
Cache Coherence in Distributed and Replicated Transactional Memory Systems
(extended abstract of the MSc dissertation)

Maria Isabel Catarino Couceiro
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Software Transactional Memory (STM) systems
have emerged as a powerful paradigm to develop concurrent
applications. At current date, however, the problem of how
to build distributed and replicated STMs to enhance both
dependability and performance is still largely unexplored. This
paper fills this gap by presenting D2STM, a replicated STM
that makes use of the computing resources available at multiple
nodes of a distributed system. The consistency of the replicated
STM is ensured in a transparent manner, even in the presence
of failures. In D2STM transactions are autonomously processed
on each node, avoiding any replica inter-communication during
transaction execution, and without incurring in deadlocks.
Strong consistency is enforced at transaction commit time by a
non-blocking distributed certification scheme, which we name
BFC (Bloom Filter Certification). BFC exploits a novel Bloom
Filter-based encoding mechanism that permits to significantly
reduce the overheads of replica coordination at the cost of a
user tunable increase in the probability of transaction abort.
Through an extensive experimental study based on standard
STM benchmarks we show that the BFC scheme permits to
achieve remarkable performance gains even for negligible (e.g.
1%) increases of the transaction abort rate.

I. INTRODUCTION

Software Transactional Memory (STM) systems have
emerged as a powerful paradigm to develop concurrent
applications [1], [2], [3]. When using STMs, the programmer
is not required to deal explicitly with concurrency control
mechanisms. Instead, she has only to identify the sequence
of instructions, or transactions, that need to access and mod-
ify concurrent objects atomically. As a result, the reliability
of the code increases and the software development time is
shortened.

While the study of STMs has garnered significant interest,
the problem of architecting distributed STMs has started to
receive the required attention only very recently [4], [5],
[6]. Furthermore, the solutions proposed so far have not
addressed the important issue of how to leverage replication
not only to improve performance, but also to enhance
dependability. This is however a central aspect of distributed
STM design, as the probability of failures increases with
the number of nodes and becomes impossible to ignore
in large clusters (composed of hundreds of nodes [5]).
Strong consistency and fault-tolerance guarantees are also
essential when STMs are used to increase the robustness
of classic service-oriented applications. This is the case, for
instance, of the FenixEDU system [7], a complex web-based

Campus activity management system that is currently used
in several Portuguese universities. FenixEDU extensively
relies on STM technology for transactionally manipulating
the in-memory state of its (J2EE compliant) application
server. Providing critical services (such as students’ grading
or research funds management) to a population of more
than 14000 users, the FenixEDU system deployed at the
IST Campus of Lisbon is one of the main drivers of our
research in the quest for efficient and scalable replication
mechanisms.

This paper addresses the problems above by introducing
D2STM, a Dependable Distributed Software Transactional
Memory that allows programmers to leverage on the com-
puting resources available in a cluster environment, using
a conventional STM interface, transparently ensuring non-
blocking and strong consistency guarantees even in the case
of failures.

The replica synchronization scheme employed in D2STM
is inspired by recent database replication approaches [8], [9],
where replica consistency is achieved through a distributed
certification procedure which, in turn, leverages on the
properties of an Atomic Broadcast [10] primitive. Unlike
classic eager replication schemes (based on fine-grained
distributed locking and atomic commit), that suffer of large
communication overheads and fall prey of distributed dead-
locks [11], certification based schemes avoid any onerous
replica coordination during the execution phase, running
transactions locally in an optimistic fashion. The consistency
of replicas (typically, 1-Copy serializability) is ensured at
commit-time, via a distributed certification phase that uses
a single Atomic Broadcast to enforce agreement on a
common transaction serialization order, avoiding distributed
deadlocks, and providing non-blocking guarantees in the
presence of (a minority of) replica failures. Furthermore,
unlike classic read-one/write-all approaches that require the
full execution of update transactions at all replicas [12],
only one replica executes an update transactions, whereas
the remaining replicas are only required to validate the
transaction and to apply the resulting updates. This allows to
achieve high scalability levels even in the presence of write-
dominated workloads, as long as the transaction conflict rate
remains moderate [8].

For the reasons above, certification based replication
schemes appear attractive to apply in the STM context.

1

Unfortunately, as previously observed in [13] (and confirmed
by the experimental results presented later in this paper), the
overhead of previously published Atomic Broadcast based
certification schemes can be particularly detrimental in STM
environments. In fact, unlike in classical database systems,
STMs incur neither in disk access latencies nor in the
overheads of SQL statement parsing and plan optimization.
This makes the execution time of typical STM transactions
normally much shorter than in database settings [13] and
leads to a corresponding amplification of the overhead of
inter-replica coordination costs. To tackle this issue, D2STM,
leverages a novel transaction certification procedure, named
BFC (Bloom Filter Certification), which takes advantage of a
space-efficient Bloom Filter-based encoding to significantly
reduce the overhead of the distributed certification scheme
at the cost of a marginal, and user configurable, increase of
the transaction abort probability.

D2STM is built on top of JVSTM [14], an efficient STM
library that supports multi-version concurrency control and,
as a result, offers excellent performance for read-only trans-
actions. D2STM takes full advantage of the JVSTM’s multi-
versioning scheme, sheltering read-only transactions from
the possibility of aborts due both to local or remote conflicts.
Through an extensive experimental evaluation, based on
both synthetic micro-benchmarks, as well as complex STM
benchmarks we show that D2STM permits to achieve sig-
nificant performance gains at the cost of a marginal growth
of the abort rate.

The rest of this paper is organized as follows. Section II
discusses related work. A formal description of the consid-
ered system model and of the consistency criteria ensured
by D2STM is provided in Section III, whereas Section IV
overviews the whole architecture of the D2STM system and
discusses the issues related to the integration of JVSTM
within D2STM. The BFC scheme is presented in Section V
and Section VI presents the results of our experimental
evaluation study. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section we briefly survey related research. We
begin by analyzing the main design choices of existing
distributed STM systems, critically highlighting their main
drawbacks from both the fault-tolerance and performance
perspectives. Next we review recent literature on database
replication schemes, discussing pros and cons of these
approaches when adopted in a distributed STM context.
Finally, we discuss other works related to D2STM in a wider
sense.

A. Distributed STMs
The only distributed STM solutions we are aware of are

those in [4], [5], [6]. As already noted in the introduc-
tion, unlike D2STM, none of these solutions leverages on
replication in order to ensure cluster-wide consistency and
availability in scenarios of failures, or failure suspicions.
While it could be possible to somehow extend the distributed
STM solutions proposed in these works with orthogonal

fault-tolerance mechanisms, this is far from being a trivial
task and, perhaps more importantly, the overhead associated
with these additional mechanisms could seriously hamper
their performance. In D2STM, on the other hand, depend-
ability is seen as a first class design goal, and the STM
performance is optimized through a holistic approach that
tightly integrates low level fault-tolerance schemes (such as
Atomic Broadcast) with a novel, highly efficient distributed
transaction certification scheme.

In the following, we critically highlight the most relevant
differences, from a performance oriented perspective, of the
replica coherency schemes adopted by the aforementioned
schemes with respect to D2STM during failure-free runs.
The work in [6] exploits the simultaneous presence of dif-
ferent versions of the same transactional dataset across the
replicas, to implement a distributed multi-versioning scheme
(DMV). Like centralized multi-version concurrency control
schemes [12] (including JVSTM [14]), DMV allows read-
only transactions to be executed in parallel with conflicting
updating transactions. This is achieved by ensuring that the
former is able to access older, committed snapshots of the
dataset. However, in DMV each replica maintains only a
single version of each data granule, and explicitly delays
applying (local or remote) updates to increase the chance
of not having to invalidate the snapshot of currently active
read-only transactions (and to consequently abort them).
This allows DMV to avoid maintaining multiple versions
of the same data at each node, unlike in conventional multi-
version concurrency control solutions (although DMV re-
quires buffering the updates of not yet applied transactions).
On the other hand, while multi-version concurrency control
solutions provide deterministic guarantees on the absence
of aborts for read-only transactions, the effectiveness of
the DMV scheme depends on the timing of the concurrent
accesses to data by conflicting transactions (actually, with
DMV a read-only transaction may be aborted also due to the
concurrent execution of “younger”, local read-only transac-
tion). Optimizing the performance of read-only transactions,
which largely dominate in many realistic workloads, is an
important design goal common to both DMV and D2STM.
However, D2STM relies on a multi-versioned STM, namely
JVSTM, which maintains a sufficient number of versions of
each transactionalized data item in order to guarantee that
no read-only transaction is ever aborted. Further, this is done
in an autonomous manner by the local STM, in a transparent
manner for the replication logic, greatly simplifying the
design and implementation of the whole system. Another
significant difference between D2STM and DMV is in that
the latter requires each committing transaction to acquire
a cluster-wide unique token, which globally serializes the
commit phases of transactions. Unfortunately, given that
committing a transaction imposes a two communication step
synchronization phase (for updates propagation), the token
acquisition phase can introduce considerable overhead and
seriously hamper performance [4]. Conversely, in D2STM
the Atomic Broadcast-based replica coordination phase can

2

be executed in full concurrency by the various replicas,
which are required to sequentially execute only the local
transaction validation phase aimed at verifying whether a
committing transaction must be aborted due to some conflict.

The work in [4] does not rely on multi-versioning
schemes, but, analogously to the one in [6], relies on a
distributed mutual exclusion mechanism scheme. Mutual
exclusion is aimed at ensuring that at any time there are no
two replicas attempting to simultaneously commit conflicting
transactions. The use of multiple leases, based on the actual
datasets accessed by transactions, permits to partially allevi-
ate the performance problems incurred by the serialization
of the whole (distributed) commit phase. However, this
phase may still become a bottleneck with conflict intensive
workloads. As already discussed, this problem is completely
circumvented in D2STM thanks to the use of an Atomic
Broadcast based certification procedure. Additionally, in [4]
the lease establishment mechanism is coordinated by a
single, centralized, node which is likely to become a per-
formance bottleneck for the whole system as the number of
replicas increase; In fact, the experimental evaluation in [4]
relies on a dedicated node for lease management and does
not report results for more than four replicas.

Finally, Cluster-STM, presented in [5], focuses on the
problem of how to partition the dataset across the nodes
of a large scale distributed Software Transactional Memory.
This is achieved by assigning to each data item a home node,
which is responsible for maintaining the authoritative version
(and the associated metadata) of the data item. The home
node is also in charge of synchronizing the accesses of con-
flicting remote transactions. In [5] any caching or replication
scheme is totally delegated to the application level, which
has then to take explicitly into account the issues related to
data fetching and distribution, with an obvious increase in
the complexity of the application development. Currently,
D2STM only provides support for total replication of the
transactional dataset (even though leveraging transparent,
selective replication of data across the nodes represents part
of our future work). On the other hand, D2STM provides
programmers with the powerful abstraction of single system
image, which permits to port applications previously running
on top of non distributed STMs with minimal modifications.
Further, Cluster-STM treats the processors as a flat set,
not distinguishing between processors within a node and
processors across nodes, and not exploiting the availability
of shared memory between multiple cores/processors on
each replica to speed up intra-node communication. Finally,
Cluster-STM does not exploit a multi-versioning local con-
currency control to maximize the performance of read-only
transactions, and is constrained to run only a single thread
for each processor. Being layered on top of a fully fledged,
multi-version STM, D2STM overcomes all of the above
limitations.

B. Database Replication
The problem of replicating a STM is naturally closely

related to the problem of database replication, given that both

STMs and DBs share the same key abstraction of atomic
transactions. The fulcrum of modern database replication
schemes [8], [9] is the reliance on an Atomic Broadcast
(ABcast) primitive [10], [15], typically provided by some
Group Communication System (GCS) [16]. ABcast plays a
key role to enforce, in a non-blocking manner, a global trans-
action serialization order without incurring in the scalability
problems affecting classical eager replication mechanisms
based on distributed locking and atomic commit proto-
cols, which require much finer grained coordination and
fall prey of deadlocks [11]. Existing ABcast-based database
replication literature can be coarsely classified in two main
categories, depending on whether transactions are executed
optimistically [8] or conservatively [17].

In the conservative case, which can be seen as an
instance of the classical state machine/active replication
approach [18], transactions are serialized through ABcast
prior to their actual execution and are then deterministically
scheduled on each replica in compliance with the ABcast
determined serialization order. This prevents aborts due to
concurrent execution of conflicting transactions in different
replicas and avoids the cost of broadcasting the transactions’
read-sets and write-sets. On the other hand, the need for
enforcing deterministic thread scheduling at each replica
requires a careful identification of the conflict classes to be
accessed by each transaction, prior to its actual execution.
Unfortunately, this requirement represents a major hurdle
for the adoption of these techniques in STM systems which,
unlike relational DBMSs with SQL-like interfaces, allow
users to define arbitrary, and much less predictable, data
layouts and transaction access patterns (e.g. determined
trough direct pointer manipulations). In practice, it is very
hard or simply impossible to predict the datasets that are
to be accessed by a newly generated transaction. This is
particular troublesome, given that a labeling error can lead to
inconsistency, whereas coarse overestimations can severely
limit concurrency and hamper performance.

Optimistic approaches, such as [8], avoid these problems,
hence appearing better suited to be adopted also in STM con-
texts. In these approaches, transactions are locally processed
on a single replica and validated a posteriori of their execu-
tion through an ABcast based certification procedure aimed
at detecting remote conflicts between concurrent transac-
tions. The certification based approaches can be further clas-
sified into voting and non-voting schemes [19], where voting
schemes, unlike non-voting ones, need to atomic broadcast
only the write-set (which is typically much smaller than the
read-set in common workloads), but on the other hand incur
the overhead of an additional uniform broadcast [15] along
the critical path of the commit phase. As highlighted in
our previous work [13], the replica coordination latency has
an amplified cost in STM environments when compared to
conventional database environments, given that the average
transaction execution time in STM settings is typically
several orders of magnitude shorter than in database ap-
plications. This makes voting certification schemes, which

3

introduce an additional latency of at least 2 extra communi-
cation steps with regard to non voting protocols, unattractive
in replicated STM environments. On the other hand, as it
will be demonstrated by our experimental study, and as one
could intuitively expect, the actual efficiency of non voting
certification protocols is, in practical settings, profoundly
affected by the actual size of read-sets.

The replica coordination scheme employed in D2STM,
namely BFC (Bloom Filter Certification), can be classified as
a non voting certification scheme that exploits a Bloom Filter
based encoding of the transactions’ read-set to achieve the
best of both the voting and not voting approaches, requiring
only a single ABcast while avoiding to flood the network
with large messages, at the cost of a small, and user tunable
increase in the transactions abort rate.

C. Other Related Works
The large body of literature on Distributed Shared Mem-

ories (DSM) is clearly related to our work, sharing our
same base goal of providing developers with the simple
abstraction of a single system image transparently lever-
aging the resources available across distributed nodes. To
overcome the strong performance overheads introduced by
straightforward DSM implementations [20] ensuring strong
consistency guarantees with the granularity of a single
memory access [21], several DSM systems have been de-
veloped that achieve better performance through relaxing
memory consistency guarantees [22]. Unfortunately, devel-
oping software for relaxed DSM’s consistency models can be
challenging as programmers are required to fully understand
sometimes complicated consistency properties to maximize
performances without endangering correctness. Conversely,
the simplicity of the atomic transaction abstraction, at the
core of STMs and of our D2STM platform, allows to
increase programmers’ productivity [23] with respect to
both locking disciplines and relaxed memory consistency
models. Further, the strong consistency guarantees provided
by atomic transactions can be supported through efficient
algorithms that, like in D2STM, incur only in a single
synchronization phase per transaction, effectively amortizing
the unavoidable communication overhead across a set of
(possibly large) memory accesses.

III. SYSTEM MODEL

We consider a classical asynchronous distributed system
model [15] consisting of a set of processes Π = {p1, . . . , pn}
that communicate via message passing and can fail ac-
cording to the fail-stop (crash) model. We assume that a
majority of processes is correct and that the system ensures
a sufficient synchrony level (e.g. the availability of a ♦S fail-
ure detector) to permit implementing an Atomic Broadcast
(ABcast) service, with the following properties [10]: Validity:
If a correct participant broadcasts a message, then all correct
participants eventually deliver it. Uniform Agreement: If a
participant delivers a message, then all correct participants
eventually deliver it. Uniform Integrity: Any given message
is delivered by each participant at most once, and only if

Application

Network

Generic Group Commmunication Service

Replication Manager

JVSTM

D2STM API

Figure 1. Components of a D2STM replica.

it was previously broadcast. Uniform Total Order: If some
participant delivers message A after message B, then every
participant delivers A only after it has delivered B.

D2STM preserves the weak atomicity [24] and opac-
ity [25] properties of the underlying JVSTM. The former
property implies that atomicity is guaranteed only as to
conflicting pairs of transactional accesses; conflicts be-
tween transactional and non-transactional accesses are not
protected. Weak atomicity is less composable than strong
atomicity (protecting all pairs where at least one is a
transactional access). It also raises subtle problems, e.g.,
granular lost updates. However, the runtime overhead of
strong atomicity can be prohibitively high in the absence
of hardware support [24]. Opacity [25], on the other hand,
can be informally viewed as an extension of the classical
database serializability property with the additional require-
ment that even non-committed transactions are prevented
from accessing inconsistent states.

Finally, concerning the consistency criterion for the state
of the replicated (JV)STM instances, D2STM guarantees
1-copy serializability of reads and writes to transactional
data [12], which ensures that transaction execution history
across the whole set of replicas is equivalent to a serial
transaction execution history on a not replicated (JV)STM.

IV. D2STM ARCHITECTURE

A. Node Components

The components of a node of the D2STM platform,
depicted in Figure 1, is structured into 4 main logical
layers. The bottom layer is a Group Communication Service
(GCS) [10] which provides two main building blocks: view
synchronous membership [15], and an Atomic Broadcast
service. Our implementation uses a generic group commu-
nication service (GCS) [26], which supports multiple imple-
mentations of the GCS (all the experiments described in this
paper have been performed using the Appia GCS [16]). The
core component of D2STM is represented by the Replication
Manager, implementing the distributed coordination protocol
required for ensuring replica consistency (i.e. 1-copy serial-
izability); this component is described in detail in Section V.

4

The Replication Manager interfaces, on one side, the GCS
layer and, on the other side, with a local instance of a Soft-
ware Transactional Memory, more precisely JVSTM [23]. A
detailed discussion of the integration between the replica-
tion manager and JVSTM, along with a summary of the
most relevant JVSTM internal mechanisms, is provided in
Section IV-B. Finally, the top layer of D2STM is a wrapper
that intercepts the application level calls for transaction
demarcation (i.e. to begin, commit or abort transactions), not
interfering at all with the application accesses (read/write) to
the VBoxes which are managed directly by the underlying
JVSTM layer. This approach allows D2STM to transpar-
ently extend the classic STM programming model, while
requiring only minor modifications to pre-existing JVSTM
applications.

B. Integration with JVSTM

JVSTM implements a multi-version scheme which is
based on the abstraction of a versioned box (VBox) to
hold the mutable state of a concurrent program. A VBox
is a container that keeps a tagged sequence of values - the
history of the versioned box. Each of the history’s values
corresponds to a change made to the box by a successfully
committed transaction and is tagged with the timestamp of
the corresponding transaction. To this end, JVSTM main-
tains an integer timestamp, commitTimestamp, which is in-
cremented whenever a transaction commits. Each transaction
stores its timestamp in a local snapshotID variable, which is
initialized at the time of the transaction activation with the
current value of commitTimestamp. This information is used
both during transaction execution, to identify the appropriate
values to be read from the VBoxes, and, at commit time,
during the validation phase, to determine the set of concur-
rent transactions to check against possible conflicts. JVSTM
relies on an optimistic approach which buffers transactions’
writes and detects conflicts only at commit time, by checking
whether any of the VBoxes read by a committing transaction
T was updated by some other transaction T ′ with a larger
timestamp value. In this case T is aborted. Otherwise, T ’s
commitTimestamp is increased, its snapshotID is set to
the new value of commitTimestamp and the new values of
all the VBoxes it updated are atomically stored within the
VBoxes.

To minimize performance overheads, the D2STM’s replica
coordination protocol, namely BFC, is tightly integrated
with the JVSTM’s transaction timestamping mechanisms.
The integration of JVSTM within the D2STM required the
implementation of three main (non-intrusive) modifications
to JVSTM, extending its original API in order to allow the
Replication Manager layer to:

1) extract information concerning internals of the trans-
action execution, i.e., its read-set, write-set, and snapshotID
timestamp. In the remaining, we refer to the methods
providing the aforementioned services for a transaction
Tx, respectively, as getReadset(Transaction Tx), getWrite-
set(Transaction Tx) and getSnapshotID(Transaction Tx).

2) explicitly trigger the transaction validation procedure
(method validate(Transaction Tx)), that aims at detecting any
conflict raised during the execution phase of a transaction Tx

with any other (local or remote) transaction that committed
after Tx started.

3) atomically apply, through the applyRemoteTransac-
tion(Writeset WS) method, the write-set WS of a remotely
executed transaction (i.e. atomically updating the VBoxes of
the local JVSTM with the new values written by a remote
transaction) and simultaneously increasing the JVSTM’s
commitTimestamp.

4) permit cluster wide unique identification of the VBoxes
updated by (remote) transactions, as well as of any object,
possibly dynamically generated within a (remote) trans-
action, whose reference could be stored within a VBox.
This is achieved by tagging each JVSTM VBox (and each
object, mutable or immutable, assigned to a VBox within a
Transaction) with a unique identifier. A variety of different
schemes may be used to generate universal unique identifiers
(UIDs), as long as it is possible to guarantee the cluster-
wide uniqueness of UIDs and to enable the independent
generation of UIDs at each replica. The current implementa-
tion of D2STM relies on a widely recognized international
standard, namely the ISO/IEC 11578:1996, which uses a
128 bits long encoding scheme that includes the identifier
of the generating node and a local timestamp based on a
100-nanosecond intervals.

V. BLOOM FILTER CERTIFICATION

Bloom Filter Certification (BFC) is a novel non-voting
certification scheme that exploits a space-efficient Bloom
Filter-based encoding [27], allowing to drastically reduce the
overhead of the distributed certification phase at the cost of
a reduced (but controlled) increase in the risk of transaction
aborts.

Before delving into the details of the BFC protocol, we
review the fundamentals of Bloom filters (the interested
reader may refer to [28] for further details). A Bloom filter
for representing a set S = {x1, x2, . . . , xn} of n elements
from a universe U consists of an array of m bits, initially
all set to 0. The filter uses k independent hash functions
h1, . . . , hk with range {1, . . . ,m}, where it is assumed that
these hash functions map each element in the universe to a
random number uniformly over the range. For each element
x ∈ S, the bits hi(x) are set to 1 for 1≤ i ≤ k. To check if
an item y is in S, we check whether all hi(y) are set to 1. If
not, then clearly y is not a member of S. If all hi(x) are set
to 1, x is assumed to be in S, although this may be wrong
with some probability. Hence a Bloom filter may yield a
false positive, where it suggests that an element x is in S
even though it is not. The probability of a false positive f
for a single query to a Bloom Filter depends on the number
of bits used per item m/n and the number of hash functions
k according to the following equation:

f = (1− e−kn/m)k (1)

5

int oldestActiveXact[n]={0,. . .,0};
Set ActiveXacts, CommittedXacts, AbortedXacts=∅;
int avgBFQueries=initialAvgBFQueries;

Transaction begin()
Transaction Tx=JVSTM.begin();
ActiveXacts=ActiveXacts∪Tx;
return Tx;

boolean commit(Transaction Tx)
// Read-only transactions are processed locally

if (getWriteset(Tx)=∅)
ActiveXacts=ActiveXacts\Tx;
return true;
// Update transactions are first locally validated

if (¬validate(Tx))
ActiveXacts=ActiveXacts\Tx;
return false;

int BFSize=estimateBFSize(avgBFQueries);
BloomFilter BF=new BloomFilter(BFSize);
∀UID ∈ getReadset(Tx) BF.add(UID);
AB-send[Tx, getSnapshotID (Tx), BF, getWriteset(Tx),

min Ty∈ActiveXacts(getSnapshotID (Ty))];
// The xact’s outcome is determined upon AB-delivery
wait Tx ∈ (AbortedXacts ∪ CommittedXacts)
ActiveXacts=ActiveXacts\Tx;
if (Tx ∈ AbortedXacts)

AbortedXacts=AbortedXacts\Tx;
return false;

else return true;

upon AB-deliver[Transaction Tx, int snapshotID, BloomFilter BF,
WriteSet WS, int oldestActiveXact] from pj do

// Garbage collect the CommittedXacts set
if (oldestActiveXact<oldestActiveXact[j])

oldestActiveXact[j]=oldestActiveXact;
∀Tk ∈ CommittedXacts s.t.

getSnapshotID (Tk)≤ mini∈[1,n](oldestActiveXact[i]) do
CommittedXact=CommittedXact\Tk;

// Validate Transaction
int BFQueries=0;
∀Ty ∈ CommittedXacts s.t. getSnapshotID (Tk)>snapshotID do
∀ < UID, · >∈ getWriteset(Ty) do

BFQueries++;
if (BF.contains(UID))

// Xact failed validation and is aborted
AbortedXacts=AbortedXacts∪{Tx}
if (isLocal(Tx))

ActiveXacts=ActiveXacts\Tx;
return;

// Xact passed validation: update estimator for q and commit xact
avgBFQueries=updateAvg(BFQueries,recComXacts);
CommittedXacts=CommittedXacts∪Tx;
if (isLocal(Tx))

ActiveXacts=ActiveXacts\Tx;
JVSTM.commit(Tx);

else
applyRemoteTransactionWS (WS);

Figure 2. Pseudo-code of the BFC algorithm executed by the Replication
Manager at Process pi

where the optimal number k of hash functions that mini-
mizes the false positive probability f given m and n can be
shown to be equal to:

k = dln 2 ·m/ne (2)

We now describe BFC in detail, with the help of the
pseudo-code depicted in Figure 2. Read-only transactions
are executed locally, and committed without incurring in
any additional overhead. Leveraging on the JVSTM multi-
version scheme, D2STM read-only transactions are always
provided with a consistent committed snapshot and are
spared from the risk of aborts (due to both local or remote
conflicts).

A committing transaction with a non-null write-set (i.e.
it has updated some VBox), is first locally validated to
detect any local conflicts. This prevents the execution of
the distributed certification scheme for transactions that
are known to abort using only local information. If the
transaction passes the local validation phase, the Replication
Manager encodes the transaction read-set (i.e., the set of
identifiers of all the VBoxes read by the transaction) in
a Bloom Filter, and ABcasts it along with the transaction
write-set (which is not encoded in the Bloom Filter). The
size of the Bloom Filter encoding the transaction’s read-set
is computed to ensure that the probability of a transaction
abort due to a Bloom Filter’s false positive is less than a
user-tunable threshold, which we denote as maxAbortRate.
The logic for sizing of the Bloom Filter is encapsulated by
the estimateBFSize() primitive, which will be detailed later
in the text.

As in classical non-voting certification protocols, update
transactions are validated upon their ABcast-delivery. At this
stage, it is checked whether Tx’s Bloom Filter contains any
item updated by transactions with a snapshotID timestamp
larger than that of Tx’s. If no match is found, then Tx can be
safely committed. Committing a transaction Tx consists of
the following steps. If Tx is a local transaction, it just suffices
to request the local JVSTM to commit it. If, on the other
hand, Tx is a remote transaction, its write-set is atomically
applied using the applyRemoteTransaction(WSTx

) method.
Given that the validation phase of a transaction Tx

requires the availability of the write-sets of concurrent
transactions previously committed, the Replication Manager
locally buffers the UIDs of the VBoxes updated by any
committed transaction in the CommittedXacts set. To avoid
an unbounded growth of this data structure, we rely on
a distributed garbage collection scheme (analogous to the
one employed in [29]), in which each replica exchange
(as a piggyback to the AB-casted transaction validation
message) the minimum snapshotID of all the locally active
update transactions. This allows each replica to gather global
knowledge on the oldest timestamp among those of all the
update transactions currently active on any replica. This
information is used to garbage collect the CommitXacts set
by removing the information associated with any committed
transactions whose execution can no longer invalidate any
of the active transactions.

We now describe how the size of the Bloom Filter (BF)
of a committing transaction is computed. The reader should
note that for a transaction Tx to be aborted due to a false
positive it is sufficient to incur in a false positive for any
of the items updated by transactions concurrent with Tx’s.
In other words, determining the size of the Bloom Filter
for a committing transactions, so to guarantee that a target
maxAbortRate is never exceeded, would require to know ex-
actly the number q of queries that will have to be performed
against the Bloom Filter once the transaction gets validated
(i.e. once it is ABcast-delivered). On the other hand, at
the time in which Tx enters the commit phase, it is not

6

possible to exactly foresee neither how many transactions
will commit before Tx is ABcast-delivered, nor what will
be the size of the write-sets of each of these transactions.
On the other hand, any error in estimating q does not com-
promise safety, but may only lead to (positive or negative)
deviations from the target maxAbortRate threshold. Hence,
BFC uses a simple and lightweight heuristic, which exploits
the fact that each replica can keep track of the number of
queries performed to the BF of any locally ABcast-delivered
transaction. In detail, we rely on the moving average across
the number of BF queries performed during the validation of
phase of the last recComXacts transactions as an estimator
of q. Once q is estimated, we can then determine the number
m of bits in the Bloom Filter by considering that the
false positives for any distinct query are independent and
identically distributed events which generate a Bernoullian
process [30]. At the light of this observation, the probability
of aborting a transaction because of a false positive in the
Bloom Filter-based validation procedure, maxAbortRate, can
be expressed as: maxAbortRate = 1 − (1 − f)q which,
combined with Equations 1 and 2, allows us to estimate
m as:

m =
⌈
− n

log2(1− (1−maxAbortRate)
1
q)

ln 2

⌉

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

 1

 10

 100

 1000

 5

 10

 15

 20

 25

Compression Factor

maxAbortRate

q

 5

 10

 15

 20

 25

Figure 3. Compression Factor achieved by BFC considering the ISO/IEC
11578:1996 UUID encoding.

The striking reduction of the amount of information
exchanged, achievable by the BFC scheme, is clearly high-
lighted by the graph in Figure 3, which shows the BFC’s
compression factor (defined as the ratio between the number
of bits for encoding a transaction’s read-set with the ISO/IEC
11578:1996 standard UID encoding, and with BFC) as a
function of the target maxAbortRate parameter and of the
number q of queries performed during the validation phase.
The plotted data shows that, even for marginal increases of
the transaction abort probability in the range of [1%-2%],
BFC achieves a [5x-12x] compression factor, and that the
compression factor extends up to 25x in the case of 10%
probability of transaction aborts induced by a false positive
of the Bloom Filter.

The correctness of the BFC scheme can be (informally)
proved by observing that i) replicas validate all write trans-
actions in the sme order (the one determined by the Atomic
Broadcast primitive), and that, ii) the validation procedure,
despite being subject to false positives, is deterministic given
that all replicas rely on the same set of hash functions
to query for the presence/determine the encoding of data
items in the Bloom filter. Hence, as already highlighted, the
occurrence of false positives results in an increase of the
transaction abort rate, but can never lead to inconsistencies
of the replicas’ states.

As a final note, in order to speed up the Bloom Filter
construction (more precisely the insertion of items within
the Bloom Filter), D2STM exploits a recently proposed opti-
mization [31] which generates the k = dln 2·m/ne hash val-
ues required for encoding a data item within the Bloom Filter
via a plain (and very efficient) linear combination of the
output of only two independent hash functions. The choice
of the hashing algorithm to be employed within D2STM has
been based on an experimental comparison of a spectrum of
different hash functions trading off complexity, speed, and
collision resistance. The one that exhibited the best perfor-
mance while matching the analytically forecast false positive
probability turned out to be MurmurHash2 [32], a simple,
multiplicative hash function whose excellent performances
have been also confirmed by some recent benchmarking
results [33].

One other version of the BFC protocol combining voting
and non-voting approaches was also implemented with the
objective of providing a higher message compression factor
while avoiding an equal increase in the transaction abort rate.
The compression achieved by the non-voting BFC is limited
to the maxAbortRate pre-defined by the user and higher rates
may not be tolerated by abort-sensitive applications. The
main idea regarding the combination of the two certification
approaches is to achieve higher compression rates without
incurring the risk of obtaining an excessive number of
aborted transactions. This is possible by adding an extra
voting step to the distributed certification process if the
validation using Bloom filters indicates that the transaction
must be aborted. As a result, higher compression rates
can be used, since the occurrence of any false positive is
always detected, which avoids incurring in an increase of
the transaction’s abort rate, making this scheme attractive
for abort-sensitive applications. A further description and
evaluation of the protocol can be found in [34].

VI. EVALUATION

We now report results of an experimental study aimed
at evaluating the performance gains achieved by the BFC
scheme in a real distributed STM system, namely when
using our D2STM prototype, in face of a variety of both
synthetic and more complex STM workloads. These results
allow to assess the practical impact of the benefits estimated
in the previous section, using the analytical model. The
target platform for these experiments is a cluster of 8
nodes, each one equipped with an Intel QuadCore Q6600

7

 0.01

 0.02

 0.04

 0.05

 0.06

 0.09

 0.1

 0.11

 1 2 3 4 5 6 7 8

Replicas

Abort rate due to false positives in BFC

maxAbortRate=0.01
maxAbortRate=0.05
maxAbortRate=0.10

Figure 4. Transaction abort rate due to false positives in the Bloom Filter-
based validation.

at 2.40GHz equipped with 8 GB of RAM running Linux
2.6.27.7 and interconnected via a private Gigabit Ethernet.
The Atomic Broadcast implementation used is based on a
classic sequencer-based algorithm [15], [10].

We start by considering a synthetic workload (obtained by
adapting the Bank Benchmark originally used for evaluating
DSTM2 [35]) which serves for the sole purpose of validating
the analytical model introduced in Section V for determining
the Bloom Filter’s size as a function of a target maxAbor-
tRate factor. In detail, we initialize the STM at each replica
with a vector of numThreads·numMachines·10.000 items
and make each thread access a distinct fragment of 10.000
elements of the array, reading the whole 10.000 elements
of the array and randomly updating a number of elements
uniformly distributed in the range [50-100]. Given that the
fragments of the array accessed by different threads never
overlap, this ensures that any transaction abort is only due
to false positives in the Bloom Filter based validation.

The plots in Figure 4 show the percentage of aborted
transactions when using the BFC scheme with a target
maxAbortRate of 1%, 5%, 10% as we vary the number of
active replicas from 1 to 8 (with 4 threads executing on
each replica), highlighting the tight matching between the
analytical forecast and the experimental results in presence
of heterogeneous load conditions.

Next we consider a more complex micro-benchmark,
namely a Red Black tree (again obtained by adapting the im-
plementation originally used for evaluating DSTM2 [35]). In
this case we consider a mix of three different transactions: i)
a read-only transaction, performing a sequence of searches,
ii) a write transaction performing a sequence of searches
and insertions, and iii) a write transaction performing a
sequence of searches and removals. We configured the Red
Black tree (a detailed description of the parameters’ settings
used in this and in the other experiments presented in this
section can be found in [34]) to yield a low-moderate
contention probability, and considered a workload with 90%
of write transactions (insertion and removal transactions
being equiprobable in all runs).

Figure 5(a) depicts the throughput of the system (i.e.
number of committed transactions per second) for the three
considered workloads when using BFC with the maxAbor-

 1

 2

 3

 4

 2 3 4 5 6 7 8
 0

 200
 400
 600
 800

 1000
 1200
 1400
 1600

RBTree (90% writes) - Throughput (commits/sec)

maxAbortRate=1%

Threads

Replicas

(a) Throughput - 90 % writes

 1

 2

 3

 4

 2 3 4 5 6 7 8
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

RBTree (90% writes) - % Execution Time Reduction of Write Transactions

maxAbortRate=1%

Threads

Replicas

(b) % Execution Time Reduction

Figure 5. Red Black Tree, maxAbortRate=1%

tRate parameter set to 1%. The number of replicas is varied
from 2 to 8 and the number of threads in each replica is
varied from 1 to 4. One interesting aspect of these results
is that one can observe linear speedups when the number of
replicas increases, even in the scenario where 90% of the
transactions are write transactions (Figure 5(a)), in which
almost all transactions require the write set to be AB-casted
and applied everywhere. Still, we can double the throughput
of the system when we move from 2 to 6 replicas.

In Figure 5(b) we show the improvement in the execution
time of write transactions that is obtained by the use of
Bloom Filters for the scenario with 90% write transactions
with respect to a standard non-voting certification algorithm
requiring to atomically broadcast the whole transaction’s
readset, e.g. [8]. As before, Bloom Filters are configured to
induce less than 1% of aborts due to false positives. As it
can be observed in the plot, our optimizations reduce the
execution time of write transactions up to approximately
37% in scenarios with a large number of replicas and
threads. This is due to the 10x compression of the messages
achieved thanks to the Bloom Filter encoding and to the cor-
responding reduction of the ABcast latency, which represents
a dominant component of the whole transaction’s execution
time. Note that since the cost of multicast grows with the

8

number of replicas, the reduction also grows proportionally.
We finally show results using the STMBench7 bench-

mark. This benchmark features a number of operations with
different levels of complexity which manipulate an object-
graph with millions of objects heavily interconnected and
three types of workload (read dominated, read-write and
write dominated). Figure 6 depicts the performance of the
system using the “read dominated with long traversals”
workload. As before, each plot shows the system throughput
for a different combination of number of replicas (from 2
to 8) and threads per replica (from 1 to 4). The speedup
results are consistent with the results obtained with the Red
Black tree benchmark. Looking at the throughput numbers
in Figure 6(a), we can also observe linear speedups with the
increase in the number of replicas. For instance, by moving
from 2 to 8 replicas, the system performance increases
of a factor 4x independently of the number. Figure 6(b)
highlights the performance gains achievable thanks to the
usage of Bloom Filter with respect to a classic non voting
certification scheme. To this purpose, we report the reduction
of execution time for write transactions (namely the only
ones to require a distributed certification) which fluctuates in
the range from around 20% to around 40%. These gains were
achieved, in this case, thanks to the 3x message compression
factor permitted by the use of Bloom Filters.

An interesting finding highlighted by our experimen-
tal analysis is that, in realistic settings, the BFC scheme
achieves significant performance gains even for a negligible
(i.e. 1%) additional increase of the transaction’s abort rate.
This makes the BFC scheme viable, in practice, even in
abort-sensitive applications.

In conclusion, the Bloom Filter Certification procedure
implemented in D2STM provides fault-tolerance, makes it
possible to use additional replicas to improve the throughput
of the system (mainly, in the presence of read dominated
workloads) and, last but not the least, permits to use (faster)
non-voting certification approaches in the presence of work-
loads with large read sets.

VII. CONCLUSIONS

In this work we introduced D2STM, which is, to the best
of our knowledge, the first Distributed Software Transac-
tional Memory ensuring both strong consistency and high
availability despite the occurrence of (a minority of) repli-
cas’ failures.

The replica consistency mechanism at the core of
D2STM’s, namely the BFC protocol, leverages on a novel
Bloom Filter based encoding scheme which allows achieving
striking reductions of the overhead associated with the
transaction certification phase. Further, thanks to a tight
integration with a multi-versioned STM, D2STM can process
read-only transactions locally, without incurring in the risk
of aborts induced by local or remote conflicts and avoiding
any communication overhead.

STMBench7 - Throughput (ops/sec)

maxAbortRate=1%

 1

 2

 3

 4

Threads

 2 3 4 5 6 7 8

Replicas

 0

 50

 100

 150

 200

 250

(a) Throughput

STMBench7 - % Execution Time Reduction of Write Transactions

 1

 2

 3

 4

Threads

 2 3 4 5 6 7 8

Replicas

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

(b) % Execution Time Reduction

Figure 6. STMBench7, read dominated with long traversals, maxAbor-
tRate=1%

ACKNOWLEDGMENTS

This work was partially supported by the Pastramy
(PTDC/EIA/72405/2006) project. Parts of this work have
been performed in collaboration with other members of
the Distributed Systems Group at INESC-ID, namely, Paolo
Romano and Nuno Carvalho.

REFERENCES

[1] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III, “Software transactional memory for dynamic-sized data
structures,” in Proc. of the Symposium on Principles of
Distributed Computing (PODC). ACM, 2003, pp. 92–101.

[2] D. Dice, O. Shalev, and N. Shavit, “Transactional locking
II,” in Proc. of the International Symposium on Distributed
Computing (DISC), 2006, pp. 194–208.

[3] T. Harris and K. Fraser, “Language support for lightweight
transactions,” SIGPLAN Not., vol. 38, no. 11, pp. 388–402,
2003.

[4] C. Kotselidis, M. Ansari, K. Jarvis, M. Lujan, C. Kirkham,
and I. Watson, “DiSTM: A software transactional memory
framework for clusters,” in Proc. of the International Confer-
ence on Parallel Processing (ICPP), 2008, pp. 51–58.

9

[5] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Soft-
ware transactional memory for large scale clusters,” in Proc.
of the Symposium on Principles and Practice of Parallel
Programming (PPOPP). ACM, 2008, pp. 247–258.

[6] K. Manassiev, M. Mihailescu, and C. Amza, “Exploiting
distributed version concurrency in a transactional memory
cluster,” in Proc. of the Symposium on Principles and Practice
of Parallel Programming (PPOPP). ACM, 2006, pp. 198–
208.

[7] N. Carvalho, J. Cachopo, L. Rodrigues, and A. Rito Silva,
“Versioned transactional shared memory for the FenixEDU
web application,” in Proc. of the Workshop on Dependable
Distributed Data Management (WDDDM). ACM, 2008.

[8] F. Pedone, R. Guerraoui, and A. Schiper, “The database
state machine approach,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 71–98, 2003.

[9] M. Patino-Martı́nez, R. Jiménez-Peris, B. Kemme, and
G. Alonso, “Scalable replication in database clusters,” in
Proc. of the International Conference on Distributed Com-
puting (DISC). Springer-Verlag, 2000, pp. 315–329.

[10] X. Defago, A. Schiper, and P. Urban, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
puting Surveys, vol. 36, no. 4, pp. 372–421, 2004.

[11] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in Proc. of the Conference on the
Management of Data (SIGMOD). ACM, 1996, pp. 173–182.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[13] P. Romano, N. Carvalho, and L. Rodrigues, “Towards dis-
tributed software transactional memory systems,” in Proc.
of the Workshop on Large-Scale Distributed Systems and
Middleware (LADIS), 2008.

[14] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis
for memory transactions,” Sci. Comput. Program., vol. 63,
no. 2, pp. 172–185, 2006.

[15] R. Guerraoui and L. Rodrigues, Introduction to Reliable
Distributed Programming. Springer, 2006.

[16] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible
protocol kernel supporting multiple coordinated channels,”
in Proc. International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2001, pp. 707–710.

[17] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing
transactions over optimistic atomic broadcast protocols,” in
Proc. of the 19th IEEE International Conference on Dis-
tributed Computing Systems. IEEE Computer Society, 1999,
p. 424.

[18] F. B. Schneider, Replication management using the state-
machine approach. ACM Press/Addison-Wesley Publishing
Co., 1993.

[19] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and
P. Vicente, “The GlobData fault-tolerant replicated distributed
object database,” in Proc. of the First EurAsian Conference
on Information and Communication Technology. Springer-
Verlag, 2002, pp. 426–433.

[20] K. Li and P. Hudak, “Memory coherence in shared virtual
memory systems,” in Proc. of the Symposium on Principles
of Distributed Computing (PODC). ACM, 1986, pp. 229–
239.

[21] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess progranm,” IEEE Trans. Com-
put., vol. 28, no. 9, pp. 690–691, 1979.

[22] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release
consistency for software distributed shared memory,” in Proc.
of the International Symposium on Computer Architecture
(ISCA). ACM, 1992, pp. 13–21.

[23] J. Cachopo and A. Rito-Silva, “Combining software transac-
tional memory with a domain modeling language to simplify
web application development,” in 6th International Confer-
ence on Web Engineering, Jul. 2006, pp. 297–304.

[24] M. Martin, C. Blundell, and E. Lewis, “Subtleties of trans-
actional memory atomicity semantics,” IEEE Comput. Archit.
Lett., vol. 5, no. 2, p. 17, 2006.

[25] R. Guerraoui and M. Kapalka, “On the correctness of transac-
tional memory,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming. ACM, 2008, pp. 175–184.

[26] N. Carvalho, J. Pereira, and L. Rodrigues, “Towards a generic
group communication service,” in Proc. of the International
Symposium on Distributed Objects and Applications (DOA),
2006.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–
426, 1970.

[28] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Mathematics, vol. 1, no. 4,
pp. 485–509, 2003.

[29] F. Perez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and
B. Kemme, “Consistent and scalable cache replication for
multi-tier J2EE applications,” in Proc. of the International
Conference on Middleware (Middleware). Springer-Verlag,
2007, pp. 328–347.

[30] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probabil-
ity. Athena Scientific, 2002.

[31] K. Adam and M. Michael, “Less hashing, same performance:
building a better bloom filter,” in ESA’06: Proceedings of the
14th conference on Annual European Symposium. Springer-
Verlag, 2006, pp. 456–467.

[32] A. Appleby, “Murmurhash 2.0,”
http://murmurhash.googlepages.com/, 2009.

[33] P. Kankowski, “Hash functions: An empirical comparison,”
http://www.strchr.com/hashfunctions, 2008.

[34] M. Couceiro, “Cache coherence in distributed and replicated
transactional memory systems,” Master’s thesis, Instituto Su-
perior Técnico, September 2009.

[35] M. Herlihy, V. Luchangco, and M. Moir, “A flexible frame-
work for implementing software transactional memory,” SIG-
PLAN Not., vol. 41, no. 10, pp. 253–262, 2006.

10

