-
vide designers with a programming language with
which they can programatically define and combine
objects to form complex figures.

The used programming language should be easy
to learn to someone experienced with CAD tools.
AutoCAD is an unavoidable player in the CAD
business so the language should, at the very least,
be marginally familiar to someone who already uses
AutoCAD’s automation features.

With this work we’ve produced a high-level,

9



teaching oriented (which is also adequate for a pro-
duction environment) language for 3D modeling,
called VisualScheme. The language is a DSL built
on top of the Lisp-like language Scheme, inheriting
its simple syntax and semantics. Besides retaining
Scheme’s characteristics, VisualScheme adds the
CAD functionality on top of it, by defining the
basic primitive objects and operations. This lan-
guage has a common front-end and multiple back-
ends available for the model output.

With this language, we open the doors to a gen-
erative architecture with easy testing of parame-
ters.With VisualScheme, we open this field to many
architects who are already familiar with AutoLISP,
and we provide a simple, high-level, easy to learn
language to architects, whom we can teach how to
use these tools to their advantage for rapid proto-
typing and the creation of parametrizable objects
which can be used to explore a whole range of possi-
bilities for a given architecture project, facilitating
and fostering experimentation and exploration.

References
[1] A. Aiken, J. H. Williams, and E. L. Wimmers.

The FL project: The design of a functional
language, 1991.

[2] R. Arnaud and T. Parisi. Developing web
applications with collada and x3d. COL-
LADA, 2007. See http://www.khronos.org/
collada/presentations/Developing_Web_
Applications_with_COLLADA_and_X3D.pdf.

[3] Autodesk. AutoLISP Developer’s Guide. Au-
todesk, San Rafael, CA, USA, 2009.

[4] N. Collins, A. Mclean, J. Rohrhuber, and
A. Ward. Live coding in laptop performance.
Organised Sound, 8(03):321–330, 2003.

[5] U. Drepper. What every programmer should
know about memory. Technical report, Red
Hat, Inc., 2007.

[6] S. Havemann. An Introduction to the
Generative Modeling Language: GML Tu-
torial. http://generative-modeling.
org/GenerativeModeling/Documents/gml_
tutorial.pdf, June 2003.

[7] G. Henriques, J. Duarte, and M. C. Guedes.
Sustainable housing cells: Mass customization
of sustainable collective housing. In Proceed-
ings of the 2009 International conference on
sustainable development in building and envi-
ronment, Chongqing, China, 2009.

[8] ISO 19775:2004. Information technology –
Computer graphics and image processing – Ex-
tensible 3D (X3D). ISO, Geneva, Switzerland,
2004.

[9] ISO 19776:2005. Information technology –
Computer graphics and image processing – Ex-
tensible 3D (X3D) encodings. ISO, Geneva,
Switzerland, 2005.

[10] ISO 19777:2006. Information technology -
Computer graphics and image processing - Ex-
tensible 3D (X3D) language bindings. ISO,
Geneva, Switzerland, 2006.

[11] M. Leyton. A Generative Theory of Shape, vol-
ume 2145 of Lecture Notes in Computer Sci-
ence. Springer Berlin/Heidelberg, Nov. 2001.

[12] A. Paoluzzi, V. Pascucci, and M. Vicentino.
Geometric Programming: A Programming
Approach to Geometric Design. ACM Trans-
actions on Graphics, 14(3), 1995.

[13] A. Paoluzzi and C. Sansoni. Programming
Language for Solid Variational Geometry.
Computer-Aided Design, 24(7), 1992.

[14] A. Payne and R. Issa. The Grasshopper
Primer. LIFT Architects, 2009.

[15] Persistence of Vision Raytracer Pty. Ltd.
POV-Ray Documentation: The early history
of POV-Ray, 2001.

[16] M. Sperber, R. K. Dybvig, M. Flatt, A. van
Straaten, R. Kelsey, W. Clinger, J. Rees, R. B.
Findler, and J. Matthews. Revised6 Report on
the Algorithmic Language Scheme. See http:
//www.r6rs.org/., 2007.

10

http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf
http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf
http://www.khronos.org/collada/presentations/Developing_Web_Applications_with_COLLADA_and_X3D.pdf
http://generative-modeling.org/GenerativeModeling/Documents/gml_tutorial.pdf
http://generative-modeling.org/GenerativeModeling/Documents/gml_tutorial.pdf
http://generative-modeling.org/GenerativeModeling/Documents/gml_tutorial.pdf
http://www.r6rs.org/
http://www.r6rs.org/

	Introduction
	Technical Contributions

	Related Work
	AutoLISP and Visual LISP
	Conclusions

	Generative Modeling Language
	Conclusions

	Programming LAnguage for Solid Modeling
	Conclusions

	POV-Ray
	Scene Description Language
	Conclusions

	X3D
	Conclusions

	Grasshopper 3D
	Conclusions

	Comparative Table
	Available 3D Primitives


	VisualScheme
	Why Scheme?
	Architecture
	Basic Architecture
	Front-end
	Back-end

	Optimizations
	Caching
	Measures and Conclusions

	Extensions
	Back-end dependent extensions
	Conclusions


	Evaluating the Work
	Conclusions

