
Redundancy in an heterogeneous distributed storage
system

[Extended Abstract]

Manuel Cabral
Superior Technical Institute

Technical University of Lisbon
Lisbon, Portugal

manuel.cabral@ist.utl.pt

ABSTRACT
The goal of digital preservation is the accurate rendering of
digital content over time. To do this it is necessary, among
other things, to be able to store digital information reliably,
that is, without data losses. This cannot be achieved with-
out using redundancy. The GRITO project aims to develop
a distributed storage system which allows the harnessing of
spare resources of grids both dedicated to preservation or
with other main purposes. Due to the usage of different
grids, it is likely that the storage system’s nodes will be
very heterogeneous and have different characteristics. This
means that many of the failures of the system’s components
will be correlated. The goal of this work is to study redun-
dancy strategies suitable for such an heterogeneous environ-
ment and to implement them in a GRITO.

To achieve this, a system was developed which allows the
analysis of a redundancy strategy’s performance using sim-
ulation, its implementation in the real system and moni-
torization of that system to adapt the strategy to its real
behaviour. We also propose strategies which take correlated
failures into account and models that can be parametrized
to represent the failures of a real system. Both the simula-
tion system and strategies support different failure models,
allowing the most suitable one to be used for each specific
system. Experimental results show that the performance of
strategies which take correlated failures into account is much
superior and that their automatic adaptation can improve
their performance.

Keywords
Digital preservation, data grids, redundancy, correlated fail-
ures, simulation, introspection

1. INTRODUCTION
Digital preservation combines policies, strategies and actions
to ensure access to digital content regardless of the chal-
lenges of media failure and technological change. The goal
of digital preservation is the accurate rendering of authenti-
cated content over time.

To achieve this it is necessary, among other things, to be able
to store digital information reliably, that is, in a way which
will prevent data losses. The GRITO project attempts to
lower the cost of this by developing a distributed storage sys-
tem which allows the harnessing of spare resources of grids
in different Portuguese institutions.

The most important requirement in digital preservation stor-
age systems is that the data stored there is not lost. Being
able to read it quickly is not usually very important and
read acesses are rare. Also, after the data is stored, it is not
usually necessary to change it, which means that there won’t
be any random-writes to the data, eliminating the problem
of replica consistency.

Due to the usage of different grids, it is likely that the stor-
age system’s nodes will be very heterogeneous, with major
differences in characteristics like software configuration or
physical location. Because of this, it is expected that many
of the failures of the system’s components will be correlated,
for example, a worm outbreak could cause failure of multiple
components with similar software configurations.

Redundancy is a fundamental tool to achieve reliable data
storage in a distributed system. This paper describes the
study of redundancy strategies to be used in a storage sys-
tem like the one described earlier. A redundancy strategy
defines which type of redundancy to use (replication or era-
sure coding) and how to react to each system state. For
instance, a redundancy strategy may consist on using repli-
cation and creating a new replica in a randomly chosen stor-
age resource when the number of file replicas is lower than
three.

The goal of this work is to study and implement redundancy
strategies in a GRITO system. This means developing a
set of strategies, a method to compare their performance
and a redundancy system to be used with GRITO. These
strategies should take into account correlated failures.



We have developed a system to analyse and implement re-
dundacy strategies in an environment with correlated fail-
ures. This solution includes three components:

Simulation Using Serapeum, a simulator which allows the
long-term performance of a redundancy strategy to be
analysed. Different failures models can be used to gen-
erate the simulations’ failures, allowing the most ade-
quate model to be used for each particular system.

Implementation Using a redundancy system which allows
that strategy to be implemented in a real system using
the same code as the simulation. This means that
strategies only have to be implemented once for testing
and real usage. This system is designed to work with
different types of data grids and we have developed
support for the iRODS data grid, which is used by
GRITO.

Introspection Using a mechanism which measures the real
behaviour of the system during execution. These mea-
surements can be used to adapt the models used to
predict failures and to implement strategies which au-
tomatically adapt to the real system.

As mentioned before, the redundancy strategies used on a
system such as this should take correlated failures into ac-
count since, otherwise, they may become useless if all repli-
cas are placed in nodes with a high probability of failing
simultaneously. In this paper we propose and implement
strategies that do this and that can use different models
to predict failures. We also propose and implement models
which can be parametrized to represent the failures of a real
system.

In section 2 we present related work in this area, in section
3 we describe this problem in more detail, including a list of
the threats to a digital preservation system. In section 4 we
give an overview of our solution. In sections 5, 6 and 7 and
are described Serapeum, the redundancy system and the
algorithms we developed, respectively. The failure models
that we propose are also described in these sections. Finally,
in section 8 we present results obtained from our simulations
and in section 9 the conclusions of our work.

2. RELATED WORK
In this section we describe relevant aspects of a distributed
storage system which can contribute to reduce data loss and
lower its cost.. Also, we give an overview of some storage
systems designed for preservation or with similar require-
ments.

2.1 Relevant aspects
2.1.1 Redundancy method

If data is stored in a single component, it will be lost when
that component fails, which is very likely to happen in the
long lifetime of preservation systems. Therefore, most of
these systems take advantage of a basic attribute of digital
information: that it can be copied without any loss of infor-
mation. This means that several copies of the data can be
stored across many components.

Using redundancy greatly lowers the probability that data
will be lost, since it becomes necessary that more than one
component fails simultaneously for the information to be
lost. This is one of the main techniques used to ensure data
longevity, and has been used for a long time in RAID disk
arrays, which replicate data across several disks or use par-
ity schemes to ensure that data is not lost when one of the
disks fail [7]. Unfortunately, the hardware required to store
a large amount of data this way is expensive, and it still
doesn’t protect the data against something that affects all
the components in the same location, such as a natural dis-
aster. Because of this, it is safer to replicate the data across
systems with different properties, such as physical location.

Two of the most widely used methods for redundancy are
replication, which means storing several copies of the data,
and parity schemes such as the one in RAID. Erasure codes
provide redundancy without requiring the high storage over-
head of replication [22]. An erasure code divides an object
into m fragments and recodes them into n fragments, where
n > m. Then, the original object may be reconstructed
from any m fragments of those n. The storage cost will be
increased by a factor of n

m
.

For example, if we have a file with a size of 10Mb and encode
it using an erasure code with m = 2 and n = 6, we will have
6 fragments with 5Mb each, and we will only need any 2 of
those 6 fragments in order to reconstruct the file. The total
storage required for this would be 6 ∗ 5 = 10 ∗ 6

2
= 30Mb.

Normal replication can be seen as a special case of erasure
coding, with m = 1 and n = replicas. Likewise, parity
schemes such as the one used in RAID can be seen as a
erasure code with n = x+ 1 and m = x.

The advantages of erasure coding over normal replication
are:

• Allows a larger flexibility placing the files, since it can
be divided into several fragments.

• Has been shown to allow a much larger MTTF (Mean
Time To Failure) for the same storage overhead.

• Can prevent data theft, since it is necessary for an
attacker to retrieve several fragments in order to re-
construct the file [24].

The disadvantages are:

• Changes to the file require its re-encoding and are
therefore very costly. Fortunately, this is not an is-
sue in preservation systems.

• It’s necessary to have some mechanism to detect cor-
rupted or failed fragments, or it will be necessary to
try many different combinations of fragments for the
correct original file to be reconstructed.

• In case a fragment is corrupted or fails, more effort
will be required to reconstruct that fragment when the
system is recovering. Instead of just copying the file



from a replica, the missing fragment will have to be
computed again from the original file.

• Retrieving the file requires access to several compo-
nents in order to obtain the required number of frag-
ments. This problem can arise in the above case, when
the system is recovering a missing fragment, if no copy
of the original file is maintained.

2.1.2 Auditing
Auditing helps to detect latent faults which can otherwise
take a lot more time or be impossible to detect. This can
allow the system to recover faster and reduce the chance of
losses. For example, faults that cause data loss may only be
detected when the data is accessed, which can be done by
the audit system periodically. This is especially important
in digital preservation systems where there are usually few
accesses to the data by clients.

The use of erasure codes can also make auditing more diffi-
cult, since no two nodes will store the same file [24].

2.1.3 Diversity
Failures in distributed systems are far from independent.
Diversifying the properties of the components helps limit
the number of simultaneous failures in the system and can
be used to design a replication strategy which is more likely
to survive a large correlated failure, such as in the case of a
worm outbreak. There are several properties which can be
diversified.

Physical location Placing nodes in different geographic
locations can limit the number of simultaneous failures
in case of a power loss or natural disaster.

Software Operating systems and other software compo-
nents can have vulnerabilities which leave the system
subject to attack or infection due to worms or viruses.
Also, diversifying software can help prevent vendor
lock-in.

Hardware Likewise, similar hardware components can have
flaws which cause it to fail under certain conditions.
Vendor lock-in can also be a problem if the hardware
stops being supported and is impossible to replace.

Administration If replicas are administered independently
it becomes harder for a single person to compromise
the entire system, either through human error or at-
tack.

Storage media Also using offline media for backup means
that not all the components will be connected to a
single network, the Internet.

Funding Diversifying the sources of funding for a digital
preservation system means that it will be more likely
to stay in operation even if there are problems in the
organizations which support it and have more budget
stability.

2.2 Self-Management
Self-managing systems automatically adapt their behaviour
to the environment and working conditions, such as available
bandwidth and probability of node failures. These factors
can be hard to predict and change a lot with time, especially
in complex systems such as distributed systems. Also, man-
aging the intricate trade-offs involved when configuring such
a complex system is a difficult job which few people can per-
form, especially if the conditions are constantly changing.
For example, the replication level in a distributed storage
system may be inadequate if it is static and it will also be
very difficult for an administrator to know which level to
choose if it is configurable [6].

The Autonomic Computing initiative [13] has the goal of cre-
ating self-managing systems. Autonomic systems should be
self-configuring, self-healing, self-protecting and self-optimizing
[12]. In data storage systems this can mean, for exam-
ple, automatically choosing an adequate replication strat-
egy (self-configuration), creating a new replicas when exist-
ing ones fail (self-healing), discovering compromised hosts
(self-protection) and adjusting failure models as failures are
detected (self-optimizing).

Early elements self-management, also called introspection,
can be found in AutoRAID. This system provided different
redundancy modes and switched between them depending
on the workload [23].

The system proposed in [12] designs data storage systems
based on user requirements (e.g. reliability and price), fail-
ure model parameters (e.g. failure frequency and correla-
tion) and available protection techniques (e.g. backups and
erasure codes). The system then provides a data protec-
tion design which meets the user requirements for the failure
model provided, using the specified protection techniques.

Much of the research on self-managing systems comes from
p2p (peer-to-peer) systems, since they have to deal with a
massive number of unreliable nodes [8]. In Total Recall [6]
users simply set a level of availability for each file. The
system then automatically monitors the hosts’ availability to
predict their future availability at multiple time scales. This
information is used to manage the redundancy and repair
strategies, that can also depend on other factors, such as
file size. Oceanstore [15] uses information about servers’
workloads to adjust the number of data replicas and global
usage trends to optimize itself.

Other systems with self-managing capabilities include FAR-
Site [1] and WiND [3].

2.3 Distributed storage systems
The SafeStore system [14] stores data both in a local server
and across several autonomous Storage Service Providers
(SSPs). The local server is used as a cache and write buffer.
The data is stored redundantly in the SSPs, which should be
chosen in a way that minimizes the probability of correlated
failures. For example, they should have different geographic
locations and belong to different organizations. The SSPs
can be outsourced or belong to the data owner. An audit
system is used to detect corrupted data and to limit the ef-
fect that poorly-run SSPs can have in the system. Erasure



coding is used for both inter-SSP and intra-SSP redundancy.

The Phoenix system [11] replicates data across hosts with
different characteristics, such as OS or provided services.
The motivation for this is the observation that, nowadays,
the Internet is very vulnerable to epidemics such as worms.
Most of the times, these epidemics are only able to spread
to nodes which have a certain characteristic; for example,
running a flawed Web server software which contains a vul-
nerability. Because of that, it is argued that Internet catas-
trophes result from shared vulnerabilities [11].

Glacier [10] uses massive redundancy to prevent data loss
on large scale correlated failures. It’s argued that it is very
difficult to create an accurate failure model for large scale
systems which can predict all the rare catastrophes that
can affect them. Therefore, the system should be protected
against any type of correlated failures. Glacier uses era-
sure coding for redundancy. The redundancy level depends
on the required durability for the system and the maximal
correlated failure fraction (the maximum number of nodes
which is assumed to be possible to fail at the same time).

LOCKSS [16] is a system where several independent peers
collaborate with each other to preserve content. The tech-
niques used for this imitate those used by librarians for phys-
ical documents.

The Google File System (GFS) is a distributed file sys-
tem used by Google [9]. Google’s clusters usually consist
of commodity hardware, therefore GFS is designed to han-
dle common failures. The GFS architecture consists in a
single master and several chunkservers. The master stores
all the file system metadata, which includes the mapping of
the files to chunks and which chunkservers store each chunk.
The master communicates with chunkservers periodically to
give them instructions and collect their state. To read or
write a file, clients only contact the master to know which
chunkservers they should interact with. All the data transfer
is done directly between the clients and chunkservers. Hav-
ing a single master allows for sophisticated replication and
chunk placement decisions. Currently, GFS only uses simple
replication, but the use of erasure codes is being studied.

3. PROBLEM DESCRIPTION
As described earlier, our work consist in studying redun-
dancy strategies to be used in a distributed storage system
using data grids. Therefore, we will seek to answer the ques-
tion “Which strategy is the best to be used in a certain sys-
tem?”. This raises two new questions:

• Which redundancy strategies should we consider us-
ing?

• What will be the behaviour of system X if strategy Y
is used?

If we can answer these two questions, then we can compare
several strategies and decide which is best for each case. To
do this, we must first define a model of such a storage system
and identify the threats to it.

3.1 System model
To be able to simulate the behaviour of a distributed storage
system, we must first identify its components and how they
interact with each other. The main components we have
identified are:

Files The information which must be stored. If replication
is used, a file can have one or more replicas. They also
have a size and an unique identifier.

Storage resources Anything that can be used to store files,
such as disks or RAID arrays. Resources have a capac-
ity and an unique identifier.

Resource network Connects the storage resources. A re-
source network can be represented as a graph where
the edges are links and the vertices are storage re-
sources or connection points. These connection points
can represent routers or networks which work as“clouds”,
such as the Internet. Each link has a capacity in each
direction, which defines the speed at which files can
be transfered through it. We choose to ignore link la-
tency since this usually is not important for file transfer
speed, as long as the files are of significant size. We
also ignore the protocol stack which is used in the net-
work, therefore the link capacity should be the actual
capacity which can be used to transfer files.

We have also identified other things which affect the be-
haviour of a distributed storage system: the failure scenario,
which is the set of all failures which occur during the sys-
tem’s lifetime and the redundancy strategy, which are the
actions that are performed by the system in reaction to a
certain state.

We have identified two types of failures which can affect the
storage resources: unavailability and data loss. Unavailabil-
ity means that the resource becomes temporarily or perma-
nently unreachable, which can be caused, for example, by
a power failure. Data loss means that the storage resource
looses data which is part of the replication strategy, such as
when a file replica becomes corrupted. Both these failures
can happen simultaneously. For instance, when a server’s
disk fails and needs replacement, the server will be unavail-
able for some period of time and the disk’s data will be lost.

There are also failures which can affect the resource network,
such as links becoming unavailable or slower.

3.2 Threats
There are several threats to distributed storage systems which
can hamper their ability to reliably store files.

3.2.1 Component errors
There can be several types of problems with system com-
ponents: (i) Storage media can fail with time, losing either
all data through disk crashes or some of it due to bit rot.
The later may not be detected until there is an attempt to
access the data. (ii) Hardware components can suffer tran-
sient recoverable failures, such as a power loss, or permanent
irrecoverable ones, such as a power supply unit burning out.
(iii) Software components can have bugs which can cause



failures, for example, the firmware in hard drives. (iv) The
communication network can also fail and communication be-
come unavailable or severely hampered. Some causes for this
are failures in network components or congestion. (v) Net-
work services on which the system is dependent in order
to work may fail. For example, name resolvers such as DNS
may not work correctly or even be discontinued in the future
[19, 5, 4].

3.2.2 Obsolescence
Obsolescence can affect both hardware and software compo-
nents. Hardware components can become obsolete and not
be able to communicate with other system components or
to be replaced in case of failure. Removable storage media,
in particular, is only useful while a reader for it is available,
becoming obsolete when it is not. Software obsolescence of-
ten manifests itself as format obsolescence, when the bits of
a file can still be read but not decoded by any existing appli-
cation. Another example of this problem is when software is
stored for preservation but the existing hardware is unable
to execute it.

3.2.3 Human operation errors
Human errors are inevitable [18] and human operators will
always be involved with systems. It has been shown that op-
erators can be the leading cause of failure in different types
of systems [17]. People often delete by mistake data which
is still needed. Besides, humans can cause failures in other
components such as hardware (accidentally disconnecting a
power cable) or software (uninstalling a needed software li-
brary).

3.2.4 Natural Disasters
Natural disasters such as earthquakes, floods or fires can
cause failures in many components simultaneously. For ex-
ample, an earthquake may cause a data center to be de-
stroyed or a wide-scale power failure.

3.2.5 Attacks
Attacks can have several goals: data destruction, denial of
service, theft, modification of data. Some of the motivations
for the attacks are political, ideological or financial reasons.
They can be done both by outsiders and insiders who have
full access to the system; they can be illegal or legal; and
they can be quick and short-term or continued, long term
attacks by dedicated individuals or organizations. Also, the
fact that many Digital Preservation systems are connected
to the internet makes them vulnerable to automatic attacks
by worms or viruses.

3.2.6 Management errors
Management can cause DP systems to fail. The primary
resource needed for DP is money [20], therefore there is a
high risk of economic failure. Costs with power, cooling and
administration make digital information more vulnerable to
lack of money than paper one. The budget for digital preser-
vation systems may change a lot or even be completely cut
off at some point. Organizational failures are also possible.
An organization responsible for preserving content may diss-
apear or cease to be responsible for it. In this case, it should
be possible to transfer the administration of the system to

some other organization or copy the data entirely to some
other system.

3.2.7 Threat visibility and independence
It cannot be assumed all that failures will be visible imme-
diately. Many times a fault goes unnoticed for a long time.
For example, a file format may only be discovered to be ob-
solete when it is necessary to access it, or a sucessful data
corruption attack may never be discovered.

It’s also incorrect to assume that failures are usually inde-
pendent [5]. A power failure will cause many components
who use it to fail at the same time; a worm or virus may
affect only computers that are running a specific operating
system; and a natural disaster like a blizzard will affect many
nodes in a certain geographic area no matter what is done.
The probability of being affected by a fault can also depend
on characteristics of the component. For example, a com-
puter running windows may be more vulnerable to viruses.
It can even vary with time. A component in Florida is more
likely to fail during hurricane season and long cold winters
can cause frequent power failures in certain areas.

3.3 Replication and erasure coding
Erasure coding is a very promising tool which can be used for
redundancy. However, it is a lot more complex than simple
replication, and most data grids nowadays don’t support
it yet. Because of this, it would be unenviable for us to
build a system supporting erasure coding in the time we have
available. Therefore, this paper only focuses on redundancy
strategies that use simple replication.

4. PROPOSED SOLUTION
We have developed a system to analyse and implement re-
dundacy strategies in an environment subject to correlated
failures. This solution has three components: a simulator
to analyse the long term performance of a strategy, a re-
dundancy system to implement it and mechanisms to adapt
the strategy to the real system’s behaviour. We have also
developed redundancy strategies that take into account cor-
related failures and models to represent them.

The behaviour of a distributed storage system is too com-
plex to simply be analysed analytically, and implementing a
real life prototype is not feasible, since the lifetime of digital
preservation storage systems is usually very large. There-
fore, we have developed Serapeum, a simulator which en-
ables the analysis of the behaviour and efficiency of a dis-
tributed storage system in different failure scenarios using a
certain replication strategy.

We have also developed a redundancy system which allows
the use of these replication algorithms in real life grid sys-
tems. For now, this system can be used with the iRODS
grid technology (although with some limitations, due to the
iRODS APIs still being very recent) but it can easily be
extended to work with other grids. Also, the replication al-
gorithms are defined in the same way for this system and
for Serapeum, which means that it is only necessary to im-
plement them once for testing and real life usage. Altough
iRODS has mechanisms which would allow such a system to
be implemented in the grid itself, we have chosen to imple-
ment it as a separate process. This makes integration with



other grid technologies easier and provides greater fault tol-
erance.

Due to the large number of correlated failures that exist in
these systems, we propose algorithms which attempt to take
advantage of the system’s diversity by taking these correla-
tions into account, thereby reducing the probability of data
loss. This requires modelling of the failures which may affect
the system, which is out of the scope of our work. Therefore,
we have chosen to propose a way in which to represent these
models and develop algorithms which can work with models
developed later on. We define two different types of models:
“failure models”, which are used to generate failure scenarios
for Serapeum simulations and“predictive models”, which are
used by replication algorithms to know which nodes are more
likely to fail simultaneously and place replicas according to
that. We also propose introspection mechanisms which can
sometimes be used to compensate for incorrect models.

The replication algorithms work by receiving a view of the
grid’s state and returning a set of operations to be performed
on the grid. The grid’s state is characterized by the com-
ponents described in 3.1: the files (their identifier, size and
replica location), the storage resources (their identifier and
capacity) and the resource network. The latter is optional,
since algorithms can make decisions about replica placement
without knowledge about the capacity of the links between
storage resources. The grid’s state can be affected by the
performed operations or by external causes, which include
failures. Currently, algorithms return two types of oper-
ations: replica creation (through a file copy) and replica
deletion. Another useful operation could be copy cancela-
tion, however, it is not supported yet, since the iRODS grid
technology doesn’t also support this as of now. We sup-
port most of the failures described earlier, namely tempo-
rary and permanent storage resource unavailability and data
loss, however we still don’t support failures in the resource
network.

We have chosen to create a system in which decisions regard-
ing replication are taken centrally. This means that there is
a central system which collects all the information from the
system and makes decisions based on it. We have taken this
option because it allows replication strategies to be imple-
mented much easier than in a distributed system. Also, it
appears that the main advantages of a distributed approach,
such as the ability to use computational resources from sev-
eral nodes, aren’t very relevant in a storage system used
for digital preservation, where immediate data availability
is not critical. A centralized system may also be less intru-
sive, since it will only be necessary to change the software
configuration of one node to install it.

5. SERAPEUM
Serapeum allows the simulation of the behaviour of a dis-
tributed storage system with centralized replication decision-
making. It is built in Java and can be used both to study
properties of replication algorithms and the planning of a
real life deployment of such a storage system.

As input, Serapeum receives a description of the system
components defined in 3.1, the failures which will occur dur-
ing the simulated lifetime, the replication algorithm to be

Physical location Software
Resource 0 Lisbon Windows
Resource 1 Lisbon Unix
Resource 2 Lisbon Unix
Resource 3 Stockholm Windows

Table 1: Values of attributes for each resource

used, the simulation time and which statistics should be re-
trieved from the simulation’s data. Some of this information
is passed as XML files and other simply as parameters. As of
now, it is not possible to simulate the ingestion of additional
files during the system’s lifetime.

With this information, two system states are created: a“real
state”, which represents the simulated state of the system,
and a “visible state”, which is available to the replication
algorithm. As would happen in a real system, the “visible
state” is passed on to the replication algorithm, which re-
turns a set of operations that are then simulated and affect
both states. This is done cyclically until the simulation time
is over. While this is happening, information is also being
retrieved to generate the required statistics. When the sim-
ulation time is over, these statistics are returned.

We have implemented the retrieval of statistics regarding
the number of file losses, the total bandwidth usage and
average replica number through time. However, the retrieval
of other statistics is easy, since they are simply implemented
as classes containing functions that are called when relevant
events happen, such a new replica being created.

5.1 Failure models
Although it is possible to define the failures for a simulation
one-by-one, this is usually done with failure models. We
have developed a tool which generates lists of failures from
these models. In this section are described the failure models
which we developed to test our algorithms and that may
in the future be better parametrized to represent the real
behaviour of failures. Each of these models can represent
one or more causes for failures.

5.1.1 Independent failures
This model is used to generate failures for a single resource.
Both data loss and unavailability failures can be generated,
the latter being either permanent of temporary. The time
between failures can be generated using an exponential or
Weibull distribution.

This model can be used to model the failure and replacement
of disks which, according to [21], follow a Weibull distribu-
tion, causing temporary unavailability and total data loss in
a storage resource.

5.1.2 Attribute-based failure model
This failure model is an extension of the one proposed in
[11]. In this model, several attributes can be defined, such
as “physical location”. Each attribute may have several pos-
sible values, in this case, these could be “Lisbon” or “Stock-
holm”. Each storage resource is then assigned a value, as
illustrated in table 1.



Natural disaster Power loss
Frequency Effects Frequency Effects

Lisbon 100 years Table 3 6 months Table 3
Estocolmo 400 years Table 3 2 years Table 3

Table 2: Threats affecting the “physical location”
attribute

P Data loss Return Recovery time

5% - - Permanent
35% Yes Non-simultaneous 4 months
60% No Simultaneous 1 month

2% Yes Non-simultaneous 4 months
98% No Simultaneous 6 hours

Table 3: Effects of a natural disaster (top) and power
loss (bottom)

As represented in table 2, a set of threats to these values is
defined, which consists on the frequency of events caused by
those threats and their effects on the system.

When an event occurs, it has an affect on the system re-
sources which have the value that caused the event. For
instance, in this example, we define that a natural disaster
affects the resources with the “Lisbon” value for “physical
location” every 100 years. Table 3 , for example, represent
the possible effects of a natural disaster and power loss. The
first column is the probability of that effect affecting each
resource, the second whether data loss occurs in the affected
storage resources or not, the third if their return is simul-
taneous or not (for example, when a power loss occurs, the
resources will typically be available again at the same time,
which doesn’t happen when several nodes are damaged and
must be replaced) and the fourth represents the average time
until the affected resources are again available. When an
event occurs, each affected resource will suffer one of these
effects according to its probability.

5.1.3 Other correlated failures
This model can be used to add unexpected correlated fail-
ures to a simulation. It has two parameters: the failure rate
λ and the correlation level 0 < c ≤ 1. The time between
events that cause failures follow an exponential distribution
of parameter λ and the number of nodes that fail in a single
event follows a geometric distribution of parameter c. The
nodes which are affected are then selected randomly.

Table 4 shows the probability that a certain number of re-

Number P Time (months)
1 60.00% 1.67
2 24.00% 4.17
3 9.60% 10.42
4 3.84% 26.04
5 1.54% 65.10
6 0.61% 162.76
7 0.25% 406.90
8 0.10% 1017.25

Table 4: Failure probability of a number of resources

sources will fail due to a single event in a system with a
total of 8 resources and when c = 0.6. Also represented is
the time between failures which affect that number of nodes
when λ = 1 month.

6. REDUNDANCY SYSTEM
A replication system has been implemented as a service
which interacts with data grids through specific drivers. The
replication systems’ replication algorithms are the same as
Serapeum’s, which means that an algorithm can be evalu-
ated using Serapeum and immediatly be put to use in a real
system.

The drivers enable the replication system to obtain informa-
tion about the system’s resources and files and to perform
operations on the data grid, such as replica creation and
deletion. A driver is responsible for detecting changes on
the grid’s state (such as a new file being added) and up-
dating the replication system’s view of that state through
function calls. That view will then be used by the replica-
tion algorithm to generate a set of operations, such as replica
creation, which will be performed on the grid by the driver.

We have partially implemented a driver for iRODS data
grids using its Java API (Jargon). This driver supports
replica creation, the detection of new files in the system and,
thanks to the work developed in [2], of failures of storage
resources. Due to limitations in Jargon, it still doesn’t sup-
port replica deletion. However, work in Jargon and iRODS
is in progress, which means that a complete driver can be
expected soon.

7. STRATEGIES
Replication algorithms receive the storage system’s state and
return a set of operations to be performed on it, which can
be the creation of new replicas through a file copy from one
resource to another or their deletion.

The algorithms proposed in this work can be divided into
two main groups: those that use a fixed and variable number
of replicas. In both cases, heuristics are used for replica
placement and, in the latter, also to decide the replication
level. The most important component of these heuristics
are metrics based on the predictive models, which attempt
to measure the probability of file loss. These metrics are
described in the next section.

In our way to describe predictive models, we assume that
there are events which cause the simultaneous failure of one
of more storage resources. Given a certain set of storage
resources, a predictive model should be able to return two
things: the average time between events which cause data
loss in all those resources and the average time between
events which cause data loss in all those resources exclu-
sively, that is, in which no other resource suffers data loss.
Also, they should be able to return the average time until
the first recovery of a failed resource. The predictive models
we have implemented are described in 7.2

7.1 Metrics
Metrics which can be used to make decisions on replica
placement include the usage of storage resources, the avail-
able bandwidth and the predicted mean time between file



losses. We have defined two ways in which to estimate the
latter.

The first is based on the work developed in [11] and is called
“time between failures” (TBF). Using one or more predic-
tive models, the TBF for a certain file is calculated as the
average time between events which cause the failure of all
the resources containing that file. To calculate this, it is
simply necessary to ask each failure model for the frequency
of events causing data loss in those resources and add those
frequencies.

The problem with this metric is that it simply measures
if there’s nothing in common between all the resources in
the set. For example, if storage resources could have one
of the operating systems “Windows”, “Linux” and “Solaris”,
this metric would have the same value if two of them were
“Windows” and one “Linux” or if each of them had a differ-
ent operating system, since there would be no event which
affected two operating systems at the same time.

Therefore, we have defined a new metric: the “time between
double failures” (TBDF). For some file, this metric measures
the average time until a sequence of two events which cause
data loss in all resources containing that file, in which the
second failure occurs before any resource affected by the
first failure has time to recover. For instance, if a file is
stored in the resources {A,B,C}, this metric includes not
only the failures which affect {A,B,C}, but also sequences
of two failures which affect first a subset of the nodes (such
as {A,B}) and then the rest of them (in this case, {C}),
however, only those sequences where C fails before either A
or B can recover are relevant.

7.2 Predictive models
The predictive models we have developed are related to the
failure models described earlier, since they allow the predic-
tion of the failures generated by them.

The independent failures predictive model simply returns
the average of the distribution being used to generate the
failures. A particular case of this is the modelling of disk
failures and replacement, which according to [21], follows a
Weibull distribution.

The attribute based predictive model looks for common at-
tribute values in the given set of nodes and, using infor-
mation regarding the threats to those attributes and their
effects, calculates the average time between events which
cause data loss on all the given nodes, either exclusively or
not.

Finally, the other correlated failures predictive model can
use a hipergeometric distributions to calculate the time be-
tween failures of a set of nodes with a certain size. An
example of this is given on table X, where the time between
both exclusive and not exclusive failures with data loss is
represented when λ = 1 month, c = 0.6 and there’s a total
of 8 resources.

7.3 Introspection
We have implemented two introspection mechanisms which
change the redundancy system’s behaviour according to the

Resources Non-exclusive Exclusive
1 4.82 13.33
2 25.85 116.67
3 83.94 583.33
4 193.27 1822.92
5 352.46 3645.83
6 550.40 4557.29
7 775.05 3255.21
8 1017.25 1017.25

Table 5: Average time in months between failures
with data loss of a number of resources

failures observed in the storage system.

The first allows the adjustment of the predictive models be-
ing used so that they better reflect the failures measured in
the system. We have only implemented a proof of concept
of this, which allows the adjustment of the “average time be-
tween failures” parameter of independent failure predictive
models. An initial value for this parameter is defined, and
also a confidence value for that prediction. As the system
runs and failures are detected, we also define a confidence
value for the observed failures, which is calculated as c =

observation time
observation time+initial confidence value)

, the new prediction

for the average time between failures parameter is then cal-
culated as: observed frequency·c+initial prediction·(1−c).

The other introspection mechanism allows Serapeum to be
used as part of the replication strategy. With this mech-
anism, simulations are run periodically using the adjusted
models to compare the performance of several replication
algorithms and parameters in this new scenario. Different
metrics can be used to compare the performance, for in-
stance, one may define a requirement for maximum data
loss and define the best algorithm as the one which complies
to that requirement and uses the least total bandwidth.

8. RESULTS
In this section we present the results of three experiments.
In the first, we demonstrate how Serapeum can be used for
planning by comparing the efficiency of different replica-
tion algorithms in an idealized system. In the other two,
we demonstrate how our introspection mechanisms adjust a
system’s replication strategy to its real working conditions.

8.1 Simulated scenario
The system used in these experiments consists of 14 stor-
age resources with a capacity of 500Gb. These resources are
connected to a single network by links with bidirectional ca-
pacity of 100Mbit/s. The stored collection has 208 files of
5GB each, for a total size of 1TB. This large file size was
chosen because it allows simulations to be ran faster. Differ-
ent failure models are used to generate the failure scenarios
for each experiment.

8.2 Comparison of replication algorithms
Several failure models are used in this experiment:

• Independent failure model parametrized to represent
disk failures and replacement



Figure 1: File losses and bandwidth usage

• Independent failure model which generates unavail-
ability failures without data loss for each storage re-
source with an average frequency of 1 year and return
time of 12h

• Attribute based failure model to generate correlated
failures. This model is parametrized with three at-
tributes: “room”,“operating system”and“software ser-
vices”. The storage resources are spread across three
different rooms and each has one of three possible op-
erating systems. For each operating system there are
four possible software services which the resources may
or not support. The threats to any room are natu-
ral disasters, power losses, communication failures and
physical attacks, each of which has different effects on
the storage resources. The threats to the operating
systems and software services are worms or viruses,
and have different frequencies for each of them.

We have simulated the behaviour of the system for 50 years
and measured the number of file losses and the total band-
width usage when operating with different algorithms and
replication levels. The less the file losses and bandwidth us-
age are, the more efficient an algorithm is. 100 simulations
were ran for each case.

Both fixed and variable replica number algorithms were tested,
using the TBF and TBDF heuristics. Also tested was a fixed
replica number algorithm which places replicas randomly.
Values of 3, 4 and 5 replicas were used for the fixed al-
gorithms and several replication thresholds for the variable
ones. The predictive models used by the algorithms were
parametrized in the same way as the ones used to gener-
ate the failures and an additional “other correlated failures”
model was added for the variable replica number algorithms.
This is done to increase the number of replicas created by
these algorithms, which is otherwise very low.

Figure 1 shows the number of file losses and total band-
width usage for each algorithm. As expected, the random

Number of resources Time between failures
2 6 months
3 1 year
4 2 years
3 5 years
2 10 years

Total: 14 Average: 40 months

Table 6: Average time between resource failures

algorithms are outperformed by all others, which clearly
shows the advantage of taking into account correlations be-
tween failures in the replication strategy. The performance
of the variable and fixed replica number algorithms is simu-
lar, however, the former allow a greater granularity defining
the replication level. In the fixed algorithms, the TBDF
heuristic achieves better results than TBF for 4 and 5 repli-
cas. When using a variable number of replicas, however, the
TBF heuristic seems to slightly outperform it.

It’s interesting to notice that, while adding a 5th replica
exponentially decreases the number of losses experienced by
the random algorithm, it doesn’t have much effect in the
other ones.

8.3 Predictive model adjustment
In this experiment we show how predictive models adjust
to the observed failures. We generate independent failures
in the 14 resources with average time between failures as
described in table 6. However, the predictive models ini-
tially being used by the replication algorithm predict the
failure frequency to be the same for all nodes (in this case,
40 months, which is the average of values in table 6). As
failures are observed in the system, these models will be
adjusted.

Figure 2 shows the average of the predicted values for each
set of resources in table 6 throughout time. The confidence
value for the inicial prediction is different in each of them,
respectively, 1 year and 3 years. As we can see, the higher
the confidence in the initial prediction, the less variation
there is as failures are observed. Also, due to a larger sample
size, the values for failures which are more common converge
faster, which demonstrates the difficulty of using introspec-
tion to model rare events such as natural disasters.

Figure 3 shows the average file losses over 100 simulations
with and without this introspection mechanism. As we can
see, there is a slight improvement when introspection is used,
even with such a simple mechanism as this one.

8.4 Replication strategy using Serapeum
In this experiment, we test the mechanism which allows
automatically running simulations and changing the repli-
cation algorithm or parameters. We generate independent
failures for all nodes with a frequency of 1 year, however,
an initial value of 3 years is used on the predictive models.
We set a threshold of 2 file losses per year which, accord-
ing to the initial prediction, can be achieved with 3 replicas.
However, 3 replicas will no longer be enough for this if the
failure frequency is 1 year.



Figure 2: Prediction with confidence of 1 and 3 years

Figure 3: File losses with and without introspection

Figure 4: Automatic change in replication parame-
ters

Figure 4 shows the adjustment of predictive models through-
out time and also the average number of replicas in the sys-
tem. As more failures are detected, the prediction gets closer
to reality. Yearly, simulations are ran which, in this case,
compare the performance of using 3 or 4 replicas. Initially,
3 replicas are enough to fulfill the file loss threshold and re-
quire less total bandwidth than 4, therefore that option is
considered more efficient. However, as the models are ad-
justed and more failures are generated in the simulations,
the results show that 3 replicas aren’t enough, which causes
the replication level to increase to 4 in year 3.

9. CONCLUSIONS AND FUTURE WORK
We developed a simulator that can be used to help planning
the implementation of a storage system based on data grids,
study new replication strategies and even be used as part of a
replication strategy, automatically changing the replication
algorithm and parameters according to the observed system
behaviour.

We also developed a redundancy system which allows the
implementation of these strategies in a real system. This
system can be used with data grids, particularly, the iRODS
data grid.

We have proposed replication strategies which take into ac-
count the correlations between failures in the storage re-
sources of a data grid. These strategies have shown dur-
ing testing to have a much better performance in terms of
file losses and bandwidth usage than ones that simply place
replicas randomly.

Our simulator and strategies are able to work with different
failure models, so that the best ones may be used for each
particular system. We developed failure models which may
be parametrized to represent the failures of a real system.
Also, we have implemented introspection mechanisms which
can help compensate for some incorrect models.

However, there is still a lot of work that can be done. Most
importantly, studying the use of strategies based on erasure
coding, better modelling of the failures which affect grid sys-
tems, mechanisms which allow different grid technologies to
interact so that multiple grid technologies may be used si-
multaneously by the replication system and further usage of
introspection, for instance, to automatically detect network
topology or similarities on the software configuration of the
storage resources.

10. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite:
federated, available, and reliable storage for an
incompletely trusted environment. In OSDI ’02:
Proceedings of the 5th symposium on Operating
systems design and implementation, pages 1–14, New
York, NY, USA, 2002. ACM.

[2] G. J. B. Antunes. GRITO: Utilização de clusters
GRID para um sistema de preservação digital.
Master’s thesis, Instituto Superior Técnico, Portugal,
2008.



[3] A. Arpaci-dusseau, R. Arpaci-dusseau, J. Bent,
B. Forney, S. Muthukrishnan, F. Popovici, and
O. Zaki. Manageable storage via adaptation in wind.
In In Proceedings of IEEE Int’l Symposium on Cluster
Computing and the Grid (CCGrid’ 2001, pages
169–177, 2001.

[4] M. Baker, K. Keeton, and S. Martin. Why traditional
storage systems don’t help us save stuff forever. 1st
IEEE Workshop on Hot Topics in System
Dependability, June 30, 2005.

[5] M. Baker, M. Shah, D. S. H. Rosenthal,
M. Roussopoulos, P. Maniatis, T. Giuli, and
P. Bungale. A fresh look at the reliability of long-term
digital storage. In EuroSys ’06: Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, pages 221–234, New York,
NY, USA, 2006. ACM.

[6] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and
G. M. Voelker. Total recall: system support for
automated availability management. In NSDI’04:
Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages
25–25, Berkeley, CA, USA, 2004. USENIX
Association.

[7] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. Raid: High-performance, reliable
secondary storage, 1993.

[8] I. T. Foster and A. Iamnitchi. On death, taxes, and
the convergence of peer-to-peer and grid computing.
In International Workshop on Peer-to-Peer Systems,
2003.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles,
pages 29–43, New York, NY, USA, 2003. ACM Press.

[10] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
highly durable, decentralized storage despite massive
correlated failures. In NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems
Design & Implementation, pages 143–158, Berkeley,
CA, USA, 2005. USENIX Association.

[11] F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo,
and G. M. Voelker. Surviving internet catastrophes. In
ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 4–4,
Berkeley, CA, USA, 2005. USENIX Association.

[12] K. Keeton and J. Wilkes. Automating data
dependability. In EW10: Proceedings of the 10th
workshop on ACM SIGOPS European workshop, pages
93–100, New York, NY, USA, 2002. ACM.

[13] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[14] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A
durable and practical storage system. In USENIX
Annual Technical Conference, pages 129–142.
USENIX, 2007.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Ninth Int’l Conf. Architectural Support for

Programming Languages and Operating Systems.
ACM, 2000.

[16] P. Maniatis and D. S. H. Rosenthal. The lockss
peer-to-peer digital preservation system. ACM
Transactions on Computer Systems, 23:2005, 2005.

[17] U. of California at Berkeley. Recovery oriented
computing: A new research agenda for a new century.
In HPCA ’02: Proceedings of the 8th International
Symposium on High-Performance Computer
Architecture, page 247, Washington, DC, USA, 2002.
IEEE Computer Society.

[18] J. Reason. Human error. Cambridge University Press,
1990.

[19] D. S. H. Rosenthal, T. S. Robertson, T. Lipkis,
V. Reich, and S. Morabito. Requirements for digital
preservation systems: A bottom-up approach. D-Lib
Magazine 11, 2005.

[20] C. Rusbridge. Excuse me... some digital preservation
fallacies?
http://www.ariadne.ac.uk/issue46/rusbridge/, 2006.

[21] B. Schroeder and G. A. Gibson. Disk failures in the
real world: what does an mttf of 1,000,000 hours mean
to you? In FAST ’07: Proceedings of the 5th USENIX
conference on File and Storage Technologies, page 1,
Berkeley, CA, USA, 2007. USENIX Association.

[22] H. Weatherspoon and J. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In IPTPS
’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 328–338,
London, UK, 2002. Springer-Verlag.

[23] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID hierarchical storage system. In H. Jin,
T. Cortes, and R. Buyya, editors, High Performance
Mass Storage and Parallel I/O: Technologies and
Applications, pages 90–106. IEEE Computer Society
Press and Wiley, New York, NY, 2001.

[24] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R.
Ganger, H. Kiliççöte, and P. K. Khosla. Survivable
information storage systems. Computer, 33(8):61–68,
2000.


