
i

Optimization of the Multi-Depot Vehicle Routing
Problem: an Application to Logistics and Transport of

Biomass for Electricity Production

Tiago Caperta Maia Caldeira

Dissertação para obtenção do Grau de Mestre em
Engenharia Mecânica

Presidente: Prof. João Rogério Caldas Pinto
Orientador: Prof. João Miguel da Costa Sousa
Co-Orientador: Prof. Carlos Augusto Santos Silva
Vogal: Profª. Alexandra Bento Moutinho

Outubro de 2009

ii

This work reflects the ideas of its

authors, which might eventually

not coincide with IST’s.

iii

Acknowledgements

First and foremost, I would like to express my gratitude towards Professors João Sousa and

Carlos Silva for the constant support, advice and guidance offered throughout the development of this

work but also for giving me the opportunity to broaden my knowledge on this subject.

I would also like thank the authors of the references quoted, for all the work done in their

respective fields.

Two final acknowledgements should go to Quan Quach, Daniel Sutoyo and everyone else at

http://blinkdagger.com/ for the excellent MATLAB tutorials and also to Steve Hoelzer for the progress

bar used in the application developed.

iv

Abstract

The work was developed with the aim of creating an application that would help solve both the

energy dependency and waste collection problems in the Azores islands. It contributes to the specific

issue of optimizing the transport of biomass generated through human activities to energy production

plants that use it as fuel, by attempting to reduce the amount of time and effort consumed in said

transport.

Even though the application was developed with this aim in mind, it is able to solve any problem

of the Multi-Depot Vehicle Routing Problem (MDVRP) class by using three different and independent

algorithms based on metaheuristics, two of them adapted from existing literature and a new one

developed specifically for this work.

Results using all three algorithms on both benchmark instances (p01, p04, p07, p09 and p13 of

(Díaz 2007)) and a specific problem related to the Azores islands are presented and compared.

Keywords: Azores, Biomass, Multi-Depot Vehicle Routing Problem, Metaheuristics

v

Resumo

O trabalho apresentado foi desenvolvido com o objectivo de criar uma aplicação que

simultaneamente respondesse a dois problemas relativos ao arquipélago dos Açores, a dependência

energética e a recolha de resíduos. Contribui para ambos ao tentar optimizar o transporte da

biomassa gerada por actividades humanas para centrais energéticas que usem este tipo de

combustível, tentando reduzir o tempo e custos associados ao mesmo.

Mesmo tendo sido este o principal propósito que levou à criação da aplicação, esta é capaz de

resolver qualquer problema da classes Multi-Depot Vehicle Routing Problem (MDVRP) utilizando três

algoritmos distintos e independentes baseados em meta heurísticas, dois dos quais foram adaptados

de literatura existente, tendo o terceiro sido desenvolvido especificamente para este trabalho.

Os resultados da utilização dos três algoritmos tanto a problemas de referência (p01, p03, p07,

p09 e p13 de (Díaz 2007)) como a um problema local relativo aos Açores são apresentados e

comparados.

Palavras-chave: Açores, Biomassa, Multi-Depot Vehicle Routing Problem, Meta heurísticas

vi

Table of Contents

Acknowledgements ... iii

Abstract ... iv

Resumo ... v

Table of Contents ... vi

List of Figures ... ix

List of Tables .. xi

1. Introduction .. 1

1.1. Energy: A Historic Perspective .. 1

1.2. Renewable Energies .. 2

1.3. The Azores Case ... 3

1.4. Goals .. 4

1.5. Contributions .. 4

2. The Multi-Depot Vehicle Routing Problem ... 5

2.1. Definition .. 5

2.2. Classic Heuristics ... 6

2.2.1. Clark Wright Savings Algorithm ... 6

2.2.2. Improved Petal Heuristic .. 7

2.2.3. Heuristic Comparison ... 10

3. Metaheuristics .. 11

3.1. Tabu Search... 11

3.2. Genetic Algorithms ... 12

3.3. Ant Colony Optimization .. 14

4. Multi-Depot Optimization .. 16

vii

4.1. Preprocessing .. 16

4.2. Implemented Algorithms .. 17

4.2.1. Tabu Search ... 17

4.2.1.1. Description .. 17

4.2.1.2. Contributions ... 22

4.2.2. Genetic Algorithm... 23

4.2.2.1. Description .. 24

4.2.2.2. Contributions ... 26

4.2.3. Ant Colony Optimization .. 27

4.2.3.1. Description .. 27

4.2.3.2. Contributions ... 30

4.3. Post Processing ... 32

5. Results ... 34

5.1. Parameter Tuning .. 34

5.1.1. Tabu Search ... 34

5.1.1.1. Clark Wright Results ... 35

5.1.1.2. Improved Petal Results .. 38

5.1.1.3. Initialization Comparison .. 41

5.1.2. Genetic Algorithm... 41

5.1.3. Ant Colony Optimization .. 45

5.2. Benchmark Testing .. 49

5.3. Application Testing ... 52

5.3.1. Building the Instance .. 52

5.3.2. Results ... 54

6. Conclusions and Future Work.. 56

7. References ... 57

A. DailyPlan’s User Manual .. 60

A1. Creating the Problem Instance .. 60

A2. Importing the Instance ... 61

A3. Solving ... 62

A3.1. Problem Data and Stopping Criteria .. 62

viii

A3.2. Advanced Settings ... 63

A4. Exporting Results ... 64

B. Parameter Tuning Tables .. 66

ix

List of Figures

Figure 1-1 Total energy usage through history – based on (Cobb 2007) 2

Figure 1-2 Global energy contributions in CMO – from (Kanellos 2008) 3

Figure 1-3 Map of Azores – from (Maps of the World n.d.) ... 3

Figure 2-1 Possible final solution of a VRP – from (Medaglia and Gutiérrez 2005) 5

Figure 2-2 Possible heuristic evolution from the initial state – from (Battarra, Baldacci and Vigo

2007) .. 7

Figure 2-3 Route initialization example – from (Renaud, Boctor and Laporte 1996-A) 9

Figure 3-1 Hill climbing algorithms will probably become stuck in one of the false optimums,

while Tabu Search might reach the desired one – from (Bridger 2007) .. 11

Figure 3-2 Visual representation of a Genetic Algorithm – from (Pote 2006) 13

Figure 3-3 Colony converging on the shortest path – from (Shekhawat, Poddar and Boswal

2009) .. 14

Figure 4-1 Implementation diagram... 16

Figure 4-2 Fast improvement diagram .. 21

Figure 4-3 Demonstration of algorithm behavior with no sub-cycles (blue – best found, green –

current solution) ... 23

Figure 4-4 Chromosome example – based on (Ombuki-Berman and Hanshar 2008) 24

Figure 4-5 Intra-plant swapping examples .. 26

Figure 4-6 ACO algorithm – Stage 1: Ants starting at plants .. 28

Figure 4-7 ACO algorithm – Stage 2: Ant I has moved ... 28

Figure 4-8 ACO algorithm – Stage 3: All ants have moved once .. 29

Figure 4-9 ACO algorithm – Stage 4: End of this colony's attempt ... 29

Figure 4-10 Ants after 5 movements each .. 31

Figure 4-11 Final tours .. 31

Figure 4-12 Sample bin packing problem and possible solution ... 32

Figure 5-1 Tabu Search with Clark Wright initialization: Tabu size 25 .. 36

Figure 5-2 Tabu Search with Clark Wright initialization: Tabu size 50 .. 36

Figure 5-3 Tabu Search with Clark Wright initialization: Tabu size 75 .. 37

Figure 5-4 Tabu Search with Clark Wright initialization: Tabu size 100 37

Figure 5-5 Tabu Search with improved petal initialization: Tabu size 25 39

Figure 5-6 Tabu Search with improved petal initialization: Tabu size 50 39

Figure 5-7 Tabu Search with improved petal initialization: Tabu size 75 40

Figure 5-8 Tabu Search with improved petal initialization: Tabu size 100 40

Figure 5-9 Genetic algorithm: Population Size 25 ... 43

x

Figure 5-10 Genetic algorithm: Population Size 50 ... 44

Figure 5-11 Genetic algorithm: Population Size 100 ... 44

Figure 5-12 Ant Colony Optimization: 25 Colonies per Iteration ... 47

Figure 5-13 Ant Colony Optimization: 50 Colonies per Iteration ... 47

Figure 5-14 Ant Colony Optimization: 75 Colonies per Iteration ... 48

Figure 5-15 Ant Colony Optimization: 100 Colonies per Iteration ... 48

Figure 5-16 Performance of algorithms on all problems ... 51

Figure 5-17 Average number of routes used per algorithm/problem pair 51

Figure 5-18 Location of S.Miguel's hypothetical sites (yellow) and plants (red) 54

Figure 5-19 Graphical representation of best solution found .. 55

Figure A-1 Example of filled in time sheet ... 60

Figure A-2 Example of filled in coordinate sheet ... 61

Figure A-3 DailyPlan: Main window ... 61

Figure A-4 On the left, importing data. On the right, distance data has been imported (only

speed available) ... 62

Figure A-5 Example of Genetic Algorithm user interface .. 62

Figure A-6 Example of prompt after optimization has finished .. 64

Figure A-7 Example of data exported to worksheet .. 65

xi

List of Tables

Table 3-1 Crossover example - based on (Obitko 1998) .. 14

Table 4-1 Matrix R example .. 18

Table 4-2 Example of S matrix .. 18

Table 4-3 Results obtained on selected tests using no sub-cycles. Testing conditions equal to

ones in Section 5.1 .. 23

Table 5-1 Performance at various tabu sizes for Clark Wright initialization 38

Table 5-2 Performance at various tabu sizes for Improved Petal initialization 41

Table 5-3 Performance at different intra-plant mutation percentages ... 43

Table 5-4 Performance at different bound settings ... 46

Table 5-5 Benchmark instances overview ... 49

Table 5-6 Performance parameters for all algorithms on five benchmark problems 50

Table 5-7 Estimated population and urban waste production for S. Miguel 52

Table 5-8 Estimated forest residues for S. Miguel .. 53

Table 5-9 Location of S.Miguel's hypothetical sites and plants ... 53

Table 5-10 Performance parameters for all algorithms on local problem 54

Table B-1 Tabu optimization results with Clark Wright initialization .. 67

Table B-2 Tabu optmization results with Improved Petal initialization .. 68

Table B-3 Genetic Algorithm optimization results ... 69

Table B-4 Ant Colony Optimization results .. 71

1

1. Introduction

As an introduction to the following work, a brief contextualization of the current energy scenario

will be made, along with the specificities of the area for which it was developed, its goals and

contributions.

1.1. Energy: A Historic Perspective

The first recorded use of the word energy was made by Aristotle in his work Nicomachean

Ethics in the 4th century BC, but the concept had been around since the dawn of the human era. The

contested formula (Basalla 1980) “energy = progress = civilization” is still very much true today as it

was then.

The earliest uses of energy by humans were solely based on the conversion of nutrients from

food into raw power used by each individual’s muscles, but soon our intellect lead us to more rational

applications, the first of which was utilizing the combustion of wood and other materials to provide

energy for heating, cooking, lighting or early furnaces (Barbour, et al. 1982).

Before the Industrial Revolution, mankind still relied heavily on their own muscular strength and

those of animals, as well as making use of wind and water power in mills and later in manufacturing

plants. Water mills were especially used, as Europe had abundant sources of this energy, causing

riverside towns and settlements to appear and flourish through the use of this resource (Williams

2006). With the development of steam power, the dependency on a close water source was eliminated

and new factories and plants sprung up everywhere, a phenomenon that was exacerbated by the

progresses in electricity production and transportation, leading to cheap and accessible energy for

everyone.

The wonders of the new electrical age including the development of new means of transport

were soon coveted by all, leading to a rise in the cost of fossil fuels (coal and oil). This was somewhat

offset by the continual improvements made to engines and power generating equipment but ultimately

not even they could cope with the generalization of electric power and vehicles.

With the discovery by Marie Curie of radioactivity followed by the use of nuclear fission in World

War II, a new source of energy was soon applied to electricity production, nuclear energy. The

enormous amount of energy generated and the abundance of fuel, compared to oil and coal, lead to

an initial spread of nuclear plants in the developed world. More recently though, environmental and

safety concerns have all but halted the construction of new nuclear plants (Climate Group 2006).

2

Figure 1-1 Total energy usage through history – based on (Cobb 2007)

1.2. Renewable Energies

As can be inferred from the previous section, the foundations of the current global economy lie

in the concept of accessible, cheap energy, available through the consumption of fossil fuels, but the

large growth that has been observed in demand in the last few decades (see Figure 1-1 Total energy

usage through history – based on (Cobb 2007)Figure 1-1) and the increasing scarcity of these fuels

will inevitably lead to a rise in prices. Therefore, it is only natural that we should look to other,

economically viable, sources of energy that will support the current economic paradigm. In this

context, renewable energies appear as clean, limitless alternatives to fossil fuels and nuclear energy

proliferation.

The two main sources of renewable energy in use today are hydroelectric power, which has

been in use since before the Industrial Revolution, and biomass, even though its major contribution is

still heating, through burning of wood (Kanellos 2008). Wind and solar power are growing, but still only

represent a very small fraction of the global energy supply (Figure 1-2 shows recent energy production

distribution).

Hydroelectric power, despite being a major player at the moment, does not have a very large

growth potential, as many of the developed countries have already tapped the available sources or are

unwilling to do so due to environmental and social concerns (World Nuclear Association 2009). On the

other hand, biomass has always had a large growth potential as our society produces a great deal of

waste that can be effectively turned into energy with the correct technology. The challenge lies in

utilizing this waste to produce electricity or other fuels (e.g. biofuels) in a cost effective manner. In the

biomass case, it has been shown that the majority of costs are incurred during transportation due to

the fact that, with current technology, larger (and bulkier) amounts of mass are required to produce

energy when compared to traditional fossil fuels (Rentizelas, Tatsiopoulos and Tolis 2008).

3

Figure 1-2 Global energy contributions in CMO
1
 – from (Kanellos 2008)

1.3. The Azores Case

The case study for this work is the Azores archipelago, which is located in the Atlantic Ocean

and is part of the Portuguese Republic. It has a total surface area of 2346 km2 and is composed of 9

inhabited islands (and a few more uninhabited ones) located around 33º N 28º W as shown in Figure

1-3.

Figure 1-3 Map of Azores – from (Maps of the World n.d.)

The archipelago is simultaneously facing two issues that might be dampened by the use of

renewable energy sources, specifically biomass. On one hand, the dependency on imported fossil

1 Cubic Mile of Oil

4

fuels for the archipelago’s energy needs, and on the other hand, the problem posed by the waste

generated on the islands that takes up precious land space or requires exportation (Brito, et al. 2007).

Also, increasing the use of biomass on the islands will aid Portugal in complying with the quotas

established by the UE (in 2010, 39% of electricity produced should be renewable) (INETI 2005).

1.4. Goals

The main goal of the following work is to use a variety of metaheuristics to solve the Multi-Depot

Vehicle Routing Problem (explained in Section 2) and to incorporate them in a MATLAB application

with the purpose of establishing optimal or near optimal routes for the vehicles that will transport the

biomass from various collection sites across the islands under study (essentially S. Miguel, the biggest

island) to the various power stations that may exist.

The application developed should have a user friendly environment and easy to use data

importation and exportation functions so it can be operated by users inexperienced with the

programming behind it.

1.5. Contributions

The main contribution of this work is a fully functional application for solving the Multi-Depot

Vehicle Routing Problem using three different metaheuristics, whether it is applied to biomass or any

other problem.

Scientific contributions were also made to the Tabu Search and Genetic algorithms used such

as the use of different initial solutions and a new sub-cycle parameter, as well as the development of a

new Ant Colony Optimization algorithm applied to the above mentioned routing problem, which has

never been done to the best of our knowledge.

Following this work, an article will be submitted to the WCCI conference of 2010 relating to

evolutionary computation.

5

2. The Multi-Depot Vehicle Routing Problem

In order to obtain the most cost/time efficient manner of transporting biomass to more than one

power plant, we will need to solve a Multi-Depot Vehicle Routing Problem (MDVRP). The problem will

be defined in the next subsection and two heuristics that have been used to solve it in the literature will

also be presented.

2.1. Definition

The problem that we propose to solve is the following: Having a fleet of vehicles based on one

or more biomass plants, what is the most economically advantageous way of picking up the waste

from various collection sites and return to the plant? (Xu and Kelly 1996)

In the literature, this problem is referred to as the Multi-Depot Vehicle Routing Problem

(MDVRP). It is a non-linear programming problem that can be seen as a generalization of the

Traveling Salesman Problem (TSP) differing in the fact that we now have various salesmen and each

site must be visited by one and only one of them, while

minimizing the total traveling cost of all. In Figure 2-1 a

possible VRP solution with only one depot is shown.

The formal definition of the VRP (with only one

depot or plant) is the following. Let G = (V, A) be a graph

where V = {0, 1, ..., N} is a set of nodes and A is a set of

arcs. Node 0 is the plant and the remaining nodes are the

collection sites2. From the plant, a set of K vehicles with

capacity QK leave with the purpose of collecting a certain

quantity qi from each collection site, knowing that a trip

between any vertex (regardless of being a plant or a

collection site) incurs a non-negative cost cij, which will

usually represent a distance/time that must be

covered/spent (therefore this matrix is usually symmetric -

cij = cji) being Ck the maximum total cost that a vehicle K can incur (Renaud, Laporte and Boctor

1995).

2 Henceforth the location from where vehicles depart will be always referred to as the plant and the

vertexes they visit will be referred to as collection sites.

Figure 2-1 Possible final solution of a VRP –
from (Medaglia and Gutiérrez 2005)

6

With that said, our main goal is then to:

Minimize (1)

Subject to (2)

 (3)

 (4)

 (5)

where is a binary variable that represents whether or not the link between sites i and j will be

used by vehicle K.

In this case, the cost function (1) only represents the total distance or time covered or spent by

all the vehicles, but it could easily be changed to contemplate other factors, the most obvious being

total fleet size.

Constraint (2) illustrates that a vehicle can only transport as much as its maximum capacity, (3)

is similar but relative to the maximum distance or time that can be covered/spent by a single vehicle,

(4) forces all routes to start and finish at the plant and (5) limits the number of routes to the total

number of vehicles.

In addition to the presented constraints many others could be included, such as specific time

windows during which a vehicle can or cannot visit a certain collection site, or the insertion of more

plants from which they can leave and arrive at (turning it into a MDVRP). These and other changes

only contribute to make a hard problem even harder, granting the VRP the status of NP-hard problem

(non-deterministic polynomial time hard) (Garey and Johnson 1990).

For a problem of this degree of complexity it is usually not possible to obtain optimal solutions

except in very small cases (see (Laporte 1992)). For this reason, a number of heuristics that obtain

satisfactory results in feasible time frames, hopefully near the global optimum in performance terms,

have been developed.

2.2. Classic Heuristics

The two classic heuristics that will be presented have in common the attributes of being fast,

reliable methods for obtaining good solutions for the single depot VRP. To apply them to the multi-

depot version, all the collection sites are clustered around their closest plant and the heuristic is

applied for each plant as if it was a single depot VRP3.

While the solution is satisfactory it will most probably not be the global optimal or close to it, so

these heuristics are used extensively to provide an initialization for more thorough approaches.

2.2.1. Clark Wright Savings Algorithm

The Clarke Wright Savings Algorithm (Clark and Wright 1964) can be applied to Vehicle Routing

Problems with only one plant and an arbitrary number of vehicles.

3 Therefore, in the following subsections the heuristics will be described as if we were solving a single

depot VRP.

7

The algorithm begins by giving each collection site his own route, in other words, N simple

routes are created consisting of the trip from plant to collection site and back again. Following this, a

savings list is compiled, consisting of the amount that the total cost would be reduced if two existing

routes would be merged. As an example, by merging the route {Plant -> Site 1 -> Plant} with the route

{Plant -> Site 2 -> Plant} as seen in Figure 2-2 we would obtain

{Plant -> Site 1 -> Site 2 -> Plant}, eliminating the cost of the trips

{Site 1 -> Plant} and {Plant -> Site 2} and adding a new trip (with

matching cost), {Site 1 -> Site 2}. The total saving that would be

incurred from this merge is then placed in the list which, when

completed, is sorted in decreasing order. Attempts are then

made to implement the merging starting from the top of the list.

In an algorithmic form:

There is another version of this algorithm referred to in the literature (sequential version) but it

has been proven that this, parallel version, obtains better results (Toth and Vigo 2002). The main

advantages of this heuristic are its speed and easy implementation, but the results are normally within

5% of best know solutions for benchmark problems. In a worst case scenario, the algorithm will return

a solution that will be times larger than the global optimum.

2.2.2. Improved Petal Heuristic

The improved petal heuristic was developed in (Renaud, Boctor and Laporte 1996-B) as an

attempt to respond to situations where the user desires a good solution for a VRP problem but does

not have the luxury of time for extensive computations using, for example, metaheuristics or branch &

cut algorithms. In short, it consists of generating a large group of feasible routes by using the sub-

heuristics one-petal and two-petal and then using a set partitioning algorithm to choose some of them.

Clark Wright Savings Algorithm

1. Create individual routes, starting from the plant and

visiting a single collection site

2. Build savings list for every combination of sites and

following .

3. Set the list in decreasing order

4. Starting at the top of the list, attempt to implement

merge

I. If saving is positive proceed, else go to 5.

II. Make sure sites in question are at the edges

of routes (they must still have a direct link to

a plant), if not go to V.

III. Make sure the merge does not violate

constraints (capacity, length, etc), if it does

go to V.

IV. Implement merge

V. Move to next list member and return to I. If

the end of the list has been reached go to 5.

5. Terminate algorithm

Figure 2-2 Possible heuristic evolution
from the initial state – from (Battarra,

Baldacci and Vigo 2007)

8

The algorithm starts off by obtaining the polar coordinates of all the N collection sites, in relation

to the plant which is centered at the origin. The sites are then sorted in increasing order of polar angle,

with ties being broken by placing the closest site before the furthest (distance measured relative to the

plant). We can then start the petal construction cycle, starting with :

1. Set . If terminate algorithm.

2. Build a back and forth route between the plant and site . Record it and its cost.

3. Set and build a route between the plant and sites and . If it is infeasible go

to Step 5, else record the route and its cost.

4. Set and build a route between the plant and all sites using the one

petal heuristic if the sum of mass to collect is smaller than the capacity of one vehicle. If

it is not or if there is no feasible route go to Step 5. If a feasible route is obtained, record

it and its cost and repeat this step.

5. Build a route between the plant and all sites using the two-petal heuristic if the

sum of mass to collect is smaller than the capacity of two vehicles. If it is not or if there

is no feasible petal4 obtainable go to Step 6. If a feasible petal is obtained, record it and

its cost and repeat this step.

6. Apply a dominance test by starting at the last petal created, removing the last site

inserted in it (with accompanying change in cost) and comparing its new cost with the

previous petal. If it is smaller, overwrite the previous petal with this one as it is

dominated. Repeat for remaining petals constructed in steps 4 and 5. Return to step 2.

Next, we must look at the way in which the one-petal and two-petal heuristics operate in order

to produce routes.

One-petal

The extended description of the one-petal heuristic can be found in (Renaud, Boctor and

Laporte 1996-A) but in short it consists of 3 phases:

• Initialization – The route is initialized by first selecting the northernmost site5 and then

adding the ones to the east of it. Following this, the easternmost site is selected and

then the southernmost ones are added. The same happens for South/West and then

West/North. This heuristic constructs an envelope of vertexes as can be seen in Figure

2-3.

4 A petal is defined as a group of routes, in this case, 2.
5 Even though the word site is used, in this and the following phases of the heuristic no distinction is made

between collection sites and plants

9

Figure 2-3 Route initialization example – from (Renaud, Boctor and Laporte 1996-A)

The heuristic can be turned around (going anti-clockwise instead of clockwise) but the

solution, while being different, might or might not be better.

• Insertion of remaining sites – Due to the nature of the previous phase, interior sites

might be left out and must be inserted in the route.

In order to do so, a cheapest insertion criteria is used, namely we compute the insertion

costs of every remaining site in each possible location, saving the smallest for each site.

Then, we select the site with the cheapest insertion ratio (costs of traveling to and from

the new site divided by cost link that will be broken) and place it in the location found

previously.

• Improvement – In the final phase, the plant is found within the route and it is re-ordered.

Additionally, a local optimization algorithm which will be described later in Section

4.2.1.1 is applied to the tour, after which it is saved along with the cost.

Two-petal

The two-petal heuristic is described in detail in (Renaud, Boctor and Laporte 1996-B) but will

also be explained here in short.

The aim of this heuristic is to construct two different routes that might intercept each other, as

this is often found in optimal solutions. The initialization is done by choosing the two sites that are

furthest apart from each other and assigning them back and forth routes to the plant. Following this,

we repeatedly apply a cheapest insertion criterion to place the remaining sites in either of the routes.

However, to prevent the early formation of unbalanced routes that might condition the insertion

of later sites, an α coefficient is defined (), where Q is the capacity of one vehicle and qi

is the quantity supplied by site i. This coefficient will be small if the current problem is tightly

constrained and larger if not. We then enforce that the difference in transported load from one route to

the other must not exceed , therefore creating balanced routes only when they are needed.

Despite this, the α criterion can be ignored if all insertions failed. If, even after ignoring it, certain

sites remain un-inserted, a series of exchanges between both routes (described in detail in Section

4.2.1.1) are attempted and, if any is successful, the insertions are re-tested. Furthermore, whenever

the number of sites in any of the routes reaches a multiple of 5, local optimization is applied to it.

10

When all sites have been inserted in either of the routes, each of them is re-optimized using the

one-petal heuristic described above.

When the main body of the algorithm terminates, which means that all possible petals have

been formed, a set partitioning problem needs to be solved in order to choose exactly which routes will

be used in the solution. For this part of the algorithm, binary programming is used to minimize the total

cost of the selected petals while ensuring that all sites are present in the solution exactly once.

2.2.3. Heuristic Comparison

The Improved Petal Heuristic provides solutions of generally higher quality than its Clark Wright

counterpart. However it does have its drawbacks. It is computationally more intense, it is not

deterministic (due to the local optimization and exchanges in two-petal formation) and requires the

data to be supplied in the form of coordinates, in order to apply the one-petal heuristic and obtain the

polar coordinates. This last constraint makes it infeasible to apply if the data is supplied as a time or

distance matrix for example.

11

3. Metaheuristics

Besides specific heuristics developed for the VRP, attempts have been made to apply general

metaheuristics to this problem. In the following subsections three popular metaheuristics will be

described in general but the way in which they are applied to the problem will be left for Section 4.

3.1. Tabu Search

The word “tabu” comes from a Polynesian dialect where it means “something that cannot be

touched because it is sacred”, but the meaning given today is more in line with “a prohibition imposed

by social custom as a protective measure” (Merriam-Webster 2009).

The roots of the Tabu Search algorithm are presented in the seventies but the version that is

commonly used today was presented by Fred Glover in 1986, having since then been subjected to

innumerous proposals of alterations and adaptations.

Before Tabu Search, the search for optimality for a given problem was done mostly with classic

hill climbing techniques, meaning that the algorithms would, from their current position, attempt to find

the best possible improvement. The problem with this type of approach is the high probability of

reaching a local maximum (or minimum) from which the algorithm cannot escape, returning a solution

that can be far from optimal as can be seen in Figure 3-1.

Figure 3-1 Hill climbing algorithms will probably become stuck in one of the false optimums, while Tabu Search might
reach the desired one – from (Bridger 2007)

The answer to this problem given by the Tabu Search algorithm comes in the form of allowing, if

no improvement can be found in the neighborhood, the solution to evolve to worse performances. In

this way, it can move from the local optimum to explore new areas of the solution space. The issue

12

with this approach is the creation of cyclic moves, where the same points are visited in succession

(Stidsen 2008).

To solve this, the tabu list that gives the metaheuristic its name is implemented. It contains a

memory of the previously visited solutions (or only the recently visited ones) and does not allow the

algorithm to evolve to them again. Therefore, as per the definition of the tabu word, the list is

protecting the algorithm from cyclic moves and/or getting trapped in a certain region.

The tabu list can also be seen as the algorithm’s memory. This sets the algorithm apart from

memory less methods, such as the Genetic Algorithms presented below or Simulated Annealing, but it

is also not exactly the same as hard-coded memory of Branch & Bound or Branch & Cut approaches

because, for one, the tabu list has a limited size (which can be constant or not) and so it acts like an

actual biological memory, where older events are replaced by new ones. On the other hand, a Tabu

Search implementation usually comes with an aspiration criterion. This makes sure that, under special

circumstances, a tabu move may be accepted. The most obvious circumstance is when said move

generates a solution better than any found until then, but other improvement strategies may be used.

The general sequence of operations in a Tabu Search metaheuristic will be the following:

The termination criteria can vary, but may include a fixed number of iterations, iterations without

improvement, computing time, among others.

Since its first implementation, Tabu Search has been applied to a large array of complex

problems. From logistics to biomedical analysis and from financial analysis to space planning, the

scope is nearly endless (Glover and Laguna 1997).

3.2. Genetic Algorithms

The concept of applying the principles of Darwin’s evolution theory to the resolution of problems

had already been present since the fifties and sixties, especially after “Evolution Strategies”

(Rechenberg 1973), but it was in 1975, with the publishing of Adaptation in Natural and Artificial

Systems (Holland 1975), that it gained a large amount of recognition. A Genetic Algorithm consists

then in the application of the principles of evolution and adaptation to the environment that are present

in every species to optimization problems, in order to reach the desired goal through survival of the

fittest.

The biological chromosome consists of a series of genes which are necessary to code specific

proteins. Simplistically we can view genes as a coded version of an individual’s traits, intelligence, skin

and eye color, height or even sex. During conception, the parents’ chromosomes mix and the offspring

is generated with some characteristics from each of them. Mutation can also occur, which is the result

General Tabu Search Algorithm

1. Start the problem with a feasible solution and an empty tabu list.

2. Search the neighborhood for other possible solutions.

3. Eliminate from these the ones that are in the tabu list, keeping aspiration criterion in mind.

4. Choose the best solution between the ones found.

5. Include the move in the tabu list.

6. Go to 2.

13

of coding errors and can result in the offspring possessing a trait that was not present in either of its

parents.

The main difference between Genetic Algorithms and other optimization techniques (such as

the Tabu Search described in Section 3.1) is the use of a population of solutions instead of a single

one. This allows for more exploration during a single iteration, as many possibilities are being

evaluated at once, and there is also more exchange of information between the solutions evaluated in

parallel.

The algorithm is started by obtaining an initial population of chromosomes (the name given to

solutions) randomly or incorporating some previous knowledge of the problem. These are then

evaluated according to a fitness function that measures their adaptability to the problem’s

environment, which corresponds to the cost function of the problem being optimized. From there,

some are selected to become parents (usually the fitter individuals have a higher chance of becoming

parents) of the next generation and mate. This reproduction, or crossover, is done by creating two or

more new chromosomes that contain part of the parents’ genetic material. Doing this for all pairs of

selected parents will result in a new generation and the process can then be repeated, with some

descendants possibly being identical to the best parents to preserve solution quality (elitism).

Mutation, just like in natural organisms, can occur and operate a minor change on a chromosome.

This usually occurs randomly on a low percentage of chromosomes and is useful to explore new

regions of the solution space that might not have been covered by the population’s current genetic

material (Marczyk 2004). A simple diagram representing the evolution of a Genetic Algorithm is shown

in Figure 3-2.

Figure 3-2 Visual representation of a Genetic Algorithm – from (Pote 2006)

One of the greatest challenges when implementing a Genetic Algorithm is the coding of the

solution traits. Amongst the most used options is a binary string (which is also the simplest to explain),

where each location represents a certain characteristic that may (1) or may not (0) be present. The

reason for this choice is that, with a binary string, crossover and mutation are very straightforward. For

example, as shown in Table 3-1, a simple crossover option would be to have a constant (or random)

cut point along the chromosome, and each offspring receives opposing parts of chromosomes from

the parents.

14

Parent 1 110111 | 00110111000

Parent 2 010100 | 10010011001

Offspring 1 110111 | 10010011001

Offspring 2 010100 | 00110111000

Table 3-1 Crossover example - based on (Obitko 1998)

Mutation is also very straightforward, consisting of turning one gene to its opposite, 1 to 0 or 0

to 1.

Like Tabu Search, Genetic Algorithms have been applied to a variety of problems in finance,

design and scheduling amongst others.

3.3. Ant Colony Optimization

The concept of artificial Ant Colony Optimization (ACO) was first developed by Marco Dorigo in

his PhD thesis (Dorigo 1992). The general reasoning behind the algorithm is that a colony of ants can

always find the shortest path between the nest and the food source, despite the fact that each

individual ant is blind. How do they do this?

Each ant sets out to find the food source individually and, if presented with alternative paths, will

randomly choose one, leaving behind a pheromone trail. Assuming there are two paths available,

some ants will choose one and others will choose the other, but the ones that chose the shortest path

will walk along it more frequently (more back and forth routes from nest to food in the same time

frame), increasing the pheromone concentration there and more effectively countering its evaporation.

Since ants will tend to follow the path with higher pheromone concentration, eventually the entire

colony will converge to the shortest path as shown in Figure 3-3.

Figure 3-3 Colony converging on the shortest path – from (Shekhawat, Poddar and Boswal 2009)

Artificial ants need not be blind like the biological ones. In fact, we can use previous knowledge

of the problem (sight) to guide the ants in the initial steps of the algorithm, before the pheromone trails

have become dominant.

15

The application of this metaheuristics to problems such as the travelling salesman problem or

the VRP is immediately recognizable. Usually, the probability that an ant will move from node i to node

j will be given by:

 (6)

where is a matrix of pheromone and is the desirability (or heuristic) matrix (the inverse of the

distance for example). and are parameters that control the influence of each.

Whenever an ant chooses a path it will drop pheromones, increasing the corresponding value in

the matrix by a factor relative to its performance (alternatively, only the best ants can be chosen to

drop pheromone). At the end of colony’s iteration the whole matrix suffers evaporation, which means

that all the pheromone is reduced by a, usually fixed, percentage. This behavior allows the artificial

ants to forget bad choices made in the past, and prevents the pheromone matrix from growing to

infinity or saturating. Expression (7) represents the update of the pheromone matrix, with being the

evaporation coefficient.

 (7)

The end result will be the same as in the biological case. Better solutions will drop more

pheromone, guiding the following iterations to better results

When originally presented, ACO was inferior to state-of-the-art heuristics and metaheuristics

used to solve its first problem, the TSP. Regardless, it proved that the concept was good and

encouraged further research.

Ant Colony Optimization as a metaheuristic was only proposed years later after the original

application to TSP. Today, it is applied to extremely diversified fields such as assignments, routing and

telecommunications (Stutzle 2005).

16

4. Multi-Depot Optimization

As was referred in Section 1.4, one of the goals of this work is to construct an application that is

simultaneously easy to use and provides good results in solving the problem at hand. To that end, the

application was divided into 3 parts: preprocessing, problem solving using various algorithms

(optimization) and post processing schematically shown in Figure 4-1.

Figure 4-1 Implementation diagram

4.1. Preprocessing

The data retrieval for the application can be handled in three different ways. The user can

supply them as a matrix of times taken between sites and plants, distances between them or two

dimensional coordinates of each of them. The application assumes that time data is more precise than

distance data, and that both are more precise than coordinate data. Therefore, if times are available

they will be used, followed by distances and finally coordinates.

All of the relevant data are converted into time (if not already in that form) using the truck speed

() and road non linearity coefficient (distance obtained from coordinates suffers a

percentage increase) if required. Following this, a consistency check is performed on the data to

answer two questions:

17

• Are any of the collection sites too far from all plants that the maximum travel time

constraint would make them unreachable?

• Are there any collection sites supplying more than one truckload of mass?

If the answer to the first question is yes, then those sites are permanently removed from the

problem data and a warning is displayed, informing the user of this action.

If the answer to the second question is yes, then those sites are divided into two new sites

located in the same spot, with the first one supplying a quantity of mass equal to one full truckload and

the second whatever is remaining. The process can occur multiple times for the same site if its supply

is larger than 2 truckloads.

4.2. Implemented Algorithms

Three different algorithms were developed for solving the problem at hand, not only to provide

the user with various alternatives but also to be able to run a scientific comparison between them. In

the following subsections, the three algorithms are described in detail.

4.2.1. Tabu Search

The implemented algorithm was greatly based on (Renaud, Laporte and Boctor 1995). This was

selected because, despite its age, it presents good results and could work as a comparison for the

other algorithms that will follow.

4.2.1.1. Description

In order to provide an easier comprehension of the algorithm, the description is divided into 3

fundamental phases which will be described in turn.

• Clustering of collection sites around the closest plants

This first phase is a preparation for the optimization that will follow. Here the general multi-depot

VRP is divided into N sub problems with just one plant, assigning each collection site to the nearest

plant (there is no upper of lower limit for the number of sites assigned to each plant). The clustering

must be done in a way that creates the sub-problems, organizes all the data relevant to them in new

sub matrices, but still retains the original information so the collection sites may be later re-inserted in

the general problem.

• Solution initialization using the Clark Wright Savings Algorithm or Improved Petal Heuristic

In this phase the application can either use the Improved Petal Heuristic (as done in the

(Renaud, Laporte and Boctor 1995)) to initialize the solution if the data is supplied in coordinates or

alternatively use the Clark Wright Savings Algorithm (the reason for introducing this algorithm is

explained in Section 4.2.1.2). Regardless, the solutions produced by both are considered acceptable.

Either of the algorithms described in Section 2.2 is applied to the data obtained after the

clustering. At the end of this phase two matrices will be obtained. The first, designated R, will contain

general data for each route (associated plant, total travel time and used capacity, number of sites

visited, first and last site) while the second matrix, designated S, will contain the ordered sequence of

collection sites to be visited in the route. This data structure is similar, and was inspired by, the one

18

used in (Battarra, Baldacci and Vigo 2007). Table 4-1 and Table 4-2 show example instances of the R

and S matrices.

Plant Travel Time Load #Sites Visited 1
st

 Site Last Site

1 35.98 55 3 6 9

1 48.70 60 5 2 5

1 23.12 18 2 1 10

Table 4-1 Matrix R example

 S

6 4 9 0 0

2 8 7 3 5

1 10 0 0 0

Table 4-2 Example of S matrix

As can be seen in the example, the application of either heuristic to all sub problems will result

in a number of matrices equal to double the number of plants. These will have to be merged into only

2 matrices (one R, one S) observing the correspondence between the local ordering of each sub

problem and the global one.

• Application of Tabu Search to improve upon the previously found solution

Before starting the Tabu Search algorithm, an initial pre-optimization is applied to the initial

solution, which simply consists of attempting various sub-tour reversals as described in (Hillier and

Lieberman 2001) to every route. If any reversal provides a lower cost than the current one while not

violating constraints, it is immediately accepted. To attain a higher degree of computational efficiency,

when the route is small in comparison to the maximum number of iterations chosen, the algorithm will

attempt to test all possible exchanges and, if no improvement is found, it ends. If the route is large it

will randomly find reversals to evaluate until the maximum number of iterations is reached.

Following this, the fast improvement phase starts, which takes up the majority of the time and

computational effort in the Tabu Search implementation. It can be divided into three distinct, but

simultaneously similar, steps.

� Inter-Plant Exchanges

In this first step exchanges of collection sites between routes belonging to different plants are

tested. The first plant is randomly selected while the second can also be selected randomly, or be the

one closest to the first, according to a designated probability. Following this, a route is randomly

chosen from each plant and then a collection site in each of these, randomly as well6.

Having selected the plants, routes and sites, the following 6 movements are applied:

A. Swap sites between the two routes.
B. Insert first route’s site in the second.
C. Insert second route’s site in the first.
D. Insert two consecutive sites from the first route into the second.
E. Insert two consecutive sites from the second route into the first.
F. Swap two consecutive sites between routes.

6 In the movements that follow, when more than one collection site is required or when it is necessary to

determine if a site goes before or after another, this process is done randomly.

19

All movements use as a reference (the routes on which movements will be applied) the ones

from the previous solution, but what happens after each movement is dependent on the result itself.

Five different situations can happen, for which there are 3 possible actions.

a) Movement broke constraints.
b) Movement did not break constraints but its performance is inferior to the reference’s and is

either tabu or also inferior to the current performance7 (or both).
c) Movement did not break constraints, its performance is inferior to the reference’s but is

superior to the current performance and is not tabu.
d) Movement did not break constraints and its performance is superior to the reference’s and to

the current performance.
e) Movement did not break constraints and its performance is superior to the best found until

then.

Cases a) and b) suffer the same fate, they are discarded and both the reference and the current

performance are kept unaltered.

For cases c) and d) the reference is maintained but the result is kept as the current solution,

along with its current performance. This allows for the aspiration criterion to be present, as the tabu

status is ignored if the solution is made better – case d) and simultaneously allows the acceptance of

worse solutions to escape local minima, as long as they are not tabu – case c).

In the last case, e), the solution is immediately accepted and the movement cycle is broken

regardless of which movement obtained the solution. The following iteration is started with this solution

being used as the reference and kept as the best solution so far.

Whenever the sequence of movements ends and as long as the current sequence was changed

at any point along it (or if the sequence was prematurely ended due to case e)), a local optimization

similar to the pre-optimization described above is applied only to the routes that were changed.

� Intra-Plant Exchanges

The second step of fast improvement consists of exchanging collection sites between two

routes belonging to the same plant. These are picked randomly, along with the sites inside each. At

the start of this step the reference is updated to the current solution found in the inter-plant step, if any

was found.

The movements for this step are identical to the ones described above, and so are the

consequences for the results, with the obvious difference that they are now occurring between routes

belonging to the same plant.

� Three Route Exchanges

The third and last step of fast improvement consists in exchanging collection sites between

three different routes (regardless of which plant they belong to) and contains only one move, differing

from the six movements of the previous steps. The three routes are selected randomly.

The movement consists of taking a site from the first route and inserting it in the second, then

taking a different site from the second route and inserting it in the third. The actions following the result

of said move are the same as the above.

7 The current performance corresponds to the performance of the previous movement, or in the case of the

first movement, to an artificially inflated value for easy updating

20

Naturally, whenever a movement is made it is included in the tabu list whose size is constant.

When the maximum size is reached the older movements are progressively forgotten and replaced by

new ones

To ease comprehension of the algorithm, which is relatively complex, a schematic of its different

phases and steps has been constructed and is presented in Figure 4-2.

21

Figure 4-2 Fast improvement diagram

22

After fast improvement has finished, intensification begins. It is very similar to the second step

of the fast improvement, the intra-plant exchanges. The difference lies in the fact that here two routes

are chosen and the movements described above are applied repeatedly in an attempt to obtain

improvement. Once the stopping criterion has been met, the algorithm moves to the next set of two

routes and tries again.

The original implementation by (Renaud, Laporte and Boctor 1995) had an additional phase

named diversification, which focused on inter-plant exchanges. This phase though, as referred by the

authors themselves, was very computational intensive and only improved results on a small number of

cases. With that said, it was chosen to leave this phase out of the current implementation.

4.2.1.2. Contributions

As was referred to at the start of the description of the Tabu Search algorithm, it was greatly

based on (Renaud, Laporte and Boctor 1995). Even so, some changes were made to the original

implementation, which will be described in detail below.

• Finding closest plants

In the inter-plant exchange step, the algorithm is required to find the closest route to the one

that was first chosen (observing the previously chosen plants), in order to (most of the time) not waste

computational effort in exchanges that would not make sense. In the reference, this measure of

closeness is obtained by calculating the centroid of the locations that make up each route. Regretfully

or not, the application accepts data as coordinates, distances and times so obtaining the centroid

would be impossible in the two last cases. Due to this, a methodology was implemented in which the

second plant is chosen as the closest (or a random one depending on the parameter probability) to the

first and then a random route is picked in it.

• Introduction of the Clark Wright Savings Algorithm

For the same reason as above, data not always being supplied in coordinates, the Clark Wright

Savings Algorithm was implemented in alternative to the improved petal approach. The Clark Wright

Savings Heuristic was chosen due to its simplicity and acceptable results.

• Final local optimization

At the end of the algorithm (after intensification) an additional step of local optimization is

applied to the whole solution but with a larger number of maximum iterations than before. This step,

although probably redundant in most problems, may achieve small improvements on some at a

negligible computational cost.

• Phased optimization

The last alteration is probably the one that will have a larger impact on the results. It was

implemented to solve an odd behavior presented by the algorithm during testing. The problem

consisted in the solution diverging consistently, in other words, starting from the initial heuristic

solution, the following ones were worsened consistently until stabilizing around a bad solution. This

resulted in no improvement at all at the end of the Tabu Search as can be seen in Table 4-3 and

Figure 4-3.

23

Tabu Size Probability Solution after Fast Improvement Improved Initial Solution?

25 0,3 639,79 No

25 0,9 639,79 No

50 0,6 639,79 No

100 0,3 639,79 No

100 0,9 639,79 No

Table 4-3 Results obtained on selected tests using no sub-cycles. Testing conditions equal to ones in Section 5.1

Figure 4-3 Demonstration of algorithm behavior with no sub-cycles (blue – best found, green – current solution)

The theory proposed for this behavior is that, due to the MDVRP problem being tightly

constrained, the algorithm could go through all of the movements described above without finding a

feasible solution. In other cases, it finds only one that is worse than the current but is still accepted

under the pretext of escaping local minima. This being a frequent occurrence, the algorithm strays

from the optimum and gets stuck in areas with poor performance.

The solution found was to introduce a new parameter, named Number of Sub-Cycles, which

forces the algorithm to use the same reference a number of times before replacing it, despite it being

better or worse than the ones found through movements. In this way, there is a larger exploration of

the neighborhood before it switches to a new area.

4.2.2. Genetic Algorithm

The Genetic Algorithm implemented was greatly based on (Ombuki-Berman and Hanshar

2008). It was chosen due to being relatively recent and because the reference itself attempts to face

the scarcity of work done in the application of GAs to this, multi-depot, version of the vehicle routing

problem.

D
is

ta
n

ce

Iterations

24

4.2.2.1. Description

Before beginning to describe the way the algorithm works, it is useful to first explain the coding

of the genes, in other words, how chromosomes are used to represent vehicle routes in a univocal

way. In the proposed algorithm, each chromosome represents a solution, containing a number of rows

equal to the number of plants. In each row, the ordered list of sites to visit is placed as shown in Figure

4-4. There is no distinction between various routes belonging to the same plant within the

chromosome, so there needs to be a route scheduler whose job is to break up the sites into feasible

routes.

Chromosome

5Depot 1

Depot 2

Depot n

.

.

.

3 7 13 4

22 26 2

25 14 17 21

6 8

9

1

15

Figure 4-4 Chromosome example – based on (Ombuki-Berman and Hanshar 2008)

The algorithm can be divided into a pre-processing phase and an iterative phase.

• Pre-processing

The pre-processing consists of initially assigning collection sites to plants as well as creating the

initial population. As for site assigning the process is similar to what was done for the Tabu Search in

that we simply associate each site to its closest plant. In the Genetic Algorithm though, we also build a

list of sites that can eventually suffer a plant change. As an example, one site might be closest to plant

X but no far from plant Y as well. If this is the case, we assign it to plant X but remain conscious that it

might also have been assigned to plant Y. A site is considered swappable when expression (8) is true,

where s is the site, p the plant under consideration, cp the closest plant and Bound a tunable

parameter. This awareness, under the form of a swappable site list, will be important later when

implementing mutation.

 (8)

As for creating the initial population, it was done randomly in the (Ombuki-Berman and Hanshar

2008). The application mimics this behavior, but also optionally adds one chromosome that

corresponds to the Clark Wright solution for the current problem. The solution must then be converted

to chromosome form.

• Iterative phase

The iterative phase contains the majority of the algorithm. It starts with the decoding of the

population’s chromosomes using the route scheduler referred above. It works by starting a route with

25

the first site listed for each plant and then adding the following sites until no more can be added due to

constraints. At this point, a new route is started and the process continues until the end of the plant.

Once the routes are built, an analysis is done on the last site inserted in each route to see if the global

cost would be lower if it was assigned as the first site of the next one. If so, the switch is implemented.

The process is repeated for all plants.

With the routes built, obtaining each chromosome’s fitness value is trivial, as it corresponds to

the sums of costs of all routes that make it up. Crossover, or reproduction between chromosomes, can

then begin, but not before the best, or a number of the best, chromosomes are selected and saved.

These are elite chromosomes that will be cloned into the next generation.

Following this, a tournament selection strategy is used to find parents for the next generation.

This consists of randomly selecting 2 chromosomes (the elite or elites can also be selected) and then

choosing one of them by obtaining a random number. If it is smaller than 0.8 the best is selected, else

any of them can be chosen. The same is done to obtain the 2nd parent.

With both parents selected mating can begin. One plant is selected randomly, as only intra-plant

mating occurs in this implementation. Then, one route is chosen from each chromosome, and the sites

present in these routes are removed from the opposing chromosome. We then compute the

reinsertion costs of sites and place them in the best locations found. Once all sites have been

reinserted in both chromosomes they are placed in the new population and the process is repeated

until we have enough descendants to make up a population with the same number of chromosomes

as the previous one.

Mutation is the last step in the iteration. It can happen as intra-plant mutation and/or inter-plant

mutation, and there is no guarantee that it will be present in all iterations. Any chromosome can be

selected for mutation save the elite ones.

Intra-plant mutation can occur with a given probability, and happen in three different ways, each

of them with equal probability (1/3) of happening. These are schematically shown in Figure 4-5.

a) Reversal mutation occurs when we select a plant belonging to a chromosome, select two cut

points in said plant (regardless if they belong to the same route or if they cut through routes)

and mirror the site ordering between the cut points.

b) Single customer re-routing consists of removing one site from anywhere in the chromosome

and then computing all the re-insertion costs within the entire chromosome and placing it

there. This step might end up being an inter-plant mutation after all.

c) Swapping will simply take 2 sites from the same plant and switch their locations.

Inter-plant mutation can occur independently of intra-plant mutation but is restricted to one type

of move only. It uses the list containing swappable sites constructed at the start of the algorithm, by

selecting one site from this list, removing it from its current location, and then randomly choosing a

different plant to insert it in. Inside this plant’s routes the location with the smallest reinsertion cost is

selected and the site is placed there.

26

After using the mutation operators, if probability favored any of them, the next iteration begins

using the new population created.

Figure 4-5 Intra-plant swapping examples

4.2.2.2. Contributions

Only a few changes were introduced in the original algorithm found in (Ombuki-Berman and

Hanshar 2008).

• Route scheduler

The route scheduler present in the (Ombuki-Berman and Hanshar 2008), after constructing all

the plant’s routes, proceeds to analyze the possibility of switching the last customer of each route to

the next, starting with the first one.

In our implementation, this 2nd phase of the route scheduler starts with the last route. For

example, in a 4 route setting, our first attempt will be to reroute the last site of the 3rd route to become

the first of the 4th, then the last of the 2nd to become the first of the 3rd and so on.

The reason for this change is that, since the first phase of the route scheduler fills routes until a

constraint is met, this will usually mean that all but the last route will be tightly constrained, so

27

switching sites between them will probably be unfeasible. If we start with the last route, we can keep

making room for sites in the previous ones if switches are successful.

• Crossover feasibility

In the reference, during crossover, the algorithm checks for feasibility when analyzing the

reinsertion of sites back into the chromosome. In the application, this feasibility check was disregarded

as, due to the nature of the chromosome representation all routes are feasible. The path taken was to

apply the route scheduler to all the insertion possibilities and analyze the total cost of the solution,

regardless of it breaking up existing routes and/or creating new ones.

4.2.3. Ant Colony Optimization

Due to the lack of work in applying Ant Colony Optimization specifically for the Multi-Depot

Vehicle Routing Problem, a new algorithm was implemented. Even though it has no specific source, it

was inspired by (Silva 2005) and also by the Genetic Algorithm application cited in the previous

algorithm (Ombuki-Berman and Hanshar 2008). Various other sources were also consulted such as

(Bella and McMullen 2004) and (Dong and Xiang 2006).

4.2.3.1. Description

Much like the previous algorithms, a preprocessing phase precedes the actual improvement

phase.

• Pre-processing

The algorithm begins with a pre-processing phase that is exactly the same as the one used for

the implemented Genetic Algorithm. All the collection sites are clustered around a single plant but a

list is also constructed of which sites may eventually be assigned to which plants. As will be seen later,

in this implementation the original clustering is meaningless and only the possibilities presented in the

above list will be relevant to the progression.

Following the clustering, the pheromone and heuristic matrices are initialized. For the

pheromones, the matrix is simply set to 0.5 for all possible connections between sites and plants. The

heuristic matrix on the other hand is initialized according to a modified savings heuristics (Silva 2005):

 (9)

where is the heuristic matrix, is the matrix of time taken between locations, and and

represent two sites or one site and one plant. Following this, the heuristic matrix is normalized so that

its values are between 0 and 1.

We are now ready to proceed with the iterative phase of the algorithm.

• Iterative phase

The iterative phase starts with one ant being placed at each plant. Then we start by looking at

the first ant (located at the first plant) and computing the attractiveness8 of every remaining site that it

might travel to (using the list of possible sites assigned to its plant). We then make it travel to one of

8 The attractiveness is calculated according to equation (6) in Section 3.

28

the sites, with the chance of picking a site being related to its attractiveness. The process is repeated

for every ant that starts at all the other remaining plants.

Now that all ants have moved once, the algorithm continues to move the ants in the same

fashion. Every time a site is visited it is added to a tabu list so that no other ant can travel there again.

Also, if at any point an ant can no longer move to a new site due to capacity or time constraints, it is

routed back to the plant and restarts its movement from there. The process goes on until all sites have

been visited once. Below, Figures 4-6 to 4-9 represent a possible movement pattern for a problem

with 3 plants and 15 collection sites.

Figure 4-6 ACO algorithm – Stage 1: Ants starting at plants

In Figure 4-6 three ants (I, II and III) can be seen at their respective plants (red rounded

squares) at the start of the iteration. Around them, the 15 collection sites (yellow circles) are

distributed and the large black circumferences represent the collection sites that are accessible to

each plant (through the list constructed during clustering).

Figure 4-7 ACO algorithm – Stage 2: Ant I has moved

29

Figure 4-7 shows that ant I was the first to move and has chosen to go northeast. Since this is

the first iteration, its decision is based solely on the heuristic information matrix as the pheromone

matrix is equal for all routes. Regardless, and because all decisions are probabilistic, a different

collection site might have been selected.

Figure 4-8 ACO algorithm – Stage 3: All ants have moved once

In stage 3, the remaining ants have also made their move (even though in the actual algorithm,

they would move one at a time). As can be seen in Figure 4-8, both ant II and ant III have decided to

move into a region that could be used by both. This means that, despite the original possibility of being

assigned to ant II, the site just visited by ant III now belongs to its plant until the end of this colony’s

tours. The same is true for ant III and the site just visited by ant II.

Figure 4-9 ACO algorithm – Stage 4: End of this colony's attempt

In Figure 4-9 all ants have completed their movements and all collection sites have been

assigned a spot in one tour. We can also see that, in this case, ant I had to return to the plant during

its tour because it had reached one or more constraints. This terminates the colony’s attempt at the

problem. Its total performance is stored and a new run is started (which can be interpreted as a

30

different colony having a hand at the problem) until the number of colonies used per iteration has been

reached.

The reasoning behind the algorithm is that, since many collection sites can be assigned to more

than one plant, the first ant to get to it will take it for itself, not allowing it to be visited by ants from

other plants. This constitutes a controlled random behavior, because as different colonies attempt to

solve the problem they will probably make use of different site/plant assignments. Due to this, the

bound parameter is of the utmost importance in this algorithm as it will determine how far an ant can

reach from its plant to visit a collection site. A slightly different form of this algorithm was attempted

which will be explained in the contributions Section (4.2.3.2).

Finally, after all the colonies have attempted to solve the problem, their performance is

compared and the best amongst them are selected to drop pheromone. The best colony of all will drop

a fixed amount of pheromone on the paths its ants traveled, while the 2nd best (if more than one

pheromone dropper as been selected) will drop a fraction of what the 1st dropped that is dependent on

how many droppers are select, e.g., if we choose that 3 colonies will drop pheromone and the amount

dropped is 0.3, the best colony will drop 0.3, the 2nd best will drop (2/3)*0.3 = 0.2 and the 3rd best will

drop (1/3)*0.3 = 0.1.

Once pheromone dropping has been concluded, each matrix element suffers evaporation equal

to a fraction of its value and the matrix is also saturated between 0 and 1. The iteration then concludes

with the storing of the best route and the cycle repeats using the new pheromone matrix.

The following pseudo-code systematizes what was presented above:

4.2.3.2. Contributions

Despite the references used for this section, this algorithm can be considered a contribution as

a whole. This section will be used to explain an alternative algorithm that was attempted but was less

successful than the one presented above. The only difference between both algorithms lies in the

movement of the ants.

Ant Colony Optimization algorithm

1. Initialize iterations, i = 0.

2. Set i = i + 1. If i = maximum iterations terminate, else initialize colony counter, j = 0.

3. If j < (colonies used per iteration) proceed, else go to 10.

4. Set j = j + 1. Clear tabu list and place all ants at plants.

5. Set k = 1.

6. Compute attractiveness of all ants to all available sites. If no sites are available for any ants go to 9.

7. Move ant k according to heuristic, pheromone and probability and place site in tabu list. If no

movement is possible due to constraint being reached, move to plant and reset capacity and length

and repeat step. If no movement is possible because site list has been exhausted skip movement.

8. Set k = k + 1. If k <= (number of plants) go to 7, else go to 5.

9. Save current routes and performance and go to 3.

10. Compare performance of all colonies, save best and allow them to drop pheromone.

11. Evaporate pheromone from entire matrix and go back to 2.

31

• Algorithm Flaw

As explained above, in the implemented version, the 1st ant will attempt to move to a new site,

followed by the 2nd and so on, only returning to move the first again after all others have attempted

their own move. A flaw that can be easily diagnosed is that this behavior tends to force the assignment

of an equal number of collection sites to all plants which can be very suboptimal as can be seen in

Figure 4-10 and Figure 4-11.

Figure 4-10 Ants after 5 movements each

Figure 4-10 shows a problem with only two plants. Both ants have now moved 5 times and

there is only one collection site left to be assigned. Intuitively, it can be plainly seen that moving ant II

to it would be a much better option, but as it has just moved it is now ant I’s turn.

Figure 4-11 Final tours

The resulting tours shown in Figure 4-11 are suboptimal, and could be easily improved.

32

• Alternative Algorithm

The alternative algorithm first calculates the attractiveness of all nodes for all ants. Then, still

using probabilities, it chooses simultaneously which ant to move and where to move it. It would almost

certainly have offered a much better solution to the above situation as ant I would have a very low

probability of moving to the remaining site, compared to the probability ant II would have.

In theory, the results should be better for most problems. What happens in practice though is

that the additional calculations that must be made, computing the attractiveness of every node for

every ant before any movement is done, are a heavy computational burden. The number of total

iterations done for the same amount of time is largely inferior, and this difference is larger as we

increase the number of plants.

4.3. Post Processing

Regardless of the algorithm used for optimization, the end result is always two matrices similar

to the ones presented in (Table 4-1 Matrix R example) and (Table 4-2 Example of S matrix),

containing all the solution information.

We could directly export this information, but what happens in many cases is that we have more

than one route for each plant. These routes are usually constrained by either the truck’s capacity or

the route’s own length. If length is the active constraint, then not a lot can be done, and the routes will

have to be performed by different vehicles, probably with different drivers. But if the active constraint is

the vehicle capacity, then the truck can simply return to the plant, unload, and start another route.

It is then worthwhile to check if any number of routes from each plant can be feasibly merged to

form one, larger route that stops at the plant for unloading. This constitutes the famous bin packing

problem.

The bin packing problem consists of having an infinite number of bins with a fixed capacity in

which a certain number of items, each with its own size or weight, must be inserted. The objective is to

fit all items in the smallest number of bins possible (Pinedo 2005) as shown in Figure 4-12.

.

Figure 4-12 Sample bin packing problem and possible solution

33

In the present case, the bins correspond to the maximum vehicle travelling time and the items to

the routes found during optimization. The more empty bins we can find, the less vehicles will be

required to service all the routes.

To solve the bin packing problem the First Fit Decreasing (FFD) Heuristic will be used. It is

simple, fast and yet has a good degree of accuracy. It consists of first ordering the items (routes) in

order of decreasing size (total length). Then, each route is inserted into the 1st bin it fits into (Pinedo

2005).

The finalized routes are ready to be exported and displayed to the user.

34

5. Results

This section will present the results obtained while testing the various optimization algorithms.

The first subsection will refer to the testing done to obtain the best set of parameters for each

algorithm, followed by performance testing on various benchmark instances, and also on one new

problem that describes what the application might find when applied to real life situations.

All testing was done using a computer with an Intel Core 2 Quad Processor Q8200 CPU at 2.33

GHz and with 3,25 GB of RAM, running on Windows XP and using MATLAB R2007a.

5.1. Parameter Tuning

To tune the parameters of each algorithm, tests were done on the p01 instance (Díaz 2007)

which is a problem containing 50 collection sites and 4 plants for which the best know solution is

576,87 (measured in distance). A single test will be done for each set of parameters and it should last

approximately 30 minutes. All measures of performance are given in percentage error relative to best

know solution (). In this section mostly graphical analysis will be

presented, the full information in table format can be found in Annex B.

5.1.1. Tabu Search

 For the Tabu Search algorithm described in Section 4.2.1, there are three parameters that

might affect the solution quality (excluding the stopping criteria) which will be described below:

• Tabu size

This parameter will affect the balance between the attempt to escape local minima and

the search for better solutions in the neighborhood. The larger the size of the tabu list, the

less computational effort will be wasted repeating movements that have already been

tested. However, some promising solution areas might not be explored as thoroughly as

necessary.

Tabu sizes of 25, 50, 75 and 100 were tested, corresponding to half, one, one and a half

and two times the number of collection sites.

• Probability of choosing closest plant

As stated in previous sections, in the inter-plant exchange phase there is a parameter

that controls the probability of the second plant being the closest to the first or a random

one. Again, this influences the degree of exploration of the algorithm as higher values of

35

probability diminish the chance of senseless exchanges, but may also reduce the odds of

finding good, less obvious, ones.

Probabilities of 0,3, 0,6 and 0,9 will be tested.

• Number of Sub-Cycles

Lots of sub-cycles will allow the algorithm to better explore the neighborhood of the

current solution, but an exceedingly high number might cause it to waste too much time in

each place, when the better areas might be far off. Values of 5, 20, 35 and 50 will be

tested.

A total of 96 tests (48 using Clark Wright initialization and another 48 using the Improved Petal

heuristic) will be done.

The testing conditions will be the following:

1. Maximum number of iterations of local optimization: 500

2. Maximum number of iterations of fast improvement: 1.000.000.000

3. Maximum number of iterations without improvement of fast improvement: 1.000.000.000

4. Maximum time spent in fast improvement: 1740s (29 minutes)

5. Maximum number of iterations of intensification per route pair: 100

6. Maximum number of iterations without improvement of intensification per route pair: 50

The reason for the high value of parameters 2 and 3 is so that we can guarantee that the

stopping criteria is the computational time, which will allows us to compare results of testing with

varying number of sub-cycles (this parameter influences the total number of iterations greatly). 1740

seconds corresponds to 29 minutes, leaving at the most one minute for intensification.

5.1.1.1. Clark Wright Results

In Figures 5-1 to 5-4 a graphical analysis is presented regarding the results obtained while

testing Tabu Search with Clark Wright initialization.

36

Figure 5-1 Tabu Search with Clark Wright initialization: Tabu size 25

Figure 5-2 Tabu Search with Clark Wright initialization: Tabu size 50

E
rr

o
r

(%
)

E
rr

o
r

(%
)

37

Figure 5-3 Tabu Search with Clark Wright initialization: Tabu size 75

Figure 5-4 Tabu Search with Clark Wright initialization: Tabu size 100

In all of the figures, it can be readily observed that having a number of sub-cycles under 20

wields very poor results regardless of probability and tabu size. This reinforces what was stated in

Section 4.2.1.2 that sub-cycles are essential to finding good solutions.

Observing the first two figures, the best results seem to be in the middle right side, which is to

say relatively high number of sub-cycles (35 or 50) and a probability of 0.6. The third figure, showing

tabu size 75, is hard to interpret as there are two distinct and small regions of good results and the

fourth shows the best results at either low probability/high number of cycles or high probability/any

number of cycles (save for a cycle number under 20 as was stated above).

E
rr

o
r

(%
)

E
rr

o
r

(%
)

38

As for a comparison between various tabu sizes, since it is hard to discern which is best through

the figures, Table 5-1 was constructed listing the average error of each test at the respective tabu size

and the average error of the three best tests of each. These averages were constructed using all the

tests done at the corresponding tabu size9:

Tabu Size Average Error (%) Average Error of Best 3 (%)

25 4,11 2,19

50 3,19 2,17

75 4,12 2,58

100 3,37 2,19

Table 5-1 Performance at various tabu sizes for Clark Wright initialization

At tabu sizes of 50 and 100 the algorithm performs better, with a slight advantage for 50. It is

assumed that tabu size, number of sub-cycles and local optimization scales with problem size

(number of collection sites) while probability remains constant.

In light of what was said, the optimal parameters chosen for Tabu Search with Clark Wright

initialization are the following:

• Local Optimization Maximum Number of Iterations: 10*Number of collection sites

• Tabu Size: Number of collection sites

• Probability: 0.6

• Number of Sub-cycles: Number of collection sites

5.1.1.2. Improved Petal Results

In Figures 5-5 to 5-8 a graphical analysis is presented regarding the results obtained while

testing Tabu Search with improved petal initialization.

9 In the elaboration of this table the tests with 5 sub-cycles were not considered as they have been proved

to be sub-optimal.

39

Figure 5-5 Tabu Search with improved petal initialization: Tabu size 25

Figure 5-6 Tabu Search with improved petal initialization: Tabu size 50

E
rr

o
r

(%
)

E
rr

o
r

(%
)

40

Figure 5-7 Tabu Search with improved petal initialization: Tabu size 75

Figure 5-8 Tabu Search with improved petal initialization: Tabu size 100

Regarding numbers of sub-cycles under 20, the situation described for Clark Wright initialization

is present again. The interaction between probability and tabu size is reversed though.

Observing the first two figures, the best results seem to be in at the top, which is to say a

probability of 0.9 and a moderate to high number of sub-cycles (35 or 50). The third and forth figures

show that the results at probability 0.6 and 35 sub-cycles prove to be best.

Table 5-2 is similar to the one presented above is now constructed for Improved Petal

initialization in order to better compare tabu sizes to each other:

E
rr

o
r

(%
)

E
rr

o
r

(%
)

41

Tabu Size Average Error (%) Average Error of Best 3 (%)

25 1,95 0,82

50 1,85 0,87

75 3,02 0,89

100 1,50 0,79

Table 5-2 Performance at various tabu sizes for Improved Petal initialization

This time, a tabu size of 100 dominates all others. It is again assumed that tabu size, number of

sub-cycles and local optimization scales with problem size (number of collection sites) while

probability remains constant.

In light of what was said, the optimal parameters chosen for Tabu Search with improved petal

initialization are the following:

• Local Optimization Maximum Number of Iterations: 10*Number of collection sites

• Tabu Size: 2*Number of collection sites

• Probability: 0.6

• Number of Sub-cycles: Number of collection sites

5.1.1.3. Initialization Comparison

In order to compare the Clark Wright algorithm to the Improved Petal heuristic for the purposes

of initializing this Tabu Search algorithm, one can refer to either the figures on pages 36 through 40 or

the tables on pages 38 and 41. Observing the figures, there are a higher number of blue areas, as well

as darker blue sections in the Improved Petal tests when compared Clark Wright ones. Using the

tables, Improved Petal errors range from approximately one half to three thirds of Clark Wright ones.

This proves that in virtually every situation the Improved Petal heuristic will provide better

results and should be used if possible. It has not been mentioned yet, but while Improved Petal wields

a solution using 12 routes, Clark Wright can only obtain a minimum of 13 for the instance at hand. This

factor is of great importance, as the Tabu Search algorithm retains the number of routes supplied by

the initial solution.

With that said, Tabu Search will only use Clark Wright initialization if the data is not supplied in

coordinates or if, for some reason, Improved Petal optimization fails.

5.1.2. Genetic Algorithm

For the Genetic Algorithm described in 4.2.2, there are four parameters that might affect the

solution quality (excluding the stopping criteria) which will be described below:

• Population size

The size of the population is a parameter that must be tuned in nearly all applications

involving Genetic Algorithms. Along with crossover rate and selection method, it establishes

the balance between great exploration or faster convergence. Smaller populations lack

diversity but save computational time by focusing on a smaller number of calculations per

iteration. For our testing purposes, populations of 25, 50 and 100 chromosomes were

tested.

42

• Inter-Plant Mutation Probability

This parameter will control how often inter-plant mutation is applied. In usual GAs, mutation

probabilities are often very low (Busetti 2000) but in our case mutation (and this type of

mutation specifically) is a very important part of the algorithm as it is the sole way of moving

collection sites from one plant to another (bar one special case, see below). Therefore

higher than usual percentages for mutation were tested, specifically 12,5%, 25% and 50%.

• Intra-Plant Mutation Probability

This parameter controls how often intra-plant mutation is applied. Intra-plant mutation will

probably have a lower effect on the overall exploration of the algorithm as, save for the case

of single customer rerouting, it will only operate inside the same plant, mimicking what

reproduction already does. For this reason, lower percentages were tested, namely 10%

and 20%.

• Bound

The bound parameter is used only in the pre-processing phase of the algorithm, and

determines how close a given site must be to a plant in order for the possibility of

associating them to be considered. The expression used to construct the list of plants that

may be assigned to a site follows, where s is the site under consideration, p the plant under

consideration and cp is the closest plant:

 (8)

Values of 1 and 2 were tested for the bound parameter.

A total of 36 tests will be done with the following testing conditions:

1. Maximum number of iterations: 1.000.000.000

2. Maximum number of iterations without improvement: 1.000.000.000

3. Maximum time spent: 1800s

4. Elite percentage: 1%

5. Use Clark Wright initialization: Yes

The reason for the high value of parameters 1 and 2 is so that we can guarantee that the

stopping criteria is the computational time, which will allow the comparison of results obtained while

testing with different population sizes. 1800 seconds corresponds to 30 minutes, which is also

approximately the time spent in Tabu optimization. The elite percentage corresponds to just one elite

member per iteration since the population is equal to or smaller than 100.

Due to the difficulty in representing 4 varying parameters at the same time, the intra-plant

mutation percentage was chosen as the parameter to be examined first. Table 5-3 summarizes the

average performance of tests under different mutation conditions.

43

Population Size Intra-Plant Mutation (%) Average Error (%)

25
10 8,58

20 6,04

50
10 7,91

20 6,34

100
10 8,63

20 7,40

Table 5-3 Performance at different intra-plant mutation percentages

As can be seen, the 20% mutation rate tests consistently outperform the 10% ones. Also, a

direct comparison between tests where the only parameter change is this mutation rate shows that the

20% results are better in 15 out of 18 comparisons.

The intra-plant mutation percentage will be fixed at 20% and the remaining parameters will be

plotted in Figures 5-9 to 5-11.

Figure 5-9 Genetic algorithm: Population Size 25

E
rr

o
r

(%
)

44

Figure 5-10 Genetic algorithm: Population Size 50

Figure 5-11 Genetic algorithm: Population Size 100

The first observation that can be done is that the results with a population of 100 are much

worse than the ones with 25 and 50. With this in mind, the last figure will be disregarded and focus will

be placed on the other two.

With a population of 25, the best results are obtained at low bound/moderate mutation and also

at high bound/high mutation pairs. On the other hand, a population of 50 shows bad results for high

bound/high mutation while displaying good ones at low bound/moderate mutation.

As both of the figures present good results at low bound/moderate mutation, this will be the

parameters adopted as default.

Population Size 100

E
rr

o
r

(%
)

E
rr

o
r

(%
)

45

In light of what was said, the optimal parameters chosen for the Genetic Algorithm are the

following:

• Population Size: 25 (50% Number of collection sites)

• Inter-Plant Mutation: 25%

• Intra-Plant Mutation: 20%

• Bound: 1

• Elite Percentage: 4%

5.1.3. Ant Colony Optimization

For the Ant Colony Optimization algorithm described in 4.2.3, four parameters that might affect

the solution quality (excluding the stopping criteria) will be discussed. There are another 3 parameters

that will remain constant throughout testing. All will be described below:

• Number of colonies per iteration

This parameter corresponds to the number of colonies that set out to solve the problem at

every iteration. As only the best colonies of each iteration contribute to dropping

pheromone, a higher number of colonies will result in a more thorough exploration of the

neighborhood, as more attempts are made before moving on to a different pheromone

matrix. On the other hand, a higher computational effort is required at higher values

leading to slower convergence. Values of 25, 50, 75 and 100 were tested.

• Heuristic Coefficient

The heuristic coefficient controls the weight given to the heuristic information matrix as

opposed to the pheromone matrix. It sets the balance between previous knowledge and

experience. Values of 0,6, 0,8 and 1 will be tested, for a fixed value of 1 for the

pheromone coefficient.

• Evaporation Coefficient

Controls how fast the pheromone dropped by colonies will disappear. If it is too high the

information supplied by the pheromones might not last long enough to be useful, but if it

is too low the pheromone matrix might start to saturate and poor information from initial

iterations might contribute to weaker solutions. Values of 0,1 and 0,2 will be tested.

• Bound

As in the Genetic Algorithm, the bound parameter is used only in the pre-processing

phase of the algorithm, and determines how close a given site must be to a plant in order

for the possibility of associating them to be considered. As stated in 4.2.3.1 though, this

parameter is probably a lot more important to this algorithm when compared to the

previous one. Values of 0,5 and 1 will be tested10.

10 Smaller values were chosen relative to the Genetic Algorithm due to the fact a large bound in Ant

Colony Optimization could lead to ants straying too far from their plant, leading to very high return costs.

46

A total of 48 tests will be done with the following testing conditions:

� Maximum number of iterations: 1.000.000.000

� Maximum number of iterations without improvement: 1.000.000.000

� Maximum time spent: 1800s

� Pheromone Coefficient: 1

� Number of Pheromone Dropping Colonies: 1

� Pheromone to Drop: 0.1

Again, 1800s corresponds to the 30 minutes of computational time used before. The

pheromone coefficient was fixed at 1 since this parameter is closely related to the heuristic coefficient,

and changing both seemed unnecessary. The number of pheromone dropping colonies and

pheromone to drop were fixed in order to reduce the number of parameters and because these values

proved stable in previous testing.

Due to the difficulty in representing 4 varying parameters at the same time, the bound

parameter was chosen to be examined first. Table 5-4 summarizes the average performance of tests

under bound conditions.

Population Size Bound Average Error (%)

25
0,5 9,86

1 12,29

50
0,5 9,50

1 12,16

75
0.5 9,22

1 12,99

100
0.5 10,37

1 12,34

Table 5-4 Performance at different bound settings

As can be seen, the tests with bound set to 0.5 consistently outperform the ones set to 1. Also,

a direct comparison between tests where the only parameter changed is this one shows that the 0.5

results are better in 21 out of 24 comparisons.

With that said, the bound parameter will be fixed at 0.5 and the remaining parameters will be

plotted in the Figures 5-12 to 5-15.

47

Figure 5-12 Ant Colony Optimization: 25 Colonies per Iteration

Figure 5-13 Ant Colony Optimization: 50 Colonies per Iteration

25 Colonies per Iteration

50 Colonies per Iteration

E
rr

o
r

(%
)

E

rr
o

r
(%

)

48

Figure 5-14 Ant Colony Optimization: 75 Colonies per Iteration

Figure 5-15 Ant Colony Optimization: 100 Colonies per Iteration

Focusing on the heuristic coefficient first, it can be seen that all but one figure shows its best

results clustered around a value of 0,8 for this parameter.

As for the evaporation coefficient, it seems to influence the optimization significantly, but in

different ways according to the number of colonies per iteration. At 25 and 100 colonies the results are

much better at low levels of evaporation, while at 50 colonies better results are obtained at high

evaporation but are still acceptable at low levels.

Lastly, the number of colonies that provide better results are 25 and 75, but the results obtained

at 75 are inconsistent with the remaining figures in regards to heuristic and evaporation coefficients.

75 Colonies per Iteration

100 Colonies per Iteration

E
rr

o
r

(%
)

E
rr

o
r

(%
)

49

In light of what was said, the optimal parameters chosen for Ant Colony Optimization are the

following:

• Number of Colonies per Iteration: 25 (50% Number of collection sites, as in Genetic Algorithm)

• Heuristic Coefficient: 0,8

• Evaporation Coefficient: 0,1

• Bound: 0,5

• Pheromone Coefficient: 1

• Number of Pheromone Dropping Colonies: 1

• Pheromone to Drop: 0,1

5.2. Benchmark Testing

The algorithms developed in Section 4.2 will now be tested using a few representative

benchmark MDVRP instances from (Díaz 2007). Table 5-5 provides an overview of the instances that

will be used.

Instance Number of Sites Number of Plants
Vehicle

Capacity

Maximum

Route Length

Best Known

Solution

p01 50 4 80 - 576,87

p04 100 2 100 - 1001,59

p07 100 4 100 - 885,80

p09 249 3 500 310 3900,22

p13 80 2 60 200 1318,95

Table 5-5 Benchmark instances overview

 The optimal parameters derived in 5.1 will be used in all cases. A series of 10 tests will be done

for each algorithm/instance pair and statistical data will be collected. The stopping criteria will be 30

minutes of computational time for the Genetic Algorithm and Ant Colony Optimization and 29 minutes

of fast improvement followed by a maximum of 100 iterations per route pair or 50 iterations without

improvement per route pair of intensification for Tabu Search.

Table 5-6 summarizes the results obtained in the form of average error found (µ) in the 10 tests,

standard deviation (σ), result of best test (Best) and average number of routes used11 (µRoutes).

11 This number is before the post processing of section 4.3 as this is the usual value displayed in

benchmark solutions

5
0

In
s
ta

n
c
e

T

a
b

u
 S

e
a
rc

h

G
e
n

e
ti

c
 A

lg
o

ri
th

m

A
n

t
C

o
lo

n
y
 O

p
ti

m
iz

a
ti

o
n

µ

σ

B
e

st

µ
R

o
ut

es

µ

σ

B
e

st

µ
R

o
ut

es

µ

σ

B
e

st

µ
R

ou
te

s

p
0

1

2,
96

1

,2
4

0,

79

12

1
4,

2
9

1,

6
3

1

1,
1

6

11
,8

9,

6
6

1,

3
7

7,

5
6

1

1
,5

p
0

4

3,
43

0

,4
6

2,

55

17

6
1,

7
2

14

,1
0

2

5,
1

3

16

64
,2

3

3,
2

0

5
8,

3
4

1

5
,4

p
0

7

1,
29

0

,2
2

1,

05

17

4
1,

8
1

12

,2
1

9,

19

17

47
,2

6

2,
1

7

42
,0

1

1
6
,8

p
0

9

3,
12

0

,3
7

2,

57

2
6

9

7,
7

0

40
,2

5

2
1,

3
6

32

,4

1
52

,3
2

3,

9
5

1

46
,9

9

3
3,

7

p
1

3

1,
37

0

,8
4

0,

00
03

8

8

1,
3

2

28
,8

2

3,
54

14

,7

34
,0

4

3,
5

2

26
,5

9

10

T
a

b
le

 5
-6

 P
e
rf

o
rm

a
n

c
e
 p

a
ra

m
e
te

rs
 f

o
r

a
ll
 a

lg
o

ri
th

m
s
 o

n
 f

iv
e
 b

e
n

c
h

m
a
rk

 p
ro

b
le

m
s

51

Figure 5-16 Performance of algorithms on all problems

As can be seen from both the table and the graphical analysis of the error in Figure 5-16, Tabu

Search clearly dominates on all problem types. Both Genetic and Ant Colony algorithms provide

acceptable results on the instance used for parameter tuning, p01, but their performance worsens

considerably once the problem size starts to become larger. It was observed that, on larger problems,

both algorithms do not manage to make enough iterations in the allocated time.

Figure 5-17 Average number of routes used per algorithm/problem pair

Figure 5-17 shows the evolution of the average number of routes (before post processing) used

by each algorithm on each problem. All algorithms follow a similar pattern, though on some problems

Ant Colony Optimization requires fewer routes on average than Tabu Search.

52

5.3. Application Testing

In this section the process of creating the Azores instance will be described first, followed by the

results obtained after applying the algorithms to it.

5.3.1. Building the Instance

Due to the lack of information available on the distribution of biomass sources across the

Azores islands, as well as the location of current and future biomass plants, a number of assumptions

had to be made in order to make the instance creating feasible.

Firstly, the scope of the problem will be narrowed to the island of S. Miguel, due to the fact that

the majority of the population (approximately 56% (Serviço Regional de Estatística dos Açores 2007)),

and consequently waste production of the archipelago, is concentrated here. Additionally, only urban

solid waste and forest residues will be considered as being useful to energy production.

To estimate the amount of solid urban waste across the island the projections for 2009 for total

island population and total urban waste produced (Brito, et al. 2007) as well as the percentage

population living in each municipality in 2007 (Serviço Regional de Estatística dos Açores 2007) were

used. With this information the Table 5-7 was built:

Municipality
Population

(2007)

Estimated

Population (2009)

Estimated Waste Production (2009)

Per Year Per Day

Lagoa 11,53% 15723 8994 ton 24,64 ton/day

Nordeste 3,97% 5414 3097 ton 8,49 ton/day

Ponta Delgada 48,20% 65730 37599 ton 103,01 ton/day

Povoação 5,10% 6955 3978 ton 10,90 ton/day

Ribeira Grande 22,84% 31147 17817 ton 48,81 ton/day

Vila Franca do

Campo
8,36% 11401 6521 ton 17,87 ton/day

Table 5-7 Estimated population and urban waste production for S. Miguel

 As for forest residues and again due to lack of data, the estimates presented in Table 5-8 were

created using the locations of the main natural reserves on the island (Governo dos Açores 2009) as

well as the total forest residues produced on the island in 2007.

Municipality Natural Reserves Total Area
Percentage

Area

Estimated Forest Residues

Per Year Per Day

Nordeste

Viveiro do Nordeste 1 ha

10,64% 3706 ton 10,15 ton/day Cancela do Cinzeiro 10 ha

Fajã do Rodrigo 1,5 ha

Povoação
Viveiro das Furnas 3 ha

15,32% 5336 ton 14,62 ton/day
Água Retorra 15 ha

Lagoa Chã da Macela 28 ha 23,83% 8301 ton 22,74 ton/day

Ponta

Delgada
Pinhal da Paz 49 ha 41,70% 14526 ton 39,80 ton/day

53

Vila Franca

do Campo

Cerrado dos

Bezerros
10 ha 8,51% 2964 ton 8,12 ton/day

Table 5-8 Estimated forest residues for S. Miguel

Following this, the collection sites that correspond to each of municipalities will be placed, as

there is no information on current or future planned collection sites. Sites will be assigned for each

municipality for urban waste and forest residues if it also produces them. Most of these sites will be

further split into more if their supply is large enough. The location of sites will be chosen respectively

on the outskirts of urban areas or outside of them. As for plants, as no information exists at the

moment, 3 locations will be chosen, one in the east, one in the west and one in the south of the island.

Table 5-9 shows the locations and supplies of each site and plant and Figure 5-18 illustrates this

graphically.

Municipality Site Type Site # Latitude Longitude Daily Supply

Lagoa

Urban 1 1 37,750860º -25,564358º 12,00 ton/day

Urban 2 2 37,723177º -25,516090º 12,26 ton/day

Forest 1 3 37,770674º -25,553545º 11,37 ton/day

Forest 2 4 37,779241º -25,597244º 11,37 ton/day

Nordeste
Urban 5 37,832583º -25,151072º 8,49 ton/day

Forest 6 37,845222º -25,205272º 10,15 ton/day

Ponta Delgada

Urban 1 7 37,755609º -25,676059º 25,75 ton/day

Urban 2 8 37,885912º -25,820059º 30,75 ton/day

Urban 3 9 37,884551º -25,731187º 3,50 ton/day

Urban 4 10 37,831817º -25,683493º 25,75 ton/day

Urban 5 11 37,762268º -25,628634º 22,25 ton/day

Forest 1 12 37,785982º -25,640598º 20,00 ton/day

Forest 2 13 37,820745º -25,702086º 9,4 ton/day

Forest 3 14 37,815040º -25,772195º 10,4 ton/day

Povoação
Urban 15 37,749289º -25,245483º 10,90 ton/day

Forest 16 37,755746º -25,241752º 14,62 ton/day

Vila Franca do

Campo

Urban 1 17 37,725072º -25,440883º 12,44 ton/day

Urban 2 18 37,719539º -25,460319º 5,43 ton/day

Forest 19 37,735366º -25,436059º 8,12 ton/day

Ribeira Grande

Urban 1 20 37,813876º -25,519549º 27,27 ton/day

Urban 2 21 37,812337º -25,574379º 7,56 ton/day

Urban 3 22 37,817024º -25,414346º 13,98 ton/day

- West Plant 23 37,798255º -25,696112º -

- East Plant 24 37,847936º -25,256306º -

- South Plant 25 37,727821º -25,471267º -

Table 5-9 Location of S.Miguel's hypothetical sites and plants

54

Figure 5-18 Location of S.Miguel's hypothetical sites (yellow) and plants (red)

As the application accepts coordinate data and not decimal degrees, the distances between

locations were calculated using the equation (10)12 followed by application of a 50% road non-linearity

coefficient. The full distance matrix can be viewed in Azores_instance.xlsx, the file used to import data

to the application

 (10)

where lat1 and lat2 correspond to the latitudes of the two locations and lon1 and lon2 to the

longitudes. R is a constant that is equal to 6378,7, the earth’s radius in kilometers.

As for the vehicles, a standard tipper truck was selected which can usually carry around 26000

kg, or 26 tons. Average speed will be set to 40 km/h and maximum length of route to 7 hours.

5.3.2. Results

A similar procedure to the one used in Section 5.2 will be used. A series of 10 tests will be done

for each algorithm and statistical data will be collected. The stopping criteria will be 30 minutes of

computational time for the Genetic Algorithm and Ant Colony Optimization and 29 minutes of fast

improvement followed by a maximum of 100 iterations per route pair or 50 iterations without

improvement per route pair of intensification for Tabu Search.

Table 5-10 summarizes the results obtained in the form of average time taken in minutes for the

10 tests, standard deviation, result of best test and average number of routes used.

Algorithm µ (min) σ (min) Best (min) µRoutes

Tabu Search 587,445 0 587,445 15

Genetic Algorithm 587,671 0,714 587,445 15

Ant Colony Optimization 588,883 1,144 587,445 14,2

Table 5-10 Performance parameters for all algorithms on local problem

Analyzing the results, we can conclude that all the algorithms have shown good behavior on this

problem. The small size of the instance, coupled with the fact that it was created according to the real

12 The equation corresponds to the Great Circle Distance Formula from (Meridian World Data 2009).

Degrees have to be converted to radians first.

55

data could account for this. As was observed before in the benchmark instances, Tabu Search

produces the best and most consistent results while Ant Colony Optimization provides the least

number of routes. This can be, in certain cases, more important than small time savings.

It is interesting to note that the Clark Wright Savings Heuristic on its own produces a solution

with a total cost 587,445 minutes which might be presumed to be optimal from the above results. The

best solution found is presented in graphical form below

Figure 5-19 Graphical representation of best solution found

56

6. Conclusions and Future Work

The work describe above culminated in the development of the application for solving Multi-

Depot Vehicle Routing Problems. It obtained relatively good results, with average errors as small as

1,3%, on the benchmarks tests used and easily reached a solution that is assumed optimal in the

local problem.

The vast majority of good results were obtained using the Tabu Search heuristic which

constitutes the approach that requires the least computational intensity. The computational intensity

present in both the Genetic Algorithm (with the use of the route scheduler many times per iteration)

and Ant Colony algorithm (with the constant evaluation of the attractiveness matrix) proved to be a

large burden when these were applied to larger problems such as p09.

Still, the Ant Colony algorithm was able to find solutions that used fewer routes than Tabu

Search which in itself can be considered a good result for something completely new that tried to

respond to the lack of work in this field. On the local problem for example, it manages to find a

solution with one fewer route at a negligible time cost. This, along with the fact that one of the

weaknesses of the Tabu approach is its inability to alter the total number of routes present in its initial

solution may present an opportunity for the development of a hybrid system between the two.

Even though the application developed is fully functional and could be applied to the original

goal, optimizing the transport of biomass from collection sites to power plants, there are a number of

improvements that could be made.

The introduction of additional sets of constraints on the problem should be addressed. Possibly

the most important would be limiting the number of vehicles present at each plant that could be used

for collection. Other constraints could be changed or added such as:

• Setting maximum and minimum amounts of mass required by each plant

• Allowing the use of vehicles with different characteristics (capacity, maximum travel

time)

• Setting time windows for collection and delivery

• Setting penalties for failing to pick up or deliver a certain amount of mass

As for the optimization itself, and as mentioned above, an interesting approach would be to use

the Ant Colony algorithm to initialize the Tabu Search approach, so that the low number of routes

found by the ants could be further exploited.

57

7. References

Barbour, Ian, Harvey Brooks, Sanford Lakoff, and John Opie. Energy and American Values.

California: Greenwood, 1982.

Basalla, George. "Energy and Civilization." Science, Technology and the Human Prospect,

1980: 39-52.

Battarra, M., R. Baldacci, and D. Vigo. Clarke and Wright Algorithm. Presentation. 2007.

Bella, John E., and Patrick R. McMullen. "Ant colony optimization techniques for the vehicle

routing problem." Advance Engineering Informatics 18 (July 2004): 41-48.

Bridger, Mark. Tabu Search. Boston, November 2007.

Brito, António Guerreiro, et al. Plano Estratégico de Gestão de Resíduos dos Açores. Technical

Report, Açores: Governo dos Açores, 2007.

Busetti, Frank. "Genetic Algorithms Overview." Heuristics and Artificial Iintelligence in Finance

and Investment. November 9, 2000. www.geocities.com/francorbusetti/gaweb.pdf (accessed

Setember 3, 2009).

Clark, G., and J. W. Wright. "Scheduling of Vehicles from a Central Depot to a Number of

Delivery Points." Operations Research Volume 12, 1964: 568-581.

Climate Group. "In the black: The growth of the low carbon economy." ºClimate Group, London,

United Kindom, 2006.

Cobb, Loren. "History & Future of World Energy." The Quaker Economist. March 27, 2007.

http://www.quaker.org/clq/2007/TQE155-EN-WorldEnergy-1.html (accessed August 14, 2009).

Díaz, Bernabé Dorronsoro. VRP Web. March 2007. http://neo.lcc.uma.es/radi-aeb/WebVRP/

(accessed September 2009).

Dong, Wei Lin, and Cai Tian Xiang. "Ant Colony Optimization for VRP and Mail Delivery

Problems." IEEE International Conference on Industrial Informatics. 2006. 1143-1148.

Dorigo, Marco. Optimization, Learning, and Natural Algorithms. Milan, 1992.

Garey, Michael R., and David S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. New York: W. H. Freeman & Co., 1990.

Glover, Fred, and Manuel Laguna. Tabu search. Boston: Kluwer Academic Publishers, 1997.

Governo dos Açores. Direcção Regional dos Recursos Florestais. September 24, 2009.

http://www.azores.gov.pt/Portal/pt/entidades/sraf-drrf/?cName=sraf-drrf&lang=pt&area=ct (accessed

September 24, 2009).

Hillier, Frederick S., and Gerald J. Lieberman. Introduction to Operations Research. McGraw

Hill, 2001.

58

Holland, John H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. MIT Press, 1975.

INETI. "AVALIAÇÃO DO POTENCIAL ENERGÉTICO." AREAM/INETI, Madeira, 2005.

Kanellos, Michael. "Can renewable energies make a dent in fossil fuels?" CNET News. April 25,

2008. http://news.cnet.com/8301-11128_3-9928068-54.html (accessed August 26, 2009).

Laporte, Gilbert. "The Vehicle Routing Problem: An overview of exact and approximate

algorithms." European Journal of Operations Research 59 (1992): 345-358.

"Maps of the World." Azerb. http://azerb.com/maps.html (accessed August 2009, 27).

Marczyk, Adam. Genetic Algorithms and Evolutionary Computation. April 23, 2004.

http://www.talkorigins.org/faqs/genalg/genalg.html#history (accessed August 31, 2009).

Medaglia, Andrés L., and Eliécer Gutiérrez. The Capacitated Vehicle Routing Problem.

Presentation. Universidad de los Andes, January 23, 2005.

Meridian World Data. Distance Calculation. October 4, 2009.

http://www.meridianworlddata.com/Distance-Calculation.asp (accessed October 4, 2009).

Merriam-Webster. Webster's Dictionary. 2009.

Obitko, Marek. Introduction to Genetic Algorithms. September 1998.

http://www.obitko.com/tutorials/genetic-algorithms/index.php (accessed September 9, 2009).

Ombuki-Berman, Beatrice, and Franklin T. Hanshar. "Using Genetic Algorithms for Multi-depot

Vehicle Routing." Chap. 4 in Bio-inspired Algorithms for the Vehicle Routing Problem, by Francisco

Baptista Pereira and Jorge Tavares, edited by Janusz Kacprzyk, 77-99. Warsaw: Polish Academy of

Science, 2008.

Pinedo, Michael L. Planning and Scheduling in Manufacturing and Services. Springer, 2005.

Pote, Michael. "Genetic Algorithms." Nitrogen. June 3, 2006.

http://www.nitrogen.za.org/viewtutorial.asp?id=4 (accessed August 31, 2009).

Rechenberg, Ingo. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Berlin: Fromman-Holzboog, 1973.

Renaud, Jacques, Fayez F. Boctor, and Gilbert Laporte. "A fast composite heuristic for the

symmetric traveling salesman problem." INFORMS 8 (January 1996-A): 134-143.

Renaud, Jacques, Fayez F. Boctor, and Gilbert Laporte. "An improved petal heuristic for the

vehicle routing problem." Journal of the Operational Research Society 47 (June 1996-B): 329-336.

Renaud, Jacques, Gilbert Laporte, and Fayez F. Boctor. "A tabu search heuristic for the multi-

depot vehicle routing problem." Computer Ops Research 23 (April 1995): 229-235.

Rentizelas, A. A., I. P. Tatsiopoulos, and A. Tolis. "An optimization model for multi-biomass tri-

generation." Biomass and Energy 33 (May 2008): 223-233.

Serviço Regional de Estatística dos Açores. "Statistical Yearbook of the Azores Region."

Açores, 2007.

Shekhawat, Anirudh, Pratik Poddar, and Dinesh Boswal. "Ant colony Optimization Algorithms:

Introduction and Beyond." Department of Computer Science and Engineering: Indian Institute of

Tecnology Bombay. March 27, 2009. http://www.cse.iitb.ac.in/~pratik/projectreports/aco.pdf (accessed

August 31, 2009).

59

Silva, Carlos Augusto Santos. "Distributed Supply Chain Management using Ant Colony

Optimization." PhD Dissertation, IST, Technical University of Lisbon, 2005.

Stidsen, Thomas. "TABU search and Iterated Local Search." DTU Informatics - Technical

University of Denmark. February 17, 2008. http://www2.imm.dtu.dk/courses/02719/tabu/4tabu2.pdf

(accessed August 31, 2009).

Stutzle, Thomas. Ant Colony Optimization: An Introduction. Gottingen, April 20, 2005.

Toth, Paolo, and Daniele Vigo. The Vehicle Routing Problem. Philadelphia: S.I.A.M, 2002.

Williams, James C. The History of Energy. April 25, 2006. http://www.fi.edu/learn/case-

files/energy.html (accessed September 2009).

World Nuclear Association. "Renewable Energy and Electicity." World Nuclear Association.

June 2009. http://www.world-nuclear.org/info/inf10.html (accessed August 26, 2009).

Xu, Jiefeng, and P. James Kelly. "A Network Flow-Based Tabu Search Heuristic For The

Vehicle Routing Problem." Transportation Science 30 (February 1996): 379-393.

60

A. DailyPlan’s User Manual

Welcome to DailyPlan’s User Manual. In this manual the user will be given a step-by-step

explanation on how to best use the application to solve a Multi-Depot Vehicle Routing Problem. The

manual will be broken down into the following sections for easier reading:

A1. Creating the problem instance

A2. Importing the instance

A3. Solving

A4. Exporting results

A1. Creating the Problem Instance

To create the problem instance, the user must be able to manipulate .xlsx files by use of

Microsoft Excel or a similar application. Open the file named InstanceTemplate.xlsx. In it, the template

for building problem instances can be found.

The workbook contains three sheets, Coordinates, Distances and Times. Each of these

constitutes a separate way of introducing problem data. The application assumes that times are more

precise than distances and that both are more precise than coordinates and, in case multiple sources

are available, will use the one deemed most precise.

If times are to be used, the corresponding sheet should be filled in as shown in the Figure A-1.

The boxes with the number of collection sites and plants should be correctly filled in, followed by the

names of first sites and then plants horizontally and vertically expanding from the “Names” cell. The

interior should then be filled in with the time taken in minutes between all sites and plants (fractional

values may be used according to .xls format). While only the top triangle of the matrix is relevant to the

application, the bottom left can also be written for completeness. Below the last plant a supply row

should be constructed, containing the supplies from all collection sites inserted.

Figure A-1 Example of filled in time sheet

The process is exactly the same for using distances, except for the sheet that is used.

61

If coordinates are to be used, the corresponding sheet should be filled in as shown in Figure

A-2. There is no need to explicitly declare the number of collection sites or plants in this case. The

names, coordinates and supplies (if applicable) should be filled for all sites and plants.

Figure A-2 Example of filled in coordinate sheet

The workbook should now be saved with a different name so that the template is maintained for

future work. That is it for creating the problem instance. The user can now proceed with importing it to

the application.

A2. Importing the Instance

In order to import the instance, the application must first be started. Double-click DailyPlan.fig or

open MATLAB and type DailyPlan in the workspace (don’t forget to set your working directory to the

folder where the application is located). The main menu will appear as shown in Figure A-3 and the

only available button, Import, should be clicked.

Figure A-3 DailyPlan: Main window

A new window will appear. Here, the user should click Load and select the previously created

workbook (or any workbook in the template format). A progress bar as well as text under the button

will indicate the status of the loading of data. Once loading as been completed the Average Truck

Speed and Road Non-Linearity Coefficient might be available for filling in13. They will only become

available if they are relevant to the data at hand as shown in Figure A-4. If time data was loaded none

are needed, while both are required to convert coordinate data into time. If distance data is loaded,

only the average truck speed will be required.

13 Many benchmark MDVRP problems are supplied with data in coordinates and the cost function being

distance travelled. In this case, the average truck speed should be set to 60 km/h and road non-linearity
coefficient to 0%.

62

Figure A-4 On the left, importing data. On the right, distance data has been imported (only speed available)

Pressing Save & Exit will return the user to the main menu, while clicking the X in the top right

corner will cancel the import. If for any reason Save & Exit is pushed before a data is successfully

imported, the application will use the last successfully imported problem data. While in the main

window, the user can choose to go back and import a different problem (in case of mistakes for

example) or proceed to the next section.

A3. Solving

If data was imported successfully, the buttons under Optimize using… will become available for

pushing. The user should push the one corresponding to the solving method they wish to use for this

run. A new window will open revealing the parameters that should be set before optimization can

begin. Figure A-5 shows an example of the Genetic Window.

The parameters are divided into 3 classes: Problem Data, Stopping Criteria and Advanced

Settings. The first two are mostly equal for all 3 solving techniques while Advanced Settings are

specific to each.

Figure A-5 Example of Genetic Algorithm user interface

A3.1. Problem Data and Stopping Criteria

In the problem data section, the truck capacity and maximum route length should be introduced.

• Truck Capacity – The maximum amount of weight that a truck is capable of transporting in

tons.

63

• Maximum Route Length – The maximum amount of time in hours that a truck can travel.

In the stopping criteria section, the maximum number of iterations, maximum number of

iterations without improvement and maximum time taken should be introduced.

• Maximum number of iterations – The maximum number of iterations that the algorithm is

allowed to use.

• Maximum number of iterations without improvement – The number of iterations without

improvement of the best solution at which the algorithm breaks.

• Maximum time – The maximum time in minutes that can be spent in on optimization.

The Tabu Search algorithm, due to having 2 distinct phases, has a total of five stopping criteria

instead of 3.

Whenever one of these parameters is left at 0 the application assumes that it should not be

used and its value will default to infinity.

At least one item in the problem data section must be filled in (or the problem would be

unconstrained) and at least one item (two for Tabu Search, one for each phase) must be filled in the

stopping criteria section (or the algorithm would run forever). Allowable and recommended ranges for

all these parameters can be found in the corresponding help page.

A3.2. Advanced Settings

The Advanced Settings section is locked by default. To unlock it, the Use Default Advanced

Settings box should be unchecked. Advance settings are specific to each problem solving technique.

� Tabu Search

Tabu Search contains the following advanced parameters:

• Local optimization maximum number of iterations – The maximum number of iterations

allowed for local optimization.

• Tabu size – The size of the tabu list.

• Probability – The probability of choosing the closest plant in inter-plant exchanges.

• Number of Sub-Cycles – The number of sub-cycles in each iteration.

� Genetic Algorithm

The Genetic Algorithm contains the following advanced parameters:

• Population size – The number of chromosomes in each generation.

• Number of elite – The number of elite individuals cloned to the next generation in

percentage of total number of chromosomes.

• Bound – Controls how close a collection site must be to a plant for them to be possibly

assigned to each other.

• Intra-plant mutation – The percentage chance of intra-plant mutation happening at each

generation.

• Inter-plant mutation – The percentage chance of inter-plant mutation happening at each

generation.

64

� Ant Colony Optimization

The Ant Colony Optimization algorithm contains the following advanced parameters:

• Pheromone Coefficient – The relative importance of pheromone information.

• Heuristic Coefficient – The relative importance of heuristic information.

• Evaporation Coefficient – The percentage amount of pheromone that evaporates at each

iteration.

• Number of Pheromone Dropping Colonies – The number of colonies that leave

pheromone in their trail at each iteration.

• Colonies/Attempts per Iteration – The number of colonies sent out at each iteration.

• Bound – Controls how close a collection site must be to a plant for them to be possibly

assigned to each other.

Whenever one of these parameters is left at 0 or if the Use Default Advanced Settings box is left

checked the application uses the default value.

Allowable and recommended ranges for all these parameters can be found in the corresponding

help page.

Once all required parameters have been set the optimization can begin as soon as the user

presses the Optimize button.

A4. Exporting Results

After the optimization process has finished, the user will be prompted with a dialog box

containing information on the total cost of the best solution found and requesting permission to

proceed with the exporting of results (Figure A-6). In case the user wishes to export the data, a

writable .xls or .xlsx file will need to be selected as well as a sheet name.

Figure A-6 Example of prompt after optimization has finished

The application will export the solution data to the selected worksheet as displayed in Figure

A-7. For each route 3 rows will be displayed containing respectively the ordered list of collection sites

or plants to visit, the required amount of material to pick up at each (a 0 means that a plant is being

visited and all material should be unloaded) and the cost of traveling between the previous location

and the current one. Below the last route, the total cost is also displayed for reference.

65

Figure A-7 Example of data exported to worksheet

66

B. Parameter Tuning Tables

Tables B-1 to B-4 contain the data used to plot the graphical analysis of Section 5.1.

In all tables, the error is calculated relative to the best know solution of the problem14. The

percentage of useful iterations is obtained by finding the fraction of iterations of fast improvement that

were required to obtain a solution value that is within 0,05% of the final solution found (a dash means

that no improvement was done during fast improvement).

The first two tables are relative to the Tabu Search algorithm with Clark Wright initialization and

improved petal initialization respectively. All solutions found use 13 and 12 routes respectively, as the

algorithm does not change the number of total routes supplied by the initial solution.

Tabu Size Probability
Sub-

Cycles

Fast

Improvement

Iterations

Intensification

Iterations

Useful

Iterations (%)
Error (%)

25

0,3

5 101373 873 - 10,97

20 27746 826 28,29 4,99

35 15224 916 74,85 4,07

50 10633 800 11,38 2,17

0,6

5 102679 870 2,30 6,59

20 26547 849 53,56 2,61

35 14826 895 9,07 2,23

50 10756 800 99,43 3,93

0,9

5 91735 963 - 10,53

20 29072 800 10,68 9,65

35 15828 839 6,59 5,17

50 10539 800 32,61 2,17

50

0,3

5 100575 859 - 10,74

20 26341 820 17,52 3,33

35 15120 826 9,91 4,37

50 10475 836 75,90 2,17

0,6

5 103629 837 90,55 6,86

20 26370 839 8,28 3,42

35 15683 820 19,36 2,17

50 11040 872 31,60 2,17

0,9 5 102814 911 0,00 9,86

14

67

20 27341 844 34,93 3,34

35 15089 822 31,99 2,23

50 10729 800 36,62 5,47

75

0,3

5 99648 856 - 10,90

20 25414 817 9,07 5,03

35 15487 802 5,48 5,73

50 10499 802 66,02 2,17

0,6

5 97061 856 - 12,11

20 27544 820 10,60 3,65

35 15130 823 2,07 3,33

50 10583 800 16,31 4,33

0,9

5 100292 859 0,00 9,97

20 27062 864 8,79 2,23

35 15929 800 10,42 6,29

50 10141 800 56,58 4,33

100

0,3

5 100135 857 - 10,85

20 25875 837 18,93 4,35

35 14579 831 7,11 3,00

50 10183 846 89,70 2,17

0,6

5 95038 821 - 11,08

20 28451 883 1,64 6,10

35 14670 820 8,27 4,67

50 9911 800 70,86 2,17

0,9

5 94702 840 - 11,39

20 25697 801 14,18 2,23

35 15838 867 14,65 2,63

50 10202 843 43,61 3,04

Table B-1 Tabu optimization results with Clark Wright initialization

Tabu Size Probability
Sub-

Cycles

Fast

Improvement

Iterations

Intensification

Iterations

Useful

Iterations (%)
Error (%)

25

0,3

5 90643 863 - 7,85

20 23887 681 46,50 0,89

35 13444 702 11,74 2,55

50 9285 656 91,85 0,89

0,6

5 86119 751 47,51 5,95

20 24129 700 7,68 5,29

35 13835 658 78,40 1,08

50 9464 650 64,38 2,36

0,9
5 86829 752 - 9,07

20 22210 696 40,18 0,79

68

35 12653 650 50,58 0,79

50 9604 726 81,72 2,87

50

0,3

5 89282 732 - 7,74

20 23302 650 59,27 1,04

35 13197 650 95,02 1,02

50 9374 650 94,55 1,33

0,6

5 83591 671 - 8,55

20 22427 652 39,85 2,53

35 14005 650 16,89 3,85

50 9169 650 46,23 0,79

0,9

5 83233 768 - 8,55

20 22348 650 86,58 4,29

35 13800 650 39,29 0,79

50 9854 650 41,35 1,02

75

0,3

5 88530 710 - 8,55

20 22952 710 54,20 1,02

35 13574 702 35,15 3,13

50 9416 668 9,13 0,79

0,6

5 90018 698 - 8,44

20 23649 688 84,70 4,55

35 13820 650 79,37 0,79

50 9141 672 42,88 2,71

0,9

5 84034 766 - 6,53

20 24667 703 76,31 7,06

35 13349 650 89,74 3,60

50 8928 651 69,80 3,56

100

0,3

5 83276 692 - 9,26

20 22736 676 13,97 0,79

35 13625 673 93,86 4,06

50 9221 659 8,29 0,79

0,6

5 86740 740 - 8,44

20 22706 658 39,65 2,10

35 12960 650 97,58 0,79

50 9256 659 50,25 1,63

0,9

5 86972 675 - 8,55

20 22968 650 37,49 1,27

35 12954 666 99,59 1,30

50 9153 650 75,10 0,79

Table B-2 Tabu optmization results with Improved Petal initialization

The next table shows the results obtained for the Genetic Algorithm. Four parameters will be

tested and the number of vehicles used is now an important result as it might change from test to test.

69

The useful iterations percentage indicates the fraction of iterations required to reach a solution that

was within 0,05% of the best found.

Population

Size

Inter-Mutation

(%)

Intra-Mutation

(%)
Bound

Useful

Iterations (%)

Vehicles

Used
Error (%)

25

12,5%

10%
1 47,51 12 8,01

2 83,59 12 10,34

20%
1 97,58 12 6,43

2 96,39 12 6,45

25%

10%
1 92,57 12 8,24

2 69,21 12 6,25

20%
1 71,43 12 5,61

2 94,05 12 6,40

50%

10%
1 89,92 12 9,45

2 92,42 12 9,19

20%
1 48,40 12 6,13

2 95,36 12 5,24

50

12,5%

10%
1 80,18 12 6,39

2 84,08 12 8,38

20%
1 47,03 12 5,75

2 86,30 12 5,61

25%

10%
1 93,84 12 7,98

2 80,43 12 8,18

20%
1 85,56 12 5,72

2 47,70 12 5,61

50%

10%
1 89,07 12 10,80

2 79,32 12 5,72

20%
1 89,77 12 7,06

2 83,86 12 8,27

100

12,5%

10%
1 91,71 12 10,83

2 87,30 12 5,95

20%
1 96,84 12 7,34

2 82,01 12 7,16

25%

10%
1 95,29 12 8,78

2 87,25 12 8,78

20%
1 95,51 12 8,19

2 87,46 12 7,32

50%

10%
1 98,71 12 9,27

2 97,07 12 8,19

20%
1 90,41 12 7,80

2 92,67 12 6,60

Table B-3 Genetic Algorithm optimization results

70

The last table shows results of testing for the Ant Colony Optimization. Similarly to the Genetic

Algorithm, the number of vehicles used is also shown as it might vary between tests. The useful

iterations percentage indicates the fraction of iterations required to reach the best solution found.

Colonies per

iteration

Heuristic

Coefficient

Evaporation

Coefficient
Bound

Useful

Iterations (%)

Vehicles

Used
Error (%)

25

0,6

0,1
0,5 80,43 11 11,35

1 98,01 12 12,97

0,2
0,5 32,67 11 11,28

1 62,82 12 16,51

0,8

0,1
0,5 67,64 12 7,16

1 65,82 11 11,47

0,2
0,5 56,40 11 10,51

1 40,29 12 12,53

1

0,1
0,5 95,90 12 10,24

1 53,26 12 9,08

0,2
0,5 55,48 12 8,59

1 73,91 11 11,16

50

0,6

0,1
0,5 97,68 11 11,90

1 94,53 11 11,77

0,2
0,5 96,12 11 9,44

1 79,93 11 18,93

0,8

0,1
0,5 43,86 12 8,42

1 61,89 11 9,31

0,2
0,5 83,81 11 6,43

1 33,59 11 11,79

1

0,1
0,5 73,90 11 10,63

1 54,99 12 10,91

0,2
0,5 57,85 12 10,16

1 42,49 11 10,27

75

0,6

0,1
0,5 75,24 11 6,16

1 89,49 11 10,74

0,2
0,5 68,83 11 7,68

1 97,64 11 12,05

0,8

0,1
0,5 66,24 11 10,28

1 98,44 11 7,59

0,2
0,5 77,09 11 10,14

1 39,53 11 20,56

1

0,1
0,5 99,37 11 10,85

1 92,94 11 12,58

0,2
0,5 34,56 11 10,19

1 49,03 12 14,39

100 0,6 0,1 0,5 97,93 12 11,02

71

1 97,34 12 16,19

0,2
0,5 81,93 12 11,60

1 46,67 12 14,17

0,8

0,1
0,5 81,85 11 7,68

1 95,81 11 8,92

0,2
0,5 46,35 11 11,24

1 88,48 11 12,47

1

0,1
0,5 91,80 12 7,65

1 97,41 12 9,50

0,2
0,5 44,40 11 13,05

1 86,36 11 12,76

Table B-4 Ant Colony Optimization results

