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Abstract

This work is a journey through the main ideas and sucessive generalizations of Galois Theory, towards
the origins of Grothendieck’s theory of Dessins d’Enfants, firstly found in the late 70s and the 80s ([5]), as
a tool to understant the absolute Galois group of the field of the rational numbers. This exposition follows
a constructive approach, towards the definition of a Galois category and its Fundamental Group, as first
introduced in [4]- Exposé V.
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Resumo

Este trabalho consiste numa exposição das ideias e sucessivas generalizações da teoria de Galois, tendo
em vista uma apresentação das origens da teoria dos “Desenhos de Criança”, descoberta por Alexandre
Grothendieck nos anos 70 e 80 ([5]), como posśıvel via para a compreensão do grupo de Galois absoluto do
corpo dos números racionais. A exposição aqui apresentada segue uma perspectiva construtiva que remete
às origens dos conceitos, traçando um caminho em direcção à definição proposta por Grothendieck em [4]-
Exposé V, de categoria Galois e do seu Grupo Fundamental.
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0.1 Introduction

Galois Theory started with the study of roots of polynomial equations, long before Galois introduced
his famous ”Galois Group” as a tool to determine the properties of such roots. The modern formulation of
Galois theory for number fields was designed by Emil Artin. However, as the other areas of mathematics
progressed, other examples of ”Galois Theories” were found. In topology, the classification of covering spaces
of a given space and the role played by the fundamental group of that space, is an example of such a theory.
In the late 50’s, Grothendieck constructed a new categorical theory containing both cases, mostly inspired
in the topological example, generalizing the role of the topological fundamental group. He introduced Galois
Categories and Fundamental Functors on a highly general level and defined the fundamental group of a
Galois Category, containing as particular cases both examples. Then, he applied his theory to schemes and
obtained as a particular case the ”old” Galois groups as fundamental groups of schemes and fundamental
groups of curves defined over a certain number field. Later, he discovered his ”Dessins d’Enfants” theory, as
a tool to understand one of the most dificult objects in mathematics: The absolute Galois group of the field
of the rational numbers. This work is intended as an introduction to his categorical formulation of Galois
Theory and as a survey of the main results leading to ”Dessins d’Enfants”.

In the first chapter we introduce the language of category theory. In particular, the notion of an
equivalence of two categories, and the fact that, by Yoneda’s Lemma, any category C can be seen as a
subcategory of the category of all functors

F : C // Sets

Moreover, we explain the notion of representability of such functors by an object X in C. This property
allows us to identify (for each object U in C) every element of F (U) with a unique morphism in C. Also,
it enables us to define limits and colimits of diagrams and functors, and as a particular case, products and
sums of objects. We end by introducing group actions on objects and by defining the properties of a quotient
object associated to such actions.

In the second chapter, we present the main definitions usually used in Algebraic Geometry, starting
with some results of commutative algebra. Then we introduce (in a categorical approach) presheaves and
sheaves over a topological space and consider pairs of, spaces equipped with preshaves, and their respective
morphisms. We present the notion of a scheme as a generalization of a ring. At last, define geometric points
of a scheme and a few considerations, concerning fibre products of two schemes over a third one, are made.

The third chapter concerns the classical Galois Theory of fields. Firstly we introduce algebraic extensions
of a field and their natural morphisms. Then, Galois extensions and their Galois groups are introduced and
a classification theorem of all subextensions of a given Galois extension is proved, first for finite extensions
and then, through Krull’s Theorem, for infinite extensions. We introduce the absolute Galois group of a
field k, denote Gal(k), and we prove that this group is a profinite group, the limit of a projective system of
finite groups. The properties of profinite groups are explained in the Appendix Section. At last, we present
a formulation of Galois Theory of fields, due to A. Grothendieck, stating that the category of finite separable
extensions of a field k is equivalent to the category of finite sets with a continuous transitive action of Gal(k).

In chapter 4 we introduce the topological fundamental group of a topological space X at a point x ∈ X,
defined using paths on X (here denoted by πtop1 (X,x).) After this introduction, we present the main results
concerning the Galois theory of covering spaces. As in chatper 3, we introduce Galois covers and their Galois
groups and again prove a theorem concerning the classification of all the intermediate covers of a Galois
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cover. This result establishes a bijection between subgroups of the Galois group and intermediate covers.
Given a point x ∈ X, the correspondence assigning to each cover p : Y → X the set p−1({x}), is functorial.
The algebraic fundamental group of a space X, at a point x, is defined as the automorphism group of this
functor, here denoted has πalg1 (X,x). There is a natural action of πtop1 (X,x) on the fiber sets, called the
monodromy action. This action induces a group homomorphism

πtop1 (X,x)→ πalg1 (X,x)

If X is a connected, path-connected, locally path-connected and semi-locally simply connected, then X

has a universal cover. In this case, we prove that the fiber functor is representable by this cover and that the
monodromy homomorphism above is an isomorphism. Moreover, in this case, we also prove that the category
of covering spaces of X is equivalent to the category of sets with an action of πalg1 (X,x). As a corollary, the
category of finite coverings is equivalent to the category of finite sets with a discrete topology, endowed with a
continuous action πalg1 (X,x). In this case, this group is isomorphic to the profinite completion of πtop1 (X,x).
This result extends to every connected space X: the group πalg1 (X,x) is profinite and the category of finite
coverings of X is equivalent to the category of finite sets with a discrete topology, endowed with a continuous
action of πalg1 (X,x).

Chapter 5 is the main part of this work. The last result stated in chapter 4 is proved using categorical
methods, by following the work done by A.Grothendieck in [4]- Exposé V. Given a category C, the category
of pro-objects in C, denoted Pro(C), is introduced. Its objects are projective systems with values in C.
Generalizing the notion of representability of a functor

F : C // Sets

we define the notion of pro-representability, enabling us to identify, for each object U in C, every element
of F (U) with a unique morphism in Pro(C). Following [2], we establish sufficient conditions for a given
functor F , as above, to be pro-representable.

From here, we follow [4]- Exposé V Section 4 - ”Conditions axiomatiques d’une théorie de Galois”, where
six axiomatic conditions are considered over a pair Category C + functor F on C with values in the category
of finite sets. Three of these conditions are related to C and the other three are related to F . Under this
conditions we prove the following properties:

• F is pro-representable;

• The automorphism group of F , here denoted as π, is profinite;

• There is an equivalence between C and the category of finite sets, endowed with a discrete topology
and a continuous action of π (here denoted as π − FSets).

Then, we prove that π−FSets, together with the natural forgetful functor to the category of finite sets,
also verifies the six imposed conditions. Following A. Grothendieck, we present the definition of a Galois
Category, as any category C equivalent to π−FSets, where π is a profinite group. Indeed, this is equivalent
to the following properties:

• C verifies all the three imposed conditions;
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• The functor establishing the equivalence verifies the other three imposed conditions

π is called the Fundamental Group of the Galois category and F is called a Fundamental Functor.
Any two fundamental functors are isomorphic and the category of fundamental functors on C is called
the Fundamental Groupoid of the Galois category C. Moreover, we present sufficient conditions for a given
functor between two Galois categories to induce a group homomorphism between their respective fundamental
groups. As examples:

• The category of finite covering spaces of a connected space X is a Galois category. The fiber functor
over a point x ∈ X is a fundamental functor. The algebraic fundamental group of X is precisely the
fundamental group of this Galois category.

• Without exploring the details, the notion of an étale morphism of schemes is introduced. The category
of such morphisms over a fixed connected and noetherian scheme X, is Galois. The fiber functor at a
geometric point x is a fundamental functor. The algebraic fundamental group of X is, by definition,
the fundamental group of this Galois category. Classical Galois theory concerning extensions of a field
k is recovered by considering X = Spec(k). The choice of a geometric point s : Spec(K)→ spec(k) is
indeed the choice of a separable closure of k. We have an isomorphism

Gal(k) ∼= π1(Spec(k), s)

Finally and briefly, in chapter 6, the main results leading to the Grothendieck’s Theory of Dessins
d’enfants are presented without proof. Given an extension of fields L|k, there is a pull-back functor from
the category of curves over k to the category of curves over L, by the fact that all fibre products exist in the
category of schemes. In particular, if X is a curve over k and X̄ is the pull-back of X over L = k̄, there is
an exact sequence of profinite groups

1→ π1(X̄, x̄)→ π1(X,x)→ Gal(k)→ 1

where x is a geometric point of X and x̄ is its pull-back. This sequence allows us to define a natural
action of Gal(k) on π1(X̄, x̄) (also called the geometric fundamental group of X), by outer automorphisms

Gal(k)→ Out(π1(X̄, x̄))

At the same time, if k = Q and L = C, Belyi’s Theorem says that a curve X over L is isomorphic to
the pull-back of a curve over k if and only if there is a finite étale morphism of curves over L from X to
P 1

C \ {0, 1,∞}. Since the pull-back preserves finite étale morphisms, this results allows us to establish an
equivalence between the Galois categories of étale morphisms over P 1

C\{0, 1,∞} and those over P 1
Q\{0, 1,∞},

and therefore, a natural isomorphism between the fundamental groups of these curves.

At the same time, to each curve X over C, we can assign, in a functorial way, an analytic complex space,
Xan. In [4], Grothendieck proved that the category of étale morphisms over X is equivalent to the category
of finite topological covers over Xan, and therefore the algebraic fundamental group of X is isomorphic
to the profinite completion of the topological fundamental group of Xan. If X = P 1

C \ {0, 1,∞}, we have
Xan = C∞ \ {0, 1,∞}, where C∞ is the Riemann Sphere. Finally, we conclude that there is an isomorphism
of fundamental groups
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πalg1 (P 1
Q \ {0, 1,∞}) ∼=

̂πtop1 (C∞ \ {0, 1,∞}) (1)

and the action of Gal(Q) on πalg1 (P 1
Q \ {0, 1,∞}), noticed in the first place, extends to an action on

̂πtop1 (C∞ \ {0, 1,∞}):

Gal(Q)→ Out( ̂πtop1 (C∞ \ {0, 1,∞}))

After the results in chapter 4 and 5, this group classifies all the finite topological covers of C∞\{0, 1,∞}.
Dessins d’Enfants are introduced as combinatorial structures assigned to each finite cover of C∞ \ {0, 1,∞},
enabling us to study this action.
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Chapter 1

Categorical Preliminaries

This chapter was written as a general introduction to the main results and constructions concerning the
language of category theory. As a general reference for standard facts, see [15].

1.1 Categories

1.1.1 Definitions and Properties

1. A Category C is a class of objects Ob(C) and, for each pair of objects A and B, a set HomC(A,B),
whose elements are called morphisms from the object A to the object B. We represent each element
f ∈ HomC(A,B) as an arrow from A to B, f : A→ B. For every three objects A, B and C, we also
require a binary operation (called composition law)

HomC(A,B)×HomC(B,Z)→HomC(A,Z)

(f, g) 7→g ◦ f

satisfying the following properties:

• The composition is associative;

• For each object A of C there is an identity morphism IA ∈ HomC(A,A) i.e., for any other objects
B and D and morphisms f : B → A and g : A→ D we have IA ◦ f = f and g ◦ IA = g.

It follows that for each object there is only one identity morphism and therefore, we may identify the
objects of a category with their identity morphisms.

2. Given a category, we consider also its dual, written C◦, whose objects are the ones of C and the set of
morphisms from A to B is now the set of morphism from B to A in C.

HomC◦(A,B) := HomC(B,A)

3. A category is said to be small if the class of objects forms a set.

19
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4. A subcategory of C is another category whose objects are some of the objects of C and the set
of morphisms is a subset of those in C, closed with respect to the composition operation in C and
incluing the identity morphism of every object in the subcategory.

5. Given a category C, a morphism f : A→ B is said to be an isomorphism if there is another morphism
g : B → A such that f ◦ g = IB and g ◦ f = IA. Two objects are called isomorphic if there is an
isomorphism between them.

6. A Groupoid is a category for which every morphism is an isomorphism.

7. Let A be an object of C. The elements of EndC(A) := HomC(A,A) are called endomorphisms of A.
The subset of endomorphisms of A which are isomorphisms are called automorphisms of A, and we
write AutC(A) ⊂ EndC(A) .

Proposition 1.1.1.1. AutC(A) with the composition operation is a group.

Proof. By definition every element f : A → A of AutC(A) is an isomorphism, so there is a morphism
g : A→ A such that f ◦ g = g ◦ f = IA. The composition operation is associative and IA is a neutral
element. Therefore AutC(A) is a group.

Proposition 1.1.1.2. If two objects are isomorphic, their automorphism groups are isomorphic (in
the category of Groups)

In fact, we have a more general result

Proposition 1.1.1.3. Let C be a category and f : A→ A′, g : B → B′ two isomorphisms. Then

HomC(A,B) ∼=Sets HomC(A′, B′) (1.1)

1.1.2 Characterization of Morphisms

a) Monomorphisms

In set theory there are notions of injectivity and surjectivity. These may be translated to a pure
categorical language:

Let Sets be the category of sets, whose objects are sets and whose morphisms are maps between sets.

Given two sets A and B, we say that a map f : A → B is injective if any two different elements of the
first set are always mapped to different elements on the target set. We show the following equivalence:

Proposition 1.1.2.1. A set-map f : A→ B is injective if and only if the set-map

HomSets(Z,A)→ HomSets(Z,B) (1.2)

mapping g 7→ f ◦ g is injective for all sets Z.

Proof. The map 1.2 being injective is equivalent to f ◦g = f ◦h implying g = h, for any g, h ∈ HomSets(Z,A).
Suppose that there exists a set Z such that the 1.2 is not injective, which means that there are two different
morphism g and h in HomSets(Z,A) that verify f ◦ g = f ◦ h, or using elements of Z, f ◦ g(z) = f ◦ h(z)
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for all z ∈ Z. Since g and h are different maps, there is at least one element of Z such that g(z) is different
from h(z) (otherwise the functions would be equal). However, for this element, we have f(g(z)) = f(h(z))
and so the function f is not injective. Suppose now that the 1.2 is injective for all sets Z. In particular, it is
injective for Z = A and g = IA, the identity map on A. By the injectivity of the above map, for any other
map h : A→ A such that f ◦ IA = f = f ◦ h, h = IA. We conclude that f has to be injective.

This allows us to generalize the notion of injectivity

Definition 1.1.2.2. Let C be a category. A morphism f : A → B is called a monomorphism if, for any
other object Z of C, the map HomC(Z,A) → HomC(Z,B) defined by g 7→ f ◦ g, is injective. In this case
HomC(Z,A) can be regarded as a subset of HomC(Z,B), for any Z.

Here, we define a subobject of an object X in C as a monomorphism Y → X, with Y some other object
in C. We say two objects Y → X and Y ′ → X are the same, if they are isomorphic as morphisms over X.
In other words, if there is an isomorphism Y → Y ′ making the following diagram commute

Y

  AAAAAAAA
// Y ′

��
X

Notice that the composition of monomorphisms is still a monomorphism.

b) Epimorphisms

We will first formulate the notion of surjectivity on categorial terms within the category of sets and then
generalize it for any category. Given two sets A and B, we say that a map f : A → B is surjective if any
element of B is in the image of A by f , written f(A), or, for any element b in B, there is at least one element
a of A such that b = f(a). We have:

Proposition 1.1.2.3. A set-map f : A → B is surjective if and only if the set-map HomSets(B,Z) →
HomSets(A,Z) defined by g 7→ g ◦ f is injective for all sets Z.

The proof is similar to the one of Prop. 1.1.2.1. The notion of surjectivity can then be generalized

Definition 1.1.2.4. Let C be a category. A morphism f : A → B is called an epimorphism if, for any
other object Z of C, the map HomC(B,Z)→ HomC(A,Z) defined by g 7→ g ◦ f is injective. In this case we
can see HomC(B,Z) as a subset of HomC(A,Z), for any Z.

c) Isomorphisms

Previously, we have introduced the notion of an isomorphism as a morphism f : A→ B for which there
is a morphism g : B → A such that g ◦ f = IA and f ◦ g = IB We shall prove the following property:

Proposition 1.1.2.5. Let f : A→ B be a morphism in C .The following conditions are equivalent

• (i) f is an isomorphism;
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• (ii) For every object Z in C, the map (f ◦ −) : HomC(Z,A) → HomC(Z,B) is an isomorphism of
sets;

• (iii) For every object Z in C, the map (− ◦ f) : HomC(B,Z) → HomC(A,Z) is an isomorphism of
sets;

Proof. (i) ⇒ (ii): If f is an isomorphism (in the first sense) with an inverse g : B → A, the map (g ◦ −) :
HomC(Z,B) → HomC(Z,A) is an inverse map of (f ◦ −); (ii) ⇒ (i): If (ii) holds for every object Z, we
choose Z = B. Then we have a bijection (f ◦ −) : HomC(B,A) → HomC(B,B) and there is a unique
g : B → A such that f ◦ g = IB . With this g in mind, fix Z = A and the correspondent bijection
(f ◦ −) : HomC(A,A)→ HomC(A,B). We now known g ◦ f to be mapped to f , but also IA is mapped to
f . By the injectivity of (f ◦ −), we conclude g ◦ f = IA. The other equivalence follows a similar proof.

1.2 Functors

1.2.1 Definition and Properties

There is a notion of morphism between categories:

Definition 1.2.1.1. A ( covariant) functor F between two categories C and D, written F : C // D , is
a correspondence:

• for each object A of C, an object F(A) in D;

• for each morphism f : A → B, a morphism F (f) : F (A) → F (B) (in other words, a mapping
HomC(A,B)→ HomD(F (A), F (B)) ) such that the composition law is preserved and F (IA) = IF (A).

Definition 1.2.1.2. • A contravariant functor F between C and D is a functor F : C◦ // D , re-
versing the composition law: if f : A→ B is a morphism in C then F (f) : F (B)→ F (A).

• Given a functor F : C // D , the opposite functor of F , denoted F ◦, is the functor

F ◦ : C◦ −→D◦

X 7→F ◦(X) := F (X)

HomC◦(X,Y ) = HomC(Y,X) −→HomD◦(F ◦(X), F ◦(Y )) = HomD(F (Y ), F (X))

f 7→F (f)

For each object X in C, a functor F : C // D induces a map HomC(X,X)→ HomD(F (X), F (X)),
that preserves composition.

Proposition 1.2.1.3. Let F : C // D be a functor. If u : X → Y is an isomorphism in C then its
image by F , F (u) : F (X)→ F (Y ), is an isomorphism in D.
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Proof. Suppose u : X → Y is an isomorphism and let u−1 : Y → X be its inverse. Since F is a functor,
F (u) ◦ F (u−1) = F (u ◦ u−1) = F (IY ) = IF (Y ) and also F (u−1) ◦ F (u) = IF (X). So F (u) : F (X)→ F (Y ) is
an isomorphism in D.1

We conclude that F induces a group homomorphism AutC(X) → AutD(F (X)), that is well defined,
since by the last proposition, the image of an automorphism is an automorphism.

The notion of a functor, enables us to consider the category of all categories, here denoted as Cat.

1.2.2 The Image of a Functor

Given a functor, the objects of the form F (A) in D, for any object A in C, and the morphisms of the
form F (f) : F (A) → F (B), for any f : A → B morphism in C, form a subcategory of D, called the image
of C by F .

1.2.3 Composition of Functors

There is a natural way to compose functors, by applying each one of them sequencially. Similarly, there
is also a natural Identity Functor for each category which takes each object to itself and each morphism,
again, to itself. The definition of a functor satisfies the definition of a morphism within a category. So,
we are allowed to talk about the category of categories, whose objects are categories and morphisms are
functors.

1.2.4 Categories of Functors

Given two categories C and D we can produce a notion of a morphism between two functors, F : C // D
and G : C // D :

Definition 1.2.4.1. A natural transformation or morphism of functors between F : C // D and G : C // D
is a collection of morphisms in D, {TA : F (A) → G(A)}, one for each object A of C, such that for each
morphism f : A→ B in C, the following diagram commutes

F (A)

TA

��

F (f) // F (B)

TB

��
G(A)

G(f) // G(B)

With this notion we have a category of covariant functors between C and D, written Fun(C,D) where
objects are Functors and morphism are natural transformations, presented as T : F → G, for F and G

functors. Denote by HomFun(C,D)(F,G) the set of natural transformations from F to G. Moreover, we
have isomorphisms of functors and we are able to define the automorphism group AutFun(C,D)(F ) of a given
functor F , called the group of self natural equivalences of F, and defined in exactly the same way as for a
general category C.

We denote by Fun(C◦,D) the category of contravariant functors.
1The contravariant case can be proved with the same argument, reversing the order of composition
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1.3 Categories of Morphisms over an object

1. Let C be a category and X one object in C. We define the category C/X: Objects are morphisms
u : Y → X in C, with Y some other object. A morphism of objects over X is a commutative diagram

Y

  @@@@@@@@
// Y ′

~~}}}}}}}}

X

Sometimes we write an object u : Y → X over X, simply as a pair (Y, u).

2. There is a canonical source functor s : C/X // C sending each morphism Y → X over X to its
initial object Y ;

3. If f : X → X ′ is a morphism in C, there is an induced functor f∗ : C/X // C/X ′ sending each
morphism Y → X to the composition Y → X → X ′.

1.4 Equivalence of Categories

1.4.1 Definition and Properties

The notion of an isomorphism between two categories C and D is naturally defined in the sense of the
category of all categories, Cat. However, the isomorphism condition is too restrictive. In this sense we
introduce an usefull weaker criterium

Definition 1.4.1.1. Two categories C and D are said to be equivalent categories if there exist functors

F : C // D and G : D // C such that F ◦G is a functor isomorphic (in Fun(D,D)) to the identify
functor on D, ID, and G ◦ F is isomorphic to the identify functor on C, IC. We denote the equivalence by
the pair (F,G) or simply by C ∼= D. F and G are said to be quasi-inverses.

Definition 1.4.1.2. We say that an equivalence of categories (F,G) is an anti-equivalence if the functors
in the pair are contravariant.

We will only consider equivalences. The anti-equivalences can be treated analogously using dual cate-
gories. The following result can be easily proved,

Proposition 1.4.1.3. Let C, D and E be categories. If C ∼= D and D ∼= E then C ∼= E.

We describe some properties that are preserved:

Proposition 1.4.1.4. Let (F,G) be an equivalence of categories as above (between C and D). Then,
u : X → Y is an isomorphism in C if and only if F (u) : F (X)→ F (Y ) is an isomorphism in D

Proof. If u : X → Y is an isomorphism, it follows directly from the fact that F is a functor, that F (u) :
F (X)→ F (Y ) is also an isomorphism. If we start with F (u) : F (X)→ F (Y ) an isomorphism, since G is a
functor, G(F (u)) : G(F (X)→ G(F (Y )) is also an isomorphism in C. But the pair (F,G) is an equivalence.
So, G ◦ F is isomorphic as a functor to the identify on C, following that G(F (X)) ∼= X and G(F (Y )) ∼= Y .
Composing the isomorphisms, we conclude that u : X → Y is an isomorphism.
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In particular,

Corollary 1.4.1.5. For any object X in C, the map induced by an equivalence F , AutC(X)→ AutD(F (X))
sending φ : X → X to F (φ) : F (X)→ F (X) is an isomorphism of groups.

1.4.2 Conditions for Equivalence

Let us now establish an usefull criterium of equivalence of categories:

Definition 1.4.2.1. A functor F : C // D is said to be essentially surjective if every object in D is
isomorphic to some object in the image of F .

Definition 1.4.2.2. A functor F : C // D is fully faithful if the map HomC(A,B)→ HomD(F (A), F (B)),
induced by the functor, is an isomorphism of sets, for every pair of objects A and B in C.2

We then have

Lemma 1.4.2.3. A functor F : C // D establishes an equivalence of categories if and only if it is
essentially surjective and fully faithful.

Proof. Suppose first that (F,G) is an equivalence of categories:

• given an object OD on D, we know that F (G(OD)) ∼= ID(OD) = OD, so OD is isomorphic to the image
of G(OD) under F and F is essentially surjective;

• if A and B are objects in C we can have a sequence of set maps induced by the functors F and G,

HomC(A,B)→F HomD(F (A), F (B))→G HomC(G ◦ F (A), G ◦ F (B))

Since G ◦ F ∼= IC, the composite above is an isomorphism so each of the maps is an isomorphism. We
conclude that HomC(A,B) ∼= HomD(F (A), F (B)) and F is fully faithful.

Let’s now suppose we are given a functor F : C // D that is essentially surjective and fully faithful.
To prove that F is an equivalence of categories we need to construct another functor G : D // C such
that the pair (F,G) is an equivalence (in the sense first defined). Consider the following construction:
since F is essentially surjective, each object OD of D is isomorphic to some object F (A) on the image of
C, denote φOD : F (A) → OD a choice of one such isomorphism, with one of those objects A. Define G by
OD 7→ G(O′D) = A. Moreover, given a morphism u : OD → O′D, since OD ∼= F (A) and O′D ∼= F (A′) for some
objects A and A′ in C, we have by Prop 1.1.1.3 an isomorphism HomD(OD, O′D) ∼= HomD(F (A), F (A′)).
Since F is fully faithful (that is, HomD(F (A), F (A′)) ∼= HomC(A,A′) ), we define G(u) to be the image of
u under the composition of this isomorphisms. The composition of morphisms is then preserved and G is
indeed a functor. Finally, we check that the pair (F,G) is indeed an equivalence. For one side, the maps φOD :
F (A) = F (G(OD))→ OD define an isomorphism φ : F ◦G→ ID. We construct now a natural transformation
T : G ◦ F → IC that is a natural isomorphism. We want to find an isomorphism ψA : G(F (A)) → A, for
each object A in C. By the fact that F is fully faithful, HomD(F (G(F (A))), F (A)) ∼= HomC(G(F (A)), A),
and since we have already seen that F ◦G ∼= ID, we define, for each A, ψA as the image of the isomorphism
F ◦G(F (A))→ F (A) under the above isomorphism of sets.

2If F is contravariant, we ask for an isomorphism HomC(A, B)→ HomD(F (B), F (A)), reversing the arrows.
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Observe that different choices of the isomorphisms φOD : F (A)→ OD give different functors G, but this
construction, for any choice, produces a pair (F,G) defining an equivalence.

1.5 Adjoint Functors

Definition 1.5.0.4. Let C and C′ be two categories. A pair of functors F : C // C′ and G : C′ // C
is called adjoint if there is an isomorphism of functors

HomC(G(.), .) ∼= HomC′(., F (.)) : C′ ×C // Sets

If C and C′ are equivalent categories, the pair of functors F and G establishing the equivalence is easily
seen to be an adjoint pair: Indeed, given two objects X in C and A in C′, since A = IC′(A) ∼= F ◦G(A), we
have an isomorphism

HomC′(A,F (X)) ∼= HomC′(F (G(A)), F (X)) (1.3)

and since F is fully faithfull (1.4.2.3), the right set in 1.3 is isomorphic to HomC′(G(A), X). All these
isomorphisms have functorial properties.

1.6 Set-valued Functors

1.6.1 Functors hX and h◦X

Let C be a category. Given any object X, the operations hX(−) := HomC(X,−) and h◦X(−) :=
HomC(−, X) define functors from C to the category of sets. hX is a covariant functor: For each object Y in
C, hX(Y ) = HomC(X,Y ) is a set and for each morphism g : Y → Z there is an induced set morphism (i.e.
a set-map) g ◦ − : HomC(X,Y )→ HomC(X,Z) mapping f : X → Y to g ◦ f : X → Z. On the other hand
h◦X = HomC(−, X), is a contravariant functor: If Y is an object in C then HomC(Y,X) is a set. Also each
g : Y → Z induces a set-map − ◦ g : HomC(X,Y )→ HomC(X,Z) defined by f : Z → X 7→ f ◦ g : Y → X.
The composition law holds on both cases and identities map to identities.

1.6.2 Yoneda’s Lemma

Let us concentrate our attention on hX (the case of h◦X could be treated with dual arguments). Our
purpose now is to identify some properties of the functor hX and relate them with the object X. We start
by proving a very general and important result, known as Yoneda’s Lemma.

Lemma 1.6.2.1. (Yoneda’s Lemma) Let C be a category and F a covariant set-valued functor. Then:

There is a functorial bijection between F (X) and the set of natural transformations hX → F , given by
the following correspondence:
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HomFun(C,Sets)(hX , F ) // F (X)

ξ : hX → F
� // ξX(IX)

Proof. Given a natural transformation ξ : hX → F , we consider the particular morphism ξX : hX(X) →
F (X) and the image of the identity IX , ξX(IX) ∈ F (X). This correspondence mapping ξ 7→ ξX(IX) is a
bijection. Let us construct an inverse:

Starting with an element ζ ∈ F (X) we construct a natural transformation ξ. We define ξU : hX(U) →
F (U) by (u : X → U) 7→ F (u)(ζ) for each object U in C, so that ξX(IX) = ζ. It follows that for any
morphism f : U → V in C, the following diagram commutes

hX(U)

ξU

��

f◦− // hX(V )

ξV

��
F (U)

F (f) // F (V )

and the collection ξU , one for each object U , defines a natural transformation. This correspondence is an
inverse of the one first presented.

From this lemma we can extract very important properties of functors hX , such as:

Corollary 1.6.2.2. Every natural transformation hX → hY is induced by a unique morphism Y → X.
Moreover, the sets HomFun(C,Sets)(hX , hY ) and hY (X) are isomorphic.

Proof. Consider F = hY in the previous lemma.

1.6.3 Embedding C in Fun(C,Sets)

The correspondence h, mapping each object X in C to the functor hX and each morphism f : X → Y to
the induced morphism (− ◦ f) : hY → hX , defines a contravariant functor, embedding C◦ in Fun(C,Sets).
Similary, the dual correspondence h◦ defines a covariant functor that embedding C in Fun(C◦,Sets).

In fact,

Proposition 1.6.3.1. The functors h◦ (resp. h) establish an equivalence of categories between C◦ and the
subcategory of Fun(C,Sets) (resp., C in Fun(C◦,Sets)) given by the image of the respective functor.

Proof. A functor restricted to its image is obviously essentially surjective. GivenX and Y in C, it follows from
Yoneda’s Lemma that hY (X) = HomC(Y,X) ∼ // HomFun(C,Sets)(hX , hY ) is bijective and therefore h
is fully faithful.
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As an immediate corollary we can conclude that any category C can be seen as a subcategory of
Fun(C◦,Sets) through h◦ (resp. C◦ of Fun(C,Sets) through h). We also conclude that a natural trans-
formation hY → hX is an isomorphism if and only if the morphism X → Y inducing it also is. More-
over, the correspondence AutC(X)→ AutFun(C,Sets)(hX) mapping each automorphism φ of X to the map
(− ◦ φ) : hX → hX is an isomorphism of groups. Every automorphism of hX is of this form.

1.6.4 Representable Functors

Through this section we will study the representability of a covariant functor (the dual case can be
considered with similar arguments).

Definition 1.6.4.1. Let C be a category, X an object and F a covariant functor to the category of sets.
We say that the functor is representable by an object X if there exists an isomorphism ξ : hX → F . In this
case the pair (X, ξ) is called a representation of F .3

Remark 1.6.4.2. If F is represented by an object X in C

ξ : hX → F

by Yoneda’s Lemma, ξ is uniquely determined by an element ζ ∈ F (X), given by

ζ = ξX(IX)

In addition, since ξ is an isomorphism, for each object U in C, every element u ∈ F (U) is identified
with a unique morphism ū : X → U through the formula

u = F (ū)(ζ)

where ζ is fixed.

As a result, for every morphism a : U → V , the induced morphism F (a) : F (U)→ F (V ) mapping each
u ∈ F (U) to F (a)(u) ∈ F (V ) is naturally identified with the composition of morphisms ū→ a ◦ ū

U a
// V

X

ū

OO

a◦ū

>>~~~~~~~

The fact that every element u ∈ F (U) is obtained through u = F (ū)(ζ) is equivalent to the fact that
every morphism ū : X → U factors as ū ◦ IX : X → X → U

We will also write (X, ζ) (with ζ ∈ F (X)) to denote the pair representing F .

Proposition 1.6.4.3. If F is representable, any two objects that represent F are isomorphic.

3It is also said that X is the solution to the universal problem posed by F , or equivalently, that X has the universal property

posed by F .
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Proof. F being representable by X and Y , objects in C, means that F ∼= hX ∼= hY . This latter isomorphism
is induced by a morphism Y → X, which by corollary 1.6.2.2 is an isomorphism between the objects X and
Y .

Proposition 1.6.4.4. If F is a functor represented by a pair (X, ξ) then the composition

AutC(X)→ AutFun(C,Sets)(hX)→ AutFun(C,Sets)(F )

defined by φ 7→ (− ◦ φ) 7→ ξ ◦ (− ◦ φ) ◦ ξ−1, is an anti-isomorphis of groups.

Proof. As already seen in the last section, the correspondence X → hX is an anti-equivalence of categories
and the induced map AutC(X)→ AutFun(C,Sets)(hX) is an isomorphism. For a fixed isomorphism ξ : hX →
F representing F , every automorphism of F induces an automorphism of hX

F

ξ−1

��

// F

ξ−1

��
hX // hX

which is of the form (− ◦ φ) for some automorphism φ of X. This concludes the proof.

Notice that the equivalence stated in Section 1.6.3 between C and the image of h in Fun(C,Sets)
extends to the full subcategory of representable functors, since the essential surjective property is ensured
by the representability.

1.7 General Constructions on Categories

The notion of representable functors (covariant and contravariant) allows us to formalize many concepts,
such as products of objects, sums of objects, limits and colimits.

1.7.1 Representable Functors with Values in Sets of Morphisms - Universal

Properties

In this section we will study the results of remark 1.6.4.2 in the particular case of a functor F such that
F (U) takes values on a set of (possible families) morphisms either ending or starting on U (for covariant
or contravariant functors, respectively), satisfying some property. Suppose F is covariant. For a morphism
f : U → V , F (f) : F (U)→ F (V ) is the composition of all the morphisms of a family on F (U) with f , thus
getting a family of morphisms on F (V ). If F is representable by a pair (X, ζ), then by remark 1.6.4.2:

∀x ∈ F (X) ∃! (x̄ : X → U) : x = F (x̄)(ζ)

(meaning that x, as a family of morphisms, can be uniquely obtained by composing the family ζ with the
uniquely determined morphism x̄). This property is usually called the ”Universal Property” imposed by the
functor F . In the next sections we present some examples.
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1. Example I - Products and Sums

To define a general product structure on an arbitrary category we use the cartesian product of sets.

Let (Ai)i∈I be a family of objects of a category C. We may consider, for each other object U , the
family of sets {HomC(U,Ai)}i∈I and the direct product of this sets, Πi∈IHomC(U,Ai), which is also a
set. The correspondence F : U 7→ Πi∈IHomC(U,Ai) is functorial and contravariant and it satisfies the
conditions discussed in Section 1.7.1. We define the product of the family (Ai)i∈I , if it exists, as a pair
(X, ζ) representing this functor, unique up to isomorphism. We write the symbol Πi∈IAi to denote
X. In this case, ζ is a particular family of morphisms {pj : Πi∈IAi → Aj} ∈ Πj∈IHomC(Πi∈IAi, Aj)
called ”canonical projections”. As noticed in 1.7.1, every element x = (xi : U → Ai) ∈ F (U) is
uniquely determined by a unique morphism x̄ : Πi∈IAi → U and the canonical projections:

U

xi

��
















x̄

���
�
�

xj

��4444444444444444

Πi∈IAi

pi
{{xxxxxxxxx

pj
##GGGGGGGGG

Ai Aj

We say that a category admits finite products if for any finite family this functor is representable and
we say that it admits products, in general, if the representability of any family is possible.

As a product of a family of sets we recover the usual cartesian product.

With dual considerations, we can define the sum of a family of objects (Ai)i∈I as a pair (
∐
i∈I Ai, ζ)

representing the covariant functor X 7→ Πi∈IHomC(Ai, X). In this case, ζ is a family of morphisms
{ij : Aj →

∐
i∈I Ai} called ”canonical inclusions”. The ”universal property” of the ”sum” structure

can be encoded on the following diagram

U

∐
i∈I Ai

x̄

OO�
�
�

Ai

xi

DD
















ii

;;wwwwwwwww
Aj

ij

ccGGGGGGGGG

xj

ZZ4444444444444444

As a sum of two sets we recover the disjoint union of sets.

Given a functor F : C // D between two categories both admiting products (or sums), we say
that F preserves (or commutes) with products (or sums) if F (ΠiAi) = ΠiF (Ai) for every product of
a familiy (Ai).

2. Example II - Fiber Products and Pushouts

Let A, B and C be sets and let u : A → C and v : B → C be maps of sets. The product A ×C B is
defined as the subset of A×B of pairs (a, b) such that u(a) = v(b) in C.

Given X, Y and S objects in a category C and f : X → S, g : Y → S morphisms, we may consider
the diagram
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Y

g

��
X

f // S

(1.4)

The correspondence F : Z 7→ F (Z) = HomC(Z,X) ×HomC(Z,S) HomC(Z, Y )4 defines a functor from
C to Sets. The fiber-product5 of the diagram is by definition, if it exists, a representative of this
functor, (X ×S Y, ζ), where ζ is an element of HomC(X ×S Y,X)×HomC(X×SY,S) HomC(X ×S Y, Y ),
that is, a pair (pX : X ×S Y → X, pY : X ×S Y → Y ) such that f ◦ pX = g ◦ pY . Equivalently, and by
1.3, we could introduce fibre-products as the product of two objects in C/S. After 1.7.1 we can write
the universal property of fibre-products with the help of a diagram

Z
xX

))SSSSSSSSSSSSSSSSSSSS

xY

��5555555555555555

x̄ ##H
H

H
H

H

X ×S Y
pX

��

pY
// Y

g

��
X

f
// S

where x = (xX , xY ) is an element of F (Z).

Remark 1.7.1.1. Notice that the fiber-product of a diagram of type 1.4 is in fact equivalent to the
product (in the sense defined in the previous example) of two objects in C/S. In this sense, we can
define the fiber-product of an arbitrary family of morphisms over a given object S in C, as the common
fiber-product of every pair of morphisms over S in the family.

Dually, given a pair of morphisms f : S → X and g : S → Y ,

S
f
//

g

��

Y

X

for each object Z in C we assign the subset of HomC(X,Z) × HomC(Y,Z) of all pairs (u, v) with
u ◦ f = v ◦ g. Again, this correspondence is functorial. We define the pushout of f and g as a pair
representing this functor, given by an object X

∐
S Y and a pair of morphisms i1 : Y → X

∐
S Y and

i2 : Y → X
∐
S Y with i1 ◦ f = i2 ◦ g:

S

f

��

g
// Y

i2
��

��4444444444444444

X

))SSSSSSSSSSSSSSSSSSSS
i1
// X

∐
S Y

##G
G

G
G

G

Z

4By defining A = HomC(Z, X), B = HomC(Z, Y ) and C = HomC(Z, S) and maps u := f ◦ − and v := g ◦ −, we are

choosing only pairs of morphisms Z → X and Z → Y such that the square diagram commutes
5Fibre-Products are also called Pull-backs
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Pull-Backs

Let C be a category for which all fiber-products of two objects over a third one exist. Let S be an
object in C and consider the category C/S. Let X be an object in C/S, X → S. Given another object
S′ and a morphism φ : S′ → S in C, we can see S′ as an object over S and consider the fiber-product
of X → S with φ : S′ → S. In this case, the canonical morphism X ×S S′ → S′ is an object in C/S′.
Moreover, from the properties of the fiber-product it follows that, given a morphism Z → X of objects
over S, there is an unique induced morphism Z×S S′ → X×S S′ over S′. Therefore, the fiber-product
in C induces a functor

φ∗ : C/S // C/S′ (1.5)

for every morphism φ : S′ → S. We call it the pull-back functor. Given S′′ another object in C
and a sequence φ ◦ φ′ : S′′ → S → S of morphisms in C , there is a canonical isomorphism between
(X ×S S′)×S′ S′′ and X ×S S′′, obtained using the properties of fiber-products.

3. Example IV - Equalizers and Coequalizers

•

Example 1.7.1.2. Given two set-maps X
f
//

g //
Y we may consider the subset E ⊆ X of all

elements x ∈ X such that f(x) = g(x). This subset has the following property: If Z is another
set with a morphism u : Z → X such that f ◦ u = g ◦ u, then it factors uniquely through E as:

Z //___ E
i
// X

f
//

g //
Y , where i : E → X is the inclusion monomorphism, obviously with

f ◦ i = g ◦ i. This property can be explained through a diagram as

E
i
// X

f
//

g //
Y

Z

``@
@

@
@

u

OO >>~~~~~~~

We generalize this construction to a general category: Given a pair of morphisms X
f
//

g //
Y in

C we want to find a subobject i : E → X such that every morphism u : Z → X with f ◦u = g ◦u,
factors on a unique way through i. For every object Z we may consider the subset of HomC(Z,X)
of all morphisms u with f ◦ u = g ◦ u. We denote this set by HomC(Z,X)f,g. The assignment of
this set to each object Z establishes a functorial correspondence from C to Sets. We define the

equalizer (also called kernel) of X
f
//

g //
Y as a pair (E, i ∈ HomC(E,X)f,g) representing this

functor.

Notice that i : E → X is a monomorphism: For every object Z, if two morphisms u, v : Z → E

verify i◦u = i◦v then we have f ◦ i◦u = f ◦ i◦v and, since the factorization through E is unique,
we must have u = v. In fact, the constructions yields the same universal property presented in
the diagram above.
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Example 1.7.1.3. In the category of modules over a ring R (see 2.1.2), the kernel E of a

morphism of R-modules f : X → Y is recovered as the equalizer of the pair X
f
//

0 //
Y , where

0 : X → Y is the null-morphism. In this case, E is an R-submodule of X and the canonical
morphism E → X is the inclusion.

• We dualize this construction and define the coequalizer (also called cokernel) of a pair X
f
//

g //
Y

in C as a pair (E, i ∈ HomC(Y,E)f,g) representing the functorial correspondence Z 7→ HomC(Y,Z)f,g,
where this last set denotes all morphisms u : Y → Z with u ◦ f = u ◦ g. The universal property
posed by this functor can be visualized as

X
f
//

g //

  @@@@@@@ Y

u

��

i
// E

��~
~

~
~

Z

The canonical morphism i : Y → E is an epimorphism: Since i ◦ f = i ◦ g, given two morphisms
a, b : E → Z with a ◦ i = b ◦ i we have a ◦ i ◦ f = b ◦ i ◦ g and since the factorization through i is
unique, we must have a = b.

Example 1.7.1.4. In the category of modules over a ring R, the cokernel of a morphism between

R-modules, f : X → Y is recovered as the coequalizer of the pair X
f
//

0 //
Y . In this case, this

cokernel is isomorphic to the quotient module Y/f(X).

1.7.2 Diagrams in C

A directed graph is a set of vertices I, a set of edges E, a terminal map t : E → V assigning each edge
to its ending vertex and an initial map s : E → V mapping each edge to its starting vertex. For a directed
graph D = (I, E, t, s), a diagram of type D or D −Diagram on a category C is a map that to each vertex
i ∈ I assigns an object Ai in C and to each edge e starting on a vertex i and ending on j assigns a morphism
ρij : Ai → Aj in C.

Sometimes we omit the reference to the graph D and simply see a diagram D as a collection of objects
(Ai)i∈I and a collection of morphisms between those objects, (ρij : Ai → Aj)(i,j)∈I×I .

1.7.3 Limits and Colimits of Diagrams

Given a D-diagram and an object U of C, we define a cone over D with vertex U as a collection of
morphisms, from U to each one of the objects in the diagram (ui : U → Ai)i∈I , commuting with all the
morphisms ρij : Ai → Aj defining the diagram (that is, uj = ρij ◦ ui, ∀i, j ∈ I). We write Cone(U,D) to
denote the subset of Πi∈IHomC(U,Ai) of such families of morphisms that are cones.

Definition 1.7.3.1. Given a D-diagram we may consider the map sending every object U of C to the set
Cone(U,D). This correspondence is functorial and contravariant. The limit of the diagram (also called
left-limit), if it exists, is a pair (limD, (xi : limD → Ai)i∈I) representing this functor.6

Cone(U,D) ∼= HomC(U, limD)
6Sometimes we also use the notation lim←−D to denote this limit.
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Considering the dual situation, given a D-diagram on C, we define a co-cone of D with vertice on an
object U , as a family of morphisms from each one of the objects in the diagram to U , (u′i : Ai → U)i∈I ,
commuting with every morphisms ρij . Denote by CoCone(D,U) ⊆ Πi∈IHomC(Ai, U) the set of all this
families. Like before, the correspondence U 7→ CoCone(D,U) is functorial, this time covariant, and we
define the colimit of D , colimD7 as a pair representing this functor.

Remark 1.7.3.2. Since limits and colimits are defined using the representability of a certain functor, they
are unique up to isomorphism.

Remark 1.7.3.3. The Product (resp. Sum) of an arbitrary family could be defined as a limit (resp. colimit)
of a diagram whose vertices are represented by the objects of the family and whose edges correspond to
the identity morphisms of those objects. Fibre products (resp. Pushouts) could defined as limits (resp.
colimits) of diagrams of the type • // • •oo (resp. • •oo // • ), on C. Also, equalizares
(resp. coequalizers) have a similar definition, as limits (resp. colimits) of diagrams of type • //

// • .

We use the following terminology concerning C:

• has finite products: if all limits of diagrams with a finite set of vertices and an empty set of edges,
exist in C.

• admits finite limits: if all limits of diagrams with a finite set of vertices and a finite set of edges exist
in C

• has all limits: if all diagrams have a limit in C.

We apply the same terminology for sums and colimits.

1.7.4 Terminal and Initial Objects

An initial object ∅C in C is an object such that for every other object X of C, the set HomC(∅C, X)
has precisely one element. Similarly, we define a terminal (or final) object 1C in C as an object such that for
every other object X, the set HomC(X, 1C) is a one-element set. Both initial and terminal objects, when
they exist, are unique up to isomorphism. There is an alternative description of both terminal and initial
objects as limits, resp. colimits of empty diagrams. For a detailed exposition see [15].

We focus now on the properties of these objects with respect to sums and products.
If we add a terminal object 1C to some family (Ai)i∈I of objects, to obtain the product of this new fam-
ily we need to find a representation of the functorial correspondence given by U 7→ Πi∈IHomC(U,Ai) ×
HomC(U, 1C). The last set on this product is a one-element set, and we immediately conclude that this
functor is isomorphic to the one constructed considering the original family. Since the functors are isomor-
phic, their representing objects are also isomorphic and

(Πi∈IAi)× 1C
∼= Πi∈IAi

We conclude that 1C plays the role of a neutral element with respect to products of objects. Using similar
arguments we conclude that an initial object ∅C is a neutral element with respect to sums.8

7 (Sometimes we write limD = lim←−D and colimD = lim−→D)
8In some literature it is common to find the term ”left-unity” to denote terminal objects and ”right-unity” to denote initial

objects.
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Example 1.7.4.1. In Sets, the empty set is an initial object and a set with one element is a terminal object.

We introduce a useful definition.

Definition 1.7.4.2. We say that an object X in a category C is connected if everytime we have X ∼= A
∐
B

then either X ∼= B and A ∼= ∅C or B ∼= ∅C and X ∼= A.

Example 1.7.4.3.

• In the category of sets the sum operation corresponds to the disjoint union of sets. The only connected
objects are the one-element sets since every set S can be written as a disjoint union S =

∐
s∈S{s};

• In the category of topological spaces with continuous maps, the sum operation is also given by the
disjoint union of topological spaces. However, in this case we need to preserve the topological structure.
It can be proved that a topological space is connected if and only if the only subsets of X that are both
open and closed in X are the empty set and X itself (See [7]).

• In the category of vector spaces over R, with linear transformations, the sum operation is given by the
directed sum of copies of R. In this case, the only connected object is precisely R.

1.7.5 Equivalence of Constructions

Up to now, we have introduced many different constructions on a category C, all of them using repre-
sentations of functors with values on sets of morphisms. Some of these constructions can be shown to be
equivalent:

• (i) - The existence of all finite products and all equalizers implies the existence of all fibre-products and
of a terminal object: As mentioned above, a terminal object can be obtained as a product of an empty
family of objects; To obtain the fiber-product of two morphisms over an object B, f : A → B and
g : C → B, consider the product A×C and the projections p1 : A×C → A and p2 : A×C → C. Since we

are supposing that all equalizers exist, we recover the fiber product as the equalizer of A× C
f◦p1

//
g◦p2 //

B .

• (ii) - The existence of all fibre-products and of a terminal object implies the existence of all finite
products and all equalizers: The product of two objects A and B is recovered as the fiber-product of
the unique morphisms from A and B to the terminal object; Since we now know that finite products

exist, we use them to prove the existence of all equalizers. Given a pair of morphisms A
f
//

g //
B we

consider the fiber-product of f and g, A×B A along with p1, p2 : A×B A→ A with p1 ◦ f = p2 ◦ g, the
canonical morphisms. Moreover, since the product A × A exists, the pairs p1 and p2 factors through
a unique morphism A ×B A → A × A → A, where the last arrow is the unique canonial projection
given by the product. Similarly, the pair (IA, IA), where IA : A → A is the identity morphism, also
factors uniquely through A→ A×A→ A. With this, we have a pair of morphism over A×A and the

fiber-product of this pair, A×A×A (A×B A), is the desired equalizer of the diagram A
f
//

g //
B .

We summarize the above results in the following proposition

Proposition 1.7.5.1. A category C admits finite products and equalizers if and only if admits all fibre-
products and has a terminal object.
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In fact, the existence of all finite products and all equalizers implies all limits of finite diagrams to exist:

Proposition 1.7.5.2. The limit of any finite diagram in C is constructible from the existence of all finite
products and all equalizers.

Proof. If all limits of finite diagrams exist in C, by the precedding remarks, all finite products and all
equalizers also exist. Conversely suppose that all finite products and all equalizers exist in C. Let (Ai)i∈I and
(ρi,j : Ai → Aj)(i,j)∈I×I be a D finite type diagram in C. Given an object U and a cone u = (ui : U → Ai)
over the diagram, since we are assuming that all finite products exist, the product Πi∈IAi exists together
with the canonical projections (pj : Πi∈IAi → Aj)j∈I . By the universal property of the product, u factors
in a unique way through a morphism ū : U → Πi∈IAi, and we have ui = pi ◦ ū. However, we notice that the
family (pi) is not necessarily a cone (Indeed, if it was a cone, then the product Πi∈IAi would already be the
limit of the diagram).
For each morphism ρi,j : Ai → Aj in the diagram, we may consider the pair of morphisms ρi,j ◦pi : Πi∈IAi →
Ai → Aj and pj : Πi∈IAi → Aj . This pair induces another pair

Πi∈IAi //
// Π(ρi,j)Aj

Let (X,x : X → Πi∈IAi) be the equalizer of this last pair. We notice that X is precisely the limit of
the diagram: Indeed, if u is a cone as introduced above, u factors in a unique way through the canonical
projections and since u is a cone it has to factor in a unique way through x.

Using similar arguments we could easily prove that if all finite sums and all coequalizers exist in C, then
all colimits also exist. Before ending this section, let us make some important observations:

Remark 1.7.5.3. The finite property only concerns products and the type of the diagram. Suppose C has all
equalizers. Thus, if products of a certain cardinality exist then limits for diagrams with the same cardinality,
also exist. In particular, if all products exist then all diagrams have a limit, constructible as above.

Remark 1.7.5.4. All the previous statements concerning limits, products, fibre products, equalizers and
terminal objects, could be dualized, refering respectively to colimits, sums, pushouts, coequalizers and initial
objects.

Remark 1.7.5.5. 1. In Sets all limits (resp. colimits) exist. This follows from the fact that all products
9 and all equalizers (resp. sums and coequalizers) exist in Sets;

2. All limits exist in Fun(C,Sets): Given a family of set-valued functors (Fi)i∈I , the assignment defined
by

(Πi∈IFi) : X 7→ Πi∈I(Fi(X))

is a functorial correspondence. For each object X, the product Πi∈I(Fi(X)) comes equipped with a
family of canonical projections pi(X) : Πi∈I(Fi(X))→ Fi(X). We easily conclude that the assignment
X 7→ pi(X) defines a morphism of functors pi : (Πi∈IFi) → Fi. Given a third set Z(X) and a
family of set morphisms (ui(X) : Z → Fi(X))i∈I , by the product’s universal property, there is a
unique factorization ui(X) : Z

ΨX

//___ Πi∈IFi(X)
pi(X)

// Fi(X) . If Z is another set-valued functor and

(ui : Z → Fi)i∈I is a family of natural transformations, we easily see that the assignment X → ΨX

defines a (uniquely determined) natural transformation Z → Πi∈IFi such that

9By the axiom of choice
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ui : Z
Ψ
//___ Πi∈IFi pi

// Fi

and Πi∈IFi is the product of (Fi)i∈I .

Given a diagram F1
f
//

g //
F2 in Fun(C,Sets), we consider the assignement

X
� // Equalizer(F1(X)

fX

//
gX //

F2(X))

where the equalizer is taken in the category of sets. Using similar arguments as above, we can easily
see that this correspondence is functorial and is the equalizer of the diagram above.

1.7.6 Functors Preserving Limits

Let F : C // C′ be a functor. Considering a diagram of type D in C given by a collection (Xi)i∈I
of objects and morphisms (ρij)i,j∈I , the image under F of this collection forms another D-type diagram, this
time in C′. We denote it by FD.

Definition 1.7.6.1. We say that F preserves limits if everytime a D-diagram has a limit in C, given by a
pair (limD, φ ∈ Cone(limD,D)), the image of this pair, (F (limD), F (φ) ∈ Cone(F (limD), FD)) is a limit
of FD in C′.

The previous section gives us a tool to determine wether a given functor preservers limits. We saw that
a limit of a diagram of type D in C can always be constructed using products and equalizers or equivalently,
fibre-products and a terminal object. This implies:

Proposition 1.7.6.2. F preserves finite limits if and only if F maps terminal objects to terminal objects
and preserves fibre-products (or equivalently, preserves products and equalizers).

Remark 1.7.6.3. We notice that if two functors are isomorphic and one of them preserves limits, then
the other also preserves limits. This follows immediatly from the last proposition, because both must map
terminal objects to terminal objects and preserve fibre-products.

Example 1.7.6.4. From the previous remark, we conclude that to address the case of representable functors,
it suffices to study functors of type hX : C // Sets :

• hX naturally preserves products: In fact, by the definition of a product we have HomC(X,Πi∈IAi) ∼=
Πi∈IHomC(X,Ai);

• hX preserves equalizers: Given a diagram E
i
// A

f
//

g //
B with i : E → A an equalizer, we have

HomC(X,E)
i∗
// HomC(X,A)

f∗
//

g∗ //
HomC(X,B) also an equalizer in sets, by definition.

Thus, all covariant representable functors preserve all limits existing in C. Dually, contravariant repre-
sentable functors map colimits to limits.
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Seeing X as a variable in the formulas above, we conclude that the functor h◦ : C // Fun(C,Sets)

mapping Y → h◦Y , preserves products, h◦A×B ∼= h◦A × h◦B, and equalizers and so, all limits existing in C.

Dually, we conclude that the contravariant functor h : C // Fun(C,Sets) sends sums to products
and coequalizers to equalizers, thus mapping all colimits to limits.

Example 1.7.6.5. Each object X in C naturally defines a functor Fun(C,Sets) // Sets mapping each

F to F (X). We conclude that this functor maps terminal objects to terminal objects and preserves fibre prod-
ucts, and therefore preserves all finite limits. The same situation happens with initial objects and pushouts.
In this sense, we conclude that all limits/colimits in Fun(C,Sets) are fully determined ”object by object”.

We use the following terminology concerning a functor F : C // C′ :

• is right exact if it preserves colimits;

• is left exact if it preserves limits;

• is exact, it it is both right and left exact.

1.7.7 Inductive and Projective Systems

Let I be a small category. We can think of I as a graph whose vertices and edges are, respectively, the
objects and morphisms of I. With this in mind, we can describe a diagram in C of the same type of the
graph encoding I, simply as a functor from I with values in C.

Definition 1.7.7.1. Let I be a small category.

• An inductive system in C of type I is a covariant functor

α : I // C

• A projective system in C of type I is a contravariant functor:

β : I◦ // C

Definition 1.7.7.2. • The inductive limit of an inductive system α : I // C is the colimit of the
diagram in C spanned by the image of α. We use the notation lim−→Iα to denote this colimit.

• The projective limit of a projective system β : I◦ // C is the limit of the diagram in C spanned
by the image of β; We use the notation lim←−Iα to denote this limit.

We will frequently omit the functor F and write a projective system simply by indicating the collection
of objects (F (i))i∈I and transition morphisms (ρs = F (i, j) : F (i)→ F (j))s:j→i.

Example 1.7.7.3. In Sets, inductive and projective limits always exists.

• Let β : I◦ // Sets be a projective system. We notice that the set S = {(xi) ∈ Πi∈Iβ(i) : β(s)(xi) =
xj , for all s ∈ HomI(j, i)} ⊆ Πi∈Iβ(i), together with the canonical projections inherited from the
product, S → β(j), satisfies all the necessary properties of a limit:
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– By construction, each canonical projection commutes with every composable ρs;

– If T is another set with a family of maps ui : T → β(i) commuting with the transition morphism
β(s) then there is a uniquely determined factorization T → S → β(j) defined by mapping each
t ∈ T 7→ (ui(t))i∈I ;

In fact, there is another equivalent description of this limit set: Each point x = (xi)i∈I ∈ S defines
a natural transformation, between the projective system ∗ : I◦ // Sets mapping every i to a one-
element set {∗}, and β. The converse is also true and we have a bijection

S ∼= HomFun(I,Sets)◦(∗, β)

• If we have an inductive system instead, with (ρs : Si → Sj)s:i→j, we can produce a colimit set by
considering an equivalence relation on

∐
i∈I Si by defining x ∈ Si equivalent to y ∈ Sj if and only if

there exists s : i→ k and s′ : j → k such that ρs(x) = ρs′(y). The quotient space of
∐
i∈I Si under this

relation together with the inclusion maps Si →
∐
i∈I Si satisfy all the conditions of a colimit.

Note that limits of inductive and projective systems on an arbitrary category C can be obtained using
projective limits of sets. To understand this, consider a projective system

β : I◦ // C

For each object U in C, the family of sets (HomC(U, β(i)))i∈I together with the composition maps
(ρs ◦ −) : HomC(U, β(i))→ HomC(U, β(j))s:j→i defines a projective system of sets:

φUβ : I◦ // Sets defined by i � // HomC(U, β(i))

As seen in the last example, the limit of a projective system of sets always exists and, we have another
functorial correspondence

C◦ // Sets sending U � // limI←−−φ
U
β = limI←−−HomC(U,Xi)

Definition 1.7.7.4. This functor is called the limit functor of β and denoted simply as limI←−−β.

Notice that the set limI←−−φ
U
β is easily identified with what we defined as Cone(U,D), where D is the

diagram in C spanned by the image of β. Therefore, according to definition 1.7.3.1 the limit of β exists in
C if and only if this limit functor is representable.

Remark 1.7.7.5. When C = Sets and β : I◦ // Sets is a projective system, we may still consider the
limit functor

limI←−−β : I◦ // Sets

In this case, this functor is representable by the limit set found in 1.7.7.3.

Similary, given an inductive system α : I // C , for each object U in C the collection of sets
(HomC(Xi, U))i∈I together with the appropriate composition maps defines a projective system of sets
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i 7→ HomC(α(i), U)

For each U , the limit of this projective system coincides with what we have defined as CoCone(D,U),
where D denotes the diagram spanned by the image of α in C.

Example 1.7.7.6. In particular, if α is an inductive system of sets, the limit-set (
∐
I α(i)/ ∼) constructed

in 1.7.7.3 represents the limit-functor of α.

Remark 1.7.7.7. Given a functor f between two categories C and D, any inductive system α : I // C
induces another inductive system on D through the composition of functors, f ◦ α. If f is contravariant, it
turns projective systems to inductive systems and vice-versa.

1.7.8 Cofinal Functors

Definition 1.7.8.1. Let I and J be small categories. A functor

ϕ : J // I

is called cofinal if for every functor β : I◦ // Sets the natural map between the limit sets (1.7.7.3)

lim←−β → lim←−(β ◦ ϕ◦)

is a bijection 10. Whenever ϕ is an inclusion functor of a subcategory J of I, we say that J is a cofinal
subcategory if φ is cofinal.

Proposition 1.7.8.2. Let ϕ : J // I be a functor. The following properties are equivalent:

1. ϕ is cofinal;

2. For every category C and every functor β : I◦ // C the canonical natural transformation between
the limit functors (1.7.7.4)

lim←−β → lim←−(β ◦ ϕ◦)

is an isomorphism in Fun(C◦,Sets).

3. for every functor α : I // Sets the natural map between the limit sets (1.7.7.3)

lim−→(α ◦ ϕ)→ lim−→(α)

is a bijection.

4. For every category C and every functor α : I // C the canonical natural transformation between
the limit functors (1.7.7.4)

lim−→(α ◦ ϕ)→ lim−→(α)

is an isomorphism in Fun(C, Sets).
10ϕ◦ denotes the opposite functor of ϕ
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Proof. • (1)⇒ (2): Given a functor f : C◦ // Sets , the limit functor of f is given by the correspon-

dence X 7→ limI←−−φ
X
f , where φXf : I◦ // Sets is the projective system introduced in 1.7.7. Since ϕ

is cofinal, both sets lim←−φ
X
f and lim←−(φXf ◦ ϕ◦) are isomorphic. This isomorphism is functorial and so,

the limit functors lim←−f and lim←−(f ◦ ϕ◦) are isomorphic in Fun(C◦,Sets).

• (2) ⇒ (1): To prove this direction, consider the case when C = Sets. By (2), for any projective
system β : I◦ // Sets , there is an isomorphism between the limit functors lim←−β and lim←−(β ◦ϕ◦), in
Fun(C◦,Sets). By 1.7.7.3, we know that all projective limits exist in Sets, given by a set representing
the limit functors. Therefore, since the limit functors are isomorphic, the sets representing them are
also isomorphic and ϕ is cofinal.

• The results (1)⇒ (3) and (3)⇒ (1) can be proved using the fact that inductive limits can be obtained
using projective limits of sets, as explained in 1.7.7.

1.7.9 Filtrant Categories

Definition 1.7.9.1. A category I is called filtrant if it satisfies the following conditions:

1. I is non-empty;

2. for every objects i and j in I there exists another object k in I, such that the sets HomI(i, k) and
HomI(j, k) are non-empty. Visualized on a diagram:

i

��
k

j

@@

3. for any pair of morphisms f, g : i //
//
j , there exists another morphism h : j → k such that h ◦ f =

h ◦ g:

i

��

//
//
j

��
k

Example 1.7.9.2. A partial order 6 on a set I is said to be directed if for any i, j ∈ I exists k ∈ I such
that i, j 6 k. In this case, we call the pair (I,6) a directed set. Any partially ordered directed set (I,6)
defines a filtrant category I, whose objects are the elements of I and for i, j ∈ I the set HomI(i, j) has exactly
one element whenever i 6 j and is otherwise empty. The third condition in the definition above is trivially
satisfied. If i 6 j and j 6 k, the composition rule satisfy (j, k) ◦ (i, j) = (i, k), inheriting the order relation.
We also have (i, i) = Ii. 11

11This procedure is used, for example, when defining presheaves over a topological space X, where we take for I the open

sets of X together with the inclusion relation.
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We have the following important property concerning filtrant categories:

Lemma 1.7.9.3. Given a functor ϕ : J // I between small categories, with I filtrant, suppose the fol-
lowing conditions:

• ϕ is fully faithful;

• for every object i in I there is an object j in J and a morphism i→ ϕ(j).

In this case

1. J is also filtrant;

2. ϕ is cofinal.

Proof.

1. Since I is filtrant, I is non-empty and by the second condition, J is also non-empty; Again, since I is
filtrant, given two objects j1 and j2 in J, there is another object i in I with

ϕ(j1)

!!
i

ϕ(j2)

==

The second condition implies the existence of a third object j in J with

ϕ(j1)

  
i // ϕ(j)

ϕ(j2)

>>

Since ϕ is fully faithful, the fact that the sets HomI(ϕ(j1), ϕ(j)) and HomI(ϕ(j2), ϕ(j)) are non-
empty, implies that HomJ(j1, j) and HomJ(j2, j) are also non-empty sets; At last, given any diagram
j1 //

//
j2 in J, there is a third object k in I with

ϕ(j1)

##

//
//
ϕ(j2)

��
k

Again, the second condition is enough to ensure the existence of a third object j in J and a morphism
k → ϕ(j). The fact that ϕ is fully faithful allows us to conclude the proof.
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2. According to the definition 1.7.8.1, to prove that ϕ is cofinal it suffices to prove that for every projective
system β : I◦ // Sets the natural set-map (see 1.7.7.3)

lim←−β // lim←−(β ◦ ϕ) sending (xi)i∈I
� // (xϕ(j))j∈J

The first family satisfies β(s)(xi′) = xi for all morphisms s : i → i′ in I and its restriction (xϕ(j))j∈J
holds β(s)(xϕ(j′)) = (xϕ(j)), for all morphisms s : ϕ(j)→ ϕ(j′) in I and since ϕ is fully faithful, in fact,
this happens for all morphisms j → j′ in J. The second imposed condition implies that this map is a
bijection since we can recover the whole family, starting with the values (xϕ(j))j∈J . For every i ∈ I, by
the second condition, there exists a morphism s : i → ϕ(j), for some j ∈ J. We define for each i ∈ I,
xi = β(s)(xϕ(j)). This is well-defined:

• Given two morphisms i
s
//

s′ //
ϕ(j) , since I is filtrant, by 1.7.9.1-3 there is a k ∈ I such that

i

  

s
//

s′ //
ϕ(j)

u

��
k

By the second hypothesis, there is another j ∈ J and a morphism v : k → ϕ(j′) and we have

i

��

s
//

s′ //
ϕ(j)

u

��
k v

// ϕ(j′)

we have β(v ◦ u ◦ s′) = β(v ◦ u ◦ s)⇔ β(s′) ◦ β(v ◦ u) = β(s) ◦ β(v ◦ u) and therefore β(s)(xϕ(j)) =
β(s′)(xϕ(j)).

• If we have s : i→ ϕ(j) and s′ : i→ ϕ(j′), by 1.7.9.1-2, there is a k ∈ I with

ϕ(j)

u
  

ϕ(j)

u
  

k and by the second hypothesis k ∃h
// ϕ(j′′)

ϕ(j′)

v

>>

ϕ(j′)

v

>>

6

This way, we find a pair of morphisms i
h◦u◦s

//
h◦u◦s′//

ϕ(j′′) and by applying the previous step we

conclude the proof.

After this lemma, whenever we have an inclusion functor ϕ : J // I of J a subcategory of I filtrant,
to prove that J is cofinal, we simply need to check the second condition in the lemma.
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1.8 Strict Morphisms

Let C be a category and suppose that all equalizers and coequalizers exist in C.

Definition 1.8.0.4. Let C be a category and f : X → Y a morphism in C. The image of f , denoted Im(f),
is by definition, constructed as

Im(f) := Equalizer(Pushout(X
f
//

f //
Y ))

The pushout of X
f
//

f //
Y is given by an object Y

∐
X Y and a pair of morphisms i1, i2 : Y → Y

∐
X Y

and,

Im(f) = Equalizer( Y
i1
//

i2 //
Y

∐
X Y )

Moreover, we have i1 ◦ f = i2 ◦ f and by the universal property of an equalizer (see 1.7.1-3) there is a
canonical factorization of f

Im(f)
i
// Y

i1
//

i2 //
Y

∐
X Y

X

bbE
E

E
E

f

OO ;;vvvvvvvvv

and, as discussed in 1.7.1-3, the canonical morphism i : Im(f)→ Y is a monomorphism.

Example 1.8.0.5.

• Sets: Consider a set-map f : X → Y . The image of f is the set of all elements y ∈ Y such that, there
is some x ∈ X with y = f(x), denoted f(X). This set can be recovered using the above definition.
Y

∐
X Y is the disjoint union of two copies of Y under the following equivalence relation: if a point

y ∈ Y is equal to f(x) for some x ∈ X, we identify the y in the first copy with the y point in the second
copy. The canonical morphisms i1, i2 : Y → Y

∐
X Y , respectively, maps Y to the first, (resp. second)

copy of Y in Y
∐
X Y . Given another set Z together with a map φ : Z → Y with i1 ◦ φ = i2 ◦ φ, we

have for each point z ∈ Z, i1(φ(z)) = i2(φ(z). This is possible only if φ(z) is in both copies of Y , or,
in other words, if φ(z) equals f(x) for some x ∈ X. In this case, there is a canonical factorization of φ
through Z → f(X) → Y , where the first arrow sends z 7→ f(x) and the second arrow is the canonical
inclusion of f(X) in Y . We conclude that Im(f) is the set f(X).

• Topological Spaces: Using a procedure similar to the one presented in the previous example we can
prove that the image of a morphism f : X → Y between topological spaces is isomorphic to the set
f(X) equipped with the subspace topology, together with the canonical inclusion f(X)→ Y .

• Modules over a ring R: Given a morphism of R-modules (see 2.1.2), f : X → Y , the pushout of

X
f
//

f //
Y is isomorphic to Y ⊕ Y under the identification of all pairs (f(x),−f(x)) with (0, 0).
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Given a third R-module Z together with a morphism φ : Z → Y with i1 ◦ φ = i2 ◦ φ, for each element
z ∈ Z we have (φ(z), 0) = (0, φ(z)) ⇔ (φ(z),−φ(z)) = (0, 0). With this, we easily conclude that the

equalizer of the diagram Y
i1
//

i2 //
Y

∐
X Y (where i1 is the inclusion y 7→ (y, 0) and i2 : y → (0, y)) is

precisely the image submodule of f in Y .

We introduce the coimage of a morphism:

Definition 1.8.0.6. Let C be a category and f : X → Y a morphism in C. The coimage of f , denoted
CoIm(f), is by definition, constructed as

Coim(f) := Coequalizer(FiberProduct(X
f
//

f //
Y ))

Again, the fiber-product of X
f
//

f //
Y is given by an object X ×Y X and a pair of morphisms p1, p2 :

X ×Y X → X. We have

Coim(f) = Coequalizer(X ×Y X
p1
//

p2 //
X))

and since f ◦ p1 = f ◦ p2, by the universal property of coequalizers, (see 1.7.1-3) there is a canonical
factorization of f

X ×Y X
p1
//

p2 //

##HHHHHHHHH X

f

��

π
// Coim(f)

zzv
v

v
v

v

Y

where, as discussed in 1.7.1-3, the canonical morphism π : X → Coim(f) is an epimorphism.

Example 1.8.0.7.

• Sets: Consider a set-map f : X → Y . The fiber-product X×Y X is the set {(x1, x2) : f(x1) = f(x2)} ⊆
X×X, together with the natural coordinate projections p1, p2 : X×X → X. Given a third set Z and a
map φ : X → Z with φ ◦ p1 = φ ◦ p2. for each pair (x1, x2) with f(x1) = f(x2) we have φ(x1) = φ(x2).
We consider an equivalence relation on X: x is equivalent to x′ if and only if f(x) = f(x′). There is
natural quotient map π : X → X/ ∼. Notice that every φ as above, factors through

X → X/ ∼→ Z

where the last arrow maps [x] 7→ φ(x). Therefore, Coim(f) is given by X/ ∼. Notice also that in this
case, Coim(f) is isomorphic to f(X).

• Topological Spaces: Following the previous item, if f : X → Y is a continuous map between topological
spaces, we find that Coim(f) is given by X/ ∼ equipped with the quotient topology with respect to
π : X → X/ ∼. Notice that, in general, Coim(f) is not isomorphic to Im(f).
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• Modules over a ring R: Given a morphism of R-modules (see 2.1.2), f : X → Y , the fiber-product of

X
f
//

f //
Y is the R-submodule of X ×X of all pairs (x1, x2) with (x1−x2) ∈ ker(f). Following this,

it can easily be proved that Coim(f) is isomorphic to X/kern(f).

Proposition 1.8.0.8. There is a canonical unique factorization of f : X → Y as

X
π // Coim(f) //___ Im(f) i // Y

where i is a monomorphism and π is an epimorphism.

Proof. We use the universal properties of Im(f) and Coim(f): Since we have f ◦ p1 = f ◦ p2, there is a
factorization of f through

X ×Y X
p1

//
p2 //

X
f

//

π

��

Y

Coim(f)
f̄

;;w
w

w
w

w

and we know that the vertical arrow π : X → Coim(f) is an epimorphism. This implies that the factorization
f̄ is unique. At the same time, we have i1 ◦ f = i2 ◦ f and f = f̄ ◦π. Since π is an epimorphism we conclude
that i1 ◦ f̄ = i2 ◦ f̄ and therefore f̄ has a canonical factorization

X ×Y X
p1

//
p2 //

X
f

//

π

��

Y
i1

//
i2 //

Y
∐
X Y

Coim(f)
f̄

99ssssss

u
//___ Im(f)

i

OO

Now, we know by a previous discussion that i : Im(f)→ Y is a monomorphism. This implies that this
second factorization, u, is also unique.

Definition 1.8.0.9. Let C be a category where all finite limits and colimits exist. A morphism f : X → Y

in C is called strict if the canonical morphism

Coim(f) //___ Im(f)

in 1.8.0.8, is an isomorphism.

Example 1.8.0.10. In the category of modules over a ring R (see 2.1.2), every morphism is strict. This
fact is usually called the 1st Isomorphism Theorem: Every morphism of R-modules f : X → Y factors in
a unique way as X → X/ker(f) → Im(f) → Y , where the first and the last arrows are respectively, an
epimorphism and a monomorphism, and the middle one is an isomorphism.

Proposition 1.8.0.11. Let C be a category where all finite limits and colimits exist. Let f : X → Y be a
morphism in C. Then:

1. f is an epimorphism if and only if i : Im(f)→ Y is an isomorphism;
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2. f is a monomorphism if and only if π : X → Coim(f) is an isomorphism;

3. f is a strict epimorphism if and only if Coim(f)→ Y is an isomorphism;

4. f is a strict monomorphism if and only if X → Im(f) is an isomorphism;

5. If f is simultaneously a monomorphism, epimorphism and strict morphism, then f is an isomorphism.

Proof. 1. By construction, we have Im(f) = Eq(Y
i1
//

i2 //
Y

∐
X Y ) , with i1 ◦ f = i2 ◦ f . If f is an

epimorphism, we must have i1 = i2 and therefore Y is also an equalizer of the mentioned diagram
and i : Im(f) → Y is an isomorphism. Conversely, if i is an isomorphism, Y is also an equalizer of

Y
i1
//

i2 //
Y

∐
X Y and we must have i1 = i2 = h. Given any other object Z in C and any pair of

morphisms a, b : Y → Z with a ◦ f = b ◦ f , there is a unique factorization Y
i1=i2=h

// Y
∐
X Y u

//___ Z ,

and we have a = u ◦ i1 = u ◦ h = u ◦ i2 = ib.

2. Follow the previous proof using dual arguments.

3. This is a corollary of 1.

4. Corollary to 2;

5. Follows from 1. and 2. and 1.8.0.9

1.9 Group Actions

1.9.1 Group actions on objects and morphisms

Given a category C, an action of a group G on some object X of C by automorphisms, is a group
homomorphism φ : G→ AutC(X). The kernel of a G action {g ∈ G : φ(g) = IX} ⊆ G is a normal subgroup
of G.

Let G act on X. For every object Z, the action of G can be extended to the sets HomC(X,Z) and
HomC(Z,X), defined respectively by mapping (u : X → Z) 7→ (u ◦ g : X → Z) and (v : Z → X) 7→ (g ◦ v :
Z → X), ∀g ∈ G. We denote by HomC(X,Z)G and HomC(Z,X)G the set of morphisms invariant under
this action.

1.9.2 Compatible Morphisms

Let C be a category and consider an action of G on two objects X and Y . We say a morphism f : X → Y

is compatible with the actions of G if for all g ∈ G we have a commutative diagram

X

g

��

f
// Y

g

��
X

f
// Y
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In particular, we say that the actions of G on X and Y are equivalent if there is an isomorphism
f : X → Y compatible with the actions.

Example 1.9.2.1. Let F be a set-valued functor on a category C, represented by an object X. From
1.6.4.4 we know that the group of automorphisms of F and X are isomorphic. It follows directly from this
construction that the action of AutFun(C,Sets)(F ) on the sets F (U) is equivalent to the natural action of
AutC(X) on HomC(X,U).

1.9.3 Quotients by Group Actions

Let X be an object with an action of a group G by automorphisms. The correspondence Z 7→
HomC(X,Z)G is functorial and it is natural to ask wether it is representable by a pair (Y, p), where Y
is an object in C and p ∈ HomC(X,Y )G, such that the map HomC(Y,Z) → HomC(X,Z)G mapping
g → g ◦p is an isomorphism. Such object Y will be unique up to isomorphism. This is equivalent to say that
any morphism f : X → Z invariant under the action of G has a unique factorization f̄ , through p : X → X/G

(also G-invariant). We denote it by X/G and call it the quotient of X by the action of G.

X

p

��

f
// B

X/G

f̄

=={
{

{
{

(1.6)

We say that C admits quotients if this construction is always possible. As an example, quotients by
group actions do exist in categories like Sets and Groups. An equivalent particular description of a quotient
of X by a group G action can be recovered as the colimit of a ”flower” shapped diagram in C with one
vertex X and arrows g ∈ AutC(X).

As we have seen in section 1.2, a functor F between two categories C and D induces a group homomor-
phism AutC(X) → AutD(F (X)), sending each automorphism φ to F (φ). In particular, a functor induces
an action of the automorphisms of X on F (X). Also, each action of a group G on X can be extended to an
action on F (X), composing G→ AutC(X)→ AutD(F (X)).

We say that F preserves quotients if F (X)/G exists and is isomorphic to F (X/G), for all X in C,
whenever X/G exists.

1.9.4 G-Categories

We say a group G acts on a category C (or that C has a G-action) if it acts on each object X in
C. Equivalently, this action on C is given by a collection {G → AutC(X)}. We introduce the following
definition:

Definition 1.9.4.1. A G-category is a category C with a G-action, such that all the morphisms are com-
patible with the action. We use the notation C(G).

Given a category with a group action we may consider the subcategory of C, whose objects are still the
objects of C but for morphisms we choose only the ones compatible with the action.



Chapter 2

Fundamental Notions from Algebraic

Geometry

In this chapter we review the concepts and results of Algebraic Geometry, which will be needed in the
next chapters. Regarding commutative algebra, the reader is recommeded to follow [12] and [6] and for a
detailed exposition on sheaves and schemes, the fundamental work done by A.Grothendieck on [3]

2.1 Rings and Modules

2.1.1 Ideals and Quotients

Let R be a ring (in this work we will always assume rings to be commutative). A subset I of R is called
an ideal if (I,+) is an abelian group and for all r ∈ R, a ∈ I, ar is also in I. The kernel of a morphism of
rings f : R → S is the subset {r ∈ R : f(r) = 0} ⊂ R. The image of f is the set {s ∈ S : ∃r ∈ R such that
s = f(r)} We just gather now a collection of facts which we will use later

Proposition 2.1.1.1. Let R and S be rings and f : R→ S a ring morphism.Then

• If J is an ideal of S then f−1(J) is and ideal of R.

• In general, if I is an ideal of R then f(I) may not be an ideal in S.

• The kernel of a morphism of rings f : R→ S is an ideal of R.

• f is injective if and only if the kernel of f is {0}.

Proof. See [6].

Let R be a ring. Given an additive subgroup I we may form the quotient R/I whose elements are
equivalence classes [r] of elements of r ∈ R, such that [r] = [r′] iff (r′− r) ∈ I. We denote [r] as r+ I. If I is
an ideal then R/I is a ring whose operations are inherited from those in R and are such that the surjective
map π : R→ R/I mapping r 7→ r + I, is a ring morphism.

49
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Proposition 2.1.1.2. There is a one-to-one correspondence between the ideals of R/I and the ideals in R

that contain I.

Proof. See [6].

2.1.2 Modules over a Ring

Given an abelian group (M,+), the set of its endomorphism End(M) inherits a group operation, given
by adding endomorphisms. This operation, together with the operation of composition give End(M) the
structure of a ring.

Definition 2.1.2.1. Given a ring R, a R-module, also called,a module over R, is an abelian group M

together with a ring homomorphism R→ End(M).

2.1.3 Primes and Maximal ideals

Let R be a ring. We introduce some standard definitions: An ideal I is said to be prime if for every pair
a, b ∈ R such that (a.b) ∈ I, then one of them has to be already in I. An ideal I is said to be maximal if for
every other ideal J 6= R such that I ⊂ J we have I = J . We enumerate some properties:

Proposition 2.1.3.1. Let R be a ring

1. Every maximal ideal of R is prime.

2. R is a field if and only if (0) is the only prime ideal.

Some more terminology: the radical of an ideal I, wich we denote by
√
I, is by definition the set of

elements x ∈ R such that xn ∈ I, for some n ∈ N . The radical of the ideal (0) is called the nilradical of R.

We also refer to some functorial properties of ideals. If f : R → R′ is a morphism of rings, from Prop.
2.1.1.1, it follows that, the preimage of an ideal in R′ is an ideal in R. In particular, the preimage of a prime
ideal in R′ is a prime ideal in R.

2.1.4 Local Rings

A local ring is by definition a ring with only one maximal ideal. If R is local with maximal ideal m,
we call the field R/m the residue field of R. A morphism of local rings u : R′ → R is said to be local if
the preimage of the unique maximal ideal m′ in R is the maximal ideal m of R′. In such case, u induces a
morphism between the residue fields R′/m′ → R/m defined by mapping each class r′ +m′ to u(r) +m.

2.1.5 Localization

1. Let R be a ring. A multiplicatively closed subset W of R is a subset containing the identity of R, not
containing 0, and closed under multiplication. The localization of R with respect to W is a quotient of
the product R ×W , under the relation (r, w) ∼= (r′, w′) iff ∃s ∈ W such that s.(r.w′ − w′.r) = 0. The
set of such equivalence classes, denoted by RW , has a well-defined ring structure inherited from R and
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following from the fact that W is closed under multiplication. We write r
w to denote each equivalence

class [(r, w)]. This procedure turns all the elements of W to invertible elements in RW . We have a
canonical homomorphism iRW : R→ RW mapping each r to r

1 , called the locatization homomorphism.

Some relevant localizations:

Proposition 2.1.5.1. (a) Let P be an ideal of R. Then P is prime if and only if W = R − P is a
multiplicatively closed subset. We write RP for the localization with respect to R−P and call RP
the localization of R at P . In particular RP is a local ring with a unique maximal ideal, PP .

(b) For f ∈ R, f 6= 0, the set of its powers W = {fn}n∈N is a multiplicatively closed subset. We
write Rf when localizing with respect to such a set.

Given M an R-module, we introduce a process of localizing M on a multiplicatively closed subset
W ⊂ R, by defining an equivalence relation on the product M ×W : we identify (m,w) with (m′, w′)
if and only if there is an element s ∈ W such that s.w′.m = s.w.m′. This is an equivalence relation.
We denote by m

w the equivalence class of (m,w) and write MW for this quotient set. By introducing
the operations m

w + m′

w′ := w′.m+w.m′

w.w′ and r
w .

m
w′ := rm

w.w′ , MW acquires the structure of a R and RW

modules.

We refer to some functorial properties of this process: If f : M → N is a morphism of R-modules and
W ⊂ R is a multiplicatively closed subset, there is a natural morphism of RW -modules, fW : MW →
NW , defined by r

w 7→
f(r)
w . Using the notation LRW (M) = MW and LRW (f) = fW . We conclude that

LRW , the process of localizing with respect to W , defines a functor.

LRW : R−Mod // RW −Mod

2. Let R be a ring and W a multiplicatively closed subset. Consider the correspondence

R′
� // {u ∈ HomRings(R,R′) : all elements in u(W ) are invertible in R′}

This correspondence is functorial. We notice that this functor is represented precisely by RW , the
localization, together with the canonial morphism iRW introduced above. Therefore every morphism of
rings u : R→ R′ with u(W ) invertible in R′ factors uniquely as R

iRW

// RW //___ R′ .

3. (Dependence on the multiplicative subset) For a fixed ring R, consider W and T two multiplicatively
closed subsets of R with W ⊆ T . In this case, there is a canonical morphism of rings ρRT,W : RW → RT

defined by mapping each element a/w in RW to the same element a/w in RT . This morphism satisfies
iRT = ρRT,W ◦ iRW .

For M an R-module, there is a similar subset change morphism ρMT,W : MW →MT and for f : M → N

a morphism of R-modules, the diagram

MW

ρMT,W
��

fW

// NS

ρNT,W
��

MT
fT

// NT

commutes. Therefore, the collection ρMT,W gives a natural transformation ρRT,W : LRW → LRT between
the localization functors.
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4. We say that a multiplicatively closed subset W ⊆ R is saturated if all elements r ∈ R dividing an
element w ∈W are already in W . (we say a divides b if there is some element u 6= 1 such that b = ua).

If W is multiplicatively closed, we denote by W ′ the set of all divisors of W in R. W ′ is also multi-
plicatively closed and W ⊆ W ′, inducing a natural transformation ρW ′,W : LW → L′W . In this case,
this is a natural isomorphism: For M an R-module, we have ρMW ′,W : MW →MW ′ defined as in 3).

• ρMW ′,W is injective: if m/w = 0 in MW ′ , there is some w′ ∈W ′ with w′.m = 0, with u.w′ ∈W for
some u ∈ R. Therefore, u.w′.m = 0 and so m/w is already 0 in MW ;

• ρMW ′,W is surjective: given m/w′ ∈ MW ′ , there is some u ∈ R such that u.w′ is in W and so
m/w′ = ρMW ′,W (um/uw′).

This allows us to consider only saturated multiplicatively closed subsets.

5. If W, T and U are multiplicatively closed subsets of R with W ⊆ T ⊆ U , we have ρU,W = ρU,T ◦ ρT,W .

6. (Change of ring) Let R′ and R be two rings and u : R′ → R a morphism of rings. Let W ′ and
W be multiplicatively closed subsets, in R′, resp. R, with u(W ′) ⊆ W . Considering the composition
iRW ◦u : R′ → R→ RW , the image of W ′ is invertible in RW and by 2) we conclude that this composition
to factors uniquely as R′ → R′W ′ → RW , where the last arrow maps uW ′ : a′/w′ → u(a′)/u(w′).

7. Following 3) and 6), having W ′ ⊆ T ′ ⊆ R′ and W ⊆ T ⊆ RA, respectively, multiplicatively closed
subsets with u(T ′) ⊆ T and u(W ′) ⊆W , we naturally have a commutative diagram

R′W ′

��

// RW

��
R′T ′

// RT

2.1.6 Extensions of Rings and Fields

1. Let R be a ring. We denote by R[X] the ring of all polynomials with coefficients in R.

Proposition 2.1.6.1. If R is a field, R[X] is a principal ideal domain.

2. An extension of a ring R, is another ring S, such that R is a subring of S: R is contained in S, is closed
with respect to all operations and the neutral elements of R are the neutral elements of S. Indeed, this
is equivalent to have a monomorphism of rings R → S. An extension of a field k is another field L,
such that k is a subfield of L. In this case, since any non-null morphism of fields k → L is necessarily
a monomorphism (because its kernel is an ideal of k, and since k is a field, its only proper ideal is (0)),
an extension of fields is simply a morphism k → L.

3. Notice that if φ : R → S is an extension of rings, S has naturally the structure of an R −Module,

given by R× S
(φ×IS)// S × S // S , where the last arrow is the product in S. Therefore, if R is a

field S becomes a R-vector space. We write [S : R] to denote the dimension of S as a R vector space
and we say that the extension is finite if this dimension is finite.

4. Let φ : R → S be a morphism of rings. φ induces a morphism φ̄ between the polynomial rings R[X]
and S[X], defined by sending each polynomial p(X) = rnX

n + ... + r0 ∈ R[X] to the polynomial
(φ̄(p))(X) = φ(rn)Xn + ...+φ(r0), which we denote as p̄(X). Using the properties of φ as a morphism
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of rings we conclude that this correspondence is also a morphism of rings. If φ is an extension of rings,
we immediately conclude that φ̄ defines an extension of rings R[X] ⊆ S[X].

5. Let R be a ring and consider R[X] the polynomial ring in one-variable. A root of a polynomial
f(X) ∈ R[X] in R is an element u ∈ R, such that f(u) = 0.

Let φ : R → S be a morphism of rings, p(X) = rnX
n + ...+ r0 a polynomial in R[X] and u a root of

p(X) in R. In this case, we prove that the element φ(u) in S is a root of the polynomial p̄(X) in S[X]:
Since φ is a morphism of rings, we have φ(rn)φ(u)n + ...+ φ(r0) = φ(rnun + ...+ r0) = φ(0) = 0; If φ
is an extension of rings, we easily conclude that u ∈ R is a root of p(X) in R if and only if φ(u) is a
root of p̄(X) in S.

It is possible for a polynomial p(X) in R[X] to have no roots in R.

Definition 2.1.6.2. We say that a field R is algebraically closed if every polynomial in R[X] as one
root in R.

Given an extension of rings R→ S, we have R[X] ⊆ S[X] and so, we may search for roots of p(X) in
S, in other words, elements u ∈ S such that p(u) = 0 for p(X) ∈ R[X].

Definition 2.1.6.3. An extension of rings R → S is said to be integral if every element s ∈ S is the
root of a monic polynomial in R[X].

6. Each element a ∈ R naturally defines an evaluation morphism Eva : R[X] → R defined by mapping
each polynomial f to the value f(a) in R. If we have an extension of rings R ↪→ S, Eva is defined not
only for elements a ∈ R but for all elements in a ∈ S, since R[X] ⊆ S[X]. We write Eva : R[X] → S

to denote the evaluation map induced by an extension of rings R ↪→ S. Moreover, since it is a ring
homomorphism, its image is always a subring of S. We write R[a] to denote the image of R[X] under
Eva, in S.

2.1.7 Noetherian Rings

Definition 2.1.7.1. We say a ring R is Noetherian if every ascending chain of prime ideals

I0 ⊆ I1 ⊆ I2 ⊆ I3....

stops. In other words, if there is some natural number n such that Ik = In for all k > n

As an example, we find all fields to be noethering rings, since the only prime ideal is (0). There is
another possible characterization of Noetherian rings:

Proposition 2.1.7.2. Let R be a ring. The following conditions are equivalent:

• R is Noetherian;

• Every ideal I of R is finitely generated;

• Every non-empty set of ideals in R, partially ordered by inclusion, has a maximal element.

Proof. See [6].
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And the following important result, known as Hilbert Basis Theorem:

Proposition 2.1.7.3. If R is a Noetherian ring then R[X] is also a Noetherian ring.

Proof. See [6].

By induction, we find that if R is Noetherian then all polynomial rings R[X1, ..., Xn] are also Noetherian.
As a corollary we find that for a field k, every prime ideal of k[X1, ..., Xn] is finitely generated

2.2 Sheaves

Again, this section is a brief presentation of the main ideias and notions regarding sheaf theory and the
theory of schemmes. Here we recommend the reader to follow all the exposition in [3]- chapter 0 section 3.

2.2.1 Presheaves

1. For X a topological space, we define the category Open(X): Each open set U is seen as an object and
we define HomOpen(X)(U, V ) as a one-element set, the continuous inclusion U ⊆ V whenever U is a
subset of V . Otherwise we define this set to be empty. We introduce presheaves on X:

Definition 2.2.1.1. A presheaf on X with values in a category C is a functor

F : Open(X)
◦ // C

In other words, a presheaf is simply a collection F (U) of objects in C indexed by the open sets of X
and, whenever U ⊆ V a ”restriction” morphism ρVU := F (U ⊆ V ) : F (V )→ F (U) such that ρUU = IF (U)

and ρWU ◦ ρVW = ρVU whenever U ⊆W ⊆ V .

2. We introduce a morphism of presheaves F1 and F2 over X with values in C as a natural transformation
F1 → F2. With such morphisms we have a category of presheaves over X, which we denote by
Presheaves(X,C).

2.2.2 Sheaves

Let F be a presheaf over X with values in C. Let Ui and Uj be two open sets in X with a non-empty
intersection, Ui ∩ Uj 6= ∅. Each set Ui and Uj indexes some object, respectively, F (Ui) and F (Uj) in C.
Since the union and finite intersection of open sets is open, Ui ∩ Uj and Ui ∪ Uj both index some object
F (Ui ∩ Uj) and F (Ui ∪ Uj). Moreover, we have two chains of inclusions Ui ∩ Ui ⊆ Ui ⊆ Ui ∪ Uj and
Ui ∩Uj ⊆ Ui ⊆ Ui ∪Uj inducing a composition of morphisms in C, ρUiUi∩Uj ◦ ρ

Ui∪Uj
Ui

and ρUjUi∩Uj ◦ ρ
Ui∪Uj
Uj

. We
say that F has a sheaf property with respect to (Ui, Uj) if F (Ui∪Uj) together with the restriction morphisms
ρ
Ui∪Uj
Ui

: F (Ui ∪ Uj)→ F (Ui) and ρ
Uj∪Uj
Ui

: F (Ui ∪ Uj)→ F (Uj) is a fibre product in C of the diagram

F (Uj)

ρ
Uj
Ui∩Uj
��

F (Ui)
ρ
Ui
Ui∩Uj// F (Ui ∩ Uj)
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We introduce sheaves:

Definition 2.2.2.1. Let C be a category, X a topological space and F a C-valued presheaf over X. We say
F is a sheaf if for every open cover {Ui}i∈I of an open set U ⊆ X, the object F (U) together with the family
of morphisms ρUUi : F (U)→ F (Ui), is the limit all diagrams of the form above.

A morphism of sheaves is a morphism of their respective presheaves. We denote by Sheaves(X,C) the
subcategory of presheaves over X with values in a category C, that are sheaves.

2.2.3 The stalk of a sheaf

Let F be a C-valued presheaf over X. Given a point x ∈ X, the open sets U ⊂ X containing x, form a
subcategory of Open(X). Consider F|x, the restriction of F to this subcategory.

Definition 2.2.3.1. We define the stalk of F at point x ∈ X as the colimit of F|x.

This colimit is given by an object in C, which we denote as stalk(F)x, and a family of morphisms
ρU : F(U) → stalk(F)x, one for each open set U ⊆ X containing x and commuting with every restriction
morphism ρVU : F(V )→ F(U) whenever U ⊆ V and x ∈ U .

If we consider two presheaves F1 and F2 over X with values in C, for any morphism u : F1 → F2 we
have a commutative diagram for every pair (U, V ) with U ⊆ V and x ∈ U . This induces a unique canonical
morphism ux between the two stalks at x:

F1(V )

%%LLLLLLLLLL

��

// F2(V )

yyrrrrrrrrrr

��

stalk(F1)x //______ stalk(F2)x

F1(U)

99rrrrrrrrrr
// F2(U)

eeLLLLLLLLLL

2.2.4 Construction of Presheaves

1. Let X be a topological space and suppose B is a basis for the topology on X. Let C be a category
where all limits exist. A presheaf defined over B is a collection of objects FV in C indexed by the open
sets V ∈ B and a family of morphisms in C, ρVU : FV → FU everytime U ⊆ V , for U, V ∈ B, satisfying
ρVV = id and ρWU ◦ ρVW = ρVU , everytime U ⊆ V ⊆W in B.

From this collection we construct a presheaf F ′ over X with values in C, defining for each open set
U in X, F ′(U), the limit of the diagram in C formed by all FV with V ∈ B and V ⊆ U and their
respective transition morphism ρVV ′ . If U ⊆ U ′ in X, there is a canonical morphism F ′(U ′) → F ′(U)
since every morphism F ′(U ′)→ FV with V ∈ B and V ⊆ U , factors uniquely through F ′(U).

2. If C has all colimits, F is a presheaf over B and F ′ is the associated presheaf over X as above, the
stalk of F ′ at a point x ∈ X is uniquely determined by F as the colimit of the diagram in C formed
by all FV with V ∈ B containing x, together with their transition morphisms.
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3. We introduce a morphism of presheaves F1 → F2 over a base B, as a collection of morphisms in
C, (uV : (F1)V → (F2)V )V ∈B, commuting with all transition morphisms defining F1 and F2. Such
collection induces a unique morphism of the associated presheaves F ′1 → F ′2 over X, obtained using
the properties of (F ′1)(U) and (F ′2)(U) as limits of diagrams:

(F1)V

��

// (F2)V

��

(F ′1)(U)

yyttttttttt

eeJJJJJJJJJ
//______ (F ′2)(U)

$$JJJJJJJJJ

::ttttttttt

(F1)V ′ // F2)V ′

everytime V ′ ⊆ V , for V and V ′ in B.

2.2.5 Direct image of a presheaf

1. Let X and Y be topological spaces and ψ : X → Y a continuous map. Let F be a presheaf over X
with values on a category C. We introduce a presheaf ψ∗F on Y as follows: For every open set U ⊆ Y ,
define (ψ∗F)(U) := F(ψ−1(U)). Since ψ is continuous and U is open in Y , ψ−1(U) is also open in X.
If U ⊆ V in Y , we have ψ−1(U) ⊆ ψ−1(V ) in X and so, since F is a presheaf, there is a restriction
morphism (ψ∗F)(V ) = F(ψ−1(V ) → (ψ∗F)(U) := F(ψ−1(U). We immediately conclude that ψ∗F is
a presheaf over Y , with values in C. We call it the direct image (or push-forward ) of F by ψ.

2. Given F1 and F2 two presheaves over X with values in C, every morphism u : F1 → F2 induces a
morphism ψ∗(u) : ψ∗F1 → ψ∗F2 over Y , defined by ψ∗(u)U = uψ−1(U), for every open set U ⊆ Y .
If v : F2 → F3 is another morphism of presheaves over X composable with u, we easily find that
ψ∗(v ◦ u) = ψ∗(v) ◦ ψ∗(u).

3. We conclude that ψ∗ acts as a covariant functor from the category of presheaves over X with values
in C to the category of presheaves over Y with values in C.

4. The stalk of ψ∗F at a point y = ψ(x) is defined by taking the colimit of ψ∗F(V ) over all open sets
V ⊆ Y , containing y.

stalk(ψ∗F)ψ(x) = lim−→ψ(x)∈V⊆Y (ψ∗F)(V ) = lim−→x∈ψ−1(V )⊆XF(ψ−1(V ))

and we immediately conclude the existence of a canonical morphism

ψx : stalk(ψ∗F)ψ(x) = lim−→x∈ψ−1(V )F(ψ−1(V ))→ lim−→x∈U (U) = stalk(F)x

2.2.6 Presheaved Spaces

1. Under the conditions considered in 2.2.5, if F is a presheaf over X with values in C, we call a morphism
u : G → ψ∗(F) of presheaves over Y a ψ-morphism from G to F and denote it simply by G → F .

Considering pairs (X,F) where X is a topological space and F is a presheaf over X (with values in
C), we introduce a morphism between such objects, Ψ : (X,F) → (Y,G) as a pair Ψ = (ψ, θ) where
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ψ : X → Y is a continuous map and θ : G → ψ∗(F) is a morphism of presheaves over Y, a ψ-morphism.
If Ψ′ = (ψ′, θ′) : (Y,G) → (Z,H) is another morphism, the composition Ψ′ ◦ Ψ is naturally defined
by considering the pair (ψ′ ◦ ψ,ψ′∗(θ) ◦ θ′). Thus, we can speak about the category of spaces with a
C-valued presheaf, denoted by PresheavedSpaces(C).

2. If (X,F) is a space with a C-valued presheaf and U ⊆ X is an open set, there is an induced presheaved
space obtained by restricting F to F|U : the pair (U,F|U) is again an object in PresheavedSpaces(C).
The canonical inclusion U ↪→ X induces a morphism (U,F|U)→ (X,F)

3. For a morphism (ψ, θ) : (X,F)→ (Y,G) between presheaved spaces, we denote by θ]x the composition

stalk(G)ψ(x) → stalk(ψ∗F)ψ(x) → stalk(F)x

where the last arrow comes from 2.2.5-5.

2.3 Schemes

Here we present the definition of a scheme. Again, the reader is recommended to follow [3].

2.3.1 Ringed Spaces

Following 2.2.6, we introduce ringed spaces as objects in PresheavedSpaces(Rings). For a ringed
space (X,OX) we call X the base space and OX the structure sheaf. Also, for a point x ∈ X we denote by
(OX)x the stalk of the structure sheaf at x. Again following 2.2.6, a morphism of ringed spaces is a pair
Ψ = (ψ, θ) : (X,F) → (Y,G) where ψ : X → Y is a continuous map and θ : G → ψ∗(F) is a ψ-morphism
between presheaves of rings.

We say that a ringed space (X,OX) is locally ringed if the stalk of OX at each point x ∈ X is a local
ring.

2.3.2 Affine Schemes

1. (Prime Spectrum) Let R be a ring. We introduce the prime spectrum of R, denoted Spec(R), as the
set of all prime ideals of R. For a point x ∈ Spec(R) we use the notation ix to describe x as a subset
of R.

We introduce some terminology: Rx denotes the localization of R at R − ix; mx = ix
1 is the only

maximal ideal of Rx; k(x) is the field Rx/mx; for each r ∈ R we use the notation r(x) to describe the
equivalence class of r in the quotient ring R/ix. Also, for Y ⊆ Spec(R) we introduce the set i(Y ) in R,
the set of all r ∈ R such that r(y) = 0, for all y ∈ Y ). In particular if Y = {x}, we have ix = i({x}).

For each subset E ⊆ R we introduce the sets V (E) = set of prime ideals of R containing E .

Proposition 2.3.2.1. These sets have the following properties:

(a) V ({0}) = Spec(R) and V (R) = ∅;

(b) if E ⊆ E′ then V (E′) ⊆ V (E);
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(c) for all families {Eλ}λ∈I we have V (∪λEλ) = V (
∑
λEλ) = ∩λV (Eλ);

(d) V (E.E′) = V (E) ∪ V (E′);

(e) V (E) = V (
√
E), where we define

√
E = ∩I∈V (E)I, the radical of E.

Proof. For a detailed proof see [3].

This implies that the collection of sets V (E) satisfies all the properties of closed sets on a topological
space. We introduce the Zariski spectral topology on the Spec(R) as the topology generated by these
closed subsets. From now on, whenever we speak about the spectrum of a ring we assume this topology.
Let us present some properties:

Proposition 2.3.2.2. (a) For V (I) some subset of Spec(R) with I an ideal in R, we have i(V (I)) =√
I;

(b) There is a bijection between the set of closed subsets of Spec(R) and the set of radical ideals in R

(ideals I with
√
I = I);

(c) The open sets of the form Uf := Spec(R) − V ({f}) with f ∈ R, are identified with the spectrum
of Rf

(d) The open sets Uf form a basis for the Zariski topology;

(e) Spec(R) is compact1, in the sense that any open cover admits a finite subcovering.

Proof. See [3]-I

2. Given a morphism of rings φ : R′ → R, there is a natural map φ̃ : Spec(R) → Spec(R′) defined by
sending each prime ideal I in R to its preimage under φ, φ−1(I), which, as we mentioned before, is a
prime ideal in R′.

Proposition 2.3.2.3. φ̃ is continuous, with respect to the Zariski topology.

Proof. This follows immediately from the fact that φ̃−1(V (E′)) = V (φ(E)), for all E′ ⊆ R′. In
particular this implies φ̃−1(Uf ′) = Uf and obviously φ̃ is continuous.

3. (Presheaf over Spec(R) associated to an R-Module)
Let R be a ring and M an R-module. We construct a presheaf over Spec(R) that encodes and recovers
M : From 2.3.2.2 we known that the open sets Uf , with f ∈ R, form a basis for the Zariski topology
in Spec(R). Denoting by B this basis and following 2.2.4, we introduce a presheaf of modules over
B by assigning to each open set Uf the Rf -Module Mf , the localization of M with repect to the
multiplicatively closed subset Wf of all natural powers of f . The following properties ensure sufficient
conditions for this to be a well-defined presheaf over B:

Lemma 2.3.2.4. (a) if Uf = Ug then Mf = Mg;

(b) if Uf ⊆ Ug then Wg ⊆ Wf and from 2.1.5 3), there is a natural morphism ρgf : Mg → Mf .
Together with 2.1.5 4), we conclude ρgg = Id and ρhf = ρgf ◦ ρhg , everytime Uf ⊆ Ug ⊆ Uh.

Proof. See [3]-I

We have
1Meaning that every open cover has a finite subcover
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Proposition 2.3.2.5. (a) M̃ is a sheaf;

(b) the stalk M̃x at a point x ∈ Spec(R) is the localization of M at the prime ideal x, Mx.

(c) M̃(Spec(R)) is precisely the module M .

Proof. See [3]-I

4. Applying the construction in the previous item to the ring R itself, seen as an R-Module, we obtain a
sheaf of rings R̃ over Spec(R), with R̃(Uf ) = Rf and stalk Rx, for any x ∈ X. Also, we recover the
ring R as R̃(Spec(R)). We call R̃ the structure sheaf of R.

From this, every ring R induces a ringed space (Spec(R), R̃). We introduce affine schemes:

Definition 2.3.2.6. An affine scheme is a ringed space (X,OX) isomorphic (as a ringed space) to
one of the form (Spec(R), R̃) constructed as above for some ring R.

5. Let u : R′ → R be a morphism of rings and consider (X ′,OX′) and (X,OX) their respective affine
schemes with X ′ = Spec(R′) and X = Spec(R). As seen above in 2., u induces a continuous morphism
ũ : X → X ′. In fact, this extends to a morphism of ringed spaces (ũ, θ) : (X,OX)→ (X ′,OX′), where
θ is a ũ-morphism of presheaves over X ′:

Writing f = u(f ′), we start by defining θ, as in 2.2.4 3), over the basis of open sets Uf ′ for the topology
in X ′. First we notice the identification of OX′(Uf ′) with R′f ′ and ũ∗(OX)(Uf ′) = OX(ũ−1(Uf ′)) =
OX(Uf ) with Rf . Applying 2.1.5.6 to W ′ = {(f ′)n}n>0 ⊆ R′ and W = {fn} ⊆ R, we find a canonical
morphism of rings

θUf′ := ũW ′ : OX′(Uf ′)→ OX(ũ−1(Uf ))

From 2.1.5.7 we conclude that this collection of maps defines a morphism of presheaves over the base
B and following 2.2.4 3) we find the desired morphism u′ of presheaves over X ′.

Proposition 2.3.2.7. ([3] - 1.6.1) With the conditions above, the map θ]x : stalk(OX′)ψ(x) = R′ψ(x) →
stalk(F)x = Rx in 2.2.6-3 is precisely the localization map uψ(x) obtained in 2.1.5-6, with W ′ =
R′ − iψ(x) and W = R− ix.

6. From 4), 5) and 6) we conclude that the correspondence

R
� // (Spec(R), R̃)

acts as a functor, from the category of rings to the category of ringed spaces. We call it the Spec
functor.

7. Let Ψ = (ψ, ψ̃) : (X,OX) → (X ′,OX′) be a morphism of ringed spaces between affine schemes, with
X = Spec(R) and X ′ = Spec(R′).

Lemma 2.3.2.8. A morphism Ψ = (ψ, ψ̃) as above is induced by a unique ring homomorphism
u : R′ → R, constructed as in 5), if and only if every stalk map ψ̃]x : stalk(OX′)ψ(x) = R′ψ(x) →
stalk(ψ∗(OX))ψ(x) = Rx is a local homomorphism of rings.

Proof. See [3] Prop. 1.7.3
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We proceed now by defining a morphism of affine schemes (X,OX) → (X ′,OX′) as a morphism of
ringed spaces satisfying the condition in 2.3.2.8. The composition of two such morphism is again one
of the same type, since the composition of local homomorphisms is a local homomorphism. Affine
schemes, with such morphisms, form a category here denoted as AScheme.

In this case, it follows immediately as a corollary

Corollary 2.3.2.9. The Spec functor induces an equivalence between the category of rings and the
category of affine schemes.

Proof. The definition above for a morphism of affine schemes, following lemma 2.3.2.8, implies Spec to
be fully faithfull. Essential surjectiveness is immediate.

2.3.3 Schemes and Morphisms of Schemes

1. A Scheme is a generalization of an affine scheme. Given a ringed space (X,OX), we say that an open
set U ⊆ X is affine if the restricted ringed space (U,OX |U) is an affine scheme.

Definition 2.3.3.1. A ringed space (X,OX) is said to be a Scheme if every point x ∈ X has an affine
neighbourhood.

We identify some properties

Proposition 2.3.3.2. Let (X,OX) be a scheme. Then:

(a) ([3]- 2.1.3) -The affine open sets form a basis for the topology of X;

(b) ([3]- 2.1.7) -For every open set U ⊆ X, (U,OX |U) is also a scheme.

2. A morphism between two schemes (X,OX) → (Y,OY ) is a morphism of ringed spaces,i.e. a pair
Ψ = (ψ, ψ̃) with ψ : X → Y a continuous map and ψ̃ : OY → ψ∗(OX) a ψ-morphism of presheaves
over Y , with one extra condition: for all x ∈ X, the map ψ̃]x : stalk(OY )ψ(x) → stalk(OX)x (2.2.6-3)
has to be a local homomorphism, in order for Ψ to be, locally, a morphism of affine schemes as defined
2.3.2 7).

3. Since a scheme (X,OX) is locally isomorphic to an affine scheme (Spec(A), Ã), the stalk of OX at a
point x ∈ Spec(A) ⊆ X is locally isomorphic to the localization of A at the prime ideal corresponding
to x under the mentioned isomorphism. We denote its maximal ideal by mx and use the notation k(x)
for the residue field stalk(OX)x/mx.

4. As defined in 2. and following 2.1.4 a morphism of schemes Ψ = (X,OX) → (Y,OY ) induces a
morphism between the residue fields k(ψ(x)) → k(x), for every x ∈ X. Such morphism is always a
monomorphism, allowing us to understand k(x) as a field extension of k(ψ(x)).

5. From 2.2.6 and the fact that the composition of local homomorphisms is again a local homomorphism,
we obtain that the composition of two morphisms of schemes is again a morphism of schemes. Schemes
with these morphisms, form a category, denoted Schemes.

6. We introduce some terminology: Let X be a scheme:

(a) X is called locally noetherian if there is an open cover of X by affine schemes such that each
structure ring is noetherien;
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(b) We say that X is connected if the underlying space is connected;

(c) X is called integral if for every open set U ⊆ X, the ring OX(U) is an integral domain;

(d) X is said to be reduced if for every open set U ⊆ X, the ring OX(U) has no nilpotente elements;

(e) A topological space Y is said to be irreducible if it is non-empty and it can not be written as an
union of two nonempty closed subspaces; In particular, if Y = {x}, then Y is irreducible. In this
case, x is called a generic point of Y . Considering the Zariski topology, every affine scheme whose
struture ring is a domian has a generic point corresponding to the prime ideal (0) and therefore
is irreducible.

Theorem 2.3.3.3. A scheme X is integral if and only if it is reduced and its underlying topological
space is irreducible.

Proof. See [3]- I.2.1.7

2.3.4 Points of a Scheme with values on a Scheme

We address the following problem: given a category C, what is a ”point” of an object X in C? To find
a usefull definition for a point of an abstract object X, we may look at the example given by the category
of topological spaces: If X is a topological space, the points of X are easily identified with morphisms

{∗} → X

where {∗} is a one-point topological space. Grothendieck proposed a generalization of this fact by
defining geometric points:

Definition 2.3.4.1. Let C be a category and 1C a terminal object. A geometric point of an object X in C

is a morphism
1C → X

Definition 2.3.4.2. Let X be a scheme. A point of X with values on a scheme T is a morphism of schemes
s : T → X. We write X(T ) to denote the set of points in X with values in T . If T = (Spec(R), R̃) for some
ring R, we say that s : T → X is a point in X with values in the ring R. In this case we simply write X(R)
to denote the set of R-valued points in X.

Let Ω be a field and consider the associated affine scheme (Spec(Ω), Ω̃). In this case, Spec(Ω) is a
one-element set, containing the unique prime ideal x = (0) of Ω and we have Ω̃x = Ω(0)

∼= Ω. Therefore,
given a point s of X with values in Spec(Ω)

s : (Spec(Ω), Ω̃)→ (X,OX)

we have a morphism of presheaves over X, OX → s∗Ω̃, extending to a local homomorphism stalk(OX)s(0) →
s∗(Ω̃)s(0)

∼= Ω, inducing an extension of the residual field k(s(0))→ Ω.

Example 2.3.4.3. If k is a field, a point of (Spec(k), k̃) with values on a field Ω, (Spec(Ω), Ω̃)→ (Spec(k), k̃),
following 2.3.2.9 is equivalent to an extension of fields k → Ω.

We introduce geometric points of a scheme:
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Definition 2.3.4.4. A geometric point of a scheme X is a point of X with values on an algebraically closed
field.

It follows that to give a geometric point of (Spec(k), k̃) it is equivalent to give an algebraically closed
extension of k.

2.3.5 Fibre Product of Schemes

1. Let S be a scheme. Following 1.3 we introduce the category Schemes/S of schemes over S, also called
S-schemes, of all morphisms X → S, for X another scheme. We say X → S is a scheme over S. When
S is an affine scheme with structure ring R we say X → S is an R-scheme, or X is defined over R.

As in 2, we refer to the product of two S-schemes X → S and Y → S as their fiber-product in Schemes,
given by a scheme X ×S Y and two canonical morphisms pX : X ×S Y → X and py : X ×S Y → Y .

Proposition 2.3.5.1. ([3]-3.2.2) Let X → S and Y → S be two S-schemes with X, Y and S all affine
schemes with strucure rings, respectively, B, C and A. The affine scheme (Spec(B ⊗A C), B̃ ⊗A C)
together with pY : (Spec(B ⊗A C), B̃ ⊗A C)→ Y and pX : (Spec(B ⊗A C), B̃ ⊗A C)→ X respectively
induced (see 2.3.2.9) by the canonical morphisms B → B ⊗A C and C → B ⊗A C, is a fiber product of
X → S and Y → S.

we then have

Theorem 2.3.5.2. ([3] - Chap. I 3.2) The fiber-product of any two schemes Y → S and Z → S over
a scheme S, exists.

2. Let X → S be a scheme over S and p ∈ S a point on the underlying topological space of S. There
is an inclusion morphism Spec(k(p)) → X, where k(p) is the residual field of the stalk at p: If
U = Spec(A) is an affine open subset of X containing p, then p is identified with a prime ideal of A and
we have a morphism A→ Ap that we may compose with the natural projection Ap → Ap/pp → k(p),
corresponding to a morphism Spec(k(p))→ U → X.

Definition 2.3.5.3. Given a morphism φ : Y → X and a point p of X, the fibre of φ at p is the
scheme Yp = Y ×X Spec(k(p))

3. Let φ : S → S′ be a morphism of schemes. Following 2, this morphism induces a pullback functor

φ∗ : Schemes/S′ // Schemes/S

assigning to each scheme X over S′, the fibre product X ×S′ S → S over S, where this arrow is the
canonical morphism given by the fiber product.

Definition 2.3.5.4. We say that a scheme X over S is defined over S′ (or that X has a model over
S′) if X is isomorphic (as a scheme over S) to some scheme over S in the image of φ∗, XS′ ×S′ S,
where XS′ is some scheme over S′.

X
∼ //

$$JJJJJJJJJJJ XS′ ×S′ S //

��

XS′

��
S // S′
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Also, we say that a morphism of schemes f : X → Y over S is defined over S′ if both X and Y are
defined over S′, respectively, X ∼= XS′ ×S′ S and Y ∼= YS′ ×S′ S, where both schemes XS′ and YS′

are defined over S′ and there is a morphism fS′ : XS′ → YS′ over S′ such that the following diagram
commutes

XS′ ×S′ S
φ∗(fS′ )

//

��

YS′ ×S′ S

��
X

f
// Y
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Chapter 3

Galois Theory of Fields

The first part of this chapter is a brief presentation of the main classical results of the Galois Theory
of Fields for finite and non-finite extensions. The second part presents a reformulation of this, due to
Grothendieck.

3.1 Category of Algebraic Extensions

3.1.1 Algebraic and Transcendental Field Extensions

Following 2.1.6-2, an extension of a field k is given by another field L, such that k is a subfield of L, or
equivalentely, by a morphism of fields k → L. If M is extension of k and L extends M , then L is also an
extension of k and we write L|M |k. In this case we say that M |k is a subextension of L|k.

An extension L|k is said to be algebraic if all the elements of L are algebraic over k, i.e. every element of
L is a root of some polynomial with coefficients in k, (∈ k[X]). If there exists an element in L not algebraic
over k, we use the expression ”transcendental” to denote such an element and also, the whole extension. For
an algebraic element u ∈ L we may define the evaluation map k[X] → L sending each polynomial f(X) to
f(u). Since k is a field, k[X] is a principal ideal domain and the kernel of this map is of the form (g(X)) for
a unique polynomial g(X). We call it the minimal polynomial of u ∈ L over k. Two elements are said to be
conjugated if they have the same minimal polynomial.

We introduce another possible characterization: As we saw in 2.1.6-2, an extension k → L endows L
with the structure of a k-vector space. We say the extension is finite if the dimension [L : k] is finite.

Proposition 3.1.1.1. Let M |k and L|M be field extensions.

• L|k is algebraic if and only if M |k and L|M are both algebraic;

• L|k is finite if and only if M |k and L|M are both finite. In this case, [L : k] = [L : M ][M : k].

and also:

Proposition 3.1.1.2. Let L|k be an extension of fields. If it is finite then it is algebraic.

65
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3.1.2 Constructions and Examples of Fields Extensions

1. I-Extensions generated by subsets
Given an extension L|k and and a subset S ⊆ L, we denote by k(S), the smallest subfield of L
containing both S and k. The particular case when S is a set with a single element u ∈ L we use the
notation k(u) = k({u}), and call it a simple extension. Some properties

Proposition 3.1.2.1. Let k(u)|k be a simple extension. Then

• The extension is algebraic if and only if u ∈ L is algebraic and in this case k(u) ∼= k[X]/kernel(Evu),
where Evu : k[X]→ L is the evaluation map on u. Moreover its dimension is equal to the degree
n of the minimal polynomial at u and the set {1, u, ....un−1} is a basis as k-vector space.1

• The extension is transcendental if and only if u is transcendental. In this case, k[u] ∼= k[X].

2. II-Splitting fields
Given a field k and a polynomial f(X) ∈ k[X] of degree n, we may be interested on finding roots
of f in k, which may not exist. However, we may search for solutions in fields L extending k. We
introduce the notion of a splitting field for f as an extension L|k such that f(X), as a polynomial in
L[X], can be factored in a product of linear polynomials, f(X) = Πn

i=1(X − ri) with ri roots of f(X)
in L. Moreover, we ask L to be the smallest extension with this property. That is, L = k(r1, ..., rn) is
the smallest field containing k and all the roots of f . We gather some important facts:

Proposition 3.1.2.2. Let k be a field. Then

• Every polynomial f(X) ∈ k[X] admits a finite splitting field with finite dimension, therefore
algebraic.

• Every two splitting fields of the same polynomial are isomorphic.

3. III- Algebraic Closure of a field
A field L is said to be algebraically closed if it has no algebraic extensions other than itself. Indeed, this
is equivalent to say that every polynomial in L[X] has a root in L. The existence of an algebraically
closed extension of a field k can only be proved by means of Zorn’s Lemma

Proposition 3.1.2.3. Every field k admits an extension L|k where L is algebraically closed.

We define the Algebraic Closure of a field k as an algebraically closed extension L|k which is also
algebraic over k. The existence of such an extension is a consequence of the following lemma

Lemma 3.1.2.4. Let L|k be an extension of fields. The subset of all algebraic elements in L, over k,
is a subfield of L, containing k. We denote this subfield by La.

In order to obtain an algebraic closure we consider the subfield of algebraic elements inside an al-
gebraically closed extension of k. Also, it can be proved that any two algebraic closures of k are
isomorphic, so that there is no ambiguity in denoting it by k̄.

1Recall that if k is a field, the polynomial ring k[X] is a principal ideal domain, and therefore kernel(Evu) is an ideal of the

form (g(X)), for some irreducible polynomial g(X) ∈ k[X].
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3.1.3 Morphisms of Algebraic Extensions

A morphism between extensions of a particular field k, L1|k → L2|k is a morphism of fields σ : L1 → L2,
such that σ(x) = x, ∀x ∈ k. Clearly, such a morphism has to be injective. Field extensions of k form a
category, which we denote by E(k).

These morphisms preserve the roots of polynomials in k[X]: If u ∈ L is a root of a polynomial f(X) =
(anXn + ...a0) ∈ k[X], since all the coefficients ai are in k, they are all fixed by any morphism of extensions
σ. Therefore , σ(u) is also a root of f(X), since anσ(a)n + ...+ a0 = σ(anun + ...+ a0) = σ(0) = 0.

Proposition 3.1.3.1. Every endomorphism of an algebraic extension is an automorphism.

Proof. Let σ : L|k → L|k be an endomorphism. Cleary, σ is injective. Let u be an element in L, consider
g(X) its minimal polynomial over k and denote by Sg the set of its roots in L. Since the image of a root is
still a root, the restriction σSg : Sg → Sg is a well-defined injective map. Also, since the set Sg is finite, the
restriction σ|Sg has to be surjective and u equals σ(a) for some a ∈ L, other root of g(X). Therefore, σ is
surjective.

We use the notation AutE(k)(L|k) to denote the group of automorphisms of an extension L|k. This
group coincides with the subgroup of AutFields(L) of field automorphisms L→ L preserving k.

3.1.4 Lifting Morphisms of Field Extensions

Let L1|M1|k and L2|M2|k be two sequences of field extensions of k. Given an isomorphism of extensions
φ : M1|k →M2|k we look for conditions to extend φ to a morphism φ̃ : L1|k → L2|k.

L1
φ̃

// L2

M1

OO

φ
// M2

OO

k

``AAAAAAAA

>>}}}}}}}}

where the vertical arrows denote the respective inclusions.

Lemma 3.1.4.1. (Lifting isomorphisms on the base fields to morphisms of extensions)
Given the above conditions, suppose that L1|M1 and L2|M2 are field extensions and φ : M1|k → M2|k

is an isomorphism of extensions. Let u ∈ L1 be an algebraic element over M1 with minimal polynomial
f(X) ∈M1[X]. Then φ can be extended to a morphism

M1(u)
φ̃

// L2

M1

OO

φ
// M2

OO

k

bbEEEEEEEEE

>>}}}}}}}}
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if and only if the polynomial f(X) ∈M2[X] (see 2.1.6-4) has at least one root in L2. Moreover, the number
of such extensions is equal to the number of roots of f̄(X) in L2.

Proof. We notice that if φ extends to φ̃, the element φ̃(u) is a root of f̄(X) in M2[X]. Conversely, if f̄(X)
already has a root α in L2, then we define a morphism M1(u) → L2 by sending u to α and every element
of M1 to its image through φ. We immediately conclude the number of extensions of φ to be precisely the
number of roots of f̄(X) in L2

The previous lemma, together with Zorn’s lemma, allows us to prove the following result:

Theorem 3.1.4.2. Let L1|M1|k and L2|M2|k be extensions and φ : M1|k →M2|k an isomorphism. Suppose
that L1|M1 is algebraic and L2|M2 is algebraically closed. Then there exists an inclusion morphism of
extensions

L1
φ̃

// L2

M1

OO

φ
// M2

OO

k

``AAAAAAAA

>>}}}}}}}}

Moreover, if L1 is algebraically closed and L2 is also algebraic, φ̃ is an isomorphism.

It follows immediately as a corollary, that any two algebraic closures of a field are isomorphic, and also
that for any algebraic extension L of a given field k, there is an inclusion morphism L→ k̄ into the algebraic
closure of k and we may assume that every algebraic extension L|k is embedded as an intermediate extension
k̄|L|k:

L
φ̃

// k̄

k

OO

id
// k

OO

Also,

Corollary 3.1.4.3. Any automorphism σ of an algebraic extension of k, lifts to an automorphism of the
algebraic closure of k.

Proof. This follows immediately from the last theorem applied to the diagram
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k̄
σ̃
// k̄

L

OO

σ
// L

OO

k

OO

id
// k

OO

3.1.5 Separable Extensions

Since splitting fields are algebraic, they can be embedded in an algebraic closure. In particular, a
polynomial f ∈ k[X] can be decomposed as a product of linear terms in k̄[X]. We define the multiplicity of
a root u ∈ k̄ to be the greatest natural number m such that (X − u)m divides f . If m = 1 we say that u is a
simple root. A polynomial is said to be separable if it has no multiple roots in k̄. In other words, there are
as many roots as the degree of the polynomial, all of them distinct. Given an extension L|k we say that an
element u ∈ L is separable if its minimal polynomial is separable.

Definition 3.1.5.1. An extension L|k is said do be separable if it is algebraic and all its elements are
separable. A field k is said to be perfect if all algebraic extensions of k are separable.

Proposition 3.1.5.2. For a sequence of extensions L|M |k, if L|k is separable then L|M is also separable.

Finite separable extensions have a particular characterization:

Proposition 3.1.5.3. Let L|k be a finite extension of degree n. Then L|k has at most n distinct morphisms
to k̄|k with equatlity if and only if L|k is separable.

Proof. This follows immediately from 3.1.4.1, using induction on the number of generators of L over k.

In particular, we find that any finite separable extension of k is of the form k(a1, ..., an) for a1, ..., an

separable elements over k.

Let kS denote subset of all separable elements over k, in k̄. Obviously k is contained in this set, since
all elements of k are separable over k. In fact, kS is a subfield of k̄: from the previous lemma, given two
separable elements a and b, the extension k(a, b) is separable and therefore, the elements a.b, a − b, a + b

and a/b are all separable elements.

Definition 3.1.5.4. The field kS is called the separable closure of k in k̄.

In fact, a field k is perfect if and only if the separable closure of k is equal to the algebraic closure.

3.1.6 Exact Extensions

We proceed now to relate the groups AutE(M)(L|M), AutE(k)(M |k) and AutE(k)(L|k) for a sequence of
algebraic extensions L|M |k.
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1. The group AutE(M)(L|M) is naturally included as a subgroup of AutE(k)(L|k): each automorphism σ

of L|M is given by an automorphism of L preserving all the elements in M , and since k is a subfield
of M , σ also fixes k;

2. We can restrict every automorphism σ ∈ AutE(k)(L|k) to M , σ|M . We easily conclude that if, for all
σ ∈ AutE(k)(L|k), we have σ(M) ⊆M , then the restriction σ|M is an endomorphism M |k →M |k and
since every endomorphism of an algebraic extensions is an automorphism, we have natural morphism
of groups

AutE(k)(L|k)→ AutE(k)(M |k)

mapping σ to its restriction σ|M . The kernel of this map is the subgroup of all field automorphisms
of L leaving M invariant, by definition, AutM(L|M). In this case, we have a left-exact sequence of
groups

1→ AutM(L|M)→ AutE(k)(L|k)→ AutE(k)(M |k)

3. Surjectivity is equivalent to the possibility of extending any automorphism φ : M |k → M |k to an
automorphism Φ : L|k → L|k. In this case we have an exact sequence of groups

1→ AutE(M)(L|M)→ AutE(k)(L|k)→ AutE(k)(M |k)→ 1 (3.1)

and therefore AutE(k)(M |k) is isomorphic to the quotient AutE(k)(L|k)/AutE(M)(L|M). We introduce
the following definition:

Definition 3.1.6.1. We say that a sequence of extensions L|M |k is exact if the restriction operation
AutE(k)(L|k)→ AutE(k)(M |k) is a well-defined surjective group homomorphism, inducing a short exact
sequence of groups, as above.

3.1.7 Normal Extensions

1.

Definition 3.1.7.1. We say that an extension L|k is normal if it is algebraic and if all the irreducible
polynomials having one root in L also have all the other roots in L.

In fact, this definition is equivalent to ask for L to contain the splitting field of the minimal polynomial
of every element l ∈ L. Any algebraically closed extension L|k is normal, since every polynomial has
a root in L, therefore splitting in linear terms. Also, given an intermediate extension L|M |k, if L|k is
normal then clearly L|M is also normal.

Proposition 3.1.7.2. let L|k be an algebraic extension. Considered as a subextension of k̄|k, L|k is
normal if and only if every automorphism σ of k̄|k restricts to an automorphism of L|k, in other words,
σ(L) = L.

Proof. Suppose L|k is normal. As seen before, σ(l) is a root of the minimal polynomial of l. Since the
extension is normal, by definition, σ(l) has to be in L. The equality is true because every endomorphism
of an algebraic extension is in fact an automorphism. Conversely, suppose that σ(L) = L, for every
automorphism σ of k̄. Let l ∈ L be an element with minimal polynomial g(X) ∈ k[X]. For every
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automorphism σ, the values σ(l) are roots of g(X) and they are all in L. Suppose there is a root u of
g(X) not in L. In this case we consider the field homomorphism k(l) → k(u), defined by mapping l
to u and fixing the elements of k. Both extensions are algebraic and this isomorphism extends to an
automorphism σ of k̄, by 3.1.4.2. Restricted to L, we conclude that u = σ(l) is also in L.

This proposition implies the following results:

2. For normal a extension L|k, the restriction map (3.1.6-2)

AutE(k)(k̄|k)→ AutE(k)(L|k)

is well-defined; Moreover, from 3.1.4.3, every automorphism of an algebraic extension L|k lifts to an
automorphism of k̄|k, and therefore the restriction map is surjective. We conclude that if L|k is normal
then the sequence of extensions k̄|L|k is exact.

3. Considering a sequence of extensions L|M |k where L|k and M |k are both normal, from 3.1.4.3, we know
that any automorphism σ of L|k lifts to an automorphism σ̃ of k̄|k. Since M |k is also normal, from the
previous proposition, the restriction σ̃|M = σ|M is an automorphism of M |k and the restriction map

AutE(k)(L|k)→ AutE(k)(M |k)

is well-defined.

Moreover, any automorphism of M |k lifts to an automorphism of k̄|k, which, since L|k is normal,
restricts again to an automorphism of L|k. Therefore, the restriction map is surjective. The kernel is
precisely the group AutE(M)(L|M).

We conclude that any sequence of normal extensions L|M |k is exact.

3.2 Galois Extensions and Classification of their subextensions

3.2.1 Group Actions and Galois Extensions

1. Let L|k be an extension of fields. The action of a group G on an extension L|k is given by a homo-
morphism of groups G→ AutE(k)(L|k).

2. Given an action of a group G on L|k we consider the set Fix(G) of all elements l ∈ L, invariant under
the action of G : g(l) = l, ∀g ∈ G.

Proposition 3.2.1.1. Fix(G) is a subfield of L containing k.

Therefore, to every group action we assign an intermediate subextension L|Fix(G)|k. In particular, if
H is a subgroup of G we naturally have Fix(H) extending Fix(G). We introduce Galois Extensions:

Definition 3.2.1.2. An algebraic extension L|k is said to be Galois if the set of elements in L,
invariant under the action of AutE(k)(L|k) coincides with k. In this case we say AutE(k)(L|k) is the
Galois Group of the extension.

We immediately conclude that for a sequence L|M |k, if L|k is a Galois extension then L|M is also
Galois.
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3. Let L|k be an algebraic field extension with automorphism group G. To each element l ∈ L we assign
the subset of G of all automorphisms fixing l. This subset is a subgroup. It is called the stabilizer of l,
and denoted by Hl. For each l, we write the polynomial f(X) = Π[σ]∈G/H(X − σ(x)), where G/Hl is
the set of all equivalence classes where two automorphisms σ and σ′ are equivalent if and only if they
differ by some automorphism fixing l, σ = σ′ ◦ h. Therefore, f(X) is well-defined. We notice that all
roots of f(X) are conjugated elements of l. Furthermore, the action of G on the coefficients of f(X),
leaves f(X) invariant.

If the extension L|k is Galois, since f(X) is invariant under the action of G, f(X) has to be in
k[X]. Moreover, f(X) divides the minimal polynomial of l in k[X], which is, by definition, irreducible.
Therefore, f(X) coincides with the minimal polynomial. Moreover, f(X) is separable, since all the
roots are different by construction. We conclude

Proposition 3.2.1.3. Any Galois extension is normal and separable.

4. After the previous item, we conclude that any Galois extension is a subextension of the separable
closure kS of k. In fact

Proposition 3.2.1.4. Any separable closure kS |k is a Galois extension.

Proof. We prove that any element α ∈ kS , not in k, is moved by the action of G = AutE(k)(kS |k). By
definition kS |k is algebraic and separable. Therefore, all the roots of the minimal polynomial of any
element α, are different. Since we choosed α ∈ kS \k, its minimal polynomial can not have degree 1. So,
there is another root α′, different from α, α′ ∈ kS \ k. We consider the isomorphism φ : k(α)→ k(α′),
mapping α to α′ and the identity on k. From theorem 3.1.4.2, φ lifts to an automorphism φ̃ of k̄. It is
sufficient to prove that φ̃(kS) ⊆ kS . This follows from that fact that φ̃(β) is still a root of the minimal
polynomial of β. If β is separable, so is φ̃(β).

Definition 3.2.1.5. The absolute Galois group of k is the group AutE(k)(kS |k), denoted as Gal(k).

3.2.2 Classification of subextensions of a finite Galois Extension

1. We start by noticing some facts about finite extensions. After lemma 3.1.4.1 we know that

|HomE(k)(L|k, k̄|k)| 6 [L : k]

with an equality if and only if the extension is separable. If the extension is normal, from Prop 3.1.7.2
every morphism L|k → k̄|k is in fact an automorphism of L|k. Therefore,

Proposition 3.2.2.1. If an extension L|k is finite and Galois (=> normal + separable) then its Galois
group is finite, with

|AutE(k)(L|k)| = [L : k]

There is also an important result concerning the action of a finite group on a field extension:

Proposition 3.2.2.2. (Artin’s Lemma) Let G be a finite group acting on a field L by automorphism.
Then the extension L|Fix(G) is finite with [L : Fix(G)] 6 |G|.

Proof. See [14] - 7.7.5.



3.2. GALOIS EXTENSIONS AND CLASSIFICATION OF THEIR SUBEXTENSIONS 73

2. The last sequence of results allows us to prove the following classification theorem

Theorem 3.2.2.3. Let L|k be a finite Galois extension with Galois group G. There is a bijection
between the set of all intermediate field extensions L|M |k and the set of subgroups of G.

Proof. As we have already seen in 3.1.6, for a sequence of extensions L|M |k, the group AutE(M)(L|M)
is a subgroup of G. Conversely, each subgroup H ⊆ G as an associated intermediate field extension
L|Fix(H)|Fix(G), where Fix(G) = k because the extension is Galois. We prove the assignments
L|M |k 7→ AutE(M)(L|M) ⊆ G and H ⊆ G 7→ L|Fix(H)|k are inverse maps:

(a) If L|M |k is an intermediate extension then Fix(AutE(M)(L|M)) = M : Since L|k is finite and
galois L|M is also finite and galois and we immediately conclude M = Fix(AutE(M)(L|M);

(b) For a subgroup H ⊆ G we have AutE(Fix(H)(L|Fix(H)) = H: Following from Artin’s lemma
we have [L : Fix(H)] 6 |H|. Now, since L|k is a galois extension we conclude L|Fix(H) to be
also galois, and |AutE(Fix(H)(L|Fix(H))| = [L : Fix(H)]. Since H ⊆ AutE(Fix(H)(L|Fix(H)) we
conclude |H| 6 AutE(Fix(H)(L|Fix(H)). Together with the first relation obtained, we conclude
that both groups have the same order and since they are finite, they are equal.

3. If M |k is an intermediate Galois subextension of L|k Galois, from 3.1.7-3, the sequence L|M |k is exact,
we find

AutE(k)(M |k) ∼= G/AutE(M)(L|M)

and AutE(M)(L|M) is a normal subgroup of G. Conversely, if H is a normal subgroup of G, the action
of G on Fix(H)|k factors through the quotient G/H and we have Fix(H)|Fix(G/H)|k. Since L|k
is Galois, we conclude that Fix(G/H) = Fix(G) = k and so, Fix(H)|k is Galois with Galois group
G/H. Therefore

Proposition 3.2.2.4. The correspondence in 3.2.2.3 establishes a bijection between Galois intermedi-
ate extensions of a Galois extension L|k and normal subgroups of G.

3.2.3 Classification of subextensions of an infinite Galois Extension

We begin with the fact that any Galois extension L|k, not necessarily finite, is the union of all its
intermediate finite Galois subextensions:

Proposition 3.2.3.1. Let L|k be a Galois extension. Then L = ∪M |kM , where M runs over all the
intermediate finite Galois subextensions of L.

Proof. Indeed, if L|k is Galois, we know that it is also normal and separable, containing all the splitting
fields of the minimal polynomials of all elements in L. The inclusion ∪M |kM ⊆ L is obvious. The second
inclusion follows from the fact that the splitting field of every element in L is contained in a finite Galois
extension that is still contained in L.

This fact implies that any automorphism of a Galois extension is completely determined by its restriction
to each finite Galois subextension. Moreover, we conclude that any finite subextension M |k of a Galois
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extension L|k is contained on a finite Galois subextension L|P |M |k, obtained by considering the union of
the splitting fields of the minimal polynomials of each generator of M |k.

Let L|k be a Galois extension, not necessarily finite. Our goal is to prove that the Galois group
AutE(k)(L|k) can be obtained as the limit of a projective system of finite groups: the Galois groups of
intermediate finite Galois field extensions of L|k.

1. Given an intermediate finite Galois extension M |k of L|k, the sequence L|M |k is exact. Therefore, the
restriction map

ψM : AutE(k)(L|k)→ AutE(k)(M |k)

is well-defined and each group AutE(k)(M |k) is a finite quotient of AutE(k)(L|k)

2. Given a tower of intermediate extensions L|M1|M2|k with M1|k and M2|k both finite and Galois, we
know that the sequence M1|M2|k of finite extensions is also exact. Therefore, the restriction maps

φM1
M2

: AutE(k)(M1|k)→ AutE(k)(M2|k)

are well-defined surjective group morphisms. If M3|k is a third finite Galois subextension with
L|M1|M2|M3|k then we easily conclude that φM1

M3
= φM2

M3
◦ φM1

M2
.

The collection of finite groups AutE(k)(M |k) and maps φMM ′ indexed by the set of all finite Galois
intermediate extensions M |k of L|k, is a projective system of groups. We denote it by P.

3. Notice that the restriction map ψM commutes with every composable transition morphism φMM ′ :

ψM ′ = φMM ′ ◦ ψM

From A.2.3.1 we know how to construct the limit of any projective system of groups lim←−IP as a
subgroup of the product ΠM |kGaloisF initeP(M), consisting on all families (gM ) with φMM ′(gM ) = gM ′ .
We recover the Galois group AutE(k)(L|k):

Theorem 3.2.3.2. The canonical map determined by the collection of morphisms ψM ,

AutE(k)(L|k) // lim←−M |kP with M |Kfinite Galois subextension of L|k

is an isomorphism of groups.

Proof. Consider the map φ : AutE(k)(L|k) → ΠM |kfiniteGaloisAutE(k)(M |k) sending each automor-
phism σ to (σ|M )M |k−Galois. This map is injective: If σ restricts to the identity map on one of the
galois subextensions M |k, then M is σ invariant. Since L|k is Galois, we conclude that M has to be
equal to L and so σ has to be the identity map. We prove that the image of φ is precisely lim←−M |kP as
constructed in A.2.3.1 where the limit is taken over all finite galois subextensions M |k of L|k: Since ψM
commutes with every composable transition map φMM ′ , we conclude that the image of φ is contained in
lim←−M |kP. To prove that this is an equality of sets, given a family (σ|M )M |k in lim←−M |kP we define an
automorphism of L by σ(α) := σ|M (α). The fact that σ is well-defined follows from the fact that any
automorphism of a Galois extension is determined by its restrictions to each finite intermediate Galois
subextension.
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From A.2 we see that the Galois Group of an infinite Galois extension is a profinite group, determined
by all its finite quotients, and has a natural topology induced by the discrete topology on each finite
Galois group AutE(k)(M |k). Moreover, the restriction map φM is continuous with respect to this
topology

4. Our aim is to present a classification theorem for Galois intermediate extensions of an infinite Galois
extension L|k. To begin with, notice that any finite subextension of L|k, being generated by a finite
number of elements, can always be embedded in a finite Galois subextension, the splitting field of the
generators. We prove the following

Proposition 3.2.3.3. Let L|M |k be an intermediate extension of an infinite Galois extension of L|k
with Galois group G. Then AutE(M)(L|M) is a closed subgroup of G.

Proof. Starting with a finite subextension L|M |k, there is a finite Galois subextension L|P |M |k, with
Galois group GP = AutE(k)(P |k) a finite quotient of G by AutE(P )(L|P ) endowed with the discrete
topology. Moreover, we know that the group AutE(M)(P |M) is an open subgroup of GP (because GP
has the discrete topology). Therefore its inverse image UM through the continuous map ψP : G→ GP ,
is open in G. We prove that UM = AutE(M)(L|M). Indeed every element of UM fixes M and the image
of AutE(M)(L|M) through ψP is contained in AutE(M)(P |M). Following the results in the appendix,
AutE(M)(L|M) is a closed and finite subgroup of G. For an arbitrary intermediate subextension L|M |k,
since M |k is the union of all its finite subextensions, Lα|k, we know that each AutE(k)(Lα|k) is closed.
The intersection of all these groups, for all α, is precisely the subgroup AutE(M)(L|M) and so, it is
also closed.

At last, we present the classification theorem for subextensions of an infinite Galois extension

Theorem 3.2.3.4. (Krull’s Theorem) Let L|k be an infinite Galois extension with Galois group G.
Then, there is a bijection between the set of intermediate subextension L|M |k and the set of closed
subgroups of G.

Proof. See [16].

The relation between Galois subextensions and normal subgroups is proved with the same arguments
of 3.2.2.4.

3.2.4 Grothendieck’s Formulation of the Galois Theory of Fields

Let k be a field and kS a separable closure of k in some algebraic closure k̄ and consider Gal(k) the
absolute Galois group. Given a finite separable extension L|k, the set HomE(k)(L|k → kS |k) is finite, of
cardinality [L : k]. This set has a natural action of Gal(k) defined by g : φ 7→ g ◦ φ, for g ∈ Gal(k) and
φ : L|k → kS |k.

Proposition 3.2.4.1. This action of Gal(k) on HomE(k)(L|k → kS |k) is continuous and transitive.

We then have the main result which makes possible the Grothendieck’s formulation of Galois theory for
fields
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Theorem 3.2.4.2. Let k be a field and kS a separable closure. Using the notations of the first chapter, the
contravariant functor

h◦kS : E(k) // Sets

induces an equivalence between the category of finite separable extensions of k and the category of sets endowed
with a transitive and continuous action of Gal(k).

Proof. See [16].



Chapter 4

Galois Theory of Covering Spaces

Our aim is to introduce the Theory of Covering Spaces as an example of a ”Galois Theory”, and the
definition of the algebraic fundamental group of a topological space X. In this chapter, we introduce two
different fundamental groups on a topological space X: the familiar topological version, built on paths on
X and a new definition, constructed through a pair category+functor, built on coverings of the space X,
generalizing the role of the topological version.

4.1 Fundamental Group of a topological space

4.1.1 Topological Fundamental Group

Let X be a topological space. A path on X is a continuous map γ : I = [0, 1] → X. γ(0) is called the
starting point and γ(1) the ending point. A loop is a path having the same initial and final points. The
image of the path is the set γ(I) ⊆ X. An homotopy between two paths γ1 and γ2 with the same extreme
points, is a continuous map H : I × I → X such that H(0, t) = γ1(t) and H(1, t) = γ2(t). Morever we
ask for the extreme points to be fixed, that is, H(s, 1) = γ1(1) = γ2(1) and H(s, 0) = γ1(0) = γ2(0). More
generally, given two topological spaces Y and Z and two maps f, g : Y → Z, an homotopy between f and g

is a continuous map H : I × Y → Z such that H(0, y) = f(y) and H(1, y) = g(y), ∀y ∈ Y . The existence of
an homotopy between two paths is an equivalence relation on the set of paths on X. We denote by [γ] the
class of paths homotopicaly equivalent to γ.

Given two paths γ1 and γ2 such that γ2 starts where γ1 ends ( γ1(1) = γ2(0)) we obtain a third
path, the composition γ2 ◦ γ1, defined by t 7→ γ1(2t) for t ∈ [0, 1

2 ] and t 7→ γ2(2t − 1) if t ∈ [ 1
2 , 1]. This

composition extends to equivalence classes: given two composable paths γ and α and [γ] and [α] their
respective equivalence classes, we define the composition [γ]◦ [α] := [γ ◦α]. This composition is well-defined:
if γ′ (resp. α′) is another path representing the same class of γ (resp. α), there are homotopies between,
respectively γ and γ′ and α and α′ we can use them to construct an homotopy between γ ◦ α and γ′ ◦ α.

We say that a topological space is path-connected if there is a path joining every two points of X.
Assume X is path connected- The above operation induces a categorical structure on the set of points of
a path-connected space X. Viewing points x and y as objects we define the set of morphism Hom(x, y)
to be the set of equivalence classes of paths starting at x and ending on y. We have Hom(x, x) as the set

77
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of equivalence classes of homotopic loops starting and ending at x. We observe that there is an identity
morphism Ix for each point x ∈ X: it is represented by the homotopy class of the constant path at x, that
is, the path mapping t 7→ x, ∀t ∈ I.

The above properties of path-composition and the existence of an identity morphism, ensure sufficient
conditions for the composition of these morphisms to be well-defined and for this construction to be a
category. We denote it by Π1(X).

In the above sense, an isomorphism [γ] : x → y is an equivalence class of paths from x to y such that
there is another class [β] : y → x, verifying [β] ◦ [γ] := [β ◦ γ] = Ix and [γ] ◦ [β] := [γ ◦ β] = Iy. This is
equivalent to ask for a path β from y to x such that both possible compositions are homotopicaly equivalent
to constant paths on x and y, respectively. Such path always exists, defined by t 7→ γ(1 − t). It has the
same image as γ but it is travelled backwards. It can be shown that the composition of these two paths is
homotopic to a constant path on the starting point of γ.

This property turns Π1(X) into a groupoid. We call it the fundamental groupoid of X. For each point
x ∈ X we have its automorphism group AutΠ1(X)(x), which we denote by π1(X,x). We call it the topological
fundamental group of X at x. Remember that such automorphisms are simply equivalence classes of loops
starting and ending on x.

Since any two points are isomorphic in Π1(X), their automorphism groups are also isomorphic.

4.1.2 Algebraic Fundamental Group

This section is an overview of what is coming next. Having defined a topological fundamental group, we
will introduce a new group generalizing the role of the fundamental group.We will introduce a category over
X, considering as objects a certain kind of morphisms to X- which we call covering maps. We will denote
it by Cov(X). We will explore some fundamental features of this category, introduce Galois objects and a
Galois theory concerning the classification of their subobjects.

This category is naturally equipped with a set-valued functor Fibx - The Fiber Functor, depending on
a point x ∈ X. After exploring some properties, we define the algebraic fundamental group of a space X
as the group of automorphisms of this functor. We will denote it by πalg1 (X,x). Our aim will then be to
compare both fundamental groups.

For a connected, path-connected, locally path connected and semi-locally simply connected topological
space X, the fiber functor is representable and the group of automorphisms of the object representing it, is
precisely π1(X,x). This result not only allows us to conclude that both fundamental groups are isomorphic
but also, their actions on the fiber sets are equivalent. As a final result, we prove that the category of
covering spaces is equivalent to the category of π1(X,x)-sets.

This result depends in an essential way on the representability property, which in general does not hold.
However, a particular version is still valid: For a connected space X, the category of finite covering spaces
is equivalent to the category of πalg1 (X,x)-sets, and in this case, πalg1 (X,x) is a profinite group.
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4.2 Theory of Covering Spaces

4.2.1 Covering Spaces

Let X be a topological space. A space over X is a topological space Y together with a continuous map
p : Y → X. Sometimes we simply denote it by (Y, p). It is said to be connected if the space Y is connected.

We introduce a particular kind of spaces over X:

Definition 4.2.1.1. A covering space (or cover) of X, is a space over X, p : Y → X, such that each point
x of X admits an open neighbourhood Vx for which p−1(Vx) is a collection of disjoint non-empty open sets
{Ui} and the restriction of p to Ui is a homeomorphism to Vx.

As in section 1.3, a morphism of spaces over X, (Y, p) → (Z, p′), is a continuous map φ : Y → Z such
that p′ ◦φ = p. Such maps preserve the fiber structure: given a point y ∈ Y over x, its image φ(y) is a point
in Z also over x, p′(φ(y)) = p(y) = x.

The category of covering spaces of X, Cov(X) forms a subcategory of the category of (continuous)
spaces over X.

Definition 4.2.1.2. Let p : Y → X be a space over X. The fiber of a point x ∈ X is the set of points on Y

being mapped to x, p−1({x}). We use the expression “point over x” to denote a point y ∈ Y in the fiber of
x.

For a covering, the fiber of a point is a discrete subset of Y . Also, the cardinality of p−1({x}) is a locally
constant function and if X is connected, it is constant. It is called the degree of the cover. More generally,
for a connected cover, the fiber sets are all homeomorphic to a single discrete topological space I. The cover
is called finite if the fiber sets are finite. We restrict our study to covers of connected spaces X.

Let us proceed with some properties of morphisms between covering maps.

We say that a cover q : Z → X is an intermediate cover of p : Y → X if there is a covering morphism
f : (Y, p)→ (Z, q). Notice that

Proposition 4.2.1.3. For p : Y → X any covering map and Z → X some connected cover, any morphism
of covers given by a map Y → Z is itself a covering map of Z

Proof. For a point z ∈ Z, we may consider a neighbourhood V of q(x) with the covering property for both
p and q. This way, p−1(V ) is a collection of disjoint open sets Ui in Y , each one mapped homeomorphically
to V . The same for q−1(V ) = ∪Vi. Each Ui is connected and because f is continuous, the sets f(Ui) ⊂ Y

are also connected. The commutation relation q ◦ f = p imposes each f(Ui) to be equal to one of the sets
Vj , therefore, open. For each point y ∈ Y we could apply this argument and we conclude that f(Y ) is an
open set on Z This proves that f verifies the covering condition. We still need to prove surjectiveness. SInce
f(Y ) is open on Z and Z is connected, this resumes to prove that f(Y ) is also a closed set. Being open and
closed on a connected set Z imposes f(Y ) = Z. For this, we prove that Z − f(Y ) is open. Given a point
z ∈ Z − f(Y ) we consider a neighbourhood V of q(x) with the covering property for q, q−1(V ) = ∪Vj . One
of this disjoint Vj containes z and we notice that this open set is disjoint from f(Y ). Again, the relation
q ◦ f = p would force all the Vj to be contained on f(Y ). Finally, since every point z ∈ Z − f(Y ) admits an
open neighbourhood Vj not intersecting f(Y ), Z − f(Y ) is indeed open.



80 CHAPTER 4. GALOIS THEORY OF COVERING SPACES

We conclude this section, by noticing that the identity map X → X is a covering map. This covering is
a final object in Cov(X).

4.2.2 Group Actions, Quotient Spaces and Coverings

Let us briefly introduce a procedure to construct covering maps

Consider an action of a group G on a topological space Y . The quotient space Y/G is the set of
equivalence classes {[y] : y ∈ Y } and we have a natural projection π : Y → Y/G sending each y to its
equivalence class [y]. We equip this space with the finest topology that makes this projection continuous
(the quotient topology (See [7]) ). Notice that this construction is an example of the categorical notion of a
quotient of an object by a group action, introduced in section 1.9.3. Therefore, every invariant G-morphism
f from Y to another topological space Z, always factors uniquely, through π

Y

π

��

f
// Z

Y/G

f̄

=={
{

{
{

(4.1)

where f̄ is a morphism of topological spaces, in other words, continuous. We introduce a particular kind of
actions:

Definition 4.2.2.1. Let G be a group acting on a topological space Y . We say that the action of G on Y is
even if every point y ∈ Y admits an open neighbourhood U such that g(U) ∩ g′(U) is empty for all g 6= g′.

Such actions produce covering maps:

Proposition 4.2.2.2. If G acts evenly on Y , then the quotient map Y → Y/G is a covering.

Proof. For each point y ∈ Y pick an open neighbourhood U verifying the condition imposed by the even
action of G. The collection of subsets g(U), for different g ∈ G, is disjoint. The quotient map π : Y → Y/G

identifies all these subsets with a single open subset π(U) in Y/G. By the definition of the quotient topology
on Y/G, π restricts to a homeomorphism from g(U) to π(U) and therefore is a covering map.

4.2.3 Automorphisms of Covering Spaces

Automorphisms of a covering p : Y → X are homeomorphisms Y → Y commuting with the covering
map p.

Lemma 4.2.3.1. Let p : Y → X be a covering map. Let Z be a connected topological space and consider
maps f, g : Z → Y with p ◦ f = p ◦ g. If f and g are equal at one point they have to be the same map.

Proof. We prove the subset of points in Z where f and g are equal is both open and closed and since Z is
connected, this set has to be the whole Z. It is open: Let z ∈ Z be a point such f(z) = g(z) on Y . Call
this point y. The covering condition ensures the existence of a neighbourhood V of p(y) on X such that
p−1(V ) is a disjoint union of open subsets Ui in Y , each one homeomorphic to V . Since f(z) and g(z) are
equal they have to be on the same open set Ui. By continuity, there is an whole open neighbourhood W
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of z ∈ Z is mapped in Ui, and since p(f(z)) is equal to p(g(z)), we must have f(z) = g(z) everywhere in
W . It’s closed: we prove the complementary set of points where f(z) 6= g(z) is also open: Again, since
p(f(z))=p(g(z)), f(z) and g(z) lie over the fiber of a same point x ∈ X. This time, the covering condition
ensures the existence of disjoint open neighbourhoods Ui and Uj separating f(z) and g(z). By continuity,
there is an open neighbourhood W of z where f and g are also distinct.

In particular, if a covering automorphism of a connected cover has a fixed point, that is, if it is equal to
the identity map at some point, then it has to be the identity map.

4.2.4 Action of AutCov(X)(Y, p) on Y

AutCov(X)(Y, p) naturally acts on the points of Y . Each automorphism φ : Y → Y sends a point y to
its image φ(y) preserving the fiber structure. Therefore, this action on Y restricts to an action φ|p−1(x) :
p−1(x) → p−1(x), on the fiber of each point x ∈ X. Since φ is invertible, these maps are bijections, and in
the particular case of finite coverings, are permutations of the fiber sets.

Proposition 4.2.4.1. For a connected cover p : Y → X the action of AutCov(X)(Y, p) on Y is even.

Proof. The definition of a covering space ensures the existence of a neighbourhood V for each point x ∈ X,
such p−1(V ) is a disjoint union of open sets Ui homeomorphic to V . Each point y ∈ X is contained on a
subset of Ui of this kind. Each automorphism φ maps Ui to some other Uj . For Y connected, the previous
lemma implies that for φ 6= IY we have i 6= j.

Therefore, the quotient map Y → Y/AutCov(X)(Y, p) is a covering and it is an easy task to verify that
its group of automorphisms is precisely AutCov(X)(Y, p). In general:

Proposition 4.2.4.2. If G acts evenly on Y , then the group of covering automorphism of Y → Y/G is
precisely G

4.2.5 Galois Coverings and Classification of their subcoverings

In this section we describe a theorem classifying all the intermediate covers of a certain kind of cover- A
Galois Cover.

Definition 4.2.5.1. A covering p : Y → X is said to be Galois (or normal) if the action of AutCov(X)(Y, p)
on each fiber is transitive. In other words, if for any x ∈ X, given two points y and y′ on its fiber, there is a
covering automorphism taking y to y′. For Galois coverings we call AutCov(X)(Y, p) the Galois group of the
covering.

Another characterization is possible: Considering the action of AutCov(X)(Y, p) on Y consider the quo-
tient π : Y → Y/AutCov(X)(Y, p), which we now know to be a covering map because the action is even.
Under this conditions, p factors as

Y

π

��

p
// X

Y/AutCov(X)(Y, p)
p̄

77pppppp

(4.2)
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We prove the following:

Proposition 4.2.5.2. A covering map p : Y → X is Galois if and only if the map p̄ is an homeomorphism.

Proof. p̄ is continuous. This follows from the construction properties of quotient spaces in the category
of topological spaces. See 1.9.3. Morever, p̄ is a bijection. Notice that each point in Y/AutCov(X)(Y, p)
represents an orbit of a point y ∈ Y under the action of AutCov(X)(Y, p). If the covering is Galois, this
action is transitive on the fibers and therefore, the whole fiber of p(y) equals the orbit of y. This way, the
map p̄, sending the orbit of y to p(y) is a bijection. Since it is continuous, is a homeomorphism. Conversely,
if p̄ is a bijection, the whole orbits equals the fibers and the action has to be transitive.

In particular, this implies that a covering map constructed through an even action of a group G on a
space Y , by forming the quotient Y → Y/G is a Galois covering.

Let p : Y → X be a covering map with automorphism group G. The action of a subgroup H ⊆ G on
Y is still even, and the quotient Y → Y/H is a covering map that is also Galois, as a corollary to the last
propositon. Morever, we know that its automorphism group is precisely H.

Furthermore, if (Y, p) is itself a Galois covering, p is a G-invariant morphism and therefore also H-
invariant, so that it factors through a unique continuous map, p̄H :

Y

πH

��

p
// X ∼= Y/G

Y/H

p̄H

99t
t

t
t

t

which also turns out to be a covering map. Summarizing this, for each subgroup H ⊆ AutCov(X)(Y, p) for
p : Y → X Galois, we constructed an intermediate cover p̄H : Y/H → X. We now address the inverse
problem.

For an intermediate cover Z → X of a cover p : Y → X, which we can always assume as connected

Y

p
  @@@@@@@ f
// Z

q

��
X

by 4.2.1.3, the map f : Y → Z is also a covering. Each automorphism of Y over Z is naturally an
automorphism of Y over X and H := AutCov(Z)(Y, f) is a subgroup of G. We prove that f : Y → Z is
Galois by showing that the action of H on the fibers is transitive. Given z ∈ Z and two points in f−1(z), z1

and z2, they are also points in the fiber p−1(q(z)) and since Y → X is Galois the action of G on this fiber
is transitive. This way we have some φ ∈ G with φ(z1) = z2. In fact, for z1 we have f(z1) = (f ◦ φ)(z1). By
lemma 4.2.3.1 the maps have to be equal and φ belongs to H. Moreover, we have Z ∼= Y/H.

This whole correspondence has the following property:

Theorem 4.2.5.3. Let p : Y → X be a Galois cover. The correspondences assigning to each subgroup
H ⊆ G the cover (p̄H : Y/H → X) and to each subcover (q ◦ f : Y → Z → X) the subgroup AutCov(Z)(Y, f),
defines a bijection between subgroups of G and intermediate covers of Y → X.
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In particular,

Proposition 4.2.5.4. Let Y → X be a Galois cover with Galois group G. An intermediate cover (q ◦ f :
Y → Z → X) is Galois if and only if the corresponding subgroup AutCov(Z)(Y, f) is a normal subgroup of G.

Proof. Given a normal subgroupH ⊆ G let Z → X be the corresponding subcovering of Y → X. Since H is
normal, G/H is a group and acts on Z → X which we known to be isomorphic to Y/H → X. This action is
injective and we haveZ/(G/H) ∼= Y/G ∼= X, and therefore is Galois. For Z → X a Galois subcovering, each
automorphism φ of Y over X induces a unique automorphism of Z over X: Given y ∈ Y we known f(y) and
f(φ(y)) to be on the same fiber in Z, over (q ◦ f)(y). Since Z → X is galois, there is some automorphism φ̃

of Z over X with φ̃(f(y)) = f(φ(y)). There is only one φ̃ with this property: if λ was another one then the
composition φ̃◦λ−1 would be the identify map, from lemma 4.2.3.1. This correspondence defines a surjective
map G→ AutCov(X)(Z, q) and its kernel is precisely H = AutCov(Z)(Y, f).

4.3 The Fiber Functor and The Algebraic Fundamental Group

4.3.1 Definition

We proceed now to a different characterization of covering spaces by focusing on the fiber set p−1({x})
of each point x ∈ X. We prove the following:

Proposition 4.3.1.1. The correspondence mapping each covering Y → X to the fiber of x, p−1({x}) is a
functor from the category of coverings to the category of sets.

Proof. As already seen in section 4.2.1, a morphism of coverings f : (Y, p) → (Z, p′) preserves the fiber
structure by sending points on the fiber of x to points in the same fiber of x, inducing a map f |p−1(x) on each
fiber. Morever, the identity morphism restricts to the identity map on the fibers. The composition of these
maps between fibers is by definition inherited from the composition of covering maps restricted to them.

We call it the fiber functor at the point x ∈ X and denote it by Fibx. Moreover, this functor is covariant.

Definition 4.3.1.2. The algebraic fundamental group of a connected space X is the group of automorphisms
of Fibx. We denote it by πalg1 (X,x).

4.3.2 Topological Properties of Coverings - Homotopy Lifting Property

Let p : Y → X be a covering and consider a continuous map f : Z → X, from another topological space
Z to X. A lifting of f is a map f̃ : Z → Y such that p ◦ f̃ = f .

We will not prove the following fundamental lemma.

Lemma 4.3.2.1. Let p : Y → X be a covering. Let Z be another topological space and consider maps
f, g : Z → X and H : I × Z → X one homotopy between them. Choosing a lift for f , the whole homotopy
can be lifted on an unique way and its lifting is an homotopy between the lifting of f and a lifting of g.

This lemma implies the possibility of lifting paths on X to paths on Y : Consider Z = {p} as a one-point
set endowed with the discrete topology. Seen this way, an homotopy H between maps f, g : Z → X may be
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interpreted as a path on X starting on f(p) and ending at g(p). A lifting of f is simply a choice of a point y
on the fiber of f(p). This choice is always possible. Therefore, by the lemma, the whole homotopy (in this
case the whole path) can by lifted and it connects y to a certain point over g(p). So, for each point in Y over
the starting point we have a unique lift of the whole path, ending at a certain point on the fiber of the final
point of the path. Also by the lemma if two paths are homotopic on X their lifts will also be homotopic on
Y .

4.3.3 Dependence on the base point

As a functor, Fibx depends on the base point x ∈ X. Let p : Y → X be any cover and consider x and x′,
two points in X. For any path γ joining x to x′ we define a map φYγ : Fibx(Y, p) → Fibx′(Y, p) by sending
each point z over x to the final point of the unique lift of γ starting at z, denoted by γ̃z(1). As seen in the
previous section, such point is on the fiber of x′: any lifting γ̃ of a path γ, has initial and final points lying
over the respective initial and final points of γ. Also by the previous lemma, this map is injective, since the
lifting is unique. It is also surjective: Given any point z′ over x′ one can consider a path on Y connecting
z′ to some z on the fiber of x. If we project this path on X we get a path joining x and x′ and by applying
the construction above to this path we get z′ as image of z. We conclude φYγ is a bijection.

Observe now that if γ′ is another path between x and x′, homotopic to γ, the induced maps φYγ′ and φYγ
are precisely the same. This follows also from lemma 4.3.2.1: if two paths are homotopic on X, their lifts
starting on the a same point are also homotopic and therefore they have the same endpoints.

One can also easily see that for three points x, x′ and x̃ in X and homotopy classes of paths [γ] and [β]
connecting them, the composition map φY[β] ◦ φ

Y
[α] is precisely φY[β◦α].

φY[γ] has functorial properties: If f : (Y, p) → (Z, q) is a morphism of covers, the commutativity of the
diagram

Fibx(Y, p)

φY[γ]
��

Fibx(f)
// Fibx′(Z, q)

φY[γ]
��

Fibx(Y, p)
Fibx′ (f)

// Fibx′(Z, q)

follows from the uniqueness of liftings fixed an initial point.

The collection (φYγ ), one for each covering Y → X, defines a natural isomorphism φ[γ] between Fibx and
Fibx′ and we conclude

Proposition 4.3.3.1. Let X be a path-connected topological space. For every two points x and x′ in X:

• The fiber functors Fibx and Fibx′ are isomorphic

• The algebraic fundamental groups πalg1 (X,x) and πalg1 (X,x′) are isomorphic.

In particular, if the functors Fibx and Fib′x are representable, we conclude that their representing objects
are isomorphic.
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4.3.4 The Monodromy Action of π1(X, x)

As a particular case of the previous construction, for any homotopy class [γ] ∈ π1(X,x) we have the
corresponding natural isomorphism φ[γ] : Fibx → Fibx. This defines a group homomorphism

φ : π1(X,x)→ πalg1 (X,x)

and in particular, an action of π1(X,x) on the fibers of each covering map. This action is called the
monodromy action.

4.4 Galois Theory of Covering Spaces - Representable Case

4.4.1 Representation of the Fiber Functor

The main theorem of this section concerns the representability of the fiber functor. We introduce some
standart terminoloy before giving the main result:

We say that a topological space is locally path-connected if every point admits an open neighbourhood
U , path-connected by paths whose image lie in U . Also, we say that a space is semilocally simply connected
it every point x admits a neighbourhood U such that the inclusion homomorphism π1(U, x) → π1(X,x) is
the null map. Until the end of section 4.4, we will assume X to verify both this properties.

Theorem 4.4.1.1. If X is a connected, path connected, locally path connected and semilocally simply con-
nected topological space, then the functor Fibx is representable, ∀x ∈ X.

Before proving this result we discuss some consequences and properties of this representation. As seen
in section 1.6.4, the representation of a functor is given by a pair (A, ζ), where A is an object, in this case, a
certain cover π : X̃x → X and ξ is a natural transformation Fibx → h(X̃x,π)

1. As Fibx depends on the point
x we also emphasize the dependence of the object representing it.

By Yoneda’s lemma, this natural transformation is induced by a unique element ζ ∈ Fibx(X̃x, π), that
is, a certain point in the fiber of x.

Following the remark 1.6.4.2, the representability property ensures for every covering map p : Y → X

the existence of a functorial bijection between HomCov(X)((X̃x, π), (Y, p)) and Fibx(Y, p). Any morphism
of coverings (X̃x, π) → (Y, p) is uniquely determined by a point ỹ ∈ p−1(x) and vice-versa, through ỹ =
Fibx(u : X̃x → Y )(ζ).

We will now briefly indicate how to construct the space X̃x and the map π : X̃x → X and introduce a
topology that turns this map into a cover.

Construction 4.4.1.2. Recall the construction of the fundamental groupoid Π1(X) of a path connected space
X as a category whose objects were the points of X and between two points x, y we defined Hom(x, y) =”Set
of homotopy equivalence classes of paths joining x and y”.

We define X̃x as the set of homotopy classes of paths starting at x. In other words, the set of all
morphisms in Π1(X) starting at x. Each path γ representing a certain class has a final point in X and we

1Remember that Fibx is a covariant functor
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define a set map π : X̃x → X mapping [γ] 7→ γ(1). Remember that we are working with path-homotopy
equivalence. If two paths are in the same class, they both end at the same point, and this map is well-defined.

We add a topology to X̃x, introducing a basis of open neighbourhoods of a point [γ], Ũ[γ]. Here we
need some conditions on the space X, precisely the ones defined in the beginning of this section - locally
path-connected and semi-locally simply connected. For the open sets Ũ[γ] we consider the set of all homotopy
classes of paths obtained by composing [γ] with some homotopy class of a path α with its image contained on a
semi-simply connnected neighbourhood of γ(1). Such neighbourhood of γ(1) exists because of those topological
conditions we are imposing on X.

Ũ[γ] = {[α ◦ γ] : α(I) ⊂ U}

Semi-simply connectedness of U ensures that any two paths on U when included on X with the same
endpoints are homotopic.

The sets Ũ[γ] are a basis for a topology on X̃x: given any two such neighbourhoods of [γ], Ũ[γ] and Ṽ[γ]

they are constructed from semi-simply connected and locally path connected neighbourhoods U and V of γ(1)
in X, and we can always consider some subset of U ∩ V with these same properties and repeat the above
construction for that subset obtaining a new neighbourhood contained in both neighbourhoods we started with.

This topology on X̃x makes the above map π : X̃x → X continuous. Moreover, it is a covering map.
Every point y ∈ X is the endpoint of some path γ connecting x to y and admits an open path-connected and
semi-simply connected neighbourhood. Its preimage under π is precisely the union of all the sets Ũ[γ]. It
follows easily that for different equivalence classes, those neighbourhoods are disjoint.

The fiber of each point y ∈ X is precisely the set HomΠ1(X)(x, y). In particular, the fiber of x is the set
π1(X,x).

Finally, we notice a canonical element in X̃x, the equivalence class of the constant path on x, from now
on denoted by x̃.

We will not prove the following properties

Proposition 4.4.1.3. X̃x is a connected and simply-connected topological space.

We are now in conditions to prove the representability property, constructing a natural transformation η :
Fibx → h(X̃x,π). First we define a bijection between Fibx(Y, p) and HomCov(X)((X̃x, π), (Y, p)), valid for any
covering p : Y → X and then we prove that is has functorial properties, inducing a natural transformation.

Proof. (Theorem 4.4.1.1) For each point ỹ ∈ Fibx((Y, p)) we must find an unique morphism uỹ : X̃x → Y

over X. Remember that points on X̃x are equivalence classes of paths on X starting at x. The homotopy
lifting property of the covering p : Y → X ensures that each point [γ] ∈ X̃x (joining x and γ(1) in X) can
be lifted to a path γ̃ on Y joining some point over x and some point over γ(1). For each choice of a point
over x this lifting is known to be unique. Given a point ỹ ∈ Fibx((Y, p)) we define a map uỹ : X̃x → Y

by sending a class [γ] to the final point of the lifting which starts at ỹ. This map is well-defined: if γ′ is
another path homotopic to γ, both their lifts starting at the same point, have the same endpoint, as seen
when constructing the monodromy action.

The correspondence ỹ → (uỹ : X̃x → Y ) is a bijection: ỹ is recovered as the image of the constant path
x̃ on x: By construction, this paths lifts to a constant path starting on ỹ and we have πỹ(x̃) = ỹ. The
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constant path x̃ seen as a point on X̃x over x, is the element ζ in the pair representing the functor, inducing
the natural transformation.

Denote the correspondence (u : X̃x → Y ) → π(x̃) by ξYx . This collection induces a natural trans-
formation: A morphism of coverings φ : (Y, p) → (Z, q) taking y to φ(y) = z, induces morphisms of sets
Fibx(Y, p) → Fibx(Z, q) and HomCov(X)((X̃x, π), (Y, p)) → HomCov(X)((X̃x, π), (Z, q)). The commutativ-
ity of the diagram

HomCov(X)((X̃x, π), (Y, p))

��

ξYx

// Fibx(Y, p)

��
HomCov(X)((X̃x, π), (Z, q))

ξZx

// Fibx(Z, q)

follows from the fact that each ỹ ∈ Fibx(Y, p), for any cover, can be obtained as the image of x̃ through the
map ξ−1

Y (ỹ) : X̃x → Y .

4.4.2 Algebraic Fundamental Group - Representable Case

Denote by Ux the covering representing Fibx. As seen in section 4.3.3, for any two points x and x′ in X,
the functors Fibx and Fibx′ are isomorphic and whenever they are representable, so are their representing
objects. We say that a covering space X̃ → X is universal, if it is isomorphic to some Ux representing Fibx
for some x ∈ X. We summarize some important results:

Lemma 4.4.2.1. Let X be a connected topological space

• A covering space X̃ → X is universal if and only if X̃ is simply-connected;

• Any universal cover is Galois.

Remember the construction of Ux = (X̃x → X) in the last section as the set of homotopy classes of
paths starting at x. Each homotopy class of loops [γ] ∈ π1(X,x) defines a map ψ[γ] : X̃x → X̃x by sending
each class [α] to the composition [α ◦ γ]. This map is continuous and it is also a covering morphism because
the final point of α ◦ γ is the final point of α. In additions, ψ[γ] is an invertible map, since we could repeat
the construction for an inverse path of γ. Therefore, we have a group homomorphism

ψ : π1(X,x)→ AutCov(X)(X̃x, π) (4.3)

This map is injective since any path γ that is not homotopic to the constant path x̃, happens to move
x̃. Given any automorphism φ : X̃x → X̃x over X, a point [α] is taken to φ([α]) which writable as [α′], for
some path α′ : I → X starting in x and with the same endpoint as α. The composition α−1 ◦α′ is a loop in
x and φ ◦ψ−1

[α−1◦α′] fixes α. Since the cover X̃x is connected, by lemma 4.2.3.1 it has to be the identify map.
This proves φ = ψ[α−1◦α′]. We conclude:

Proposition 4.4.2.2. The group of automorphisms of a universal cover of X is isomorphic to π1(X,x).
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This result is the key to understant why the representable case is so important. Recall section 1.6.4.4:
if a functor Fibx is representable by a pair (Ux, ξx), where ξx : hUx → Fibx is now assumed to be the
natural isomorphism constructed in the previous section, then any automorphism of Fibx is induced by an
automorphism φ of Ux:

hUx

(−◦φ)

��

ξx

// Fibx

��
hUx ξx

// Fibx

The map χ : AutCov(X)(Ux) → AutFun(C,Sets)(Fibx) = πalg1 (X,x) mapping each automorphism φ of
Ux to ξx ◦ (− ◦ φ) ◦ ξ−1

x , is a group isomorphism. Composing the two isomorphisms

π1(X,x)
ψ
// AutCov(X)(X̃x, π) χ

// AutFun(C,Sets)(Fibx) = πalg1 (X,x)

we conclude that the topological and the algebraic fundamental groups are isomorphic. Moreover, this
composition gives precisely the monodromy action: Given a homotopy class [γ] ∈ π1(X,x), we consider
ψ[γ]. Let us see how the action of this automorphism manifests itself on the fibers. Let Y → X be a
covering map and start with a point y ∈ Fibx(Y ). Let us chase the diagram above: To y we assign
the covering map (ξYx )−1(y) = (uy : X̃x → Y ), as defined in the previous section while proving Fibx is
representable. We act with ψ[γ] and get a new covering map, uy ◦ ψ[γ]. The corresponding fiber point is
ξYx (uy ◦ ψ[γ]) = uy ◦ ψ[γ](x̃) = uy(x̃ ◦ [γ]) = uy([γ]). Following the construction of uy, this is precisely the
result of the monodromy action of [γ] on y.

We summarize all the results above:

Proposition 4.4.2.3. For a connected, path-connected, locally path connected and semi-locally simply con-
nected topological space X, the monodromy action induces an isomorphism between the topological and the
algebraic fundamental groups.

4.4.3 Categorical Formulation of Galois Theory of Cov(X)

We present the main classification theorem for coverings, viewed as an equivalence of categories

Theorem 4.4.3.1. Let X be a connected, path-connected, locally path-connected and semilocally simply
connected topological space and x a point in X. The category Cov(X) and the category of πalg1 (X,x)-sets
with a finite number of orbits, are equivalent

Proof. We define a functor H from Cov(X) to Sets(πalg1 (X,x)) mapping each cover to the respective fiber
set and each covering map to its restriction to the fibers. However, we consider not only the fiber set,
but also the action of πalg1 (X,x) on this set given by monodromy. This correspondence is a well-defined
functor to πalg1 (X,x) − Sets because the restriction of each covering map to the fibers is compatible with
the monodromy action.

To prove that this functor H defines an equivalence of categories, we use lemma 1.4.2.3, proving it is
fully faithfull and essentially surjective.
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For the surjective part, we show that any set S with an action of π1(X,x) producing a finite number of
orbits, is isomorphic as a set to the fiber of a certain cover of X. First we consider sets S where the action
is transitive. Fixed a point y ∈ S we consider its subgroup of stabilizers, Hy. Since we are considering the
action to be transitive, S is isomorphic as a set to the quotient π1(X,x)/Hy through the map sending each
point z of S to the element gz taking y to z. To construct a covering with fiber S, we use the main theorem
of Galois Theory for Galois covering maps. We already known X̃x → X to be Galois and so, the subgroup
Hy corresponds to an intermediate cover X̃x/Hy → X, obtained by taking a quotient of X̃x under the action
of Hy.

For full faithfulness, we show that given two covers Y → X and Z → X, each map φ : Fibx(Y |X) →
Fibx(Z|X) of πalg1 (X,x)-sets comes from a unique map Y |X → Z|X of covers. For this, we may assume
that Y and Z are connected and consider the map πy : X̃x → Y corresponding to a fixed y ∈ Fibx(Y |X).
By theorem 4.2.5.3, the map πy realizes Y as a quotient of X̃x by the stabilizer Uy = AutCov(Y)(X̃x|Y ) of
y; Let ψy : Y → X̃x/Uy be the inverse map. Uy injects into the stabilizer of φ(y) via φ, the natural map
πφ(y) : X̃x → Y corresponding to φ(y) induces a map X̃x/Uy → Z by passing to the quotient; composing it
with ψy gives the required map Y → Z.

Connected covers are mapped to transitive πalg1 (X,x)-sets. This induces a bijection between isomorphism
classes of connected covers and subgroups of πalg1 (X,x). From A.3.3.2,

Corollary 4.4.3.2. Let X be a connected, path-connected, locally path-connected and semilocally simply
connected topological space and x a point in X. The category of finite coverings of X, Fin-Cov(X) is
equivalent to the category of ̂π1(X,x)-sets, where ̂π1(X,x) is the profinite completion of the topological fun-
damental group.

This result extends to a larger class of topological spaces

Theorem 4.4.3.3. (Grothendieck) Let X be a connected topological space and x a point in X. There is an
equivalence between the category of finite covering maps of X and the category of finite sets endowed with a
continuous action of the algebraic fundamental group, which in this case, is a profinite group,i.e. the limit
of the projective system of the finite automorphism groups of all finite Galois coverings.

This result will be proved in the next chapter, following Grothendieck’s approach of Galois Categories.
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Chapter 5

Galois Categories and Fundamental

Groups

The main reference for this chapter is [4]- Exposé V Section 4 - ”Conditions axiomatiques d’une thérie
de Galois” and [2].

5.1 Pro-Representable Functors

This section uses the results of the first chapter and follows Grothendieck’s paper [2].

5.1.1 Pro-Objects

Let C be a category. Any projective system β : I◦ // C has an associated limit functor (see 1.7.7)

limI←−−β : C // Sets

We present another construction assigned to β: The opposite functor β◦ : I // C◦ defines an induc-

tive system in C◦: Following from the Yoneda’s lemma, the functor h : C◦ // Fun(C,Sets) establishes
an equivalence between C◦ and its image and the composition

I
β◦ // C

h// Fun(C,Sets)

defines an inductive system of functors h ◦β◦. As an inductive system, it has is own limit functor (see 1.7.7)
limI−−→(h ◦ β◦) : Fun(C,Sets) // Sets given by

F 7→ limI←−−(HomFun(C,Sets)(hβ(i), F )) = CoCone(Diagram(h ◦ β◦), F ) = limI←−−(F (β(i))) (5.1)

where we use the fact that all projective systems of sets have a limit set and the last equality follows
from the Yoneda’s Lemma.

91
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Proposition 5.1.1.1. For any projective system β : I◦ // C , the limit functor limI−−→(h ◦ β◦) is repre-
sentable in Fun(C,Sets).

Proof. Starting with β, we construct a functor L(β) : C // Sets and prove that it represents limI−−→(h◦β◦).
Firstly, we notice that given an object X in C, the collection of sets {HomC(β(i), X}i∈I , together with the
natural composition maps induced by β, defines an inductive system of sets and after the results of 1.7.7.3
we know that such a limit always exists. The assignment

X → limI−−→(HomC(β(i), X)

defines a functor L(β) : C // Sets . The fact that L(β) represents limI−−→(h ◦β◦) follows directly from

the construction of inductive limits of sets. Given another functor F : C // Sets , for each object X in
C, by construction (see 1.7.7.6) we have

HomSets(L(β)(X), F (X)) ∼= limI←−−(HomSets(HomC(β(i), X), F (X)))

and therefore

HomFun(C,Sets)(L(β), F ) ∼= (limI−−→(h ◦ β◦))(F ) = limI←−−(HomFun(C,Sets)(hβ(i), F ))

We conclude that any projective system in C can be seen as an inductive system in Fun(C,Sets) by
means of the Yoneda’s embedding, and more importantly, even if β does not have a limit in C, the assigned
inductive system h ◦ β◦ always has a colimit object in Fun(C,Sets).

Definition 5.1.1.2. Let C be a category. The category of pro-objects in C, denoted Pro(C), is such that:

• the objects are projective systems β : I◦ // C ;

• given two projective systems β : I◦ // C and β′ : J◦ // C we define

HomPro(C)(β, β′) := HomFun(C,Sets)(L(β′), L(β)) (5.2)

Indeed, the fact that Fun(C,Sets) is a category, ensures that Pro(C) as defined above, is also a
category.

Notice that, as a result of 5.1.1.1, the formula 5.2 can be rewritten as

limJ←−−(HomFun(C,Sets)(hβ′(j), L(β)))

and using Yoneda’s Lemma

= limJ←−−(L(β)(β′(j)) = limJ←−−limI−−→HomC(β(i), β′(j)) (5.3)
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Proposition 5.1.1.3. Let C be a category, β : I◦ // C a projective system and ϕ : J // I a functor,
with both I and J small categories. If ϕ is cofinal then β and β ◦ ϕ◦ are isomorphic in Pro(C).

Proof. By 1.7.8.2, if ϕ is cofinal, both limit functors limI←−−β : C // Sets and limI←−−(β ◦ ϕ◦) : C // Sets

are isomorphic and therefore, the objects representing them, respectively, L(β) and L(β ◦ ϕ◦) are also
isomorphic in Fun(C,Sets). By the construction of Pro(C), β and β ◦ ϕ◦ are isomorphic.

Note that C can be seen as a subcategory of Pro(C) by identifying each object X in C with the constant
functor βX : I◦ // C assigning i 7→ X and (i → j) 7→ IX . Under this circunstances, we trivially have
L(βX) = hX . If X and Y are two objects in C, and βX and βY their, respective, trivially assigned constant
projective systems, we have (after the Yoneda’s Lemma)

HomPro(C)(βX , βY ) = HomFun(C,Sets)(hX , hY ) ∼= HomC(Y,X)

The correspondence β(−) : X 7→ βX defines a functor that, after this result, is fully faithfull, allowing us
understand C as a subcategory of Pro(C).

Remark 5.1.1.4. With the previous embedding and using the formula 5.3 above, L(β) can be rewriten as

L(β) = HomPro(C)(β, β(−)) : C // Sets

or, in other words, L(β) is simply the restriction of HomPro(C)(β,−) to C viewed as a subcategory of
Pro(C).

Notation 5.1.1.5. When viewing C as a subcategory of Pro(C), sometimes we simply write X to denote
βX , whenever there is no ambiguity.

Moreover, the assignment β 7→ L(β) defines a functor

L : Pro(C) // Fun(C,Sets)

By definition (5.1.1.2) this functor is fully faithfull and therefore we may also understand Pro(C) as a
subcategory of Fun(C,Sets). This construction yields an extension of the Yoneda’s embedding.

5.1.2 Pro-Representable Functors

Definition 5.1.2.1. A functor F in Fun(C,Sets) is called pro-representable if it is isomorphic to some
functor in the image of L.

Every functor F : C // Sets can be naturally extended to a functor F̄ : Pro(C) // Sets , given
by

( β : I◦ // C ) 7→ lim←−I(F (β(i)))

By applying the formula 5.1 and Prop. 5.1.1.1 we find that
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F̄ = HomFun(C,Sets)(L(−), F )

Proposition 5.1.2.2. A functor F : C // Sets is pro-representable in C if and only if the extension

F̄ : Pro(C) // Sets is representable in Pro(C).

Proof. If F ∼= L(β), we have

F̄ = HomFun(C,Sets)(L(−), F ) ∼= HomFun(C,Sets)(L(−), L(β)) = HomPro(C)(β,−)

The converse also follows immediately from the above equations.

Let F : C // Sets be pro-representable by β. After the previous result, the whole theory concerning
representable functors in 1.6.4 can be applied to F̄ :

1. We have

AutFun(C,Sets)(F ) ∼= AutFun(C,Sets)(L(β)) = AutPro(C)(β) ∼= AutFun(Pro(C), Sets)(F̄ )

where the equality in the middle follows from the definition of Pro(C).

2. The isomorphism

ξ : HomPro(C)(β,−)→ F̄

is determined by a unique element ζ = (ζi)∈I ∈ F̄ (β) = lim←−IF (β(i)), related to ξ through

ζ = (ζi) = ξβ(Iβ)

Given any other β′ in Pro(C), each element x ∈ F̄ (β′) is identified with a unique morphism x̄ : β → β′

in Pro(C) through the relation

x = F̄ (x̄)(ζ)

Moreover, given any morphism a : β1 → β2 between pro-objects, the induced map F̄ (a) : F̄ (β1) →
F̄ (β2) sending x 7→ F̄ (a)(x) is identified with the composition operation

β1

a

��
β

x̄

??��������

ȳ
// β2 x̄

� // a ◦ x̄
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5.1.3 Conditions for Pro-Representability

Let C be a category where all limits exist. Given a functor F : C // Sets we define (1.3)

IF = Subcategory of Fun(C,Sets)/F of all (C) representable functors, over F

Remark 5.1.3.1. Using the Yoneda’s lemma we can identify IF with the opposite category of pairs (X,x)
where X is an object in C and x is an element in F (X), where we define a morphism (X,x)→ (Y, y) as a
morphism f : X → Y in C with F (f)(x) = y.

There is a natural source functor

sourceF : IF // Fun(C,Sets)

assigning (hX → F ) 7→ hX and sending each natural transformation hX → hY over F , to itself. The
image of this functor spams a diagram, denoted Diagram(source), in Fun(C,Sets).

Proposition 5.1.3.2. The colimit of Diagram(sourceF ) in Fun(C,Sets) is isomorphic to F .

Proof. Consider the colimit functor of sourceF

lim−→IF (sourceF ) : Fun(C,Sets) // Sets

assigning

A 7→lim←−IFHomFun(C,Sets)(source(hX → F ), A) = lim←−IFHomFun(C,Sets)(hX , A) = lim←−IFA(X)

We notice that each natural transformation φ : F → A corresponds to a unique element in lim←−IFA(X)
and vice-versa. This follows immediately, since we can simply identify each natural transformation φ : F → A

with the family (φ(x))x∈F (X). This identification is well-defined because, for every morphism v : X → Y in
C, the diagrams

F (X)

��

// A(X)

��
F (Y ) // A(Y )

Notice that the source functor can be written as the composition

IF // C◦
h// Fun(C, Sets)
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where the first functor sends (hX → F ) 7→ X and using the Yoneda’s Lemma, each morphism hX → hY

over F to the unique correspondent morphism Y → X in C. Its opposite functor can be understood as a
projective system in C

βF : I◦F // C (5.4)

and by Prop. 5.1.3.2 we immediately have F ∼= L(βF ) and therefore, F is pro-representable by βF .

Proposition 5.1.3.3. Under the hypothesis that C has all limits, if F commutes with limits then IF is
filtrant.

Proof. • Since all limits exist in C, in particular, C has a terminal object 1C and since F commutes
with limits, the set F (1C) = {?} is non-empty and therefore, by the Yoneda’s Lemma, there is at least
one functor h1C

→ F over F and IF is non-empty.

• Writing i = (hX → F ) and j = (hY → F ), since C has all products and F commutes with products, we
have F (X×Y ) = F (X)×F (Y ) and writting k = (hX×Y → F ), the canonical projections X×Y → X

and X × Y → Y induce morphisms

i

��
k

j

@@

• Again, using the same notation for i and j and the fact that all equalizers exist in C, we have

i

��

//
//
j

��
k

with k = (hZ → F ) where Z = Equalizer(Y //
//
X)

5.1.4 Minimal Pairs

Before ending this section and working with the result that F is pro-representable by βF 5.4, remember
the remark 5.1.3.1. We introduce minimal pairs

Definition 5.1.4.1. A pair (X,x) is called minimal if every morphism of pairs f : (Y, y) → (X,x) with
f : Y → X a strict monomorphism in C is an isomorphism.

As seen in 1.8 Prop. 1.8.0.11, f : Y → X is a strict monomorphism if and only if Y ∼= Im(f).

Proposition 5.1.4.2. If for every pair (X,x) there is a morphism of pairs (X,x) → (Y, y) with (Y, y) a
minimal pair then:
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1. The subcategory IMF identified with the opposite subcategory of all minimal pairs, is filtrant;

2. The inclusion functor ϕ : IMF // IF is cofinal and F is pro-represented by βF ◦ ϕ◦

Proof. This follows directly from 1.7.9.3.

Minimal pairs have the following property:

Proposition 5.1.4.3. Under the hypothesis that C as all limits and F commutes with them, for every
minimal pair (A, a), the natural map ã : hA(X)→ F (X) is injective, for every object X in C.

Proof. Recall that this map is defined by (v : A→ X) 7→ F (v)(a). Suppose that F (v)(a) is equal to F (u)(a)
for two different maps v and u, A → X. Since all equalizers exist in C and in Sets and F commutes with

equalizers, also the common equalizer of all pairs A
u
//

v //
X exists in C, given by an object C and a strict

monomorphism f : C → A. (1.7.1-3). In this case, for each object X, the diagram

C
f
// A

u
//

g //
X

is mapped to

F (C)
F (f)

// F (A)
F (u)

//
F (g) //

F (X)

and a is an element in F (C) with F (f)(a) = a. Since C → A is a strict mono and A is minimal we conclude
that f is an isomorphism and so f = g.
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5.2 Grothendieck-Galois Theory

Let C be a category and F : C // Sets a covariant functor with values on finite sets. We will
consider pairs (C, F ) satisfying the following conditions:

On C:

• (G1) C has a final object 1C and the fiber products of any two objects over a third one exist.

After the results in the first chapter, this is equivalent to the existence of all limits in C.

• (G2) C admits finite sums (in particular has an initial object ∅C ) and quotients (1.9.3) by finite group
actions exist in C;

• (G3) Every morphism u : Y → X in C factors as Y
u′ // X ′

u′′ // X with u′ a strict epimorphism
and u′′ is a monomorphism that is an isomorphism with a direct summand of X;

On F :

• (G4) F maps terminal objects to terminal objects (one-element sets) and commutes with fibre products;

After 1.7.6 this is indeed equivalent to say that F commutes with all limits in C whenever they exist.
In particular, with all equalizers and finite products.

• (G5) F commutes with finite sums, transforms strict epimorphisms in epimorphisms and commutes
with passage to the quotient by an action of a finite group of automorphisms;

This means F takes sums of objects in C to finite disjoint unions of sets. Moreover, we have F (X/G) =
F (X)/G where the action of G on F (X) happens according to 1.9.3.

• (G6) Given some morphism u : Y → X in C, if F (u) : F (Y ) → F (X) is an isomorphism then u is
also an isomorphism.

Following Grothendieck’s seminar [4] Exposé V , we have two goals in mind:

• Describe the group π := AutFun(C,Sets)(F );

• Construct an equivalence of categories between C and the category of finite sets endowed with a
continuous action of π.

5.2.1 Subobjects of an object X and Subsets of F (X)

1.

Proposition 5.2.1.1. A morphism u in C is a monomorphism if and only if F (u) : F (Y ) → F (X)
is a monomorphism.

To prove this we use the following lemma:

Lemma 5.2.1.2. Consider u : Y → X in C. u is a monomorphism if and only if the first projection
p1 : Y ×X Y → Y obtained together with the fiber product of the diagram Y

u // X Y
uoo is an

isomorphism.
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Proof. Supposing that all fibre products exist in C, we have a commutative diagram

Y ×X Y

p1

��

p2
// Y

f

��
Y

f
// X

(⇒): If f is a monomorphism, the fact that f ◦ p1 = f ◦ p2 implies that p1 = p2 =: p. Moreover, the
identity morphism IY : Y → Y induces another commutative diagram

Y

IY

��

IY

// Y

f

��
Y

f
// X

and therefore, by the properties of the fiber product, factors in a unique way

Y

IY
))SSSSSSSSSSSSSSSSSSSS

IY

��5555555555555555

q
##H

H
H

H
H

Y ×X Y

p1

��

p2
// Y

f

��
Y

f
// X

we have p◦q = IY and by the universal property of the fiber product, q◦p has to be identity morphism.

(⇐) Given any object Z in C and any two morphisms u, v : Z → Y with f ◦ u = f ◦ v, we know that
this pair factors in a unique way through the canonical pair (p1, p2). We have a commutative diagram

Z

u

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

v

��.
.....................

q
##H

H
H

H
H

Y ×X Y

p1

��

p2
//

p1
##HHHHHHHHH Y

f

��

Y
IY

zzvvvvvvvvvv

IY

??~~~~~~~~

Y
f

// X

Since p is an isomorphism, by the universal property of the fiber product, Y together with the pair
(IY , IY ) is also a fiber product and therefore u = v.

We are now able to prove 5.2.1.1:

Proof. This follows directly from (G1), (G4) and (G6), together with the previous lemma: If Y → X

is mono, by (G1) the fiber product Y ×X Y → Y exists which is, by the lemma, an isomorphism.
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Therefore, F (Y ×X Y )→ F (Y ) is also an isomorphism. By (G4), we have F (Y )×F (X) F (Y )→ F (Y )
also an isomorphism and again by the lemma, F (Y )→ F (X) is a monomorphism.

Conversely, if F (Y ) → F (X) is a monomorphism, since all fibre products exist in Sets, we have
F (Y ) ×F (X) F (Y ) → F (Y ) also an isomorphism. Again, by (G4), F (Y ×X Y ) → F (Y ) is an isomor-
phism and using (G6), we conclude that Y ×X Y → Y is also an isomorphism and finally Y → X is
mono.

From this proposition, we conclude that the subobjects of a given object X are in bijection with subsets
F (Y ) ⊆ F (X).

2. Consider now a sequence of monomorphisms X ′
f // X ′′

g // X . According to the last item, this

induces a sequence of inclusions F (X ′)
F (f) // F (X ′′)

F (g) // F (X) .

If the images of F (X ′) and F (X ′′) are equal in F (X) we conclude that F (f) is a surjective map. Since
it was already injective, it is a bijection. By (G6) we conclude that f is an isomorphism.

Proposition 5.2.1.3. If two subobjects of X are mapped into the same subset of F (X) then they are
isomorphic.

3. Under the hypothesis (G2), there is an initial object ∅C in C. Moreover, in Sets we known that the
empty set plays a similar role. We say an object I in C is a right unit in if it is isomorphic to an initial
object. After 1.7.4, any right unit plays a neutral role with respect to the sum operation on objects.

If I is a right unit, condition (G5) implies that F (I) = ∅, a right unit in Sets. Conversely, if F (I) is
the empty set, after (G5) and (G6) we conclude that I has to be a right unit. So

Proposition 5.2.1.4. F (X) is empty if and only if X is isomorphic to ∅C.

In particular, F (∅C) = ∅. We also find that F (X) is non-empty if and only if X is not isomorphic to
∅C. Moreover, there are no morphism in C from a non-right unit object X to a right-unit object I:
Indeed, there are no set maps from a non-empty set to the empty set.

4. (Subobjects and Summands) If an objectX in C is written as Y
∐
Z, since F preserves finite sums (G5),

we have F (X) = F (Y
∐
Z) = F (Y )

∐
F (Z). The canonical map Y → X induces an inclusion F (Y )→

F (X) and by the first item above, we conclude that the canonical morphism is a monomorphism.

Conversely, if u : Y → X is a monomorphism, by (G3), Y is naturally identified with a direct summand
of X and u is the canonical inclusion.

Proposition 5.2.1.5. Y → X is a monomorphism if and only if Y is a direct summand of X.

As a corollary, for any object X in C, the unique morphism ∅C → X is a monomorphism, since ∅C is
a direct summand of any object.

5.2.2 Connected Objects

1.

Definition 5.2.2.1. Let C be a category and X some object. We say that X is connected if it is not
isomorphic to a direct sum of other two objects in C not isomorphic to the initial object ∅C.
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With all the information gathered from the last section, we conclude that an object X is connected
if and only if its only subobjects are ∅C → X and IX : X → X. Equivalently, the subsets of F (X)
corresponding to some direct summand of X are precisely F (X) and ∅. If X is not connected we can
write it as Y

∐
Z and (G5) implies F (X) to be a disjoint union of F (Y ) and F (Z). Proceeding by

induction, we conclude that every object X is isomorphic to a finite direct sum of connected subobjects
of X, called the connected components of X.

Remark 5.2.2.2. Notice that an initial object is not connected.

2.

Proposition 5.2.2.3. Every morphism u : Y → X in C with Y not isomorphic to ∅C and X connected
is a strict-epimorphism.

Proof. Consider the factorization of u as in (G3):

Y
u′ // X ′

u′′ // X

Since Y is not isomorphic to ∅C, by 5.2.1.4 we conclude that F (Y ) 6= ∅. Therefore F (X ′) 6= ∅. By the
same result we have that X ′ � ∅C. Since X is connected, X ′ → X is a monomorphism and X ′ � ∅C,
we conclude that X ′ = X and so u = u′, the first term in the factorization.

We immediately conclude that any endomorphism u : X → X of a connected object X is a strict
epimorphism. After (G5), F(u) is surjective and since F(X) is finite, it is a bijection. By (G6) we
conclude that u is an isomorphism:

Corollary 5.2.2.4. Every endomorphism of a connected object is an automorphism.

3. After the description in 5.1.3, under (G1), (G2) and (G3) we shall prove that:

Proposition 5.2.2.5. If X is a connected object then any pair (X,x) is minimal

Proof. Every strict monomorphism is a monomorphism and so, if X is connected, for every morphism
of pairs (C, c)→ (X,x) induced by a strict monomorphism we have c ∈ F (C) and F (C) ⊆ F (X) and
C � ∅C. Since X is connected, we conclude that f is an isomorphism.

Indeed, under the conditions worked in 5.1.3, (G1) and (G4) are equivalent to (C1) and (C2), respec-
tively. It remains to prove that connected objects verify condition (C3). In fact:

Proposition 5.2.2.6. Every pair (A, a) is bounded by a pair (X,x) with X connected.

Proof. This follows immediately from the fact that any object A is a direct sum of connected objects.
The natural inclusion is the desired bound.

From the results in 1.7.9.3 and 5.1.4.2, and denoting by IcF the subcategory of IF , of all pairs (X,x) with
X a connected object and x ∈ F (X), we immediately conclude that the inclusion functor IcF // IF
is cofinal with respect to P , the system of all minimal objects.

Corollary 5.2.2.7. Under the conditions (G4), (G5) and (G6), F is pro-representable by the pro-object
P c : IcF // C , where IcF is the dual category of the subcategory of C/F, of all pairs i = (X,x) with
P c(i) = X a connected object in X and x ∈ F (X).

From 5.2.2.3 we conclude that all transition morphisms defining P c are strict epimorphisms. In this
case, we say F is strictly pro-representable.
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5.2.3 Galois Objects

1. In the end of the last section we were able to restrict our attention to the system of connected objects,
simpler and more familiar than minimal objects. In the present section we will show that there is
another possible simplification: We define Galois Objects as a special type of connected objects and
prove that they still pro-represent F . By representing F using all connected objects there is no canonical
way to describe the group π. The definition of a Galois object gives us a simpler description:

Definition 5.2.3.1. We say that a connected object X is Galois with respect to F if the natural map
x̃X : hX(X)→ F (X) is surjective, for all x ∈ F (X).

Notice that if X is Galois, since it is connected, the sets hX(X) = HomC(X,X) and AutC(X) are
equal. Moreover, from 5.1.4.3 the above map hX(X) = AutC(X) → F (X) is injective and so a
connected object is Galois if and only if the above maps

x̃ : AutC(X) // F (X) σ � // F (σ)(x)

are bijections, for all x ∈ F (X). In particular, we find that

Corollary 5.2.3.2. The group of automorphisms of a Galois object is finite.

We give another description of Galois Objects: Notice that the above maps naturally define an action
of AutC(X) on the set F (X). Each automorphism σ : X → X induces a permutation F (σ) : F (X)→
F (X) mapping x 7→ F (σ)(x). Surjectivity of the above maps is equivalent to transitivity of this action.
In other words, the above map is surjective if and only if the quotient F (X)/AutC(X) is a terminal
object in Sets (a one-element set). By applying (G5), (G2) and (G6) we conclude that

Proposition 5.2.3.3. Let X be an object in C. Then X is Galois if and only if the quotient
X/AutC(X) is isomorphic to a terminal object 1C. In particular, the definition of a Galois object
does not depend on F .

2. We introduce an important property of Galois objects, concerning the description of the group π:
Given any morphism f : (X,x) → (Y, y) between a pair of Galois objects, there is a canonical way to
define a morphism of groups AutC(X) → AutC(Y ), induced by means of the following diagram and
using the fact that both horizontal arrows are isomorphisms:

(X,x)

f

��

AutC(X) ∼
x̃
//

f̄

���
�
�

F (X)

F (f)

��
(Y, y) AutC(Y ) ∼

ỹ
// F (Y )

mapping each automorphism σ : X → X to the unique automorphism λ of Y with F (f ◦ σ)(x) =
F (λ)(y). Since f is a morphism between connected objects, by 5.2.2.3, f is a strict epimorphism and
by (G5) the map F (f) is surjective. and so is f̄ .

3. Consider the category IGF of all Galois pairs (X,x) where X a Galois object in C and x ∈ F (X). We
have a natural sequence of inclusions

IGF // IcF // IF (5.5)
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Every Galois pair is a connected pair and, therefore, also a minimal pair. To prove that IGF is cofinal
with respect to IcF , by ??, it suffices to prove that every connected pair is bounded by a Galois pair:

Let X be some connected object. From (G1) we know that the finite product Πx∈F (X)X exists in C
and by (G4) we have F (Πx∈F (X)X) = Πx∈F (X)F (X) where each element is a family x̄ = (x̄x)x∈X .
After 5.2.2, we consider the connected component A of this product, containing the family x̄ = (x̄x)x∈X
with x̄x = x for all x ∈ F (X). This means that the coordinates of x̄ are precisely all the elements
of F (X), each occuring once. We prove that A is Galois. Indeed, since A is connected the map
˜̄x : hA(X)→ F (X) is injective. It is also surjective, because it factors through the canonical projections
Πx∈F (X)X → X. Therefore, we have a bijection hA(X) ∼= F (X) and hA(X) is finite. If we consider
another element ā in F (A), the induced map ã : hA(X)→ F (X) is again injective. Since both sets have
the same cardinality, this map is also a bijection. We conclude that the coordinates of any element
ā ∈ F (A) are precisely all the elements of F (X), each occuring once. By permuting the factors,
Πx∈F (X)X → Πx∈F (X)X it is possible to construct an automorphism of the product mapping x̄ to
any other element ā in F (A). Since A is connected, the restriction of this automorphism to A is an
automorphism of A. This way we proved that the action of AutC(A) on F (A) is transitive and by
5.2.3.3 we conclude that A is Galois.

Remark 5.2.3.4. To find A we could consider instead a connected pair (C, c) bounding the pair
(Πx∈F (X), x̄). By (G3), this bounding factors as C → A→ Πx∈F (X).

We summarize these results:

Proposition 5.2.3.5. Let X be a connected object in C. Then, there is a Galois pair (A, a) such that
the induced morphism ã : hA(X)→ F (X) is an isomorphism.

Proposition 5.2.3.6. The inclusion functor IGF
// IcF is cofinal with respect to the pro-object

P c : IcF // C of all connected objects in C.

and finally,

Theorem 5.2.3.7. Let C be a category under the conditions (G1), (G2) and (G3) and F covariant
functor with values in the category of finite sets, satisfying conditions (G4), (G5) and (G6). Then, F
is pro-represented by PG : IGF // IcF // C , the system of all Galois pairs.

Corollary 5.2.3.8. The groups π and AutPro(C)(PG) are anti-isomorphic

4. After the considerations in 5.2.3-2, PG naturally induces a projective system of finite groups where
every transition morphism is a surjective map. Moreover,

HomPro(C)(PG, PG) = F̄ (PG) = lim←−IGF (Pi) ∼= lim←−IGAutC(Pi)

Therefore, every endomorphism of PG is an automorphism. We finally conclude that

π ∼= AutPro(C)(PG) = lim←−IGF
AutC(Pi)

and π is described as a profinite group, the limit of a projective system of automorphism’s groups of
all galois objects, AutC(PGi ).
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5.2.4 Equivalence of Categories

Now that we have a description of π as a profinite group, we construct an equivalence between C and
the category of finite sets with a continuous action of π.

As in 1.9.2.1, the action of π on the sets F (X) is equivalent to the natural action of AutPro(C)(PG) on
HomPro(C)(PG, X). This action is continuous. After the results in A.3.3.1 this is equivalent to say that
it factors through a finite quotient AutC(PGi ). From 5.2.3.5, and the fact that IGF is filtrant, we conclude
that for every X in C there is a Galois pair (PGi = A, ζi = a) such that every morphism P → X factors
(in a unique way) through P →ā A → X. This implies that the action of AutPro(C)(PG) factors through
AutC(A).

Proposition 5.2.4.1. The action of π on the sets F (X) is continuous.

Let π − FSets be the category of finite discrete topological spaces equipped with a continuos action of
π and consider those morphisms compatible with the action. By definition, any morphism F (u) : F (X) →
F (Y ) is compatible with the action of π. Therefore, F can be seen as a functor

C // π − FSets

We can define a quasi-inverse functor: Notice the fact that both π − FSets and C have all finite sums
and every object in both categories can be decomposed as a sum of connected objects. We define the values
of a functor

G : π − FSets // C

first on connected objects and then on all objects. Notice that E is connected if and only if the action
of π is transitive. In this case, and since the action is continuous, the stabilizer of an element e ∈ E is an
open subgroup πe ⊆ π (A.3.2.1). From the results in A.3.3.1, the fact that the action is continuous and π is
profinite, also implies that πe contains some kernel pi : π → πi, where πi = AutC(PGi )◦ is one of the finite
groups in the projective system whose limit is π and PGi is a Galois object. Therefore E is isomorphic (as a
π-set) to π/πe. From (G2) we can define

G(E) := PGi /pi(πe)

If E is not connected, we have a decomposition of E =
∐

[e]∈E/π O[e], and the action of π is transitive
on each orbit O[e]. Again by (G2), we define

G(E) :=
∐

[e]∈E/π

G(O[e])

Let E be a transitive π-set. From G(5) we have F (G(E)) = F (PGi /pi(πe)) = F (PGi )/pi(πe) and since
PGi is Galois, F (G(E)) is isomorphic to AutC(PGi )/pi(πe) = πi/pi(πe) ∼= E. Hence, there is an isomorphism
of π-sets

αE : E → F (G(E))
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Proposition 5.2.4.2. The correspondence

HomC(G(E), X)→ Homπ−FSets(E,F (X))

mapping u : G(E)→ X to F (u) ◦ αE : E → F (G(E))→ F (X), is a bijection.

Proof. • Injectivity: Given two morphisms u, v : G(E)→ X, since αE is an isomorphism, we find that if
F (u) ◦ αE = F (v) ◦ αE , we have F (u) = F (v) and the equalizer of this pair is isomorphic to F(G(E)).
By (G5) and (G6), we find that u = v;

• Surjectivity: Given any morphism f : E → F (X) = HomPro(C)(PG, X), the image of an element
e ∈ E is identified with a morphism u : PG → X. This morphism factors through a unique Galois
object PG →ξi→ PGi →ũ X. Moreover, the action of π on E factors through πi = AutC(PGi )◦, and
ũ factors through PGi → PGi /Est(ũ) → X, where Est(ũ) is the stabilizer of ũ in πi. This gives a
canonical morphism

G(E) ∼= PGi /pi(πe)→ PGi /Est(ũ)→ X

This result allows us to prove that G is a functor. Indeed, given a morphism of π-sets f : E → E′, the
composition

E →f E
′ →αE′ F (G(E′))

is also a morphism of π-sets. Since the above map is a bijection, for X = G(E′) we find a morphism
G(E) → G(E′) that we define as G(f). This assignment preserves the composition of morphisms between
π-sets and therefore G is a functor.

We easily conclude that the collection of all αE establishes an isomorphism of functors between the
identity functor in π-FSets and the composition F ◦G. Similary, we conclude that G ◦ F is isomorphic to
the identity functor in C.

Theorem 5.2.4.3. Let C be a category under the conditions (G1), (G2) and (G3) and F a covariant
functor with values in the category of finite sets, satisfying conditions (G4), (G5) and (G6). Then F induces
an equivalence between C and the category of finite sets with a continuous action of the profinite group
π = AutFun(C,Sets)(F ).

5.3 Galois Categories, Fundamental Functors and Fundamental

Groups

5.3.1 Galois Categories

Let π be a profinite group and let C = π-FSets the category of finite sets with a continuous action of
π. This category, equipped with the forgetful functor F , assigning to each π-set its underlying set verifies all
conditions (G1) to (G6) and there is a canonical isomorphism between π and group of automorphisms of F .
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Clearly, C has a terminal object given by a one-element set and all fiber products are built upon the
fiber products of the underlying sets and their canonical morphisms. (G2) follows from the fact that the sum
of π-sets is given by the disjoint union of the underlying sets equipped with a canonical action of π on each
component. Also, there is an initial object given by the empty set and the quotient of any π-set by a finite
group action exists in C; Every morphism of sets factors as a surjective map followed by an inclusion. The
same for π-sets; Conditions (G4), (G5) and (G6) follow by definition. According with the remarks in section
A.1, a π-set is connected if and only if the action of π is transitive. Any transitive π-set S is isomorphic to
a quotient space π/H, where H is a subgroup of π acting by left-multiplications, identified with a stabilizer
of some point in S. In this case, the projective system P c : IcF // C is precisely the system of finite
quotients π/H indexed by finite index subgroups H ⊆ π.

We introduce Galois Categories:

Definition 5.3.1.1. (Galois Categories) We say that a category C is Galois if C is equivalent to a category
of the form π-FSets, with π a profinite group.

From the previous results, a category C is Galois if and only if all conditions (G1), (G2) and (G3) are
verified and C admits a covariant functor F with values in the category of finite sets, satisfying conditions
(G4), (G5) and (G6). Such a functor will be called a fundamental functor of the Galois category C. In
this case, we proved that F is pro-representable by means of a pro-object, which we denote as PF , called a
fundamental pro-object of C. We denote by Γ the category of fundamental functors over the Galois category
C. There is an equivalence between Γ and the category of fundamental pro-objects.

Definition 5.3.1.2. The group πF = AutFun(C,Sets(F ) is called the fundamental group of the Galois Cate-
gory C with fundamental functor F . π is anti-isomorphic to AutPro(C)(PF ).

5.3.2 Fundamental Groupoid

Let C be a Galois category and consider F and F ′ two fundamental functors on C. From the previous
results, both F and F ′ are pro-represented by pro-objects PF : IGF // C and PF ′ : IGF ′ // C where

IGF (resp. IGF ′) is the category of pairs (X,x) with X Galois in C (5.2.3.3) and x is an element in F (X) (resp.
F ′(X)). If X is a Galois object, each choice (x, x′) with x in F (X) and x′ in F ′(X) induces a sequence of
isomorphisms

F (X) AutC(X)x̃oo x̃′ // F ′(X)

The choice of such a pair for each galois object in C induces an equivalence of categories

IGF // IGF ′

Therefore, both fundamental pro-objects PF and PF ′ are isomorphic and so are the fundamental functors.

Proposition 5.3.2.1. The category Γ of fundamental functors on a Galois Category C is a connected
groupoid. We call it the Fundamental groupoid of the Galois category C. In particular, if F and F ′ are
two fundamental functors over a Galois category C then both fundamental groups of (C,F ) and (C,F ′) are
isomorphic. Sometimes we simply write the fundamental group of a Galois category without any reference
to the choice of a fundamental functor.
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5.3.3 Exact Functors and Morphisms of Fundamental Groups

Proposition 5.3.3.1. ([4] - Exposé V - 6) Consider C and C’ two Galois categories and let F ′ be a
fundamental functor on C′. Consider also a functor

H : C // C′

Then, the composition F = F ′ ◦ H is a fundamental functor in C if and only if H commutes with all
limits and colimits.

In this case, denoting by Γ and Γ the fundamental groupoids of C and C′, if H is exact, the composition
F ′ 7→ F ′ ◦H defines a functor

H̃ : Γ′ // Γ

In particular, with F ′ fixed, H̃ induces a morphism of fundamental groups

πF ′ → πF ′◦H

5.4 Examples of Galois Categories and Fundamental Groups

From now on, we follow more informal style, presenting the logical sequence of ideas towards Grothendieck’s
theory of dessin’s enfants. First, we recover the results in the end of the fourth chapter:

5.4.1 Example: Fundamental Groups of Topological Spaces

Let X be a connected topological space and consider

C= Category of Finite Covering Spaces of X

and Fibx, the fiber functor over a point x ∈ X, assigning to each covering p : Y → X the finite set p−1(x)
over x. We prove that this category together with the fiber functor is Galois, verifying all conditions (G1)
to (G6):

• (G1) - The trivial cover idX : X → X is clearly a terminal object in C; The fiber product of any two
covers Y → X and W → X over a third cover Z → X exists, given by the fiber product of topological
spaces Y ×Z W and the canonical morphism to X;

• (G2) - The sum of two covers Y → X and W → X is given by the disjoint sum of topological spaces
Y

∐
Z and the canonical morphism to X. The empty set is an initial object and, as seen in chapter

4, if Y → X is finite a cover the group AutCov(X)(Y |X) is finite and the natural action on Y is even
and there is a quotient cover Y/AutCov(X)(Y |X)→ X (4.2.4);
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• (G3) and (G6) This follows from the fact that the image of a morphism of covers h : Y → Z , over X,
is open and closed in Z, as seen in the proof of 4.2.1.3.

• (G4), (G5) These properties follow by definition.

We conclude that

Theorem 5.4.1.1. The category of finite covering spaces of a connected space X is Galois. The fiber functor
over a point x ∈ X is a fundamental functor. The fundamental group of C.

5.4.2 Example: Fundamental Groups of Schemes

1. Let S be a scheme.

Definition 5.4.2.1. A morphism of schemes X → S is said to be finite étale if there exists a covering
of X by open affine sets, Ui with structure ring Ai, such that for each i, the open scheme f−1(Ui) of
Y is affine, and equal to Spec(Bi), where Bi is a free separable Ai-algebra.

A finite étale cover of a scheme S is another scheme X together with a finite étale morphism X → S.
This class of objects is a subcategory of Schemes/S. We have the following result:

Theorem 5.4.2.2. ([4] - Exposé V. Sec. 7) Let S be a connected and locally noetherien scheme and
s : Spec(Ω)→ S a Ω-geometric point of S, with Ω an algebraically closed field. The category

C= category of finite étale coverings of S

together with the functor F , for each object X in C defined by

F (X)= set of geometric points of X over s

is a Galois Category.

Definition 5.4.2.3. The fundamental group of a locally noetherien and connected scheme S at a
geometric point s, denoted as π1(S, s), is the fundamental group of the Galois category of finite étale
coverings over S, together with the fiber functor over s.

As a particular case, we recover the classical Galois Theory of Fields:

Proposition 5.4.2.4. ([4] - Exposé V. Prop. 8.1) Let k be a field and S = Spec(k). Let s : Spec(k̄)→
S be a geometric point of S with values on k̄. Denote by kS the separable closure of k in Ω. In this,
case, there is a canonical isomorphism between the absolute topological Galois group of kS |k and the
fundamental group of S at the point s

Gal(k) ∼= π1(Spec(k), s)



Chapter 6

Dessins d’Enfants

This chapter is a brief survey of the main ideas leading to Grothendieck’s Theory of Dessins d’Enfants
as presented in [5].

6.1 Geometric Galois Actions

1. Let X be a scheme over a field k, (X → Spec(k)) and consider s : Spec(k̄) → Spec(k) a geometric
point of Spec(k). In this case, by 2.3.5.2, the fiber product X̄ = X×Spec(k) Spec(k̄) exists and through
the canonical morphism X̄ → Spec(k̄), is a scheme over k̄.

Theorem 6.1.0.5. ([4]- Exposé X ) Let X be a quasi-compact and geometrically integral scheme over
a field k. Fix an algebraic closure k̄ of k and let kS |k be the corresponding separable closure. Let x̄ be a
geometric point of X̄ = X ×Spec(k) Spec(kS) with values in kS. In this case, there is an exact sequence
of profinite groups:

1→ π1(X̄, x̄)→ π1(X,x)→ π1(Spec(k), s)→ 1

induced by the canonical maps X̄ → X and X → Spec(k). The group π1(X̄, x̄) is called the geometric
fundamental group of X.

Notice that, by 5.4.2.4, the last group π1(Spec(k), s) is isomorphic to the Galois group AutE(k)(kS |k) =
Gal(k)

2. Given an exact sequence of topological groups

1→ N → G→ P → 1

there is a natural continuous action of G on the normal subgroup N via conjugation:

G→ AutTopGroups(N)

The image of N is the normal subgroup Inn(N) ⊆ AutTopGroups(N) of inner automorphisms, i.e.
those that come from conjugation by an element of N . The quotient group AutTopGroups(N)/Inn(N),

109
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denoted by Out(N), is called the group of outer automorphisms of N . By passing to the quotient we
obtain an action of P :

P ∼= G/N → AutTopGroups(N)/Inn(N) =: Out(N)

3. Applying the last result to the exact sequence of fundamental groups above, we find that if X is a
quasi- compact and geometrically integral scheme over a field k, there is a canonical action of the
absolute Galois group of k on the geometrical fundamental group of X.

6.2 Complex Analytic Space

Let U ⊆ Cn be an open disc and consider f1, ..., fq holomorphic functions on U . Consider the closed
subspace Y ⊆ U of all common zeros of these functions. Take OY to be the sheaf OU/(f1, ..., fn), where OU
is the sheaf of holomorphic functions on U .

Definition 6.2.0.6. A complex analytic space is a locally ringed space, locally isomorphic to one of the kind
(Y,OY ) as above.

First introduced by Serre in [9], there is a natural way to assign to each finite scheme X over C, a
complex analytic space Xan, over the same base topological space of X. This assignment is functorial. For
a detailed exposition on this matter, we recommend the reader to follow not only the original source [9],
but also [13]- Appendix B and [4]- ”Exposé XII - Géométrie Algébrique et Géométrie Analytique”, where
Grothendieck proves the following remarkable theorem 1

Theorem 6.2.0.7. ([4] - Exposé XII Cor. 5.2) Let X be a connected scheme of finite type over C. The
functor (Y → X) 7→ (Y an → Xan) induces an equivalence between the category of finite étale covers of X
and the category of finite topological covers of Xan. As a result, for every C-point, x̄ : Spec(C) → X, this
functor induces an isomorphism

̂πtop1 (Xan, x̄(Spec(C)) ∼= π1(X, x̄)

where the first group is the profinite completion (A.2.5-3) of the topological fundamental group of Xan and
the second group is the fundamental group of X at the geometric point x̄.

6.3 Belyi’s Theorem

We introduce the general definition of an algebraic variety over a field k.

Definition 6.3.0.8. Let k be a field. A variety over k is a scheme over k

X

pX

��
Spec(k)

1(also using the result proved 4.4.3.2 in chapter 4)
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where X is an integral scheme, pX is a separated morphism of finite type that does not factor through any
scheme of the form Spec(L), with L a finite extension of k, and the fiber product X ×k kS is still irreducible.

A one-dimensional variety over k is called a curve over k. A morphism of varieties over k is a morphism
of k-schemes as in 1.3.

Example 6.3.0.9. (Projective Line over k) Consider X = Spec(k), where k is a field. We define the pro-
jective line over k by gluing the affine schemes Spec(k[x]) and Spec(k[x−1]), together along their isomorphic
subschemes Spec(A[x, x−1]). For a detailed construction please follow [13]- p.103.

Let L|k be an extension of fields. From the remarks in 2.3.5.2-3, the inclusion morphism of affine schemes
Spec(L)→ Spec(k) induced by the inclusion morphism k → L establishes a pullback functor

φ∗ : Schemes/Spec(k) // Schemes/Spec(L)

A curve X over L is said to be defined over k 2 if there exists a curve Xk over k such that Xk ×k L is
isomorphic to X as a scheme over Spec(L). In a commutative diagram

X
∼ //

##GGGGGGGGG Xk ×k L //

��

Xk

��
Spec(L) // Spec(k)

Again by 2.3.5.2-3, a morphism of curves f : X → X ′ over L is said to be defined over k, if both curves
X and X ′ are defined over k and there exists a morphisms fK : Xk → X ′k of curves over k such that the
following diagram commutes

Xk ×k L
fk

//

��

X ′k ×k L

��
X

f
// X ′

Finally, we introduce the key result towards Grothendieck Theory of Dessins d’enfants

Theorem 6.3.0.10. (Belyi’s Theorem) An algebraic curve X over C is defined over Q if and only if there
exists an étale morphism of curves over C, f : X → P 1

C \ {0, 1,∞}. In this case, this morphism is also
defined over Q.

Proof. See [16] - Theorem 4.7.6.

This theorem implies the following one

Corollary 6.3.0.11. The category of finite etale covers of P 1
C \ {0, 1,∞} is equivalent to the the category

of finite etale covers of P 1
Q \ {0, 1,∞} and therefore, the (algebraic) fundamental groups of these curves are

isomorphic.

2Sometimes also said that X has a model over k
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Together with the result of 6.2.0.7, we conclude the following remarkable result:

Corollary 6.3.0.12. The category of finite étale covers of P 1
Q \ {0, 1,∞} is equivalent to the category of

finite topological covering maps of (P 1
C)an \ {0, 1,∞}, where (P 1

C)an ∼= C∞ is the Riemann’s Sphere.

At last, by gathering all the main results presented in this work,

Corollary 6.3.0.13. The fundamental group of P 1
Q \ {0, 1,∞} is isomorphic to the profinite completion of

topological fundamental group of C∞ \ {0, 1,∞} and the following categories are equivalent

• finite étale covers of P 1
Q \ {0, 1,∞};

• finite étale covers of P 1
C \ {0, 1,∞}

• finite topological covers of C∞ \ {0, 1,∞};

• finite sets with a continuous action of the fundamental group of P 1
Q \ {0, 1,∞}

• finite sets with a continuous action of the profinite completion of the topological fundamental group of
C∞ \ {0, 1,∞}.

and finally, from A.3.3.2

• finite sets with an action of the topological fundamental group of C∞ \ {0, 1,∞}

Now we present another key result

Proposition 6.3.0.14. There is an isomorphism of curves over Q, between P 1
Q and P 1

Q ×Q Q.

And finally, as corollary after the results in 6.1

Corollary 6.3.0.15. There is an exact sequence of profinite groups:

1→ π1(P 1
Q \ {0, 1,∞})→ π1(P 1

Q \ {0, 1,∞})→ Gal(Q)→ 1

and a natural action

Gal(Q)→ Out(π1(P 1
Q \ {0, 1,∞})) ∼= Out( ̂πtop1 (C∞ \ {0, 1,∞})) (6.1)

Before ending this section we notice the fact that the group πtop1 (C∞ \ {0, 1,∞}) is generated by three
elements: γ0, γ1 and γ∞, respectively, equivalence classes of loops around the points 0, 1 and ∞, with the
relation γ0γ1γ∞ = 1.

6.4 Dessins d’Enfants

Definition 6.4.0.16. (Graph) A graph Γ is a triple (V,E, I), where V is a finite set, whose elements are
called vertices,E is another finite set, the edges and I is an incidence relation, that is, a subset of V × E,
such that (v, e) ∈ I iff the edge e is incident with the vertice v. Each edge should always be incident to two
vertices. If they are the same, we call the edge a loop.
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Two graphs Γ = (V,E, I) and Γ′ = (V ′, E′, I ′) are said to be isomorphic if there are isomorphisms
φ : V → V ′ and ψ : E → E′ presenving the incidence relation.

Graphs admit many possible representations. Their structure can be identified as collections of objects
and morphisms on general categories, or they can be simply drawn on surfaces, each vertice being identified
by a point on the surface and each edge by a curve, the image of a path.

Definition 6.4.0.17. A map (also called a topological graph) MX = (X0 ⊆ X1 ⊆ X) is a graph Γ, embedded
in an orientable connected and compact surface X, in such a way that

• vertices are represented by a set X0 ⊂ X of distinct points on the surface;

• the edges are represented as curves only intersecting at points representing vertices, notation X1 ∈ X;

• the set X \X1 is a disjoint union of connected components, each one homeomorphic to an open disk
D in R2. We call each one of these connected components a face of the map.

We say that an edge is incident to a face if it belongs to the boundary of this face. The degree of a face
is the number of edges incident to it. Let M be a map on a surface X, and denote by F the set of its faces.
Then, the number χ(M) := |V | − |E|+ |F | does not depend on the map, only on the surface’s genus g and
it is equal 2− 2g. We introduce morphisms between maps:

Definition 6.4.0.18. A morphism between two maps X0 ⊆ X1 ⊆ X and Y0 ⊆ Y1 ⊆ Y is an orientation-
preserving continuous map X → Y mapping X0 to Y0 and X1 to Y1.

Definition 6.4.0.19. (Dessin d’enfant) A marking on a map MX = (X0 ⊆ X1 ⊆ X) is a selection of a
fixed point on each component of X1−X0, and one point in each open cell of X−X1. We will denote points
on X0 by •, points on X1 −X0 by ◦ and points on X −X1 by ?. A map with a marking is called a dessin
d’enfant.

The category of dessins d’enfant is defined considering dessins as objects and by taking morphisms as
morphisms of maps that preserve markings. Finally,

Theorem 6.4.0.20. The category of dessins d’enfant is equivalent to the category of finite connected topo-
logical covers of C∞ \ {0, 1,∞}

Proof. For a detailed proof see [11] -Chapter 1.

Example 6.4.0.21. The following example is directly understood by following the proof of 6.4.0.20 in [11].
The map C → C assigning z 7→ z8 can be seen as an holomorphic morphism C∞ → C∞, unramified in
C∞ \ {0, 1,∞}. The associated dessin is

Figure 6.1: Dessin corresponding to z 7→ z8

obtained as f−1(]0, 1[).
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From 6.4.0.20, we also conclude that there is an equivalence between the category of dessins d’enfant
and the category of finite sets with a continuous transitive action of πtop1 (C∞ \ {0, 1,∞}).

The action in 6.1 gives rise to an action of Gal(Q) on the dessins: Each dessin corresponds to a πtop1 (C∞\
{0, 1,∞}) finite set. Each element σ of Gal(Q) defines an outer isomorphism φ(σ) : πtop1 (C∞ \ {0, 1,∞})→
πtop1 (C∞ \ {0, 1,∞}) and therefore, if D is a dessin corresponding to a finite πtop1 (C∞ \ {0, 1,∞})- set S with
an action

πtop1 (C∞ \ {0, 1,∞}) // AutSets(S)

then σ(D) is the same set S, equipped with the action

πtop1 (C∞ \ {0, 1,∞}) //
φ(σ)
// πtop1 (C∞ \ {0, 1,∞}) // AutSets(S)

In [1] - L.Schneps - ”Dessins d’enfants on the Riemann Sphere”, it is proved that this action is faithful
on dessins on curves of genus 0.



Appendix A

Group Actions and Profinite Groups

A.1 G-Sets

Let G be a group and consider the category G-Sets as introduced in 1.9.4. On the following, we denote
by G− FSets the category of finite G-sets.

We briefly describe some notations and concepts related to the action of a group on a set.

1. On any G-set S, there is a natural equivalence relation between the elements of S: s and s′ ∈ S are said
to be equivalent if there is an element g ∈ G such that g(s) = s′. Under this relation, an equivalence
class [s] is called the orbit of s and also denoted by O[s] when seen as a subset of S. The quotient set
S/G is naturally identified with the set of orbits in S produced by the action of G. We say the action
is transitive if S equals the orbit of a single element or, equivalently, if S/G is a one-element set

2. A one-element G-set is a terminal object in G-Sets and the empty set is an initial object.

3. G is a natural G-set. There are canonical actions of G on itself by left multiplication Lg : h 7→ g ◦ h,
right multiplication Rg : h 7→ h ◦ g and conjugacy Cg : h 7→ g ◦ h ◦ g−1;

4. Each action above induces an action of every subgroup H ⊆ G on G. We restrict ourselves to the
left-coset space, the quotient set G/H = {xH} (where we write xH = {y ∈ G : ∃h ∈ H : y = xh})
produced under the action of H through right multiplications. There is a natural action of G on this
set, induced by left-multiplications g : xH 7→ (gx)H. This is a well-defined map: if yH = xH then
y = xh for some h ∈ H and so gyH = gxhH = gxH; We say H has finite index in G if the quotient
set G/H is finite.

5. Two subgroups H and H ′ are said to be conjugated if there is an element a ∈ G such that H = aH ′a−1.
In this case there is a natural map on the right coset spaces u : G/(H ′)→ G/H mapping xH ′ 7→ xa−1H.
This map is well-defined: if xH ′ = yH ′, there is some element h′ ∈ H ′ such that y = xh′. Since H
and H ′ are conjugated, we have h′ = a−1ha for some h ∈ H and so ya−1H = xh′H = xa−1haa−1H =
xa−1H. This map is a bijection since we easily identify an inverse , and the diagram commutes with
an action of G by left multiplications:

115



116 APPENDIX A. GROUP ACTIONS AND PROFINITE GROUPS

G/H ′

g

��

u
// G/H

g

��
G/H ′

u
// G/H

for all g ∈ G. Therefore, both coset spaces are isomorphic G-sets.

6. Given two subgroups H and H ′, if the sets G/H and G/H ′ are isomorphic as G-sets then H and H ′

are conjugate. To check this, simply chase the commutative diagram associated to this isomorphism,
following the class eH ′, where e is the identity in G.

7. Let S be a G-set. The stabilizer of a point s ∈ S is by definition, the subset of elements in G fixing
s. This subset is a subgroup Hs ⊆ G. The stabilizers of two elements s and s′ on the same orbit are
easily seen to be conjugated subgroups. Suppose the action of G is transitive on S and fix an element
s ∈ S. We define a map φ : S → G/Hs sending each element x ∈ S to the element gx ∈ G which
maps s to x. This map is well-defined and is a bijection. Morever it commutes with the left-action of
G on G/H. We conclude that any transitive G − set is isomorphic to a quotient set G/H with a left
G action.

Theorem A.1.0.22. There is a bijection between isomorphism classes of G-sets with a transitive
action of G and conjugacy classes of subgroups of G, Moreover, every transite G-sets is isomorphic to
a class space G/H (formed from the left-multiplication action of H on G) with a action of G by left
multiplications. Clearly, isomorphism classes of transitive finite G-sets are in bijection with conjugacy
classes of finite index subgroups.

8. Given two G-Sets, S and S’, we construct their directed sum using the disjoint union S and S′. This
union comes equipped with a natural action of G obtained from the actions on S and S′ and natural
inclusion morphism S → S

∐
S′ and S′ → S

∐
S′. For each g ∈ G we have

S

g

��

// S
∐
S′

���
�
� S′oo

g

��
S // S

∐
S′ S′oo

inducing a canonial action G → AutG−Sets(S
∐
S′), turning S

∐
S′ into a G-Set. This construction

indeed satisfies all the proporties of a directed sum, as defined in 1. We denote this sum by S
∐
G S
′.

9.

Definition A.1.0.23. A G-Set E is said to be connected if everytime we write E = S
∐
G S
′, we have

S = ∅ or S′ = ∅

In fact,

Proposition A.1.0.24. A G-set S is connected if and only if the action of G on S is transitive.

and any G-set S has a decomposition on its orbits

S =
∐

[s]∈S/G

O[s]

and each one is a connected G-set. In particular, if S is finite, this decomposition is finite.
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A.2 Profinite Groups

A.2.1 Topological Groups and Continuous Actions

1. A topological group is a group G whose set of elements is a topological space and the group operation
m : G × G → G is a continuous and inverse inv : G → G is an homeomorphism. For each g ∈ G the
maps x 7→ gx and x 7→ xg are also homeomorphisms. A morphism of topological groups G → G′ is a
group homomorphism that is also continuous. As an example, every finite group becomes a topological
group by considering the discrete topology;

2. If H ⊂ G is an open (resp. closed) subgroup then all cosets gH and Hg are open (resp. closed) subsets
of G. This follows from the fact that the maps x 7→ gx are homeomorphisms.

Every open subgroup H ⊆ G is also closed. Indeed, we can always write both G =
∐

[g]∈G/H gH, and
G−H =

∐
[g]∈G/H,g/∈H gH as an union of open subsets and so, H is closed;

Every finite index closed subgroup is open. If H is a closed subgroup, the collection of all gH are a
finite cover of G by closed subsets. Therefore its complement G −H =

∐
[g]∈G/H,g/∈H gH is closed (a

finite union of closed subsets is closed) and H is open;

Proposition A.2.1.1. Let G be a topological group. If a subgroup H ⊆ G contains an open subset
then H is open

After the two previous results we conclude that

Proposition A.2.1.2. Let G be a compact topological group and H ⊆ G a subgroup. Then, H is open
if and only if it is closed and of finite index;

3. If H is a subgroup containing an open subset V ⊆ H then H is also open. Indeed, we have H = ∪h∈HVh
where Vh = {vh, v ∈ V };

4. If H is a subgroup of a topological group G then H, with the subspace topology is also a topological
group; If K is a normal subgroup of G, then G/K is also a topological group, by considering the
quotient topology. In this case, the canonical map G→ G/K is continuous.

5. We present some results concerning compact and totally disconnected topological groups:

Lemma A.2.1.3. ([8] - Lemma 0.3.1) If G is a totally disconnected topological group ( the only
connected subsets are one-point sets) then G is Hausdorff.

This lemma implies that all finite groups, endowed with the discrete topology, are Hausdorff.

Lemma A.2.1.4. ([8] - Lemma 0.3.2) Let G be a compact topological group. If U is both open and
closed and contains the identity of G then, there is an open normal subgroup N of G contained in U .

As a corollary, we find that any subgroup H ⊆ G, being open and closed and containing 1G, contains
also an open normal subgroup of G. Moreover, we conclude that

Corollary A.2.1.5. If G is a compact and totally disconnected topological group then every open subset
of G is the union of left cosets of open normal subgroups of G
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A.2.2 Projective Systems of Topological Spaces

1. Let X : I◦ // Top be a projective system of topological spaces. After the construction presented
in 1.7.7.3, we notice that the limit X of the projective system of all the underlying spaces in the
system X̃, exists as a subset of the product of all sets Xi. Therefore, there is a natural topology on
X by considering the subspace topology of the product topology. The restrictions of the canonical
projections φi = pi|X : X → Xi to this subspace are continuous maps by definition.

Proposition A.2.2.1. ([8] - Prop. 1.1.5) Under the notations above

• If each Xi is Hausdorff then X is Hausdorff;

• If each Xi is totally disconnected then so is X;

• If each Xi is Hausdorff then X is a closed subspace of Πi∈IXi;

• If each Xi is compact and Hausdorff then so is X (this follows from Tychonovs’ Theorem);

• If each Xi is non-empty, compact and Hausdorff then X is non-empty;

2. Let X be a projective limit of non-empty compact and Hausdorff topological spaces indexed by a set
I. After the last item, we describe a basis for the topology on X. A basis for the product topology in
Πi∈IXi is given by open sets of the form

p−1
i1

(U1) ∩ ... ∩ p−1
in

(Un)

where each Ur is an open subset in Xir . Since X has the subspace topology, every open set P of X is
of the form

P = X ∩ p−1
i1

(U1) ∩ ... ∩ p−1
in

(Un)

Let a = (ai) be a point in P . Assuming that I is filtrant, there is some k with i1, ..., in 6 k and we can
consider the respective transition morphisms ρk,ir : Xk → Xir , which are continuous maps. Therefore,
we have a collection of open sets ρ−1

k,ir
(Ur) in Xk, all containing ak. Their finite intersection, U is also

open and contains ak and therefore φ−1
k (U) is an open neighbourhood of a in X and is contained in

P . We conclude that

Proposition A.2.2.2. Let X be a projective limit of non-empty compact and Hausdorff topological
spaces indexed by a set I. Then, the subsets φ−1

i (U) with i ∈ I and U some open set in Xi are a basis
of the topology in X.

A.2.3 Projective Systems of Groups

As seen in 1.7.7.3, the projective limit of a projective system of sets always exists in Sets. Also, we
notice the fact that all products exist in Groups. We use this result to prove the following:

Proposition A.2.3.1. Any projective system of groups G : I◦ // Groups has a limit in Groups.

Proof. Seen as a projective system of sets, G has a limit in Sets given by the set S = {(gi)i∈I ∈ Πi∈I :
G(i, j)(gi) = gj for all i, j with j 6 i} ⊆ Πi∈IG(i) and a family of canonical projections pj : S → G(j)
with pj((gi)i∈I) = gj . The product Πi∈IG(i) has a natural group structure, coordinate by coordinate, and
lim←−IG inherits this structure. We easily conclude this set to be the projective limit of G in Groups using
its properties as a projective limit in Sets.
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Since lim←−IG is a subgroup of Πi∈IG(i), its identity is precisely the element 1 = (1i), where each 1i is
the identity in G(i). Moreover, the canonical projections pi : lim←−IG→ G(i) are group homomorphisms and
everytime i 6 j we have kernelpi ⊆ kernelpj .

A.2.4 Projective Systems of Topological Groups

1. Let G : I◦ // TopGroups be a projective system of topological groups. By the results in A.2.3,
the limit G of this system exists as a subgroup of product group of all the groups in the system and all
the canonical projections restricted to this subgroup are group homomorphisms. By A.2.2, if each Gi

is a topological group, there is a natural topology on G, as a subspace of the product. All the canonical
projections and transition morphisms are continuous and the kernels of the canonical projections are
open normal subgroups of G.

2. By A.2.2.1, the limit of a projective system of compact spaces is compact. In this case, by A.2.1.2, a
subgroup L is open if and only if it is closed and has finite index.

As seen in A.2.2.2, the open sets φ−1
i (U) form a basis of the topology in G. Let L be an open subgroup.

In this case, 1G is contained in some φ−1
i (U) ⊆ L for some i ∈ I and some U open in Gi. Therefore,

U contains 1Gi and we have kernel(φi) ⊆ φ−1
i (U) ⊆ L.

Corollary A.2.4.1. Let G be a topological group, the limit of a projective system of compact and
groups Gi. For every open normal subgroup L of G there is an i ∈ I such that kernel φi ⊆ L.

A.2.5 Profinite Groups

1. We introduce profinite groups:

Definition A.2.5.1. A profinite group is a topological group isomorphic (in the category of topological
groups) to a limit of a projective system of finite groups.

Let G be a profinite group, the limit of a projective system of finite groups G : I◦ // TopGroups .
As described in the last section, the canonical projections pi : G→ G(i) are continuous and since each
G(i) is finite and discrete, the kernel of each projection pi is open in G.

2. By A.2.2.1, since each G(i) is compact, Hausdorff and totally disconnected, the limit G is also compact
and totally disconnected. In fact, there is an equivalence:

Proposition A.2.5.2. A group is profinite if and only if is compact and totally disconnected.

Proof. See [10] Proposition 0

Definition A.2.5.3. A morphism of profinite groups is a morphism in the category of topological
groups.

3. (Profinite Completion of a Group)

Let G be group. There is a canonical method to construct a profinite group starting from G. The set
I of normal subgroups of G of finite index has a natural order relation given by the inclusion:H 6 H ′

if and only if H ′ ⊆ H. Following the procedure indicated in 1.7.7, we define a category I associated to
I. The correspondence G assigning to each normal subgroup H, the quotient group G(H) := G/H and
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to each morphism H 6 H ′ the canonical projection ρH,H′ : G/H ′ → G/H defined by xH ′ 7→ xH (this
is well-defined since H ′ ⊆ H) has functorial properties and defines a projective system of finite groups
(since all subgroups H have finite index):

G : I◦ // Groups

We define the profinite completion of G, denoted by Ĝ, as the limit of this projective system. Obviously,
this limit comes equipped with a family of canonical projections ρH : Ĝ → G/H commuting with all
composable transition morphisms ρH,H′ .

A.3 Continuous Actions on Topological Spaces

A.3.1 Generalities

An action of a topological group on a topological space X is a morphism of groups G→ AutTop(X). We
say that the action is continuous if the induced map G×X → X is continuous with respect to the product
topology on G × X. We call it a continuous G-action. A space X equipped with a continuous action of
a topological group is called a G-space A morphism of G-spaces X and Y with continuous G actions is a
continuous map X → Y compatible with the action.

If G is a topological group, we denote by G−Top the category of topological spaces with a continuous
G-action.

A.3.2 Continuous Actions on finite discrete spaces

1. Let S be a discrete topological space equipped with an action of a topological group φ : G × S → S.
A basis for the topology in S is given by the sets {s}, for each s ∈ S. The preimage under φ of these
sets are of the form

φ−1({s}) =
∐
y∈S
{(g, y) ∈ G× {y} : gy = x}

and we have two possibilities: Either y is on the same orbit of x and in this case each set in the union
above is homeomorphic to Gs, the stabilizer of s, or, each set in the union is empty.

Therefore, if all the stabilizers of an element s ∈ S in G are open subgroups, the set φ−1({s}) is open
and the map φ is continuous. Conversely, if φ is continuous, Gs is open, since it is the preimage of s
under the the composition G→ G× S → S, where the first arrow is the map g → (g, s).

Proposition A.3.2.1. The action of a topological group G on a discrete topological space S is con-
tinuous if and only if for each s ∈ S, the stabilizer Hs ⊆ G is open in G.

2. Suppose now that S is a finite set endowed with an action of a topological group G. If the action is
continuous, then every stabilizer Gx is a open subgroup of G. The interesection of all the stabilizers
equals the kernel of the action and since the set is finite, this intersection is finite and so the kernel is
an open subgroup of G. Conversely, if the kernel is an subgroup of G, since every stabilizer contains
the kernel, by A.2.1.1 we conclude that every stabilizer is an open subgroup and again by the last
proposition, the action is continuous. Therefore
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Proposition A.3.2.2. Let S be a finite set equipped with an action of a topological group G. Then,
the action is continuous if and only if its kernel is an open subgroup.

A.3.3 Continuous Action of a Profinite Group on a finite space

1. Let S be a finite set with an action of a profinite group G, the limit of a projective system of groups
(Gi)i∈I :

G→ AutFSets(S)

After the last section, we know that the action is continuous if and only if the kernel N of the above
morphism is an open subgroup. In this case, and since the kernel of any morphism of groups is a
normal subgroup, by A.2.4.1, we conclude that there is some i ∈ I such that kernel(φi : G→ Gi) ⊆ N .
In addition, the action factors as

G→ Gi → G/N → AutFSets(S)

where the first arrow is the canonical projection.

Conversely, if the action of a profinite group factors through some finite quotient, the action’s kernel
contains the kernel of the canonical projection G→ Gi and since this kernel is open in G, by A.2.1.1,
we conclude that the action is continuous.

Proposition A.3.3.1. The action of a profinite group G = lim←−IGi on finite set S is continuous if
and only if it factors through a finite quotient G→ Gi → AutFSets(S).

2. As a corollary we obtain the following result:

Corollary A.3.3.2. Let G be a group and Ĝ its profinite completion. Then there is an equivalence
between the category of finite sets with an action of G and the category of finite sets equipped with the
discrete topology, with a continuous action of the profinite completion of G, Ĝ.

Proof. This follows immediately from the fact that the action of G on any finite set factors through
the quotient of G by the action’s kernel.
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