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Abstract: The necessity in predicting an accurate image of the subsurface has lead to the creation of 

methods that allow the optimization of the knowledge originated from exploration. Modeling using 

Discrete Fracture Network (DFN) has come with the advantage of similarity to reality. Instead of 

characterizing the fractured context as a continuum variable it allows the individualization of each 

fracture as a discrete element. The fracture goes from being some value in a spectrum to a whole entity 

described by many characteristics bringing the need to create methodologies to describe every one of 

them. A study has been made, using the DFN modeling software Fracman, about the characteristics size, 

shape, intensity, orientation and fracture count in order to predict the possible inconsistencies that could 

happen in a modeling project. This study was made using stochastic generation by Monte Carlo method 

categorizing groups of simulations with specific differences in the description of each characteristic. This 

allowed recognizing misleading situations and methods to correct it. These methods were applied in the 

real case of Middle-East reservoir where using scarce data it was possible to do a satisfactory model of 

fracture spatial dispersion by using numeric and geostatistical treatment of the available variables. The 

fracture intensity characteristic of the Middle-East reservoir is defined by a mathematical relationship 

between permeability and porosity and the equivalence of cumulative distribution functions of various 

estimations made in the course of this study. 
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I.INTRODUCTION 

 

Even with the amazing progress made in 

fracture detection methods in the subsurface, 

usually recurring to seismology, the resolution 

obtained rarely gives an accurate image of the 

fracture network. The difficulty in detecting 

sweet spots on oil reservoir has led to an 

increasing specialization on numerical 

treatment concerning data originated from 

exploration. Mathematical relations resulting in 

better conditioning gives new dimension to 

former, directly applied, variables. The 

consequence was the application of discrete 

element methods (static) to classic simulation 

which brought more detailed pictures of fluid 

flow dynamics, clusters or storability. The 

discrete fracture network (DFN) approach 

explicitly incorporates the geometry and 

properties of discrete features as a central 

component controlling flow and transport
[1]

. 

Much controversy has arisen from the concept 

of representative elementary volume (REV) 

which states that there is a volume at which 

heterogeneities and discrete features can be 

ignored due to a process of averaging to 

produce continuum effective data. Still the 

advantages of the method have contributed to 

its use for the last 30 years. The 

characterization of fracture network can be 

done in several manners, none of them truly 

accurate but efficient to different objectives.   
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II.THEORETICAL STUDY 

 

Fracture origin, propagation and spatial 

dispersion depend greatly on the context of the 

rock mass where they reside. Most fractures on 

oil reservoir are MODE I (dilating fractures or 

joints) and MODE II (shearing fractures or 

faults). This concerns with geological 

phenomena that occurred in the location and it 

varies from place to place giving different 

characteristics to fractures with the same 

temporal and spatial origin. Applying fracture 

theory to petroleum reservoir demands the 

optimization of interpretation of remote-

sensing methods since these areas usually do 

not have visible surface expression. In oil 

reservoir, fractures are mainly important 

because of permeability rather than porosity 

due to low storability that can quickly get 

exhausted in initial production
[2]

. As so 

fractures provide permeable pathways in the 

transport of hydrocarbons. The knowledge of 

these highly permeable locations is important 

information for anyone trying to get a spot on 

oil industry. Being impossible to be sure, the 

result of a fracture network model is as precise 

as the better its conditioning. 

 

II.1 – STATISTICALLY CONDITIONED 

MODELING 

 

A DFN model needs to describe every physical 

parameter of a fracture in order to produce a 

good outcome. The workable data is always 

scarce and maximizing its usefulness is a 

priority for every good investigator. The 

parameters regarding spatial aspects are size, 

orientation, intensity, shape and count. The 

bigger the fractures, the better the chances of 

intercepting a well. Experience has shown that 

most fracture size distributions are either 

Power-Law or Log-Normal
[3]

. When it comes to 

Power-Law usage usually the Pareto version is 

the better adequate. The probability density 

function (pdf) for it and probably the most 

widely used in DFN modeling
[4]

 (being the case 

of fracture modeling software Fracman) is: 

���; ���� , 	
 � 	  ����

�
��       ,   � � ���� � 0 

where ����is the minimum fracture size. Notice 

that being 	 and ����two constants the Pareto 

distribution is an ever monotonously 

decreasing function pretty similar with a Log-

Normal when the standard deviation (σ) is a 

high number. The Log-Normal distribution is 

one whose variable is normally distributed 

while logarithmic. The pdf is given by (being μ 

the mean): 

���; �, �
 � ����√�� ����� ���
 
 !        

Fracture orientation follows a more complex 

kind of distribution meaning a probability 

distribution on the "#  dimension sphere. 

Usually defined by one or more dispersion or 

concentration parameter (k) and a mean 

direction (μ) it is only correctly observed in a 

stereographic projection. Usually fracture 

networks are organized in either clusters or 

tendency axis. When function mean is constant 

the cluster effect can be produced by a Fisher 

distribution (also known as Von Mises-Fisher 

distribution) due to its circular dispersion 

(which is as bigger as k is smaller
[5]

) over the 

stereographic projection. The Bingham 

distribution produces an axis like tendency 

using two means and concentration parameters 

like a bivariate function. Bivariate functions like 

bivariate Fisher or bivariate Normal allow the 

user to insert two focuses (two means) on the 

stereographic projection in the case of Fisher 

with a hard candy effect and Normal with a 

funnel like effect. The mean in directional 

statistics, especially in modeling science, has 

two sections (if in a spherical coordinate 

system, otherwise λ, β, and ν if in Cartesian 

with "# euclidian space), trend (angle in the 

plane) and dip (angle between plane and 

vertical axis). Note that different authors may 

use other nomenclature. The retrieval of trend 

(ω) and dip (θ) from Cartesian "#can be made 

with the following transformation: 

$ � arctan *β,- 
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. � arccos 1 2
3,� 4 5� 4 2�6 

But only for strictly planar "�  symmetric 

fractures since: 

arctan *β,- �  arctan *7β7,- 

Trend and dip are two individual variables in 

spherical distributions and can have their own 

individual distributions (usually bi-dimensional 

distributions). The final composite of functions 

for a pdf on the sphere is: 

8 *� 9$ *�:�- ; . *�:�-; <=- 

being �: , the mean, and � , the standard 

deviation, in the most typical pdf functions (but 

not all, Power-Law uses “���� , 	" parameters 

for example). This composition of functions can 

result in a different outcome one expected for 

the previously commented "#  dimension 

sphere functions. The third parameter is 

fracture intensity which relates to the spatial 

dispersion of fractures. This only has meaning if 

fracture generation is stochastic and needs a 

function to correspond. This is given by either a 

pdf or a direct relationship. Direct relationship 

can be given by grid variables or indexes like P10 

(fractures per unit of length) or P33 (fractures 

per unit of volume). Indexes tend to be biased 

to reality since they correspond to no variation 

in the generation volume but if the region 

considered is small it’s worth the try. Grid 

variable relationship, like a seismic map 

fracture equivalent variable, is the better 

option in stochastic modeling since there´s a 

correlation in every location of the generation 

region. Obviously the quality of this generation 

will be proportional to quality of the 

mathematical relation between fracture 

number and causation variable. If none direct 

relationship is possible, the equivalence of a 

pdf (even if constant) is the remaining option. 

There are many ways of describing fracture 

intensity with n-dimensional functions using 

algebraic treatment or derivation from one or 

two dimension processes. Box Dimension 

Analyses is a method in which, for different 

interval sizes in the same sample (like an image 

log), the number of intervals is counted and 

plotted on a log-log plot of the number of 

intervals with cumulative fracture count vs. the 

interval size. The subinterval size is then plotted 

against the number of filled intervals
[3]

. In a log-

log scale graphic if the result (for many interval 

steps) is a line then the relation between the 

numbers of filled intervals is a Power-law. If its 

exponent is less than 1 the spatial model is 

described by a fractal pattern, if near 1 the 

spatial model is Poissonian (random spatial 

pattern
[6]

). There are other well known 

functions to describe fractal patterns like Levy-

Lee model (fractal fracture model) based on the 

Levy Flight process for which the length, L, of 

each step is given by: 

?@ABC � CDE � CD�F 

where 8 is fractal mass dimension of the point 

field of fracture centers and CD  the distance 

from one fracture to the next. If 8 � 0, the 

distribution of the step length is uniform and 

consequently there´s no clustering of discrete 

elements being similar to Baecher model where 

the fracture centers are located uniformly in 

space
[7]

. Fracture shape relates to the plane 

figure fractures have in a model. It is usually 

defined with a geometric shape (polygonal) and 

an axis ratio (since one may exceed the other 

extending the figure to either side). Its 

importance grows with fracture size or 

orientation. Small fractures (bellow REV) don´t 

really have a major contribution to the model 

dynamics so its shape is rather unimportant. On 

the other hand if the size is significant fractures 

may occur in unexpected areas especially if 

orientation promotes the major axis towards 

that area. The equivalent radius of a fracture is 

the radius of a circular disk with the same area 

of this fracture, therefore given by the formula 
[3]

: 

GH � IJKL  

Fracture count relates to the total number of 

fractures the fracture network being modeled 

has. This information is rarely available and its 

importance falls mainly in the adaptation of the 
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fracture model to real verified data. Contrary to 

fracture size its behavior is highly influenced by 

intensity function since, in some cases, more 

fractures in the system could actually mean less 

fractures in some given location (meaning 

fracture count curve may have a change in 

monotony reaching a certain point).    

 

II.2 – VARIABLE CONDITIONED MODELING 

 

Of the five parameters considered in this study 

fracture size, orientation and intensity are the 

most variable dependable. Using a variable to 

condition statistical distribution is effective 

since, if done right, not only will the 

distribution coincide with the estimation but 

there´s a spatial localization of the pretended 

effect. For example if we apply a Normal 

distribution to size, the modeling software will 

not recognize a specific place where to apply 

specific value intervals of that distribution even 

if in reality, there are places where the size is 

higher and other places where the size is lower. 

The result is a random process of big and small 

where should only be big or small. A variable 

has already a spatial dispersion. Should we be 

able to calculate an accurate relation between 

our fracture parameter, the variable and the 

parameter distribution, and we´ll have the right 

characteristic in the right place. 

 

II.2.1 – FRACTURE SIZE 

 

Fracture size can be studied from trace length 

maps (bi-dimensional maps with lines 

representing fractures at some section of the 

studied volume) with careful discretion. There 

are some biases affecting the estimation with 

trace length
[2]

: orientation bias (if fracture is 

orthogonal to trace map it will be represented 

as a smaller fracture than actually is), length 

bias (smaller fractures have lower probability of 

showing in trace map usually being 

underrepresented) and censoring (the sample 

area is limited and some fracture will too). Even 

if the distribution is well described, there is a 

need for it to be local. Size variable 

relationships are uncommon and may depend 

on the phenomena that gave origin to the 

fracture system. In some cases fracture size 

relate to stress zones. If the fracture is oriented 

in the correct position the stress induced by the 

neighboring rock will augment its size. If this is 

a difficult variable to calculate near surface, on 

deep surface is some work of art. Nevertheless 

if the reservoirs lithology (mud logging) is 

spatially well described it may be a possibility 

to predict some notion (at least to some 

degree) of stress direction and strength by 

relating with rock formation displacement. 

Acknowledge that if the generation region is big 

enough it could be an advantage to make one 

or more estimation (like krigage) to fracture 

size (you could make different sets of fractures 

for different intervals of fracture sizes) creating 

a new size dependable variable. If the problem 

of characterizing size distribution and location 

in a model is severe then it should be made to 

be adequate to well fracture intersection. 

When significant, size behavior in modeling is 

generally linear and easier than fracture count, 

for example, to adequate. 

 

II.2.2 – FRACTURE ORIENTATION 

 

Different phenomena may originate different 

orientation sets so instead of trying to 

understand its origins (and even if you do 

there´s no real proof that constructed 

geological models apply to your case) you 

should try to make a mathematical relation to a 

known spatial variable which is also or only 

defined by orientation. This could be made with 

reservoir orientation or bedding (usually 

described in grid blocks orientation). In Figure 1 

there´s a fictional example of two blocks grid: 

 

Figure 1 - Fictional example of two blocks from a grid. 
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If the blocks are quadrilateral then it´s possible 

to describe two unit vectors (normalized 

vectors) and consequently the upper (any other 

could be used) plane of the block using the 

following equations to describe the first block 

(Cartesian "# coordinates): 

M � N� 7 O�, N� 7 O�, N# 7 O#3�N� 7 O�
� 4 �N� 7 O�
� 4 �N# 7 O#
� 

P � N� 7 Q�, N� 7 Q�, N# 7 Q#3�N� 7 Q�
� 4 �N� 7 Q�
� 4 �N# 7 Q#
� 

RJ �  M  OST RU � P 

The upper plane can now be defined with both 

vectors (only orientation has been imprinted 

since the new vectors are defined by a point 

conditioned to origin and that´s all we need) by 

a pole (orthogonal to the plane) vector using 

the following cross product equation: 

M V P � �M�P# 7 M#P�, M#P� 7 M�P#, M�P� 7 M�P�
 

Now we have a perpendicular direction to the 

plane given by the coordinates:  

λ � �M�P# 7 M#P�
 

5 � �M#P� 7 M�P#
 

2 � �M�P� 7 M�P�
 

Since the final orientation is given by dip and 

trend we may need, depending on the 

modeling software, two different distributions 

from the same pole vector given by the former 

commented retrieval formula: 

XY�ST � $ � arctan *β,- 

TZ[ � . � arccos 1 2
3,� 4 5� 4 2�6 

This mathematical process would have to be 

applied in all blocks of the grid in order to give 

a spatial character to the new variable (pole 

vector of bedding). The variable has been 

created and now we need the factual relation 

that fracture orientation has with bedding 

orientation. The easiest way to determine this 

relation is watching a stereographic projection 

with the newly created bedding and statistically 

conditioned fracture orientation. In Figure 2 we 

have a fictional example of bedding with an 

approximate average of . � 0º  and $ � 0º 

(center of the stereonet) and fracture with . � 0,90º  and  $ � 90,0º  (edges of the 

stereonet): 

 

Figure 2 - Stereonet of bedding (center) and fracture 

(edges) orientation. 

This fictional case seems to follow the Stearns 

model since fracture orientation is orthogonal 

with bedding orientation with respect to two 

different sets. We need to foresee this bias 

between fracture and bedding orientation 

when we´re going to relate both of them so our 

final distributions will be: 

XY�ST � $ � arctan *β,- 4 XY�ST NZO^ 

TZ[ � . � arccos 1 2
3,� 4 5� 4 2�6 4 TZ[ NZO^ 

Together with pdf on  "# dimension sphere we 

would have a final variable dependable 

distribution with a more or less random factor 

depending on k (concentration parameter). 

 

II.2.3 – FRACTURE INTENSITY 

 

Fracture intensity follows the same logic that 

fracture size but usually the variables of 

dependence (VOD) are more reliable and 

abundant. The better option in creating a 

satisfactory mathematical relation between 

number of fractures and VOD is the use of 

dispersion graphic. Dispersion graphic 

(scatterplot) locates points in the plane using 

both variables as axis. This usually results in a 
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cloud with a more or less degree of tendency 

which could either be described by a linear or 

curved function (henceforth called ponderer 

when the result is the number of fractures). If 

the tendency is linear then a linear equation 

(_ � .�� 4 .�
 will describe the ponderer. If 

not other approximations like polynomial, 

potential, logarithmic or exponential functions 

need to be considered. This could be done with 

curve fitting methods but acknowledge that the 

idea is not having the best-values curve fitting 

model but a smooth  standard curve able to 

interpolate unknown values. This can be done 

with linear, multi-linear and nonlinear 

regression (depending on the case) without 

much concern about what model to use
[8]

. 

Simple linear regression: 

���
 � .�� 4 .� 

, polynomial regression: 

���
 � .` 4 .�� 4 .��� 4 a 4 .����� 

, or low order exponentials models: 

��X
 � J���bcd
 4 J���b d
 4 a 4 J���bed
 4 U 

can be used
[9]

 but with some precautions since 

some of the results may not be strictly 

monotonously giving chance for miscalculation. 

Usually the relation between VOD and number 

of fractures has always the same monotonous 

behavior. Fitting our curve to the scatterplot 

gives us our ponderer but it may not be true to 

all generation region. If so it needs to be 

inhibited by henceforth called inhibiter. An 

inhibiter is a weighted coefficient to the 

ponderer. If it’s known that when some 

variable is high the number of fractures is lesser 

then, to correct the ponderer influence in the 

generation region, we should use it as an 

inhibiter. The strength of this inhibiter could be 

given by an exterior constant (coefficient of 

inhibition) like in a direct multiplication or 

potentiating the inhibiter. The right strength 

has to be studied by real data validation in the 

model or previously known by a direct relation 

between ponderer and inhibiter. If the number 

of fractures is as lower as the inhibiter variable 

is high than a possible weight to the ponderer 

could be (merely an example): 

fSgZNZX�Y � f�h
 � 1G�h

  

where G�h
is the relation number of fractures 

vs. η variable and α, the coefficient of 

inhibition. Applying it to the initial fracture 

ponderer we get: 

fjf � k�	; l, h
 � ?�l
G�h

 

where ?�l
is the initial ponderer to fracture 

number. Evidently the result of this operation 

won´t be a fracture number but an intensity 

fracture index (IFI or k). The IFI needs to be 

converted to fracture number by function 

equivalency. Both IFI and fracture number 

(from real data) have cumulative distribution 

functions (cdf) that can be made to converge by 

using the probability result from the cdf of IFI 

and inserting it in the inverse cdf of fracture 

number. 

jYOQXMY� SMmN�Y �  QT��j
��nQT��fjf
o 

being F, fracture number taken from real data. 

This is only an option if the inverse is calculated 

by numerical algorithm (analytical inversion of 

cdf is impossible) which, usually, modeling 

software’s don´t have. Other method is using a 

QQ-plot which is a graphical method of 

comparing two probability distributions. If so 

another curve fitting will have to be done to 

the QQ-plot. The more similar the functions the 

closer to linear relation both pdf will have. If 

the final result is not satisfactory (the QQ-plot 

is anything but linear) the previous steps should 

be revised. Even if the relation is good and a 

nice curve is found there is still the need to 

validate it with real data since we don´t know if 

the quantiles (points taken at regular intervals 

from the cdf) are proportional. If they are we 

have our final ponderer of fracture number: 

?K�	; l, h
 � Ujj * ?�l
G�h

- 

being CFF the curve fitting function. 
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III – MIDDLE-EAST RESERVOIR 

CASE STUDY 

 

Middle-East (ME) is a layered heterogeneous 

limestone and dolomite unit with lateral and 

vertical lithological changes. The porosity was 

mainly created by dolomitization in the 

subsurface where eleven lithofacies and eight 

dominant rock types are identified
[10]

. In ME 

reservoir most of the fractures appear in the 

central corridor with two different sets of 

major fractures, namely N033E and N073E 

(referring to fracture orientation)
[11]

. It´s 

assumed that the major sets of fractures have a 

size within [500, 1000] meters. 

 

III.1 – AVAILABLE and PRODUCED DATA 

 

The data available for this study is a group of 

point data and a coinciding grid (assumedly 

with the shape of the reservoir). The point data 

have three available variables being DRT 

(quality of the rock), permeability and porosity. 

The original grid was used in the modeling 

parameters study and consequential method 

creation (described in the former sections of 

this article) and a new grid was created due to 

the need of having all blocks with the same 

volume (therefore called regular grid), which 

the original grid didn’t have (compromising the 

results and due to inexistence of available 

software to compute it). Also available is real 

borehole data specified in a merger between 

petrel well trace and log ASCII standard (LAS) 

file format. The LAS files were organized with 

intervals (accordingly to depth) of DRT, 

permeability and porosity. Later, fictional 

boreholes were inserted in different versions of 

the model to study fracture occurrence 

oscillation due to changes in the modeling 

parameters. The upscaling of the point data to 

the grids were made using the arithmetical 

mean operator in the case of porosity and 

permeability (henceforth mean porosity and 

mean permeability), the maximum value for 

block operator for permeability (max 

permeability) and median operator (because of 

its similarity to mode or the most frequent 

value to appear in a sample) to DRT. DRT 

upscaling was poor, therefore used with 

necessary discretion in the ongoing of the 

study. The main grid variables are mean 

porosity and max permeability (it was assumed 

the higher values of permeability were, in fact, 

due to fracture existence so it´s an important 

variable to relate to fracture occurrence).  

 

III.2 – FRACTURE OCCURRENCE in REAL 

DATA BOREHOLE 

 

There are no file testimonies (which was the 

only available information) of real fractures 

occurring in the mud logs but permeability, 

contrary to porosity and DRT, has an enormous 

variance due to the existence of high kurtosis 

(variance is due to infrequent extreme 

deviations). These peaks were assumed to be 

due to fracture existence. In Figure 3 there´s a 

graphic of depth (m) vs. permeability (mD) from 

a real borehole where this behavior is easily 

observed. 

 

Figure 3 - Depth (m) vs. permeability (mD) graphic from a 

real borehole. 

For every well the number of peaks together 

with the maximum permeability achieved have 

been registered with the corresponding bi-

dimensional localization (x and y coordinates). 

In order to have some initial notion of how 

fracture occurrence behaves in space 

estimation by krigage was done to this data in a 

bi-dimensional grid. Since only the fictional 

borehole have the I, J coordinates (grid 

coordinates) a rotation and adequateness (by 
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visual comparison) was made to real borehole 

localization (due to different orientation and 

distortion towards north). This is an important 

step to refer since bias exists and may have had 

some inference in the outcome results (slight 

displacement from real location but probably 

enough to invalidate the comparison between 

real data and pondered maps). The formula 

used to rotate the data was: 

U�� � 1p�U��
� 4 nUq�o�6 r cos �XOSstu�� nU��; Uq�o 4 Yr) 

Uq� � 1p�U��
� 4 nUq�o�6 r sen �XOSstu�� nU��; Uq�o 4 Yr
 

where: 

U��; Uq� - Original borehole coordinates. 

U��;  Uq�- Final borehole coordinates. 

Yr- Angle (QL, Q � QwS^XOSX) of rotation. 

XOSstu�� �^xw[�
 – Equivalence slope/angle. 

The final borehole coordinates were later made 

adequate to I, J grid coordinates using similar 

locations between real and fictional well. Using 

the new coordinate the estimation was made 

and superimposed by upper reservoir 

topography as can be seen in Figure 4. 

 

Figure 4 - Krigage of number of fractures with real borehole 

superimposed by upper reservoir topography. 

The result looks a bit displaced from the 

topographical map but there seems to be some 

coherence. The zones with higher slope seem 

to have higher fracture occurrence than 

neighbor blocks exception made with the upper 

left corner of the map. This could be due to 

uncertainty since most wells are placed in the 

center corridor of the map. The variance map 

calculated from thirty Gaussian simulations 

with the same variography of krigage applied 

confirms high variance in the upper left corner 

as can be seen in Figure 5. 

 

Figure 5 - Variance map calculated from thirty Gaussian 

simulations with real borehole superimposed by upper 

reservoir topography. 

Nevertheless, it´s easily observable the strong 

heterogeneous character of fracture dispersion 

in space. 

 

III.3 – MECHANICAL STRESS in MIDDLE-

EAST RESERVOIR 

 

The analysis of upper reservoir topography 

suggests that there are areas where the slope is 

greater, probably due to horizontally 

orientated mechanical stress. Hypothetically 

this should concord with fracture orientation 

sets. Figure 6 shows a topographical map with 

specified zones of greater slope and potential 

stress direction. 
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Figure 6 - Topographical map with specified zones of 

greater slope and potential stress direction. 

Of the two specified orientation sets only one 

seems to concord with mechanical stress 

directions. An analysis on the stereographic 

projection, provided by the ME Team report, on 

fracture orientation taken from real borehole 

data, shows that only the N033E set is an actual 

orientation focus as can be seen on Figure 7. 

 

Figure 7 - Stereonet of fracture orientation showing that 

only N033E is an actual orientation focus.  

The N073E set has a low concentration and 

seems to have an axis like tendency. The best 

statistical functions to describe the two sets are 

Fisher for N033E and Bingham for N073E with 

high k parameters for both (k1 and k2 in 

Bingham case). Fracture size could also be 

somewhat assumed since fractures should be 

bigger the closer they are to mechanical stress 

zones, especially if they have a favorable 

orientation (like N033E). 

 

III.4 – RELATION BETWEEN FRACTURE 

NUMBER and MAXIMUM PERMEABILITY 

 

Three attempts of relating fracture number 

with reservoir variables have been made (mean 

porosity “ y ”, mean permeability, and max 

permeability) but the best relation was given by 

max permeability (z�). The scatterplot revealed 

that the relation is not linear and the number 

of fractures (F) decreases as max permeability 

increases. The Figure 8 shows the resulting 

scatterplot. 

 

Figure 8 - Scatterplot of max permeability vs. number of 

fractures fitted with a potential function. 

The curve fitted in the scatterplot is a potential 

given by the formula: 

j � 151,2z��`,}� 

The fitting was done in spreadsheet EXCEL 

software and since the curve is smooth enough 

no other attempts have been done. The 

ponderer seems pretty good in the borehole 

area (central corridor) but it lacks trueness in 

the surroundings. There are many high 

permeability zones in the laterals which 

coincide with high porosity and that may 

deteriorate the quality of the ponderer. In 

order to correct this aspect an inhibiter is 

needed. To make the inhibiter a new relation 

has been made between grid mean porosity 

and fracture number pondered with 

permeability. The relation has little quality due 

to almost no real relation between fracture 

existence and porosity but there´s no need for 

a good ponderer, since there´s already one, but 

some equation that weights the permeability 

effect in the generation region. The inhibiter is, 

therefore, the following exponential function: 
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fSgZNZX�Y�y
 � 1�15,57��`,`}�

 

Notice the coefficient of inhibition �	
 comes in 

the form of potential. Naturally the IFI comes in 

the form of: 

fjf � k�	; z�, y
 � 151,2 r z��`,}�
�15,57��`,`}�

 

The best α seems to be a number between 1,6 

and 2,2 so 	 � 1,8 was chosen as an optimal 

value (real certainty would only exists with tries 

on modeling software and its concordance with 

the real data). Figure 9 shows the result 

pondered map. 

 

Figure 9 - Result pondered map with inhibition coefficient 

of � � �, �. 

The equivalence of IFI to fracture number was 

made with representative values taken from 

the QQ-plot and then inserted in statistical 

software SimFit to curve fitting. The curve 

fitting resulted in the following function: 

j�fjf
 � 13,27n1 7 �����#,}���
o 7 4,019 

which, substituting for the calculated IFI, results 

in: 

j � 13,27 �1 7 �*���#,} ���,�rb ��,� ���,��H��,���
c,�-� 7 4,019 

being F the number of fractures in relation to 

porosity and permeability in a stochastic 

generation. This equation should be leveled 

with real data validation in the generated 

model since there´s no guaranty that the 

quantiles are proportional in both cdf´s. 

Nevertheless this is the fracture relation to 

ME´s variables. 

IV – FURTHER DEVELOPMENTS 

  

• Fracture orientation VOD would improve 

greatly the correct imposition of this 

parameter in ME fracture model. The VOD 

can be created from the original grid.  

• Fracture size VOD can be made using the 

slope of the blocks of the original grid and 

then be assigned as a distribution 

between 500 and 1000 meters. 

• Fracture number in fracture intensity 

must be leveled in modeling software 

before optimal usage. 

• Count and shape fracture parameters can 

be used to history match the model 

without need to modify the former 

conclusions. 
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