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Abstract

This document describes the development of a Preliminary Aircraft Design application

employing the methodology of Multidisciplinary Design Optimisation (MDO) and the

concept of Evolutionary Algorithms.

In the work presented in this thesis, aerodynamics, structural analysis and �ight per-

formance are the main disciplines considered for preliminary aircraft design. Aerodynamic

analysis is performed through a 3D panel method and structural analysis through �nite

element method, both by external software packages handled by the developed applica-

tion.

Novel concepts are also explored: a Particle Swarm Optimiser was developed to han-

dle the MDO problem with a large number of design variables and an Arti�cial Neural

Network (ANN) was integrated to predict the Pareto Front (in a context of Multiobjective

Optimisation) and also investigated as an accelerator for the whole optimisation process.

The goal of developing an application that is fully independent from user input during

the optimisation process and is able to interact with external analysis tools was reached

and several aircraft design optimisation problems are solved, in order to demonstrate the

advantages of the MDO concept, the developed optimiser and the use of the ANN.

Keywords: Multidisciplinary Design Optimisation, Particle Swarm Optimisation, Arti-

�cial Neural Network, 3D Panel Method, Finite Element Method, Pareto Front
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Resumo

Este documento descreve o desenvolvimento de uma aplicação para Projecto Aeronáu-

tico Preliminar, incorporando a metodologia de Projecto Óptimo Multidisciplinar (MDO)

e o conceito de Algoritmos Evolucionários.

No trabalho apresentado nesta tese, desempenho, análises aerodinâmica e estrutural

são as principais disciplinas consideradas para projecto aeronáutico preliminar. A análise

aerodinâmica é realizada através do método de painéis 3D e a análise estrutural através do

método de elementos �nitos, ambas implementadas por ferramentas de análise externas,

cuja interacção é feita pela aplicação desenvolvida.

Novos conceitos são também explorados: um optimizador do tipo Particle Swarm foi

desenvolvido para abordar o problema MDO com um número elevado de variáveis de

projecto e uma rede neuronal (ANN) foi integrada de forma a prever a Frente de Pareto

(no contexto de optimização multiobjectivo) e investigada também como acelerador do

processo de optimização.

O objectivo de desenvolver uma aplicação que fosse completamente independente do

utilizador e capaz de interagir com ferramentas de análise externas foi atingido e vários

problemas de optimização no âmbito de projecto aeronáutico foram resolvidos, de forma

a demonstrar as vantagens do conceito MDO, do optimizador desenvolvido e do uso da

ANN.

Palavras-Chave: Projecto Óptimo Multidisciplinar, Optimização Particle Swarm, Redes

Neuronais, Método de Painéis Tridimensional, Método de Elementos Finitos, Frente de

Pareto
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Chapter 1

Introduction

1.1 Thesis Objective

One of the biggest challenges that MDO tools have to overcome is �exibility to adapt

to di�erent engineering scenarios and are usually bound to solving a predetermined set

of design variables. Furthermore, the analysis �delity level is typically low, relying on

methods that are often too much simpli�ed to deliver the much needed accuracy.

The main objective of this work is therefore to create an MDO tool that moves towards

higher �delity tools, in the context of aircraft design and integrating the emerging concept

of evolutionary algorithms. In order to ful�ll this requirement, a suitable optimiser has

to be chosen or developed. Analysis tools that meet the desired depth level must also

be chosen taking in account the balance between accuracy and computational cost. This

application must be developed to interact with the analysis tools considering them as

independent blocks, functioning as external modules, so that more accurate tools can be

easily used in the future, simply by swapping them. Finally, the computational cost of

running an optimisation problem should be reasonable.

The developed application should be validated by several optimisation problems, both

singlediscipline but, most importantly, multidisciplinary ones, particularly in the aircraft

design �eld.

1.2 Thesis Layout

This thesis is divided in eight chapters.

In chapter 2, the concept of Multidisciplinary Design Optimisation is de�ned, as well

as its applications to engineering in general and the aerospace segment in particular. In

this chapter, the MDO statement and the optimisation problems to be analysed are also

de�ned.
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In chapter 3, an historical perspective on Evolutionary Algorithms is made followed

by the choice and development of the optimiser algorithm to be used (Particle Swarm

Optimisation) in the MDO application. A method for accelerating the optimisation pro-

cess and determining the Pareto Front based on a biologic inspired process (an Arti�cial

Neural Network) is also discussed.

In chapter 4, the choice of a suitable aerodynamic analysis method is discussed (3D

Panel Method). This chapter includes a description of the de�nition of the aerodynamic

model. Important data to be extracted from the aerodynamic solution and how this

module is managed by the main application is also described.

In chapter 5, a similar process as in the previous chapter is done by choosing an ade-

quate structural analysis (Finite Element Method) method and describing the structural

model, both from an aircraft structures as well as a FEM points of view.

In chapter 6, a thorough description of the application development process is made.

All of the relevant programming choices and problems that arose during the implemen-

tation of this work are addressed and the interaction between all of the developed and

external modules is described.

In chapters 7 and 8, a series of optimisation problems are solved in order to validate

the developed MDO application. Singlediscipline problems are �rst solved to validate

the optimisation concept in each discipline and, �nally, a multiobjective multidisciplinary

problem is solved, to show the full potential of the application in �nding optimal solutions.

Finally, in chapter 9, conclusions are drawn from the results presented in the previous

chapters and the ful�llment of the proposed objectives is discussed. Additionally, a dis-

cussion of the issues that were left unapproached and that may serve the basis for future

work is made.
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Chapter 2

Multidisciplinary Optimisation

The �rst section of this chapter provides a brief introduction to Multidisciplinary De-

sign Optimisation (MDO), followed by an historic perspective of the uses of this method-

ology in engineering. Section 2.2 describes the state-of-the-art of MDO in aeronautics

and aerospace engineering.

2.1 Introduction

As the complexity of engineering systems grows and, with it, the complexity of the

design process, it becomes useful to explore the interaction of the various disciplines

involved from the early stages of the design process in order to guarantee that an optimal

solution is found.

Traditionally, engineering design consists of a sequence of steps, beginning with a

conceptual solution to a certain mission that is to be performed. This conceptual phase

continues on to a preliminary stage until a con�guration can be frozen. Only then are

detailed analyses performed, corresponding to each discipline involved in the �product� to

be developed, as can be observed in �gure 2.1.

However, this design methodology leads to a successive bottlenecking in design freedom

as the analyses and design detail is increased (�gure 2.2), a fact that has been formally

demonstrated [5] and that may lead to a suboptimal design, furthermore emphasizing the

advantages of an MDO approach at an early stage.

For the purpose of this work, the following de�nition for MDO is considered: �A

methodology for the design of complex engineering systems and subsystems that coherently

exploits the synergism of mutually interacting phenomena� [1]. Multiple con�icting re-

quirements have always had to be taken into account and, therefore, it can be considered

that the multidisciplinary process has always been used. The key word in the de�nition,

however, is methodology [2]. MDO provides a collection of tools and methods that per-

3



Figure 2.1: Division of a product development into phases [1].

Figure 2.2: Traditional approach to product development [1].
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mit the trade-o� between di�erent disciplines involved in the design process. �MDO is not

design but enables it� [1].

Ideally, the MDO environment should be interactive and �exible enough to allow the

problem de�nition, constraints to be applied and simulation depth to be fully speci�ed

by the design team, rather than the individual disciplines' teams.

In order to facilitate information exchange between the various disciplines and re-

spective teams (or for that matter, analysis tools), a single global parametric model of

the whole system should be used, from which discipline speci�c models can be gener-

ated [6, 7, 8]. This consistency has been shown to o�er advantages, both when it comes

to communication between disciplines and eventual rede�nition of the global parametric

model. [9, 10, 7]

This environment should be transparent, in the sense that it should allow the design

team to monitor the evolution of variables, verifying whether these are dependent or

independent with relation to the problem. This enforces the notion that the top design

team should have full control of the process �ow.

Taking in account that modern engineering systems are extremely complex, it is only

natural to distribute the various disciplines over their respective groups, all interconnected

by the MDO environment. Although process distribution may present some management

challenges, it truly allows for the distribution to be a physical resource distribution, rather

than just a process division. This enables groups to be able to be in di�erent sites, often

worldwide; it also enables the use of computational resources and data storage spread

over a vast number of nodes [11].

2.2 MDO Strategies Applied to Aircraft Design

MDO has been used as a design methodology in the past, both in conceptual studies

as well as in real-life applications.

First of all, it is convenient to establish a de�nition of �delity levels. Bartholomew [12]

has de�ned a set of analysis �delity levels as follows:

- Level 1: empirical equations;

- Level 2: intermediate level models (e.g., beam theory, panel method, etc.);

- Level 3: state-of-the-art, high �delity models (e.g., CFD, FEA),

and has observed that, at the industry level MDO, the tendency is to move towards the

highest level, as each discipline's experts tend to use the highest �delity models.
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MDO methodology has been used in the WingMOD process, in order to minimise the

weight of the Boeing's Blended Wing Body [6]. In this case,� the process is fully multi-

disciplinary and includes design variables for planform shape/size, mission, aerodynamic,

structural sizing/topology, fuel/payload, and trim schedule (134 in all). WingMOD uses

a close-coupled approach using intermediate �delity disciplinary analyses for high aspect

ratio wing aircraft. (...) The aerodynamic analyses include the vortex lattice method and

quasi two-dimensional compressibility corrections. The structural sizing and constraints

are based on aeroelastic loads and de�ection analysis, simpli�ed buckling, and stress anal-

ysis of simple beams. The weight is based on the structural analysis corrected by some

statistical data. A wide breadth of practical constraints are considered (705 in all) along

with 20 design �ight conditions that cover most of the critical design considerations� [6].

In this work, the main need was to be able to include a CFD approach, without excessive

computational resource consumption, as the number of runs of the analysis routine was

in the order of thousands. This lead to the choices presented above, regarding structural

and aerodynamic analysis methods.

In the GM IVDA (Integrated Vehicle Design Analysis) system [9], the goal was to

achieve automobile fuel e�ciency. Even though apparently far from aircraft design, the

problem was dealt in such a way that the included disciplines were the same as the

ones typically found in the latter. The system is composed of both commercial codes

(ODYSSEY, NASTRAN, LPM, DYNA3D, CAL3D, ADAMS ) and GM in-house devel-

oped codes (aerodynamics, solar load, fuel economy, and others) but only one design

variable was optimised at a time. The main purpose of this project was to investigate the

pros and cons of an MDO methodology, having as main conclusion that, in an industrial

environment, there is the need for automated interaction between analysis tools and that

o�-the-shelf specialised solutions should be always adopted, when possible.

In [10], the authors describe the process for a detailed aeroelastic optimisation of the

F-22 �ghter. A structural con�guration was �xed, being the optimisation goal the min-

imisation of weight, while satisfying stress safety margins, �utter margins and fatigue life

requirements. Active aeroservoelastic methods were also considered, by modifying active

controls for load alleviation and introducing �ltering control laws to discard unfavourable

aeroelastic interactions that could result in the onsetting of �utter. A very high �delity

FE model was used, limited only by the high memory limit (10 TBytes). The optimi-

sation strategy that was implemented allowed for di�erent disciplines to be at di�erent

optimisation levels at a given stage of the global optimisation process. One of the main

conclusions of this work was that the inconsistency between disciplines resultant from the

adopted strategy did not seem to a�ect convergence severely.

A Collaborative Environment for Turbine Engine Development is discussed in [13]. In

this work, it is shown that one of the major challenges to performing MDO is to be able
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to do Multidisciplinary Design Analysis. Feasibility (regarding fatigue life and distortion

tolerance requirements) and minimum weight (both for structural as well as cost factors)

were the main goals to be achieved. The authors of this work noted that the complex

analysis capability (resulting from the integration of the individual simulations required)

is not as smooth as desired, and that large step size �nite di�erences are required to obtain

robust derivatives. This MDO process was implemented in iSIGHT, and a Collaborative

Optimisation strategy was attempted (an optimisation strategy based on distributed de-

sign, in which individual disciplinary teams are charged with satisfying local constraints),

although without great success due to the nature of the problem and high �delity require-

ment. Currently, most of the e�orts of this project are on developing speci�c disciplinary

tools and respective process automation.

In [8], the design of a �better�, more agile version of the F-16 �ghter was studied.

Maneuverability, controllability, weight, and producibility were weighted in determining

the quality of the attained solution. After a �rst optimisation process, it was veri�ed

that only with aeroelastic tailoring of the structure was the new version able to exceed

the maneuverability of the original version. One of the most interesting points of this

study was a comment of the author regarding the following: � ... the approach to achieve

integration would probably be the same today (1998) as in 1988-89. The di�erences in the

overall process would be in the tool selection... and the amount of data generated.� This

reinforces the idea that the conceptual idea behind MDO is self contained and needs not

to su�er any changes in spite of the evolution of the analysis tools.

Another example where MDO was used in a real-life situation, was the development

of the F/A-18 E/F [14]. The initial version of the F/A-18 was not intended for aircraft

carrier operation, therefore a re-design was made regarding carrier suitability (landing

weight), strike mission (payload), �ghter mission (range), increased survivability, maneu-

verability, growth potential, and others. The goal was to reach a feasible design at an

acceptable cost. As main conclusions of this project, the authors emphasize the build-

ing of an aerodynamic database made of a combination of CFD results and wind tunnel

data (therefore, a very high quality one) which proved to be critical to achieve a proper

aeroelastic optimisation.

These cases are summarised in �g. 2.3, regarding the possible trade o� between high

�delity analysis methods and multidisciplinarity.

More recently, some strategies have been studied in order to verify the validity of the

MDO approach in environments where uncertainty is present. In [15], the preliminary

design of a Supersonic Business Jet is based on the parallel use of MDO and uncertainty

management (necessary when design uncertainties are present) leading to robust design.

The result was a tool that allows to robustly design an aircraft which revealed to be fun-

damental to ensure the feasibility and the credibility of a project with high uncertainties
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Figure 2.3: Distribution of Design Process Fidelity and Level of MDO [2].

such as a supersonic business jet. This approach is however complementary to the classi-

cal design approach using MDO, which remains the backbone of the preliminary design

activities.

In the space segment, the study of launcher platforms has been done in several

occasions [16, 17], taking in account the integration of propulsion, orbital insertion,

mass/dimensions and cost disciplines. In the case of [17], a commercial MDO software

was used (modeFRONTIER) in conjunction with other o�-the-shelf solutions for each

discipline, in a straightforward approach. The main point of this work was to demon-

strate that tools are available and have evolved to a point where they can be used in an

industrial environment and real-life applications with enconomic advantages (particularly

in the space segment, where R&D but also operational costs are already very high).

Still in the space segment, using the example of a linear aerospike engine [18], clear

advantages to using MDO are shown. In this work, a linear aerospike nozzle is designed

based on aerodynamics and structural modules. First, a Sequential Optimisation strategy

is implemented, i.e., the best aerodynamic nozzle shape is found, followed by �nding the

best possible structure for that shape. This solution is then considered to be the baseline

and an MDO strategy is applied to it. Improvement in net thrust was veri�ed, meaning

that performing MDO truly explores the synergisms between the considered disciplines

and is able to reach a truly optimal solution for a given problem.

In [19], a user-friendly application and MDO framework were developed, for the prob-

lem of preliminary aircraft wing design. In this work, di�erent optimisation strategies were

also compared, namely Multidisciplinary Feasible and Sequential Optimisation and the

chosen optimiser was a gradient based algorithm (Sequential Quadratic Programming).

In-house aerodynamic, structural and aeroelastic modules were developed, in order to sup-

port the application. The main conclusions that can be had from this work were regarding

the eventual non-suitability of gradient based methods for a very large number of design
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variables, as large-scale, direct search methods could have an edge in that situation.

Finally, and to cite an example similar to the work developed in this dissertation,

in [20], a Transport Aircraft Wing is optimised. A simple FE model represents the wing's

structure and an approximated aerodynamic model is used. The goal of the optimisation

problem was to increase the range. The main purpose of the work by itself was to analyse

the robustness of the Particle Swarm Algorithm. The main conclusions were that this

algorithm �...is able to reliably �nd the optimal point, despite the presence of discrete

variables and severe numerical noise.� It is also referred that gradient-based methods are

more suitable for the simple problem that was studied. However, it is suggested that,

for an increasingly large number of discrete design variables, a tuned Particle Swarm

Algorithm can be faster than the gradient-based counterpart, particularly if taken in

account that the PSO is a strong candidate for a distributed computation approach (a

concern that was already expressed in [19]).
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Chapter 3

Evolutionary Algorithms

In section 3.1, a brief historical perspective on this subject is presented. In 3.2, a

description of the chosen algorithm will be made. Also important aspects of its imple-

mentation are described and some studies are performed to demonstrate the algorithm's

capabilities. Finally, in 3.3, the use of an Arti�cial Neural Network as an optimiser accel-

erator and a Pareto Front detector are studied.

3.1 Introduction

Being the topic of this work the development of an MDO application, a suitable

optimiser needs to be chosen or developed. From what was referred in section 2.2 it would

be hard to favour deterministic or heuristic optimisation methods. As it is suggested that,

for an increasing number of variables, properly tuned heuristic methods may outperform

gradient-based methods and because it would be interesting to explore what these methods

have to o�er in the optimisation context, a decision was made early on in this work to

choose Evolutionary Algorithms (EA's) for the optimiser.

Evolutionary algorithms are a set of a larger group of algorithms, so called meta-

heuristic methods. In these methods, the goal is to �nd the extremes (from this point on

assumed to be the minima) of a certain objective function with the advantage that the

exact state function needs not to be known, i.e., the evaluation module(s) of a possible

solution can be looked at as a �black-box�. This is of extreme advantage in the design of

complex engineering systems, as it would be di�cult to �nd the function that relates the

inputs (the design variables) to the output (the objective function).

For this work, a Particle Swarm Optimisation algorithm was chosen, as this is a rea-

sonably recent method, proposed in 1995 by Kennedy and Eberhart [21], and research in

the optimisation �eld shows this method yields good results, when applied to engineer-

ing [19, 20, 22].
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3.2 Particle Swarm Optimisation

Particle Swarm Optimisation is a population-based evolutionary algorithm based on

the concept of social intelligence. In this algorithm, a group of initial individuals is

randomly generated, containing information about their position and velocity within a

subspace of the design variables. Each individual is then evaluated by an objective func-

tion that de�nes which individual holds the best position in relation to the problem at

hand. On the next iteration, individuals are attracted to that point as well as to their

respective best position ever, by changing their velocity. As the optimisation process de-

velops, the whole population further explores the subspace and will eventually converge

to the optimum of the objective function in that subspace.

This method holds a number of advantages that makes it a suitable optimiser for the

problem at hand: it has advantages over other EA's, regarding e�ciency (lower number

of iterations needed to attain an optimal solution) and �exibility (independence from

the problem to solve) [21, 22]; it is a robust minima �nder (for both local and absolute

minima), as noise insensitivity is well shown in [15, 23, 24]; it has the ability of �nding a

minimum outside its initial bounds; there is independence between the dimension of the

space in which the particles move and the number of particles in the swarm, regarding

the algorithm's ability to �nd a minimum and it is an obvious choice for a distributed

computation environment.

3.2.1 Implementation of the PSO

Although there are many available software packages with several variations on the

basic PSO algorithm, a custom version was implemented for this work, as this approach

leads to a better control and adaptability to the rest of the application.

According to the heuristics behind PSO, a certain particle is moving in a hyperspace

of dimension N , with current position given by xi and velocity by vi. Dimension, N

corresponds to the number of design variables in the optimisation problem and each

component of the vector xi would be the corresponding design variables' value. The

distance di between any two points is simply calculated as the di�erence in position

between them.

An implementation of this algorithm was developed in C++, according to the following

description:

xt+1
i = xti + vti∆t (3.1a)

vt+1
i = ωvti + rCG

di,Best individual
∆t

+ rCP
di,Best position of i ever

∆t
(3.1b)
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Parameter r is called the "`craziness"' factor, and gives the swarm some random

search capabilities. Typically, this value is a random number between 0 and 1, but a

more conservative approach was used in this work, establishing the craziness boundaries

between 0.5 and 1.

Parameters CG and CP correspond to group and particle con�dence factors, respec-

tively. Typically, these parameters are random values that are positive and no greater

than a prescribed limit. The ratio between the two limits will determine the behaviour

of the swarm. If the ratio favours particle con�dence, then it is most likely that an in-

dividual particle will move towards its own veri�ed minimum, giving the algorithm good

local minima search capability. On the other extreme, where higher group con�dence is

veri�ed, all of the particles will tend to the global minimum, giving the algorithm a better

global minimum search capability.

Parameter ω is a value comparable to the particles' inertia. Again, choosing its value

should be done taking in account what is the desired behaviour of the swarm. A lower

inertia particle will have a greater sensitivity to found minima, giving the swarm a faster

convergence behaviour. Naturally, an inertia approaching a null value will transform the

swarm into a group of random search individuals, moving away from the swarm concept

that is behind this algorithm.

As can be seen from the above, adjusting con�dence factors and particle inertia should

be done with care and knowledge of the problem at hand. If this information is not avail-

able a priori, then conservative values should be used and later on adjusted if necessary.

3.2.2 Detailed Implementation

With exception of external modules (aerodynamic and structural solvers), all of the

implementation was done in C++. This language has the advantage of allowing the use of

classes, a type of structured variable, in which the user can include any type of objects, not

only typical variables, but also functions. Using classes allows for a rather straightforward

style of programming, as the developed functions that deal with the classes can remain

unchanged, regardless of the changes made to the class de�nition.

For the particle swarm optimiser, a class to de�ne the particle's characteristics was

created. This class contains the current position vector xi, the current velocity vector vi,

the current objective function value, the best position ever vector xi,Best and the best

objective function value ever. These last two variables add memory depth to the swarm

which allows the swarm to return to a past position that may be better than the current

best position. This is indeed a feature that gives this algorithm an advantage in relation

to other EA's). The class also contains a call to the objective function, which can be any-

12



thing, from a small mathematical function to a full in-depth aerodynamic and structural

analysis performed by external applications as well as a function to compare whether the

current position is better then the best position ever of that particle. Finally, the class

contains the prescribed values for ω, CG and CP . The swarm then simply consists of a

vector of n individuals of the type de�ned in the class.

As for the optimising process itself, the swarm's particles are randomly generated,

regarding their initial position and velocity; con�dence factors and inertia are prescribed

and an adequate time interval ∆t is imposed.

The iterative process then begins, by analysing each particle's objective function value,

determining the best particle in the groups and then updating all the particles' new posi-

tion and velocity vectors. The process ends after a certain amount of time or iterations or

if some criterion of convergence is achieved. As the algorithm itself returns the velocity of

each particle during the process, this is a natural choice for the criterion of convergence:

when the best individual has both low velocity and acceleration, this means that an opti-

mal point has been reached. This was the criterion used in the developed implementation

of the particle swarm optimiser.

This process is ilustrated in �gure 3.1 (where Xi, Vi are position and velocity ampli-

tudes for each variable i and r is a random number in the interval [0, 1] 1).

3.2.3 Validation of the Implemented Optimiser

After the implementation of the particle swarm optimiser, three benchmark tests were

conducted. The following test functions were used to validate the implementation of the

algorithm (in a generic context, outside that of aircraft design): Extended Rosenbrock,

Extended Freudenstein and Roth and Extended Beale.

i) Extended Rosenbrock function:

f(x) =

N/2∑
i=1

100
(
x2i − x2

2i−1

)2
+ (1− x2i−1)

2 (3.2)

with global minimum:

x = [1, ..., 1], f(x) = 0

1The pseudo random number generator used was the 'Mother-of-All' Random Number Generator, a
multiply-with-carry type developed by Prof. George Marsaglia [25], in a GNU implementation by Agner
Fog.
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Figure 3.1: PSO �ow chart.
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ii) Extended Freudenstein and Roth function:

f(x) =

N/2∑
i=1

{ (−13 + x2i−1 + ((5− x2i)x2i − 2)x2i)
2 +

(−29 + x2i−1 + ((1 + x2i)x2i − 14)x2i)
2 } (3.3)

with global minimum:

x = [5, 4, ..., 5, 4], f(x) = 0

This function also has a number of local minima, where the pair {5, 4} is replaced
by {11.413,−0.8968} and for a number k of these pairs instead of {5, 4} the local minimum

is:

f(x) = k48.98

iii) Extended Beale function:

f(x) =

n/2∑
i=1

{ (1.5− x2i−1(1− x2i))
2 +(

2.25− x2i−1(1− x2
2i)
)2

+(
2.625− x2i−1(1− x3

2i)
)2 } (3.4)

with global minimum:

x = [3, 0.5, ..., 3, 0.5], f(x) = 0

This function also has a number of local minima, where the pair {3, 0.5} is replaced
by {−157.52, 1.0063} and for a number k of these pairs instead of {3, 0.5} the local

minimum is:

f(x) = k0.4617

Moreover, the following values

ω = 0.8

CG = 2.5

CP = 1.0

were used.

These favour �nding the global minimum, as the group con�dence is higher than par-

ticle con�dence. The inertia starts at the prescribed value and is decreased as the optimi-
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sation process advances, ending at ω = 0.5. This strategy favours the initial global search

behaviour of the swarm, evolving to a faster local search in the end of the optimisation

run.

The initial hypercube where the population is randomly generated was de�ned in

the interval [−6, 6]N . Although this seems a rather small search space, the functions

tested have very shallow plateaus near the minima and steep walls around them, being

the function value at the extremes of the hypercube in the order of 105 for the �rst two

functions and 106 for the third.

The following graphs show error vs. number of function evaluations for all of the

above test functions and for population sizes P = 10, 20, 40 and dimensions N = 2, 8, 20.

Error here is de�ned as the modulus of the di�erence between the found minimum and

the known global minimum for each of the tested functions. For high values of N , if a

local minimum is found, this may lead to what appears to be high error, but means only

that the algorithm failed to �nd the global minimum. A value of ∆t = 0.001 was used

(the choice of this value is furter discussed in 6.4.1).

This �rst set of graphics (�gure 3.2) shows the validation results for the Extended

Rosenbrock Function (function 3.2) for N = 2, 8, 20 (�rst three graphics) at the shown

swarm size P . The last graphic (bottom right) shows, for P = 20, the di�erence in

convergence time for the shown dimension N .

Figure 3.2: Validation for the Extended Rosenbrock Function.
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The following set of graphics (�gure 3.3) has the same arrangement as the previous

�gure, but for the Extended Freudenstein and Roth Function (function 3.3).

Figure 3.3: Validation for the Extended Freudenstein and Roth Function.

Finally, the last set of graphics (�gure 3.4) has the same arrangement, but for the

Extended Beale Function (function 3.4).

Figure 3.4: Validation for the Extended Beale Function.
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From the results shown, one can assume the optimiser is able to �nd the minima (even

if not always the global minimum) of the considered test functions. In the cases where the

error does not tend to zero, a local minimum was found, which is a satisfactory behaviour,

taking in account that this occurs for higher dimension of the test function. The small

amplitude spikes that appear are due to the nature of the algorithm, as the particles'

velocities are a�ected by the "'craziness"' factor. It should be noticed that the algorithm

was capable of converging to points outside of the initial search space, which is a positive

fact, as, in an engineering problem, the optimal point may be outside of the initial search

space that was de�ned by the designer (that could know nothing of the problem a priori).

Also interesting to notice is the fact that, even for an increasing dimension of the

problem, the algorithm is capable of �nding the minimum even if the number of particles,

and therefore, the number of evaluations per iteration, is lower than the dimension. Also

to notice is the fact that there seems to be little advantage in having very large swarms.

Although this is valid for the tested functions, some care has to be taken in extrapolating

this conclusion to physical problems, where the objective functions may be noisier and

not as smooth as the ones tested for the validation of the Particle Swarm Optimiser.

3.3 Arti�cial Neural Network

In the spirit of mimicking biologic processes that this work has followed, the concept

of Arti�cial Neural Network (ANN) is introduced. There is no precise de�nition upon

what an ANN is. Depending on the application, one can look at and de�ne the ANN in

the most suitable fashion.

An ANN is a network of simple processing nodes, whose behaviour is based on that

of the biological neuron. In these networks, a learning capability can be achieved, larger

as the number of nodes and node connection complexity increase. Including an ANN in

the process changes the optimiser from being simply an EA, making it also a knowledge

based algorithm, as the amount of information the optimiser uses in its process increases.

For this work, a simple feedforward neural network is used, the multi layer perceptron.

In this model, the network is composed of a layer of input nodes, a single hidden layer (that

one can perceive as being the processing layer) and linear output nodes. After appropriate

learning, the network can then be understood as being a universal approximator [26] (as

long as the dimension of the hidden layer is large enough) for any continuous function.

A typical model for the multilayer perceptron is shown in �gure 3.5.

Looking at the processing nodes, the ones in the hidden layer of the ANN, the relation

between the i inputs, xi, and output of node j, yj, the following:
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Figure 3.5: Multilayer Perceptron model (in this example with two input and three output
nodes).

yj = ϕ

(∑
i

ωi,jxi − θj

)
(3.5)

being ϕ the chosen activation function for the network, ωi,j the weight associated with

input i at node j and θj the threshold value for the activation function of node j.

And, naturally, being the output node a linear combination of the outputs of the

hidden layer nodes, the function that describes the whole network is given by:

F (xi) =
∑
j

ajϕ

(∑
i

ωi,jxi − θj

)
(3.6)

The universal approximation theorem applied to the ANN formulation guarantees that

the standard multilayer feed-forward network with a single hidden layer (the multilayer

perceptron) that contains a �nite number of hidden neurons and sigmoid activation func-

tion is a universal approximator in C(Rn) [26]. Later [27], it was demonstrated that

this property is maintained regardless of the chosen activation function, as long as it

was a non-constant, bounded and monotone function. Unfortunately, nothing is formally

demonstrated regarding the number of hidden neurons needed in order to satisfy a maxi-

mum approximation error.

3.3.1 Accelerator for the PSO

As demonstrated in section 3.2, the Particle Swarm Optimiser is a very capable algo-

rithm to determine minima of the tested functions in a short amount of time. Time wise

and in the overall application, one can expect the impact of the optimiser's operations to

be close to none. The most time will be spent in determining the value of the objective
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function(s), as this will involve some sort of aerodynamic and structural analyses which,

at the depth level attempted in this work, will take a reasonable amount of time per

particle.

Having this factor in mind, an acceleration process was investigated. The solution

would have to be able to reduce the most time consuming process, i.e., determining the

value of the objective function(s). Therefore, the accelerator process would have to be an

interpolator, su�ciently robust to handle any type of continuous function. Such strategy

has been adopted in the past, using meta-modeling, surrogate models, Kriging models,

neural networks [28, 29, 30, 31, 32], to name a few. Using an ANN was the adopted

choice in this work, as it is capable of interpolating any continuous function (as shown

in 3.3). This only has one consequence: it forces to having objective functions that are

continuous, a task that is simple to implement for the computational pro�ts it is expected

to provide.

There are many possibilities to implement a learning strategy on the ANN, being this

process itself an optimisation problem. The learning process involves feeding the network

with a training set, which is none other than the set of points to be interpolated. The

training process should then determine the needed weights ωi,j and threshold values θj for

all of the network, minimizing the error between the output of the ANN and the known

value for the interpolated points, i.e., minimizing the following objective function:

fobjective =
∑
k

(
F (xk)− F (xk)

)2
(3.7)

where k is the number of points in the training set, F is the output of the ANN (or

approximate objective function) and F is the original objective function (the one to be

approximated).

The PSO implemented to solve the MDO problem was a natural choice to perform

the ANN training.

In order to use the ANN as an accelerator of the PSO algorithm, the following proce-

dure was adopted: after a certain number of exact determination of the objective func-

tion(s) have been performed and the training set is su�ciently large (in order to have

con�dence in its capability to approximate the objective function(s) value), the ANN is

trained and becomes an interpolator for the objective function(s); from this point on,

each particle's objective function(s) is evaluated �rst by the ANN, and only the best

candidates out of the whole swarm are evaluated exactly by the original objective func-

tion. This means that the worst particles in the swarm will not be truly evaluated, only

approximately, which leads to potential time savings.
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3.3.2 Pareto Front Detection

As already referred in section 2.1, often the optimisation problem is a multiobjective

problem. The proposed approach in this work is to introduce the concept of Aggregate

Objective Function (AOF) [33]. This concept allows to turn a multiobjective problem

into a single objective problem through the operator:

fAOF =
∑
n

anfn,singleobjective, an > 0 (3.8)

However, prescribing the values for an will make the optimisation �nd an optimal

point, not necessarily the global optimum. Actually, de�ning what is a global optimum

solution may not be possible at all, for complex engineering problems such as aircraft

design.

This new objective function guarantees that the optimal design point is a Pareto

Optimal point, a point for which no single objective can be further optimised without

optimisation losses in other single objectives. The collection of optimal points for any an
weight combination is the called Pareto Front [33], which corresponds to a hypersurface in

the search space. Knowing this surface is extremely useful, as tradeo�s between con�icting

objectives can be performed a posteriori of the optimisation process, guaranteeing that

whatever direction a solution may move from found optimal point, as long as it is on this

surface, it will be an optimal point.

Again the ANN can be used successfully in order to determine the Pareto Front.

Determining this surface using exact evaluations of the single objective functions would

become impractical (or at least extremely demanding, from a computational cost point of

view), as this would require re-running the optimisation process for a su�ciently large an
weight combination set, increasing by orders of magnitude the time needed to resolve the

Pareto Front.

The use of ANN's should allow a reduction in the computation of this important

hypersurface by using its learning capabilities. After a large number of possible solutions

have been analysed, these will constitute the training set for an ANN with a outputs equal

in number to that of the single objective functions. Then, the exact same optimisation

problem is run, but now using the ANN to determine the approximate value of the several

objective functions, this for a large set of an weight combinations. The collection of

optimal points found for each combination of an weights will result in an approximate

Pareto Front.

Results of the integration of the ANN are not shown in this document, as some issues

arose that prevent showing the gains that a �nely tuned ANN could potentially demon-

strate. Even though the advantage of using an ANN as an accelerator in optimisation
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problems has been shown per si with signi�cant reduction in computational cost [34],

when comparing neural networks with other well established approximation schemes (such

as Kriging models) [35], ANN's might not be competitive without �ne tuning them. The

lack of a priori knowledge, already discussed above, regarding the dimension and com-

plexity of the network itself means that an investment must be made in determining the

best topology of the network for the problem at hand and in a proper training mechanism,

to guarantee minimum error and reliability of the solution away from the training points,

while still o�ering a signi�cant time saving.
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Chapter 4

Aerodynamic Analysis

In the �rst section of this chapter, the main methods for aerodynamic analysis are

reviewed in order to chose the most suitable one to MDO applications. In section 4.2,

a description of the chosen method, the 3D Panel Method, and its computational im-

plementation is explained. Then, in 4.3, the parameterisation for the panel method is

explained and in section 4.4, the analysis options are explored and useful post-processing

data is described.

4.1 Introduction

Presently, the best option to attain aerodynamic data, regarding results precision, is

Computational Fluid Dynamics (CFD), as equations are solved in their least simpli�ed

form [36, 37]. However, a number of reasons discarded the use of this method in the

present work. The biggest disadvantage of CFD is the computational cost of attaining

a solution. Considering the number of evaluations needed before an optimal solution is

produced as well as the memory and processing needs to solve a mesh for a full aircraft, this

method is impracticable, with the available resources (personal computer). Furthermore,

the automatic meshing tools typically provided with CFD codes rely mostly on excessive

re�nement in order to achieve quality solutions, with the associated computational cost.

The next method considered was the 3D Panel Method. Panel methods are techniques

for solving potential �ow. Therefore, their applicability would be reduced to incompress-

ible �ow and high Reynolds number and would fail to calculate the viscous component of

the �ow over the 3D body. However, after applying boundary layer corrections, calculated

along streamlines of the potential �ow and compressibility corrections, it is possible to

achieve good accuracy outside its original bounds. Computationally, its cost is much lower

than that of a CFD approach, and the time per analysis allows this method to be used

with the optimisation algorithm that is considered in this work [38, 39]. Furthermore, it
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also allows an easy way to interact with an FEM application, as both meshes can have a

common surface where aerodynamic pressure is applied to the FE model.

More simpli�ed methods are available, such as 2D Panel Method and Lifting Line

Theory [39]. However, these methods present too much simpli�cation and the associated

inaccuracy, particularly when analysing non-lifting surfaces, such as the fuselage, which

have a signi�cant contribution to drag.

For its balance between precision and computational cost, the 3D Panel Method was

chosen as the aerodynamic solver for this work.

4.2 3D Panel Method - CMARC

The incompressible potential �ow model provides reliable �ow�eld predictions over a

wide range of conditions. For the potential �ow assumption to be valid for aerodynamics

calculations, the primary requirement is that viscous e�ects are small in the �ow�eld, and

that the �ow�eld must be subsonic everywhere. As said before, viscous e�ects can be

included afterwards, by calculating the boundary layer e�ects along a su�ciently large

number of streamlines. This approach is valid as long as these e�ects do not a�ect the

previous �ow�eld too much, which is a valid assumption in the �ow around an aircraft [38,

39], with exception to the interaction of wing elements and fuselage. In this work, such

interactions are considered small enough to be negligible.

To solve the potential �ow, the Laplace equation needs to be solved:

∇2φ = 0 (4.1)

in which φ is the velocity potential such that:

φ = Ux+ V y +Wz (4.2)

in which U, V, W are the longitudinal, lateral and vertical components of the �ow velocity.

There is a number of ways to solve this equation. In panel methods, the adopted

solution is to use singularities, functions which satisfy the Laplace equation to solve the

perturbation velocity potential φ∗:

φ∗ = ux+ vy + wz , (4.3a)

U = u+ U∞, V = v + V∞,W = w +W∞

in which the subscript ∞ refers to the free-stream conditions.

As the equation is linear, superposition of solutions can be used. In this method, the
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used singularities are typically sources σ and doublets µ, placed over the boundary SBody
of the body (see �gures 4.1 and 4.2):

φ∗(x, y, z) = φ∞ −
1

4π

∫
SBody

[
σ

(
1

r

)
− µn · ∇

(
1

r

)]
dS (4.4)

in which the vector n points in the direction of the potential jump µ, which is normal

to SBody and positive outside of it, r the distance from point of coordinates (x, y, z) to

the considered source σ, φi is the internal potential and φ∞ is the free-stream potential,

written as:

φ∞ = U∞x+ V∞y +W∞z (4.5)

Calculating the perturbation velocity potential in order to satisfy boundary conditions

allows resolving the velocity potential through (4.3).

Figure 4.1: Potential �ow over a closed body.

This formulation does not uniquely describe a solution since a large number of source

and doublet distributions will satisfy a given set of boundary conditions. To uniquely de-

�ne the solution of this problem, �rst the condition of zero �ow normal to the body's sur-

face must be applied. In the general case of three-dimensional �ows, specifying the bound-

ary conditions will not immediately yield a unique solution. Some physical considerations

need to be introduced to �x the amount of circulation around the surface SBody. These

considerations deal mainly with the proper modeling of the wake (the three-dimensional

equivalent of the Kutta condition [38]). Taking into account that sources are used to

simulate the e�ects of thickness and doublets for lift generation (inducing circulation)

problems, it is only natural to model the wake only by means of doublets and there-

fore (4.4) can be rewritten as:

φ∗(x, y, z) = φ∞ −
1

4π

∫
SBody

[
σ

(
1

r

)]
dS +

∫
SBody+Wake

[
µn · ∇

(
1

r

)]
dS (4.6)

In order to solve the problem, a suitable discretisation must be done, dividing the
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body's surface into N panels and adding NW wake panels (see �gure 4.2). Collocation

points are the points where the singularities are placed. Their positioning depends on

several factors, such as the chosen model for the singularities themselves and the degree

of the method.

Figure 4.2: Approximation of the body surface and wake by panel elements.

Equation (4.6) can then be applied accordingly to each panel, in order to satisfy (4.1)

and the prescribed boundary conditions, resulting in an algebraic system that can be

solved.

After obtaining the �ow velocity at each panel, the pressure coe�cient Cp can be

determined according to:

Cp = 1−
(
|V |
V∞

)2

(4.7a)

Cp =
p− p∞
1
2
ρV 2
∞

(4.7b)

win which |V | is the �ow velocity on a given panel, V∞ is the free-stream velocity, p andρ

are local pressure and density and p∞ is static pressure.

If in incompressible �ow regime, (4.7a) and (4.7b) become equivalent: as ρ the Bernoulli

equation can be used to transform (4.7a) into (4.7b) and reverse.

Having selected the 3D Panel Method as the aerodynamic solver for this work, an

adequate implementation of it had to be chosen. Developing a custom version of the
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code would have been an excessive e�ort, taking into account the complexity of the task.

Furthermore, a well established panel method code was available for use.

CMARC is an enhanced version of the Panel Method Ames Research Center code

(PMARC ) developed at NASA Ames Research Center, as a low order panel method that

supports complex geometries. Having been developed in the late 80's and being derived

from previously developed codes (VSAERO mainly), PMARC and its successor used in

this work, CMARC, are considered to be robust and accurate, within the constraints

imposed by the method's own formulation [40, 41, 42, 43]. For that reason, CMARC was

chosen for the aerodynamic analysis.

4.3 Aircraft Parameterisation

In order to interact with CMARC, a custom preprocessing solution was created. Typ-

ically, a geometry is �rst created and only then is the discretization done, de�ning global

and local re�nements in order to generate the panels and wake lines. A di�erent approach

was taken here, being a parameterisation created for typical aircraft macro-components,

such as the wings, stabilizers and fuselage. For a certain parameterisation, i.e., a certain

aircraft shape, all of the panels are then declared in a �le format accepted by CMARC.

Some care had to be taken in the declaration of the input �le, as the orientation of the

panels de�nes which side of the panel corresponds to the external �ow.

For wing-like elements, parameteres span, chord, dihedral angle, incidence angle, sweep

and thickness are design variables (see �gure 4.3). Span is a one-dimensional design

variable, whereas all the other are given by a function:

DVi =

p∑
k

akfk (s̄), s̄ =
s

Span
(4.8)

in which fk are polynomial functions of degree k, with p as the maximum polynomial de-

gree, and dependent on the nondimensionalized span,s̄ (s is the local span value and Span

is the full span that the element will have). The higher the degree p, the higher the vari-

ation the parametric model can su�er. ak are the optimisation parameters, the ones that

will be handled by the PSO. This function can be thought of as an amplitude modulation

of a base value, modulation which depends on the set of values ak for a given design

variable.
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Functions fk are given by:

f1 = s̄ (4.9a)

f2 = −4 (s̄)2 + 4 (s̄) (4.9b)

f3 = 16 (s̄)3 − 24 (s̄)2 + 8 (s̄) (4.9c)
... (4.9d)

These are based on Chebyshev polynomials, for k > 1, and are constructed in the

interval [0, 1], in such a way that fk = 0 at s̄ = 0 and s̄ = 1.

Figure 4.3: Design Variables for wing elements.

This approach can be extended to any other element of an aircraft, provided that

a suitable parameter is chosen. In the case of a fuselage, for example, the longitudinal

distribution of cabin diameter would be an example of this. This method also presents

some advantages, as it makes possible for the design variables to assume di�erent values

in any point of the element using the same number of parameters ak, regardless of the

re�nement of the discretization, i.e., number of panels, in the case of the aerodynamic

solver.

All the parameters ak for all the design variables will correspond to the values in the

optimisation vector xi in (3.1a).

In following subsections, a thorough description of the parameterisation implemented
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is described.

4.3.1 Wings and Stabilizing Surfaces

Regarding the wing (and for that matter, any wing like element, such as stabilizers

or winglets), the parameterisation starts with span and the airfoil, which, in this work,

is not a design variable, but imposed a priori for each lifting surface, for simplicity. The

airfoil is read from a �le and its i coordinates stored in the ix2 airfoil matrix, being

this a nondimensionalised airfoil, with unit chord. Then, the other design variables are

calculated from (4.8) replacing ak with xk:

Chordj = Chord0 +

p∑
k=1

xkfk (s̄) (4.10a)

Dihedralj = Dihedral0 +

p∑
k=1

xk+pfk (s̄) (4.10b)

Incidencej = Incidence0 +

p∑
k=1

xk+2pfk (s̄) (4.10c)

... (4.10d)

The values Chord0, Dihedral0, Incidence0, etc., are needed for a correct parame-

terisation, as they de�ne the design variables' values at span s̄ = 0, i.e., these are the

base values that su�er the referred amplitude modulation. These parameters are also

themselves optimisable values to be included in vector xi in (3.1a).

In �gure 4.4, an example is given for the parameterisation, where sweep (corresponding

to the coordinates of the leading edge) and chord determined in function of span are shown

and the result, in terms of panels for the aerodynamic solution. A similar process is also

done for incidence, dihedral and the airfoil thickness (for a value of 1.0 the airfoil su�ers

no modi�cation, other values will thin or thicken the airfoil).

Naturally, bounds can and should be applied to any of the design variables, so that

any physical imposed constraints are transported onto the aerodynamic model. Even if

no physical constraints are to be added, it is a good practice to apply them, in order to

avoid generating a model that would have severe geometric distortion to the point where

numerical convergence issues of the solution could appear.

Having the values for the design variables, the parameterisation of the panel's vertices

can be done. Using CMARC 's aircraft coordinate system, where x is aligned with the

longitudinal axis pointing downwind, y is to right of the aircraft and z is up, and be-
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Figure 4.4: Example of Parameterisation.

ing xi,j, yi,j and zi,j the matrices that contain the vertices coordinates (i and j correspond

to the two directions in the parametrized surface):

xi,j = airfoili,1 · Chordj · Sweepj + ∆x (4.11a)

yi,j = Spanj − airfoili,2 · sin (θj) · Chordj · Thicknessj + ∆y (4.11b)

zi,j = Dihedralj + airfoili,2 · cos (θj) · Chordj · Thicknessj + ∆z (4.11c)

where ∆x, ∆y and ∆z are speci�c variables in the CMARC input �le for each section

declaration; the same principle applies for the incidence, that can be de�ned at the be-

ginning of the declaration of each section, which avoids having to apply a rotation around

axis y to all the vertices. Parameter θj is the angle of a section j in the plan yz, calculated

from the derivative of the dihedral as a function of span.

A panel parameterisation of this sort is done for each wing-like element in the aircraft.

Doing the parameterisation in this fashion also allows to easily append a wake line

to the correct location in the patch (in these cases, the trailing edge of the wing). Wake

lines are needed, as it is from them that the wake, which allows a body to produce lift in

3D Panel Method, is generated (see �gure 4.5).

4.3.2 Fuselage and non-Lifting Bodies

An aircraft fuselage is typically an oblong shape, for which a method such as that done

in 4.3.1 is not suitable. A parameterisation based on a solid of revolution is the starting

point for the process described below.

It is of extreme importance that contiguous panels share common vertices, as this

de�nes the physical boundary of the aircraft, which can have no leaks. Furthermore, it is

vital that there are no overlapping or crossing panels, as there has to be a clear de�nition

of what is the inside and the outside of the model. Bearing this is mind, simply creating
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Figure 4.5: Wing parameterisation, with directions i, j and the associated wake line.

an ellipsoid to model this type of bodies is not a valid approach, as there would be an

overlap with wing panels.

Therefore, the fuselage and any other non-lifting volume in the aircraft was modeled

in several patches, as many as needed to properly cover the whole surface and correctly

connect with the panels of wings and stabilizing surfaces. In �gure 4.6, a detailed view of

the panel connection between wing and fuselage is shown.

Figure 4.6: Mesh detail: wing-fuselage panel connection.
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Two patches were de�ned to model a semi-fuselage, taking in account the needed

deformation of a uniform grid to properly connect to wings and stabilizers. Looking ate

�g. 4.7, upper and lower fuselage were created from speci�c lines, from hereon de�ned

as Root and Tip. The Root line corresponds to a curve that starts at the end of the

aircraft, follows along the symmetry plane xz, contours the base of the vertical stabilizer

and continues along the symmetry plane. As for Tip, it can be compared to a waterline,

as it begins at the same starting point as Root, continues along a line that goes until the

horizontal stabilizer's root trailing edge, contours above the stab's airfoil, continues until

the wing's root trailing edge, then above the wing's airfoil and �nally reaches the nose of

the aircraft.

Naturally, these curves must be constrained at some points: they must coincide with

previously de�ned points, at the stabilizers' and wing's roots and they must share the

same starting and ending points, if the end tip and nose are to be some sort of cone or

dome.

The root and tip lines will de�ne the fuselage and their shape can therefore be consid-

ered as design variables by themselves (the coordinates of control points used to generate

splines, for example). The remaining shape consists in, at each station, to connect two

points, one in each line, with an ellipse arc (see �g. 4.7).

Figure 4.7: Fuselage mesh (ellipse arc highlighted in green).

As for the lower fuselage, a similar approach is taken, having a Root line that de�nes

the lower limits of the fuselage in the xz plane, and a Tip line that must be coincident

with the Tip line of the upper fuselage, except at the stabilizers' and wing's roots, where

it must coincide with the under camber of the respective airfoils.

A note here must be introduced regarding the option of modeling the fuselage as a
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non-lifting body. There is the possibility to include any body as a lifting body in the

3D Panel Method, provided a suitable wake is created. However, little information is

available in order to choose a proper starting line for the wake, as it is highly problem

dependent. This fact and taking into account that, from an aerodynamic design point of

view, the fuselage should generally generate as little lift as possible (ideally, none at all, as

the component of induced drag is very high if compared to that of a wing), it was decided

not to include a wake in the fuselage, making it a non-lifting body. Aircraft concepts

such as Boeing's Blended Wing Body or the Joined Wing Aircraft, in which the fuselage

obviously plays an important role regarding lift generation, should not be treated in this

fashion, which is suitable for more traditional aircraft design.

4.4 Analysis Options and Solution Post-Processing

CMARC allows in its input �le structure to de�ne all outer �ow characteristics such

as free-stream velocity V∞, density ρ, viscosity µ, angle of attack α and sideslip angle β.

Although these are prescribed in the �le, all options for the analysis can be overridden

in the CMARC application's own GUI. This feature becomes very useful, as the same

geometry (the same input �le) can easily be analysed in di�erent conditions of α and β,

in order to extract information on stability derivatives, for instance.

As for the output �le generated, it contains all the information on the geometry, so that

the input �le is no longer needed for any post-processing. It further contains information

on pressure and skin friction coe�cients CP and Cf , velocity components Vx, Vy, Vz,

velocity |V | and Mach number values on each panel, as well as numerical computations of

the forces, moments and respective coe�cients on each patch and for the whole geometry,

both in wind axis and body axis. This avoids the need to create further routines to

calculate these values from panel velocity alone and allowing the direct extraction of this

information for use in objective function and for FEM loads application.
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Chapter 5

Structural Analysis

In this chapter, the structural analysis method is presented in 5.1. Then, in section 5.2,

a thorough description of the FE model is made, followed by some aspects of loads ap-

plication to that model, in 5.3. The post-processing of the solution data is described in

section 5.4.

5.1 Introduction

The use of the Finite Element Method (FEM ) is widespread [44] and allows to create

structural models from very basic complexity up to a complete aircraft, with all the

associated coupled systems.

The structural model for the optimal design of a complete aircraft has to weigh two

extremes: it had to be simple enough to allow a small computation time per evaluation,

but complex enough so that important information could be extracted from the solution,

such as weight, average and maximum stresses and de�ection of the structure at key

points, to name a few.

Regarding the software to be used,Ansys R© was chosen, as it is an extremely complete

package, from mesh generation to element types available to a fast matrix solver. Fur-

thermore, it can be fully controlled through the command line with the use of an input

�le declaring all actions to be taken. This is a key feature, as the application described

in this work is intended to be fully automatic and independent from external input.

5.2 Structural Model

As noted previously (2), MDO takes advantage of the interaction between di�erent

disciplines to eventually achieve a better optimal design. Thus, it is important to establish

a system of information exchange between analysis modules that assures the models used
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in di�erent modules have as many common features as possible. In this case, it makes

sense to use the discretization of the aerodynamic module as a starting point for the

FE model. This allows to use the information from the output �le of the aerodynamic

analysis to generate the outer panels of the aircraft. It also allows to apply the exact

pressure obtained from the aerodynamic analysis to the corresponding panel without any

modi�cation.

The basic functions of an aircraft's structure are to transmit and resist the applied

loads, to provide an aerodynamic shape and to protect passengers, payload and systems,

from the environmental conditions encountered in �ight. These requirements, in most

aircraft, result in thin shell structures where the outer surface or skin of the shell is

usually supported by longitudinal sti�ening members and transverse frames to enable it

to resist bending, compressive and torsional loads without buckling. Such structures are

known as semi-monocoque [3].

Figure 5.1: Stressed skin construction examples [3].

The method of designing aircraft structures using stressed skin construction will be

adopted in this work. Therefore, there is the need to de�ne exactly what structural

components need to be modeled in the aircraft structural FE model according to their

function. This will be addressed in the following subsections.

The material was assumed to be isotropic and the same all around the aircraft, as the

purpose of this work is to demonstrate the advantages of using the MDO concept, and

creating more complex material models would not improve much this purpose, unless the

cost variable could be accounted for. Although composites would have been interesting

to include, optimising �ber orientation and composite thickness would require a database

of available fabrics and manufacturing solutions that would increase the number of design

variables and therefore the computational cost.

The chosen material for the structure was T6061-T6 Aluminium, a widely used alloy

in aircraft structures, for its low cost and good machinability and weldability [3]. Its

mechanical properties can be found in table 5.1. For the studies presented in this work, a
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factor of safety of 1.2 was used in conjunction with a maximum load factor of 2.5 in the

aircraft, which results in the maximum admissible tensile strength shown.

Properties Value Unit
Tensile Yield Strength 289 MPa
Modulus of Elasticity 68.9 GPa
Shear Strength 207 MPa
Shear Modulus 26.0 GPa
Poisson Ratio 0.33
Density 2700 kg ·m−3

Max. Adm. Tensile Strength 96 MPa

Table 5.1: 6061-T6 mechanical properties [45].

5.2.1 Wing and Fuselage Panels

The stressed skin construction principle relies on having the skin, i.e., the outer panels

of the structure, handle most of the stresses arising from aerodynamic loads.

As already referenced, Ansys R© has a multitude of element types, from which the user

should select the ones most suitable to solve the problem at hand. Regarding the wing

and fuselage panels, the natural choice was on shell elements. Even though Ansys R© has

shell elements where the formulation allows the modeling of bending capability, it was

considered that a more traditional approach would yield correct results, having the panels

not withstanding bending by themselves.

Information regarding the geometry had to be available in order to generate the model.

The adopted solution was to read the aerodynamic panel's vertices directly from the

output �le of the aerodynamic solver and use their coordinates as the corner nodes for

the shell elements.

From the elements available in Ansys R© , SHELL43 was chosen as this element is well

suited to model linear, warped, moderately-thick shell structures. The element has six

degrees of freedom at each node: translations in the nodal x, y, and z directions and

rotations about the nodal x, y, and z axes. The deformation shapes are linear in both

in-plane directions. For the out-of-plane motion, it uses a mixed interpolation of tensorial

components [4].

This element was chosen for its robustness, as it can withstand a moderate amount of

warping and shell thickness without compromising the solution quality. As for the used

element inputs, the thickness was de�ned at each corner node.

In order to determine the best skin thickness at every point of the aircraft, without

having a large amount of parameters to optimise, the following strategy was employed: for
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Figure 5.2: SHELL43 element [4].

each component of the aircraft (wings, stabilizers and fuselage) a skin thickness function

was created:

Thickness(x, y, z) = Thick0 Thick(x) Thick(y) Thick(z) (5.1)

in which each of the right hand functions are as in 4.8 and dependent on only one direc-

tion. Variable Thick0 is also optimised, yielding a wide range of possible skin thickness

distributions, with a relatively low number of optimisable parameters.

Figure 5.3 depicts an image of the obtained panels for the wing alone.

Figure 5.3: Wing panels and respective elements.

5.2.2 Spars

Spars can be considered to have two main components: the spar caps and the shear

web. The caps, in a wing, correspond to the wing's outer shell. Therefore, in order to

model a spar, all that is needed is to add the shell elements to create the shear web

connecting the upper and lower spar caps. This is simply done in a similar fashion as

in 5.2.1, as the nodes are already declared and the discretization of the airfoil and the
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number of stations spanwise is known.

The spanwise distribution of thickness along the shear web and the chordwise position

of the spar(s) are the design variables. Figure 5.4 shows an image of the wing, with a

shear web included.

Figure 5.4: Wing panels with main and secondary spars generated.

5.2.3 Ribs, Stringers and Sti�eners

Stringers and sti�eners are needed in shell-based structures in order to avoid buckling

of these surfaces and provide overall rigidity to the large panels on the aircraft without

a large mass increase. Sti�eners are applied longitudinally to the fuselage and stringers

applied spanwise to the wings. One can consider these structural elements to di�er only

in nomenclature, regarding their position on the aircraft.

Ribs are applied to the wing, in a chordwise arrangement, to avoid buckling or excessive

displacement of the wing's upper and lower cambers, as this has obvious aerodynamic

implications. They are also applied to the fuselage, to maintain its sectional shape.

Beam elements were used to model these features. The advantage of using beam

elements vs. link elements is that these model in a more accurate way sti�eners and alike.

As a link element models a simple bar, it does not take into account the area moment

of inertia, assuming the bar is only capable of standing traction and compression, not

bending. Typical sections for sti�eners have an area moment of inertia that is signi�cant

to the solution, increasing the overall sti�ness of a given panel, therefore justifying the

use of beam elements.

The chosen element for this task was BEAM4. This is a uniaxial element with tension,

compression, torsion, and bending capabilities. The element has six degrees of freedom

at each node: translations in the nodal x, y, and z directions and rotations about the

nodal x, y, and z axes. Stress sti�ening and large de�ection capabilities are included [4].

This element was chosen as it allows for the input of cross-sectional area, area moment

of inertia Izz, area moment of inertia Iyy, torsional moment of inertia Ixx and thicknesses
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Figure 5.5: Wing spar, fuselage sti�eners and ribs.

along the z axis and y axis.

Figure 5.6: BEAM4 element [4].

Optimising the area moment of inertia alone would inevitably lead to a high value for

that parameter during the optimisation process and not necessarily a feasible solution.

Therefore, a �T�-section beam was considered, allowing to model ribs in a more realistic

fashion. Having a �xed section geometry leads to having a �xed relationship between the

sti�ness of these structural features and their mass contribution.

In order to model these �T�-section beams, the geometry in �g. 5.7 was considered,

where �ange width w and stem height h were considered to have the same value and

thickness t was considered to be 1/10 of the others. This yields only one parameter to be

optimised: the beam's width (or height). Both area and area moment of inertia can then

be determined.
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Figure 5.7: �T�-section beam geometry.

5.3 Structural Loads

In this work, the loads to be applied to the FE model are those an aircraft would be

subject to during the course of its �ight: aerodynamic loads and the structure's weight.

As the element geometry and material density are known, structural weight is easily

determined in Ansys R© .

Regarding the aerodynamic loads, pressure is to be applied to the shell elements

outward faces. This is a situation where the correspondence between aerodynamic and

structural models is of great advantage. As the shell elements coincide, one by one,

with the panels of the aerodynamic model, all that needs to be performed is reading

the aerodynamic solver output �le and apply the correspondent pressure to the panel.

Recalling the Cp equation (4.7b):

Cp =
p− p∞
1
2
ρV 2
∞

as the term p∞ is also present on the inside face of the shell elements, it is only natural

to remove it from the loads to be applied to the model, being that the pressure applied

only to the outside face of the shell elements will be:

pPanel = Cp
1

2
ρV 2
∞ (5.3)

40



5.4 Solution Post-Processing

Regarding the needed information to be extracted from the structural solution, two

main aspects were considered: nodal displacement and nodal stress.

Nodal displacement (including rotations) allows to determine if de�ections at key

locations in an aircraft exceed maximum limits. For example, wing tip de�ection may

be desired not to exceed a certain value. More importantly, wing torsion should be

constrained, as it a�ects the lift distribution, therefore penalising the aerodynamic quality

of the solution. Fuselage de�ection is also important, as it will have in�uence on the tail

incidence.

Nodal displacement and rotation at key points therefore become variables in the

structural objective function, although their value is only approximated, as a true �uid-

structure interaction is not considered in this work.

As for nodal stress, a more generalised approach can be followed. Obviously, maximum

allowed stress for the chosen material must not be exceeded in any point of the structure,

and this is an objective that is easily ful�lled. However, in order to maintain structural

mass as low as possible, all points of the structure would ideally be highly stressed.

Therefore, another objective is to have the average stress on all elements be as high as

possible. Naturally, an objective function that has the structure's mass as a variable is

also determined.
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Chapter 6

Framework Tool Implementation

The next sections will present the steps taken in the development of the application,

in the same order as they are taken and in the end of this chapter, a �ow chart of the

application is shown.

6.1 Introduction

The development of the application described in this work was done in C++ as it

allows the use of classes, which o�er some advantages which will be described further

ahead in this chapter.

The application developed was designed to comply with the following main requisites:

it would have to be fully independent from external user input during the optimisation

phase; it would have to be able to interact with independent external applications, in

particular, the aerodynamic and structural solvers, and it would have to be optimised to

run in a reasonable amount of time.

Furthermore, the present tool was designed with a modularity approach in mind, so

that, if the solvers were to be changed in the future, more disciplines included in the tool

or changes are to be made to the models no major changes would have to be made to the

core application, only to the individual blocks.

6.2 Implementation of the Optimisation Algorithm

6.2.1 De�nition of the Optimisation Vector

After having de�ned the design variables in 4.3 and 5.2, it is important to de�ne

how these will be optimised in the context of the Particle Swarm Optimiser. As already

referred in 4.3, all parameters for all the design variables are assembled in consecutive

positions of vector xi in (3.1a). This can be described in the following manner:
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x1

x2

...

xk

xk+1

...

xi


=



aDV1
1

aDV1
2
...

aDV1
k

aDV2
1
...

aDVN
l


(6.1)

for N design variables, each with a characteristic number of parameters ak.

Naturally, the velocity vector vi in (3.1b) will have the same dimension as xi and each

component of these two vectors will be intimately related.

6.2.2 Swarm De�nition

From a programming point of view, in emphC++, the swarm consists of a vector of

individuals characterised by a user de�ned class. This class contains the current position

vector xi, the current velocity vector vi, the current objective function value, the best

position ever vector xi,Best and the best objective function value ever. The class also

contains a call to the objective function as well as a function to compare whether the

current position is better then the best position ever of that particle. Finally, the class

contains the prescribed values for ω, CG and CP , which are inertia, group con�dence and

particle con�dence, respectively.

Creating the swarm as a vector has multiple advantages from a programming point of

view. Any vector handling routines are trivially used in this context, thus avoiding the

development of new routines. Furthermore, even a radical rede�nition of the class and the

features contained in it have absolutely no impact in the developed code for the optimiser

operations.

6.2.3 Scattering of the Initial Swarm

The de�nition of the initial volume of the design space is of extreme importance.

De�ning the bounds for each component of (6.1) and de�ning the number of individuals

in the swarm will determine the initial convergence behaviour of the algorithm. Having

an initial volume that is very large may present some di�culty for the algorithm to �nd

an interesting region to explore. Narrowing this space may not allow the algorithm to

explore such areas or may lead to a high number of iterations before such regions are

reached. Gaining sensitivity to this issue was something that happened throughout the

work and can be considered part of the learning curve for anyone working in this �eld.
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In order to create the initial population, a high quality random number generator

was used [25]. All individuals in the population are assigned a random position within

the initial search space and, in order to give the swarm an initial momentum, a random

velocity vector is also assigned to each individual. Some care has to be taken assigning

the initial velocity, as it should not induce too much of a random behaviour to the swarm

(which is a possibility if velocity values are very high) as this would fall outside the

behaviour of a pure particle swarm scheme, being closer to an initial random search

scheme. Therefore, and only as �rule of thumb�, the velocity initial space was de�ned

as having an amplitude between 10% and 20% of the amplitude for the position initial

search space, in each direction.

6.3 Individual Class Functions

In this section, a description of the functions included in the class structure is made.

The �rst subsection refers to the determination of the objective function for each indi-

vidual. In the second, the purpose of the use of the best objective function value ever is

discussed.

6.3.1 Objective Function

In this function, the objective function value for each individual is determined. This

was one of the most demanding tasks in the development of the application, as interacting

with two external applications automatically, particularly when the aerodynamic solver

was not developed with such functionality in mind, had a series of challenges that had to

be overcome.

Running this function is, by far, the most time consuming process of the whole appli-

cation (in the order of 5 7 minutes for the problem presented in 8). An overview of this

function can be stated as follows: the input �le for the aerodynamic solver is generated;

the aerodynamic analysis is performed; the resulting output �le is analysed, being the

signi�cant values used in the calculation of the aerodynamic objective function(s); the

input �le for the structural solver is generated; the structural analysis is performed; the

resulting output �le is analysed, being the signi�cant values used in the calculation of

the structural objective function(s) and, �nally, any other objective function(s) that may

require information from both the aerodynamic and structural solutions is calculated.

Each of these steps in the application is described in more detail and presented in the

�ow chart at the end of the chapter, in �g. 6.1.
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Generating the Aerodynamic Input File

In section 4.3, the parameterisation of the aircraft was described. In this step, the

writing of the input �le for CMARC is made. This involves the declaration of all analysis

options such as angle of attack, free-stream velocity, static pressure and density, Mach

number, time stepping interval and number of streamlines for boundary layer analysis.

In this block, the discretization re�nement is chosen, regarding how many spanwise

panels are used in the wing and stabilising surfaces and number of panels in the fuse-

lage patches. Then, all the station point coordinates are declared for all of the patches,

specifying whether the patch has a symmetric correspondent.

Finally, all the information required for wake declaration is written, regarding to which

patch a certain wake line is attached, as well as the panel length of such wake. Tipically,

20 panels are used downwind.

Aerodynamic Analysis

CMARC was not developed to interact with other applications. The �rst versions

of this application did not have a GUI, running only from the command line, which

would have been an advantage. However, newer versions do have a GUI, which is just

a user friendly front end that exchanges information with a DLL containing the actual

panel method solver. As there is no information regarding the interaction with this DLL,

the only possible option to interact with this application was to develop scripting code

emulating user input information, such as input �lename, output �lename and enabling

viscous analysis (in order to use boundary layer correction).

Some aiding applications to this process had to be developed, as there was no way

to know when the analysis from CMARC was done. In order to do that, and exploring

some C++ options when calling external applications, a secondary application that polls

the existence of an output �le was developed. The function this block refers to calls this

secondary application in waiting mode, which means it only proceeds when the secondary

application has ended, therefore guaranteeing that the analysis of the output �le is only

started when there is a �le to be analysed.

Analysing the Aerodynamic Output File

The information that can be found in the output �le has already been described, in

section 4.4. However, more actions are taken in this block. After reading the needed

information, the aerodynamic objective functions are calculated. For instance:

fL/D = −CL
CD

(6.2)

45



and

fCM
= |CM | (6.3)

in which (6.2) and (6.3) are examples of typical objective functions to be minimised

and CL, CD and CM are lift, drag and pitching moment coe�cients for the aircraft.

This block is responsible for writing relevant information in the history �le: the values

of all of the objective functions that were calculated, as well as all of the variables that

are accounted for in their calculation; position and velocity for each individual are also

written into the history �le. Having such a �le allows to have an historical perspective of

the evolution of each individual in the swarm, not only the design variables values used,

but also the quality of such solution, without having to store the input and output �les

of all individuals in a large number of time steps. It is easy to see how impracticable such

strategy would be for a large swarm evaluated in hundreds or thousands of time steps,

regarding the needed storage for the �les.

Finally, all �les that are not needed in the subsequent blocks of the application are

deleted, a feature that will also be used after the analysis of the structural output �le.

Generating the Structural Input File

The structural model was already described in section 5.2. This block is responsible

for generating the structural input �le, having as starting point the aerodynamic output

�le.

Recall the nodes declared for the structure correspond to the panel's vertices, from the

3D Panel Method. Then, the shell elements are declared, corresponding to the skin of the

aircraft elements. Finally, reinforcements are modeled by beam elements, corresponding

to ribs, stringers and sti�eners.

As for the declared model loads, a single command line models gravity, therefore

including the self-weight as a load. As for the aerodynamic pressure in each panel obtained

from the aerodynamic analysis, the four corner nodes of each panel are declared in the

correct order to apply pressure on the outward face of the element, being the prescribed

value described in (5.3); viscous drag is imposed in a similar way, but using skin friction

coe�cient, Cf , to calculate a pressure to be applied in the thickness face of the element,

i.e., a force tangential to the elements.

Then, all needed constants for the elements are prescribed (see sections 5.2.1 and 5.2.3)

and the constraints for the model are declared, regarding what nodes should have null

displacements and/or rotations.

The last instructions to be written to this �le are those that command a static analysis

to be performed and post processing actions, in order to obtain stress, displacement at
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important locations in the aircraft and structural mass. Using Ansys R© own post processing

capabilities and being the commands FORTRAN based, a custom output �le can be easily

generated, containing the information described in section 5.4.

Structural Analysis

Ansys R© can be run in command line mode, provided that a suitable input �le is given.

This block is similar to the one for the aerodynamic analysis, being simpler, as it only

involves calling the execution of Ansys R© followed by the name of the input �le generated

before. This call is made in waiting mode: the execution of the main application waits

until the Ansys R© solution is done and the custom output �le is ready for analysis.

Analysis of the Structural Output File

Similarly to the aerodynamic output �le, the structural output �le is analysed in

order to calculate structural objective functions and to write relevant information in the

history �le. An example of a structural objective function is (6.4). Achieving a maximum

displacement objective is done with this penalty function: the aircraft objective function

will su�er a penalty if the wing tip de�ection is larger than 10% of the wing span; the

function is constructed in such a way that it is continuous, in order to guarantee that any

aggregate objective function that is used will also be continuous, allowing the use of the

ANN described in 3.3.

fδTip
=

0, |δT ip| < 0.1 Span

|δT ip|2, |δT ip| > 0.1 Span
(6.4)

Objective Function Determination

As already referred in section 3.3.2, an AOF will be used as the ultimate objective

function. Having determined all of the functions contributing to the AOF in the blocks

above, and according to equation (3.8), the AOF is simply calculated by doing a weighted

sum of all the contributing objective functions.

6.3.2 Best Ever Objective Function

This simple function allows to add memory depth to the individual and, therefore, to

the swarm. This is not a inherent need for the basic Particle Swarm Algorithm. However,

enabling this feature in the swarm means that a particle will always return to its best

position recorded during its motion. For example, if a swarm starts moving cohesively to
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a non-optimal region, the fact that one single particle has recorded in the past a better

position will attract that particle and, therefore, the whole swarm to that position.

The function is simply de�ned in the following manner:

fObjective (xi,Current) < fObjective (xi,Best)⇒ xi,Best = xi,Current (6.5)

6.4 Enhancements to the Optimisation Process

The generic optimisation process has already been described in section 3.2.1. However,

some speci�c aspects of the implementation have yet to be explored.

6.4.1 Limiters

In the version of the Particle Swarm Optimiser developed for this work, limiters were

implemented after verifying a divergent behaviour of the swarm, when starting at a large

distance from the optimal point. This is an understandable behaviour, as, under this

scenario and at each time step, the velocity is incremented and may reach such a high

value that the whole swarm overshoots the optimal point. This lead to impose limits on

the highest value each velocity component may reach, taking in account the used time

step:

|vi (tCurrent) | > |vi,max| : vi (tCurrent) = |vi,max| · sign (vi (tCurrent)) (6.6)

Some care has to be taken establishing these limits, as they must be loose enough to

allow the swarm to move and converge rapidly to the optimal point. These limits should

also be established taking in account their physical meaning. For instance, a maximum

allowable variation of 1 cm on the wingspan of a commercial airliner obviously has little

impact on the solutions, whereas the same variation in the thickness of a shell may be

drastic. To reduce this e�ect, it is preferable to use nondimensional design variables.

These limits in velocity must also be established together with ∆t, in order to guarantee

both stability and fast convergence. After some tests with the test functions described

in 3.2.3, it was determined that ∆t ≈ 0.2 and |vi,max| ≈ 1 (using nondimensional design

variables) provides the best results, although these values may be problem dependent.

When nothing is known about the problem, ∆t should be reduced to avoid stability

issues.
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6.4.2 Global to Local Search: Inertia and ∆t

Another implemented feature was to change the characteristics of the swarm, regarding

its search behaviour. As referenced already in 3.2.1, lowering the particles' inertia value

gives the swarm a faster convergence behaviour. Therefore, the chosen strategy was to

start with an inertia value close to unit and slightly lower the inertia of the particles with

time. This means that the particle starts with a good ability of doing a global search,

trying to �nd the region where the global optimum is most likely to be. As the inertia

gradually lowers, the swarm converges more rapidly towards the minimum within the

region where the global minimum is, i.e., it converges rapidly to the global minimum.

Again, this feature should be used cautiously, as the swarm may fail to �nd an optimal

point in a reasonable time if the inertia is lowered too fast.

Figure 6.1: Application �ow chart.
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Chapter 7

Single-discipline Optimisation

In this chapter, four singlediscipline problems are solved. These, two in the aerody-

namic and two in the structural domain, were used to test the developed application in

the context of real life problems but also increase the knowledge of the behaviour of the

optimisation process as a whole.

7.1 Aerodynamic Optimisation

In order to validate the developed application in a singlediscipline environment, two

aerodynamic optimisation problems are solved. In the �rst problem, a simple rectangular

wing is optimised with respect to its incidence distribution (section 7.1.1). In the second

problem, winglets are added to a baseline aircraft and optimised with respect to chord,

incidence and dihedral angles(section 7.1.2).

7.1.1 Rectangular Wing Optimisation

In this �rst example, a rectangular wing is optimised to yield maximum lift to drag

ratio CL/CD. The design variable is the wing spanwise incidence distribution. Span,

chord and airfoil are prede�ned and constant throughout the optimization process. The

wing semispan is 5 m and chord is 1.25 m. The chosen airfoil was a NACA 63A612, which

has maximum Cl/Cd at an angle of attack of 3o. Incidence angle at the wing root was

set at 5o to have convergence to a solution other than the predictable optimal elliptical

distribution of Cl[38] and the analysis was made at null angle of attack. Bounds were

imposed on maximum and minimum local incidence angle to −6o and +6o, respectively.

The objective function for this problem was given by:

fObjective = −CL
CD

(7.1)
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In this case, the wing was discretized with 40 panels spanwise, with a cosine spacing

(greater re�nement near the wing tip). As the purpose was to test the capabilities of the

optimizer, the swarm population was set to 6 individuals, 15 iterations were performed

and the aerodynamic solution was performed without boundary layer correction, for faster

results. As for the PSO speci�c parameters, the values used throughout this and the

following chapter were: CP = 2.5,CG = 1.0,∆t = 0.3,ω = 0.8 and |vi,max| = 1.

Table 7.1 compares a constant incidence wing of 5o throughout the whole span, the

best initial solution, i.e., the best random individual in the initial population and the �nal

best solution in the population; the increase in CL/CD ratio in relation to the constant

incidence wing is shown.

L/D to Constant Incidence
Constant Incidence 29.42 −
Best Initial Solution 40.26 +36.8%
Best Solution 45.10 +53.3%

Table 7.1: Gains from the optimisation process.

Spanwise distribution of incidence of the best solution obtained is shown in �g. 7.1.

The evolution of the optimisation process is shown in �g. 7.2, with points representing

each individual's score at each time step and lines representing the evolution of the average

and best value of the objective function.

Figure 7.1: Spanwise distribution of incidence.

From the results above, it can be concluded that the optimiser performed well in the

context of this problem. As expected, incidence distribution is such that the incidence

angle decreases towards the wing tip, down to a negative angle. Being the wing's planform
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Figure 7.2: Optimisation process evolution.

a rectangular one, this is to be expected, as the induced circulation will lead to an e�ective

angle of attack at the tip higher than that of the free-stream. The solution also presents

a high variation of incidence in the root region, also to be expected, as the root incidence

was set to 5o, a higher value than the airfoil's optimal Cl/Cd point.

Also from �g. 7.2, the e�ects of the velocity limiters are clear: not only is the behaviour

of the swarm a damped one, without too much randomness, as the slope at the end of

the process shows a non-accelerated behaviour, which would be expected without these

limiters, avoiding an optimal point overshoot.

7.1.2 Winglets Optimisation

In this second problem, a full aircraft without winglets is modeled and analysed, in

order to establish a baseline solution. The strategy is to create a set of winglets that will

increase the aircraft's performance, while maintaining the original stability of the aircraft

as much as possible. This would correspond to creating an add-on solution for an existing

aircraft. Figures 7.3 and 7.4 show the panel discretization (without winglets) and the

resulting CP value for the aircraft without winglets, respectively.

The goal of the optimisation problem is to increase the baseline L/D ratio, without

changing the CM of the aircraft. Maintaining CM as close to null as possible guarantees

that no extra drag will be generated by the horizontal stabiliser, while trying to maintain

static stability of the airplane.

Span, chord, dihedral, sweep and incidence are the design variables allowed to vary

within the bounds presented in table 7.2. The bounds on span and area correspond to

10% of the semi-span of the original wing and 5% of the main wing area, respectively.
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Figure 7.3: Panel Method of the full aircraft with wake lines highlighted.

Figure 7.4: Cp distribution on the aircraft: L/D = 25.62 .

53



The swarm had 6 individuals and the number of time steps was 8. The discretization had

a total of 7164 panels.

Design Variable Lower bound Upper Bound
Span (m) 0.00 0.35
Chord (m) 0.10 0.90
Dihedral (o) −75.0 +75.0
Sweep (o) −75.0 +75.0
Incidence (o) −6.0 +6.0
Area (m2) 0.0 0.17

Table 7.2: Aerodyanmic DV bounds.

In this example, as in the following, and as already described in 3.3.2, a multiobjective

optimisation was performed by using an AOF, aggregating the various objectives through

the weighted sum of single-objective functions. In this particular case:

fObjective = fL/D + fCM
+ fWinglet Area (7.2)

in which

fL/D = −
(
CL
CD
− 25.62

)
,

the term -25.62 simply applies a bias on the function, so that objective function values

that are negative are better than the baseline and positive are worse (this is not be strictly

necessary and was just used as a simple way to verify the optimiser's behaviour during

execution);

fCM
= 100|CM | ,

the weight 100 serves the purpose of making this component signi�cant in the AOF, as

Cm values are typically 1 to 2 orders of magnitude lower than Cl, for the airfoil alone.

This guarantees the original static stability by applying a penalty if the pitching moment

of the aircraft is changed;

fWinglet Area =

0, Winglet Area <= 0.17

[100 (Winglet Area− 0.17)]2 , Winglet Area > 0.17

this function applies a penalty if the winglet area is higher than 5% of the wing area, as

prescribed before.
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In order to have a fast convergence, the number of iterations was limited and no

boundary layer correction was considered, which leads to lower drag than in reality.

Baseline With Winglets Variation
Lift(N) 4732 5099 +7.8%
L/D 25.6 28.6 +11.7%
CM 0 −6.3× 10−4 −

Table 7.3: Gains from the optimisation process.

In �gure 7.5, the evolution of the optimisation process is shown, in which the objective

function value is shown for each of the six individuals in the swarm during the prescribed

eight time steps.

Figure 7.5: Optimisation process evolution.

The obtained solution has a very accentuated forward sweep and the typical high

dihedral (see �gures 7.6, 7.7 and 7.8), which is a valid aerodynamic solution, as any

forward swept lifting surface will induce circulation from its tip to the root. This will

reduce the vorticity that was previously generated at the free tip of the main wing,

therefore having the e�ect of a larger apparent span and, consequently, a reduction of

induced drag.

Being this an aerodynamic optimisation only, a structural analysis was not included.

This inclusion would eventually lead to a more traditional looking winglet, without the

accentuated forward sweep that could lead to structural design challenges.
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Figure 7.6: Resulting winglet (front view).

Figure 7.7: Resulting winglet (top view).

Figure 7.8: Resulting winglet (isometric view).
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7.2 Structural Optimisation

As in section 7.1, two singlediscipline optimisation problems are solved, now in the

structural domain. In the �rst problem, a beam's web height is optimised (section 7.2.1).

In the second problem, the aerodynamic baseline solution from section 7.1.2 is used and

structural parameters are optimised.

7.2.1 Beam Optimisation

In this example, a simple structural optimisation problem is explored. An aluminum

I-beam is optimised for mass with respect to the web height along the span. Height is

de�ned along the z direction. The geometry of this beam and its loadings is shown in

�g. 7.9 (the shown web height distribution is only for illustrative purposes, as nothing is

known about it a priori the optimisation process). The beam is �xed at its origin.

Figure 7.9: Beam section and geometry.

Limit bounds were imposed on maximum and minimum height of the beam's web,

5 mm and 70 mm, respectively. As before, the problem is multiobjective: weight is to

be minimised, average stress maximised and maximum stress limit ful�lled. Thus, the

objective function was constructed according to (7.3).

fObjective = fmass + fAverage Stress + fσmax (7.3)

in which,

fmass = 25mbeam ,

fAverage Stress =
σmax − σavg

10
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fσmax =

{
0, σmax ≤ 100MPa

100
[
σmax−100

100

]2
, σmax > 100MPa

Regarding the �rst objective, both mass and average stress are considered: fmass

naturally penalises a solution with high mass, whereas fAverage Stress will bene�t a solution

that has equal stress in the beam's cap, where this function is analysed. As for the

function regarding maximum stress, this highly penalises solutions with stresses above

the prescribed admissible stress, in this case chosen as 100 MPa.

Again the weights seen in these function serve the purpose of making all singleobjective

function signi�cant but giving more emphasis, in this case, to mass.

For this problem, the beam was discretised with 960 shell elements (320 for each of

the caps and web), the swarm had 8 individuals and 20 iterations were run. Table 7.4

compares the best initial solution and the �nal best solution in the population regarding

their objective function value, mass, maximum stress and average stress.

Objective Function Mass (kg) σmax (MPa) σavg (MPa)
Best Initial Solution 16.34 0.523 74.7 42.2
Best Solution 11.04 0.399 102.1 91.9

Table 7.4: Gains from the optimisation process.

Fig. 7.10 shows the optimal web height distribution along the beam span. As expected

in a problem of this sort, the solution shows an almost linear variation, reaching, at the

beam tip, a value that was naturally determined by the lower bound imposed on this

parameter (5 mm).

Figures 7.11 and 7.12 show the stress distribution on the upper spar cap, subject to

tension. It shows the e�ect of having a component in the objective function that bene�ts

solutions in which this element is stressed in a uniform way. It should also be noted that

the maximum stress in the structure is higher than wanted by 2%. This can be explained

as the objective function is continuous and re�ects the care that must be taken when

designing AOF functions such as this one, in which penalty functions are present. In this

case it can be concluded that not enough weight was given to fσmax when compared to

fmass.

Finally, �gures 7.13 and 7.14 show the evolution of the objective function and mass

for this optimisation problem. Looking at both graphs, it should be noted that, initially,

a large number of individuals have very high objective function values, mainly due to

maximum stress being higher than the allowed. As the optimisation process progresses,

all of the individuals start approaching the optimum (iterations 8 to 15). Then, higher
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Figure 7.10: Optimal height distribution along the span.

Figure 7.11: Stress in the upper cap, at the optimal con�guration (in Pa).

Figure 7.12: Optimal solution (σyy, in Pa, displacement scale 2:1).
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values start appearing again, as all solutions now have a geometry that leads to low

mass but, therefore, also high stresses. Naturally, if the optimisation process was left to

continue until convergence, individuals would return to lower objective function values.

Figure 7.13: Optimisation process evolution.

Figure 7.14: Beam mass evolution.

7.2.2 Shell Thickness and Ribs Optimisation

In this second problem, the aerodynamic baseline solution of section 7.1.2 is used and

a structural optimisation is performed. Skin thickness and rib geometry parameter (as

described in section 5.2) are optimised in the whole aircraft.
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In this problem, the aggregate objective function considered mass, wing tip rotation,

wing tip de�ection and maximum veri�ed stress. Structural mass is obviously a main

factor in aircraft design and should be minimised. Wing tip rotation was equally consid-

ered in the objective function, as a structural solution that shows signi�cant wing torsion

will have its aerodynamic solution invalidated. This is particularly important as an ex-

act �uid-structure interaction was not considered in this work. Wing tip de�ection was

included so that the solution is penalised if it is larger than 10% of the semispan. The

same principle applies for maximum stress in the structure, if this value is higher than

the maximum value for the considered material. Finally, we have the following AOF:

fObjective = fmass + fWing T ip Rotation + fWing T ip Deflection + fσmax (7.4)

in which

fmass =
mass

10
,

fWing T ip Rotation = |Wing T ip Rotation| ∗ 100 ,

fWing T ip Deflection =

0, δtip <= 0.2

[25 (δtip − 0.2)]2 , δtip > 0.2

fσmax =

0, σmax <= σ6061−T6

10 [(σmax − σ6061−T6)]
2 , σmax > σ6061−T6

As very thin shells may be unfeasible, a lower bound of 0.635 mm was applied.

The swarm had 8 individuals and the optimisation process ran for 12 time steps. The

FE structural model had a total of 7164 shell elements and 3678 beam elements.

The evolution of the objective function value is shown in �gure 7.15. The optimisation

process evolved as displayed in �g. 7.16, minimising mass � the main contribution to the

AOF � while maintaining the optimal solution within the desired bounds, as shown in

�gure 7.17, in which wing tip displacement for the best individual in each time step is

highlighted.

The o� bounds value of stress at the vicinity of the wing root, shown in �g. 7.18, serves

to show that the construction of the AOF should be done carefully. The optimal point

for this particular AOF is one that gave too much value to a low mass, therefore partly

sacri�cing other objectives, in this case, maximum structural stress.

Again, it should be stressed that a small number of individuals and time steps were
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Figure 7.15: Evolution of the AOF.

Figure 7.16: Evolution of the mass.

Figure 7.17: Evolution of the wing tip de�ection.
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Figure 7.18: Stress Intensity obtained through FEM (in Pa).

Figure 7.19: Wing de�ection (in m; displacement scale 5 : 1).
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used to maintain run time within reasonable limits, as the main goal of this work is the

development of an MDO tool and these simple test cases serve the purpose of validation

and as learning tools. Nonetheless, the algorithm was capable of minimising the objective

function to what appears to be the optimal point, as the best individual's mass shows a

convergence behaviour. Also to notice is the fact that the average swarm values also show

a convergence towards the best individual, a behaviour that also suggests the optimal

point was attained.

7.3 Lessons Learnt with Singleobjective Optimisation

In this chapter, some of the tests performed on the tool were described.

These tests proved extremely useful. The parameterisation strategy was tested and

proved to be a valid way of having great diversity in the generated models for aerodynamic

and structural analyses with a reduced number of optimisation parameters.

The interaction with aerodynamic and structural external analysis tools was exten-

sively tested and allowed to increase the robustness level of the application in case of the

analysis returning unfeasible results or in the rare event of a failed analysis.

The application proved capable of performing optimisation on singlediscipline prob-

lems, tested in two increasing levels of complexity: �rst, the simple wing (aerodynamic

problem) and beam (structural problem); then, the winglet optimisation problem (aero-

dynamic) and the structural dimensioning problem. This proved to be a solid starting

point to achieve multidisciplinarity.

The lessons learned from these tests were also useful in gaining sensibility for tweaking

the PSO's parameters and in understanding the issues related to the construction of proper

AOFs, in particular, the weight relation between singleobjective functions and penalty

functions.
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Chapter 8

Multidisciplinary Design Optimisation

In this chapter, a true multidisciplinary design optimisation problem was solved. To

this end, aerodynamics, structure and basic �ight performance were considered.

8.1 Statement of the Problem

The scenario was created for a small surveillance unmanned aerial vehicle (UAV):

a blended wing body platform, with a central thicker body, designed for long range,

�ying at an altitude of 5000 m and speed of 70 m/s. The geometry of this aircraft is

presented in �g. 8.1. The aircraft has a �xed span and sweep angle, ∆ = 27o, and the

central body has a �xed geometry. The airfoil, a Wortmann FX 69-H-098, was also

constant throughout the span, except for thickness variations. This airfoil was chosen for

its low Cm0 (zero lift pitching moment) as the aircraft is tailless. However, this is not a

re�ex airfoil and therefore is not a natural choice for this planform, regarding the aircraft's

static stability. This choice was intended to evaluate the optimiser's capability to create a

stable con�guration even with this airfoil. The geometry values for this particular aircraft

are shown in table 8.1.

Chord (m) Incidence (o) Thickness Distance from root (m)
Station A 1.80 4.0 20% 0.00
Station B 0.80 3.0 10% 0.60
Station C variable variable 10% 2.50

Table 8.1: Aircraft geometry dimensions.

In terms of aerodynamics, chord and incidence of the wing (between stations B and C )

were the design variables to be optimised. Dihedral and sweep angles were not considered,

as only a thorough �ight stability analysis would be able to solve for these parameters.
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Figure 8.1: MDO problem: aircraft geometry.

As for the structure, beams were simulated by adding their respective beam web at 25%

and 75% of the airfoil, being that the wing skin serves as their caps, which approaches

a box-wing like construction and aluminum was chosen for material. As in section 7.2.2,

skin thickness of the panels was the parameter to be optimized.

Table 8.2 summarises the lower and upper bounds that were applied both to aerody-

namic and structural design variables. Recalling (4.8), and taking in account that p = 2,

this represents a total of 13 parameters ak that were optimised.

Design Variable Lower bound Upper Bound
Chord (m) 0.10 0.80
Incidence (o) −5.0 +5.0
Panel Thickness (mm) 0.635 20.0

Table 8.2: Aircraft DV bounds.

The main objective to be ful�lled by this aircraft is long range. This result was

calculated using the Breguet range equation (8.1) [38].

R =
η

SFC

L

D
ln

(
Wi

Wf

)
, (8.1)

in which η is propulsive e�ciency (a propeller propulsion was assumed, with η = 0.8),

SFC is speci�c fuel consumption (here assumed to be 0.35kg · kW−1 · h−1), Wf and Wi

are the weight of the aircraft at the �nal and initial points of its mission. Parameter Wi

was calculated from the lift obtained by the aerodynamic solution and Wf was estimated
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by assuming a 20% fuel fraction of the non-structural weight, derived from the structural

solution:

Wi =
L

g
, Wf = Wi −mfuel = 0.8Wi + 0.2mstructure (8.2)

As before, L is lift and D is drag for the full aircraft.

In this problem, the aggregate objective function was constructed to evaluate each

solution taking in account mainly the range, but also included other functions to guarantee

that wing tip displacement and rotation, maximum stress in the structure and pitching

moment were within limits, in an approach similar to what is expressed in sections 7.1.2

and 7.2.2. The AOF is given by:

fObjective = fRange + fWing T ip Rotation + fWing T ip Deflection + fσmax + fCM
(8.3)

in which (Range is in km, wing tip rotation in rad, de�ection in m, stresses in MPa and

pitching moment in Nm):

fRange = −Range
20

,

fWing T ip Rotation = 100 |Wing T ip Rotation| ,

A penalty is added to the objective function if wing tip rotation is not null,

fWing T ip Deflection =

{
0, δtip ≤ 0.125

[20 (δtip − 0.125)]2 , δtip > 0.125

if wing tip de�ection is greater than 5% of semispan,

fσmax =

{
0, σmax ≤ σadm

200
[
σmax−σadm

100

]2
, σmax > σadm = 100MPa

if maximum stress is greater than 100 MPa and

fCM
= 2

(
My

50

)2

if pitching moment is not null (choosing that the center of gravity of the aircraft is at 60%

of root chord).

To solve this problem, 10 individuals were used, for 38 time steps. The aerodynamic
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model had 2552 panels and the FE model had 2668 shell elements (the correspondent to

the outer skin shell elements plus the beams' web shell elements).

8.2 Results

The evolution of the objective function value is shown in �g. 8.2. The optimisation

process evolved as expected, maximising range (see �g. 8.3) - the main contribution to

the AOF - while maintaining the optimal solution within the applied constraints. These

are not shown here as the limits are being respected and such graphics would add little

to this discussion.

Figure 8.2: Objective function evolution.

Figure 8.3: Range evolution.
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Regarding the analysis of one particular individual in the swarm, it is clear in �g. 8.2

that an individual maintains its objective function as apparently constant, from step 1 to

step 19. Because of the way range is calculated, precautions must be made in order to

guarantee that fuel fraction is not a negative number, a situation that may occur if lift is

lower than structural mass. In these situations, fuel fraction is set to zero, which in turn

results in a null range, hence the constant value. From step 26 onwards, the individual

has moved in the design space towards a point that allows for a non null fuel fraction and

a non null range.

Table 8.3 compares the best initial solution, i.e., the best random individual in the

initial population and the �nal best solution in the population regarding Range, Lift,

L/D, structural mass, maximum stress, payload (de�ned as liftable weight other than

structural mass and fuel) and objective function.

Best Initial Individual Final Solution Variation
Range (km) 2285 3772 65%
Lift (N) 2465 2267 −8.00%
L/D 24.15 24.57 1.70%
mstructural (kg) 117.5 38.1 −68%
Payload (kg) 107.2 154.6 44%
σmax (MPa) 25.5 97.7 283%
Objective Function −110.1 −184.5 68%

Table 8.3: Gains from the optimisation process.

From the analysis of these values, it is clear that there was optimisation in both aerody-

namic and structural �elds, but most importantly, optimisation in a coupled environment.

Analysing only aerodynamic performance in lift and L/D ratio shows two similar solu-

tions but their di�erences arise when the results of the structure are considered. The

optimised solution shows a maximum stress value very close to the allowed maximum,

guaranteeing that the structure is capable of handling the aerodynamic loads, yet light

enough to allow for a long range. The notion of optimisation in a coupled environment

becomes even clearer when intermediate results are analysed, as during the optimisation

process some solutions had higher lift or L/D or lower mass, but always with a higher

value of the aggregate objective function than the found optimal solution.

The other important results of the optimized solution are a wing tip rotation of 0.12o,

low enough not to in�uence the aerodynamic solution (as no coupled aero-structural

analysis is performed), a wing tip de�ection of 31 mm and a pitch down moment of 70

Nm. Recall that a statically stable solution is the goal and the aircraft should present a

null pitching moment. Although the achieved result for this con�guration was not null,

it is very low for an aircraft of these dimensions and mass, being easily compensated by
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control surfaces or the slight shift of the center of gravity.

Figures 8.4 and 8.5 show spanwise chord and incidence distributions. As can be seen

in the chord distribution graphic, chord is almost constant throughout the wing. Even

though this may not favor the best L/D ratio, it adds area to the wing, having a more

signi�cant e�ect on range (by means of a higher fuel mass) than another distribution.

Regarding incidence, the graphic shows a decrease towards the wing tip, which favors not

only the L/D ratio by means of a more favorable lift distribution (somewhat overcoming

the lower than optimal lift distribution given by the almost constant chord distribution)

but also has signi�cant e�ects in terms stability. As noted before, the chosen airfoil is

not a re�ex airfoil, which would be a more natural choice for �ying wing con�guration,

due to its lower pitching moment. However, the optimal incidence distribution combined

with the accentuated backward sweep of the wing have a balancing e�ect on the aircraft

regarding pitching moment, guaranteeing static stability.

Figure 8.4: Spanwise chord distribution.

The aerodynamic design variables value distributions result in the Cp distribution on

the aircraft shown in �g. 8.6. It is clear in this picture that the central body has a

signi�cant contribution to lift and it is also clear that the 3D Panel Method is capable of

capturing the tridimensional e�ects of the �ow, as the wing root is the section with the

lowest Cp value, result of the induced circulation of the body area onto the wing.

Fig. 8.7 shows the stress intensity on the optimised solution. As expected, the wing

root area shows higher stresses than the rest of the structure, particularly near the leading

edge, as not only upwards bending occurs due to lift, but also backwards bending, result

of drag.

Fig. 8.8 shows the thickness distribution from which the FEM solution was obtained,

showing a higher value in the areas where stress is higher and thus con�rming the opti-
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Figure 8.5: Spanwise incidence distribution.

Figure 8.6: Cp distribution in the upper camber of the aircraft.

Figure 8.7: Stress intensity (top and bottom views, left and right, respectively; in Pa).
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miser's ability to create an structure that is adequate to the aerodynamic loadings.

Figure 8.8: Shell thickness distribution (in m).

Solving this problem showed that the application is capable of handling a multidisci-

plinary design optimisation problem, demonstrating the advantages of this methodology

applied to preliminary aircraft design. The modularity approach also proved useful as

changing the model's complexity or the analysis tools has no implications in the rest of

the application.

As already referred in 7.3, the tests described in chapter 7 proved extremely useful

in understanding the issues related to the construction of proper AOFs in the context of

multiobjective optimisation, as the results shown in this chapter prove that the tool is

able to ful�ll all the requirements that are prescribed for the problem.
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Chapter 9

Conclusions

Aircraft design is an area in which MDO can o�er clear advantages by exploring the

interactions between all involved disciplines and taking those into account from the very

beginning of the whole design process.

In this work, a novel MDO tool was developed.

A suitable optimisation algorithm was investigated and developed, being the Particle

Swarm Optimiser the chosen one. This proved to be a suitable method, particularly for

its robustness and noise insensitivity. It should be noted that no comparison with a more

traditional, gradient based algorithm, was performed. It did not become clear in this

work whether a Particle Swarm Optimiser (tuned or not) is faster than a deterministic

counterpart or not (some studies suggest it would actually be slower). However, the Par-

ticle Swarm Optimiser has the advantage of not having to deal with derivatives, which

can often be confusing, as they may not have a true physical meaning, particularly in the

context of aircraft design and for a large number of design variables. Furthermore, any

optimisation algorithm that is population based is particularly suited to distributed com-

putation, which is becoming a common reality. In this sense, and if enough computational

power is available, the Particle Swarm Optimiser may become a competing alternative to

a gradient based algorithm.

Choosing a 3D Panel Method as the aerodynamic solver was based on the compromise

between solution quality and computational cost, being that it is not the best possible

aerodynamic solver available. However, given that the chosen code (CMARC ) has been

validated and only used within the domain of applicability of the method (incompressible

regime), one can assume that the aerodynamic results are reliable. Using an already

developed code presented some challenges, regarding the automated interaction with the

optimiser, but these were overcome.

Using Finite Element Method for the structural analysis guaranteed the quality of the

obtained solution, in the sense that not only is the method widespread and well accepted

but FEM also allowed to represent with good �delity the typical aircraft structural design.
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Naturally, for simplicity reasons, the structural �nite element model was reduced to its

main components (skin panels and framed reinforcements). The �nite element model was

derived from the output �le of the aerodynamic solver, guaranteeing the best possible

compatibility between aerodynamic and structural models.

Not performing a numerical convergence study in both aerodynamic and structural

analyses, in order to guarantee mesh re�nement independence, could lead to numerical

errors in the solutions. Even bearing this in mind, the level of re�nement of the discretiza-

tion for both analyses was chosen based on the expected time to analyse a given solution.

It must be noted that the main goal of the work described in this document was to develop

a framework based on the MDO methodology. Therefore, evaluating the quality of the

developed application should not be invalidated by the quality of the analysis tools, as

long as they allow a good approach to reality (even if not as good as possible, within the

developed theories for solving both structural and aerodynamic problems).

Analysing the obtained results, one can conclude that the optimiser tool is able to do

what it is expected to: �nd the minima of the prescribed cost functions and therefore

reach an optimal solution for the problems at hand. The developed application proved to

be very �exible, in the sense that it is not limited only to aircraft design, but, with the

adequate models and analysis tools, can be applied to any multidisciplinary problem in

the engineering �eld.

It should be noted that the results that are presented for the MDO problem may

appear optimistic (in terms of range). A proper static and dynamic stability study, which

would have been indispensable to include in a proper preliminary design tool, as well as

a number of other disciplines, was left out of the analysis, leading to a rather simplistic

model and therefore, to results that might not be feasible for a detailed design point.

As for future developments, possibly one of the most interesting concepts that can be

applied to this type of application is distributed computation. The use of evolutionary

algorithms is particularly suited to this strategy as it can be implemented on a network of

computational resources without the need of actually creating a cluster: each analysis at

a given time step of the optimisation process can be independently performed in a node

of this network, resulting in an execution time for each time step equal to the time needed

for the analysis of a single individual.

In order to use this application in a real life situation, where solution quality is es-

sential, highly detailed models (in the various disciplines to be integrated in the process)

should always be used and analysis tools should be the best available. Ideally, aerody-

namic analyses should be performed by generating a solid model of the solution and,

using CFD methods, evaluating the solution with a highly re�ned mesh and in a number

of situations large enough to cover the whole �ight envelope. Along with the aerodynamic

solution, a highly detailed structural model should be generated, based on the typical air-
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craft structural elements, and the coupled aero-structural analysis performed. Obviously,

to be able to do this detailed analysis a preliminary solution should be produced, and

that is the primary task of the present application.

Disciplines other than the more traditional structures, aerodynamics and �ight per-

formance should also be included: propulsion, aeroelasticity, active control of surfaces,

environmental performance (fuel consumption, noise, nocive emissions and such, increas-

ingly important aspects) and operational cost, just to name a few disciplines that matter

in the life cycle analysis of an aircraft.

As for the Arti�cial Neural Network, some integration issues arose that did not allow

to present here useful results. The lack of knowledge regarding size and complexity of the

network means further investigation is needed in this �eld. However, once fully functional,

this should prove to be a useful tool. Determining the Pareto Front is an important feature,

as this truly enables the application to be a Multiobjective Multidisciplinary design tool

and gives designers the ability to understand the possible trade-o�s that can be done along

this surface and therefore chose a suitable optimal design point. Furthermore, doing this

with the ANN should allow to approximate this surface in a short time, if compared to

obtaining the exact Pareto Front. Integrating the ANN into these applications should

also allow a reduction in the computational cost of the solution, as solutions far from

optimality are not analysed.

75



Bibliography

[1] AIAA Technical Committee on MDO. White Paper on Current State of the Art.

http://endo.sandia.gov/AIAA_MDOTC/sponsored/aiaa_paper.html, January 1991.

[2] Joseph P. Giesing and Jean-François M. Barthelemy. A Summary of Industry MDO

Applications and Needs. At request of the AIAA Technical Committee on MDO,

1998.

[3] T. H. G. Megson. Aircraft Structures for Engineering Students. Butterworth-

Heinemann, 2003.

[4] Ansys R© Inc. Element Reference Library. Release 11.0 Documentation for ANSYS.

[5] J. Sobieszczanski-Sobieski, J.-F. M. Barthelemy, and G. L. Giles. Aerospace En-

gineering Design by Systematic Decomposition and Multilevel Optimization. 14-th

Congress of the International Council of the Aeronautical Sciences (ICAS), Septem-

ber 1984.

[6] S. Wakayama and I. Kroo. The Challenge and Promise of Blended-Wing-Body Op-

timization. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Anal-

ysis and Optimization, September 1998.

[7] H. Hoenlinger, J. Krammer, and M. Stettner. MDO Technology Needs in Aeroser-

voelastic Structural Design. 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-

disciplinary Analysis and Optimization, September 1998.

[8] M. H. Love. Multidisciplinary Design Practices from the F-16 Agile Falcon. 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-

mization, September 1998.

[9] J. Bennett, P. Fenyes, W. Haering, and M. Neal. Issues in Industrial Multidisci-

plinary optimization. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisci-

plinary Analysis and Optimization, September 1998.

76



[10] N. Radovcich and D. Layton. The F-22 Structural Aeroelastic Design Process with

MDO Examples. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, September.

[11] N. M. Alexandrov and R. M. Lewis. Analytical and Computational Properties of

Distributed Approaches to MDO. 8th AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, September 2000.

[12] P. Bartholomew. The Role of MDO within Aerospace Design and Progress To-

wards an MDO Capability Through European Collaboration. 7th AIAA/USAF/-

NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Septem-

ber 1998.

[13] M. H. Love. Multidisciplinary Design Practices from the F-16 Agile Falcon. 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti-

mization, September 1998.

[14] J.A. Young, R.D. Anderson, and R.N. Yurkovitch. A Description of the F/A-18E/F

Design and Design Process. 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-

disciplinary Analysis and Optimization, September 1998.

[15] Y. Deremaux, N. Pietremont, J. Négrier, E. Herbin, and M. Ravachol. Environmental

MDO and Uncertainty Hybrid Approach Applied to a Supersonic Business Jet. 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, September

2008.

[16] R.D. Braun, A.A. Moore, and I.M. Kroo. Use of the Collaborative Optimization

Architecture for Launch Vehicle Design. AIAA, 1996.

[17] Tiago M. Soares. Optimização Multidisciplinar Aplicada à Concepção de Veículos de

Transporte Espacial (MSc. Thesis). IST, Lisboa, 2007.

[18] J. Korte, J. Dunn, A. Salas, N. Alexandrov, W. Follett, G. Orient, and A. Hadid.

Multidisciplinary Approach to Linear Aerospike Nozzle Optimization. 33rd Joint

Propulsion Conference, July 1997.

[19] Ricardo M. Paiva. Development of a Modular MDO Framework for Preliminary

Wing Design (MSc. Thesis). IST, Lisboa, 2007.

[20] G. Venter and J. Sobieszczanski-Sobieski. Multidisciplinary Optimization of a

Transport Aircraft Wing Using Particle Swarm Optimization. 9th AIAA/USAF/-

NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Septem-

ber 2002.

77



[21] J. Kennedy and R. Eberhart. Particle Swarm Optimization. IEEE International

Conference on Neural Networks, Vol. IV, pp. 1942�1948, 1995.

[22] Ruben E. Perez and Peter W. Jansen. Aero-Structural Optimization of Non-Planar

Lifting Surface Con�gurations. 12th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, September 2008.

[23] D. Lim, Y.-S. Ong, Y. Jin, B. Sendho�, and B. S. Lee. Inverse multi-objective robust

evolutionary design. Springer Science & Business Media, September 2006.

[24] Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments � A

Survey. IEEE Transactions on Evolutionary Computation, Vol. 9, No. 3, June.

[25] George Marsaglia. Random Number Generators. Journal of Modern Applied Statis-

tical Methods, Vol. 2, No. 1, pp. 2-13, May 2003.

[26] G. Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics

of Control, Signals, and Systems, Vol. 2, pp. 303-314, 1989.

[27] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neu-

ral Networks, Vol. 4, 1991.

[28] D. Chafekar, L. Shi, K. Rasheed, and J. Xuan. Multiobjective GA Optimization

Using Reduced Models. IEEE Transactions on Systems, Man and Cybernetics �

Part C: Applications and Reviews, Vol. 35, N. 2, May.

[29] G. Li, M. Li, S. Azarm, S. al Hashimi, T. al Ameri, and N. al Qasas. Improving

multi-objective genetic algorithms with adaptive design of experiments and online

metamodeling. Structural and Multidisciplinary Optimization, February.

[30] Z. Zhou, Ong. Y.-S., P. B. Nair, A. J. Keane, and K. Y. Lum. Combining Global

and Local Surrogate Models to Accelerate Evolutionary Optimization. IEEE Trans-

actions on Systems, Man and Cybernetics � Part C: Applications and Reviews, Vol.

35, N. 2, January.

[31] Y. Jin and J. Branke. Evolutionary Optimization in Uncertain Environments � A

Survey. IEEE Transactions on Evolutionary Computation, Vol. 10, No. 1.

[32] Y. Jin. A comprehensive survey of �tness approximation in evolutionary computa-

tion. Soft Computing, Vol. 9, 2005.

[33] A. Messac, A. Ismail-Yahaya, and C.A. Mattson. The Normalized Normal Con-

straint Method for Generating the Pareto Frontier. Structural and Multidisciplinary

Optimization, Vol. 25, No. 2, pp. 86-98, 2003.

78



[34] Paulo Caixeta Jr. and Flávio Marques. Aeroelastic Wing MDO Using Metamodel

Based on Neural Networks. 8th World Congress on Structural and Multidisciplinary

Optimization, 2009.

[35] Ricardo Paiva, Curran Crawford, Afzal Suleman, and André Carvalho. A Comparison

of Surrogate Models in the Framework of an MDO Tool for Wing Design. 5th AIAA

Multidisciplinary Design Optimization Specialist Conference, May 2009.

[36] John. D. Anderson. Computation Fluid Dynamics � Basics with Applications. Mc-

Graw Hill, 1995.

[37] C. Hirsch. Numerical Computation of Internal and External Flows, 2nd Edition.

Butterworth-Heinemann, 2007.

[38] Vasco de Brederode. Fundamentos de Aerodinâmica Incompressível. Vasco de

Brederode, Lisboa, 1997.

[39] Joseph Katz and Allen Plotkin. Low Speed Aerodynamics - From Wing Theory to

Panel Methods. McGraw-Hill, 1991.

[40] Dale L. Ashby, Michael Dudley, and Steven K. Iguchi. Development and Validation

of an Advanced Low-Order Panel Method. NASA Technical Memorandum 101024,

1988.

[41] Dale L. Ashby and Lindsey E. Browne. Study of the Integration of Wind Tunnel and

Computational Methods for Aerodynamic Con�gurations. NASA Technical Memo-

randum 102196, 1989.

[42] Farooq Saeed and Jerome Bettinger. Aerodynamic E�ciency of Non-Planar Arc/El-

liptic Planforms. 28th Annual ARA Congress, 2003.

[43] David W. Roberts. The Aerodynamic Analysis and Aeroelastic Tailoring of a

Forward-Swept Wing, (MSc. Thesis). North Carolina State University, Raleigh, NC,

2006.

[44] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, 2005.

[45] ASM International. Metals Handbook, Vol.2 - Properties and Selection: Nonferrous

Alloys and Special-Purpose Materials, 10th Ed. ASM Intl., 1990.

79


	Abstract
	Resumo
	Acknowledgments
	List of Figures
	List of Symbols
	Abbreviations
	Introduction
	Thesis Objective
	Thesis Layout

	Multidisciplinary Optimisation
	Introduction
	MDO Strategies Applied to Aircraft Design

	Evolutionary Algorithms
	Introduction
	Particle Swarm Optimisation
	Implementation of the PSO
	Detailed Implementation
	Validation of the Implemented Optimiser

	Artificial Neural Network
	Accelerator for the PSO
	Pareto Front Detection


	Aerodynamic Analysis
	Introduction
	3D Panel Method - CMARC
	Aircraft Parameterisation
	Wings and Stabilizing Surfaces
	Fuselage and non-Lifting Bodies

	Analysis Options and Solution Post-Processing

	Structural Analysis
	Introduction
	Structural Model
	Wing and Fuselage Panels
	Spars
	Ribs, Stringers and Stiffeners

	Structural Loads
	Solution Post-Processing

	Framework Tool Implementation
	Introduction
	Implementation of the Optimisation Algorithm
	Definition of the Optimisation Vector
	Swarm Definition
	Scattering of the Initial Swarm

	Individual Class Functions
	Objective Function
	Best Ever Objective Function

	Enhancements to the Optimisation Process
	Limiters
	Global to Local Search: Inertia and t


	Single-discipline Optimisation
	Aerodynamic Optimisation
	Rectangular Wing Optimisation
	Winglets Optimisation

	Structural Optimisation
	Beam Optimisation
	Shell Thickness and Ribs Optimisation

	Lessons Learnt with Singleobjective Optimisation

	Multidisciplinary Design Optimisation
	Statement of the Problem
	Results

	Conclusions
	Bibliography

