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Abstract

Left ventricle (LV) function is assessed by manually segmenting short-axis cardiac cine magnetic reso-

nance (cine-MR) images. It is a labor, time-consuming, operator biased task. A series of difficulties

arise from these images, that make automatic segmentation of the LV a challenging task: (i) misalign-

ment along the LV volume, (ii) signal intensity variation over the volume and over the slice and (iii) the

presence papillary muscles.

In this thesis, the first steps toward a full automatic LV segmentation algorithm based on a single

view of the LV are presented:

1. Automatic crop: selects a sub-volume containing the LV in all images and in all temporal frames

from the acquired data. It is based on three assumptions: (i) the LV is close of the center of the

image, (ii) the LV is circular shaped and (iii) there is a high temporal variability of the image

intensity in the myocardium boundaries due the heart beat.

2. Alignment-by-reconstruction: novel technique to solve the misalignment due to respiratory

motion, inspired on the work from Sanches et al. [1] in ultrasound;

3. Segmentation: The LV is segmented slice by slice using active contours (2D) in an energy mini-

mization formulation with gradient vector flow (GVF) as external field. The automatic initialization

algorithm here implemented is original, and it is based on the property of intersecting chords.

Preliminary tests with synthetic and real data from 17 patients were performed with successful results.

Keywords: left ventricle, automatic crop, intra-plane alignment, snake initialization.
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Resumo

A função do ventriculo esquerdo (VE) é estimada através de segmentação manual de imagens cine-RM

cardiacas do eixo curto. É uma tarefa trabalhosa, morosa e dependente da experiência do especialista.

Estas imagens apresentam uma serie de dificuldades: (i) desalinhamento ao longo do volume, (ii) variação

da intensidade do sinal ao longo do volume e ao longo do corte e (iii) presença de músculos papilares.

Neste trabalho são apresentados três primeiros passos para uma completa automatização da seg-

mentação do VE:

1. Corte automatico: selecionar um sub-volume contendo o VE em todas as imagens quer no dominio

do espaço quer no dominio do tempo. Este algoritmo baseia-se em três hipoteses: (i) o VE está

localizado perto do centro da imagem e (ii) tem forma circular, e (iii) existe elevada variabilidade

temporal do sinal da imagem na fronteira do miocardio devido ao movimento cardiaco.

2. Alinhamento-com-reconstrucção: técnica inovadora que resolve o problema de desalinhamento

devido ao movimento respiratorio, inspirado no trabalho de Sanches et al. [1] em ultrasom;

3. Segmentação: O VE é segmentado corte a corte usando contornos activos (2D) numa formulação

de minimização de energia e GVF como campo de energia externa. Foi implementado um algoritmo

de inicialização automática da snake baseado na propriedade de intersecção de chords.

Foram efectuados testes preliminares com dados sintéticos e dados reais de 17 doentes com sucesso.

Palvras-chave: ventriculo esquerdo, corte automatico, alinhamento intra-planos, inicialização da snake.
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Definitions

Apex The apex of the heart is the lowest superficial part of the heart.

Apical An apical plane is set close to the apex.

Basal A basal plane is set close to the base of the ventricle, in opposition to the apex.

Blood-pool Is the cavity containing the blood surrounded by the myocardium.

Chord Segment of a secant line lying inside of the circumference

Diastole Period of the cardiac cycle when the heart fills with blood; Dilation of the heart with muscular

relaxation.

Endocardium Is the innermost layer of tissue that lines the chambers of the heart.

Epicardium Describes the outer layer of heart tissue.

Myocardium Is the muscular tissue of the heart.

Pixel In digital imaging, a pixel (picture element) is the smallest piece of information in an image.

Papillary muscles One of the group of myocardial bundles that terminate in the chordae tendineae

which attach to the cusps of the atrioventricular valves.

QRS complex The QRS complex is a structure on the ECG that corresponds to the depolarization of

the ventricles.

Short Axis Cardiac plane perpendicular to the long axis of the left ventricle that transects the apex

and the center of the mitral valve plane.

Stroke also know as heart attack or myocardial infarction, occurs when the blood supply to part of the

heart is interrupted.

Systole Period of the cardiac cycle when the heart drives the blood out of the chambers; Contraction

of the heart.

Voxel Is a volume element, representing a value on a regular grid in three dimensional space.
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Chapter 1

Introduction

Cardiovascular diseases (CVD) include coronary heart disease (heart attack), hypertension, hypertension

heart disease, peripheral artery disease, rheumatic heart disease and congenital heart disease. According

to World Health Organization (WHO), globally they are the leading cause of death: an estimated 17.5

million people died from CVD in 2005, representing 30% of all global deaths [2]. Of these deaths, 43%

were due to heart attacks and 33% due to stroke.

Attending to these numbers, there is an increasing demand for technology able to provide qualitative

and quantitative information about morphology and function of the heart. Its use can help clinical

diagnosis, treatment and follow-up of cardiac diseases.

1.1 Background

There are several non-invasive cardiac imaging techniques available in the clinical routine [3], such as

echocardiography, single photon emission computed tomography (SPECT), computed tomography (CT)

and magnetic resonance imaging (MRI).

These techniques provide 2-D+T and 3-D+T information with continuously increasing spatial and

temporal resolution. Therefore, a single cardiac examination can result in a large amount of data. These

advances have led to a raising need for efficient algorithms to automate the extraction of clinical relevant

parameters.

MRI is one of the preferred diagnostic technique due to its high spatial resolution, soft-tissue contrast

and non-ionizing imaging technique. Furthermore, besides the structural information such as anatomy

and tissue characterization, it provides dynamic analysis such as perfusion, metabolism and function

measurements in one single examination [4].

MRI is widely used to assess cardiac left ventricle (LV) function and diagnose several heart pathologies

[5, 6, 7] and it is now considered the “gold standard” to evaluate the LV function [8]. One important

parameter used to evaluate it is the ejection fraction (EF). The EF is a global index of the LV shortening

and is generally considered as one of the most meaningful measures of the LV pump function. It is defined

as the ratio of the volume difference between the end of the diastole (ED) and the end of the systole (ES)
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(end-systolic volume (ESV)) to the end-diastolic volume (EDV):

EF =
EDV − ESV

EDV
. (1.1)

To estimate the EF, the physicians have to manually draw the LV internal contour from a stack of

short-axis (SA) cine-MR images at the ED and ES phases of the cardiac cycles. The SA stacks are usually

composed by 10 up to 16 slices and 15 up to 30 time frames are acquired per cardiac cycle, corresponding

to different phases of this cycle. Manually processing all this vast amount of data is time consuming and

subjective, compromising the accuracy and reproducibility of the quantitative measurements. Therefore,

computer assistance is needed. Full automatic LV tracking and segmentation process is complex and still

an open problem.

1.2 Left ventricle short axis cine-MR images

The standard MRI protocol for a cardiac patient consists on three main steps: setup, planing and

acquisition.

In the setup, the technician prepares the patient. A cardiac coil, used to send and receive radio-

frequency signal, is placed over the chest of the patient (see Fig.1.1(a)). The patient has also electro-

cardiogram (ECG) leds attached. Due to the heart beat, cardiac MR imaging is gated to the ECG so

that the images are acquired at the same cardiac phase, minimizing motion artifacts [9]. Motion due to

respiration is compensated by acquiring during breath-hold periods. Automatic dual cardiac-respiratory

triggering is also possible but it is still an under-development technique [10]. In Fig.1.1(b) it is possible

to observe the triggering at the same phase of the cardiac cycle and the silent periods at a phase of the

respiratory cycle.

(a) Philips SENSE Cardiac coil 6 elements (b) Dual cardiac-respiratory triggering. a) Acquisition window
from two respiratory cycles and ECG b) Trigger pulses sent to
MRI console based on cardiac cycle [11]

Figure 1.1: Cardiac MRI protocol: setup.

2



The examination table is moved toward placing the heart on the iso-center of the magnet (Fig.1.2(a)),

where the homogeneity of the magnetic field is higher. Therefore, higher image quality is achieved.

When the preparation of the patient is finished, the technicians and physicians start the cardiac exam

in a contiguous room: first, a set of low resolution images are acquired to locate the heart and design the

exam (planing step). Then, the required images for the diagnose are acquired in the cardiac planes as

defined by the American Heart Association (AHA) [12] (see Fig.1.2(b)): the referred SA cine-MR images

are acquired in a plane perpendicular to the long axis of the heart.

(a) MRI scanner (image from www.medmovie.com) (b) Cardiac plane definition according to the AHA [12]

Figure 1.2: Cardiac MRI protocol: planning.

In MRI, the image intensity represents the radio-frequency signal amplitude and depends on the

imaging sequence. In LV function studies, gradient-echo based sequences are preferred [13] due to their

greater speed, resulting in bright-blood images. Recently, cine-MR using steady state free precession is

used routinely. This imaging sequence provides higher contrast between muscle and blood, also resulting

in bright-blood images. Normally no contrast agent is required. An example of a sequence of images to

study the LV function is presented in Fig.1.3. A series of difficulties arise from these SA cine-MR images,

that make automatic segmentation of the LV a challenging task:

1. During suspended respiration, there is a displacement of the diaphragm and the heart does not

return to the same position on consecutive heart beats [14]. Additionally, the initial position of the

diaphragm might change over all the requested apnea periods [14, 15]. This can lead to blurring

effects and misalignment of the LV along the stack.

2. Another important characteristic of these images is the signal intensity variation: (i) over the stack

due to different sensitivity along the coil; (ii) and over the slice due to cardiac flow dynamics [16]

(see Fig.1.3(c)). This makes tissue classification with low-level image processing techniques, such

as thresholding, a non-trivial task.

3. Normally, the number of slices acquired exceeds the size of the LV. Physicians are trained to draw

contours while at least 50% of the blood-pool is surrounded by myocardium in both ED and ES

[17]. The apical slice is defined as the final slice showing intracavity blood-pool at both ED and
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ES (see Fig.1.3(d)). Papillary muscles (PM) are to be included in the volume calculations (see

Fig.1.3(c)). This makes manual delineation prone to inter- and intra-observer variability, which is

highly dependant on the physician experience [17].

Figure 1.3: SA cine-MR images. (a) Long axis view and planing of the SA images (b) Appical slice (c)
Middle slice (d) Basal slice. Top row is at ED phase and inferior row at ES phase.

Due to the stated reasons, there is a growing demand for objective, reproducible and automated

technique for quantification of the LV function. However, it is also clear that a full automatic and 100%

successful segmentation method is difficult to achieve. The physician will allways be essential to supervise

the outcome and adjust the result if needed.

1.3 LV segmentation algorithms

According to Pham, Xu and Prince review [18], there are eight segmentation categories: (i) threshold-

ing, (ii) region growing, (iii) classifiers, (iv) clustering, (v) Markov random fields (MRF), (vi) neural

networks, (vii) deformable models, and (viii) atlas-guided. The first five approaches are considered pixel-

classification methods and the last three are model-based methods.

In what concerns LV segmentation in SA cine-MR images, simple pixel-classification methods can only

be used as initial steps in a sequence of image processing operations [18, 19, 20]. They do not take into

account the spacial characteristics of an image nor they are robust enough to overcome the complex signal

variation over these images. Fuzzy theory can be introduced to improve pixel-classification approaches

[21, 16].

In model-based methods, the contour extraction algorithm is normally based in energy minimiza-

tion between image information and à priori information such as the LV shape. Therefore, geometric

information is incorporated along with tissue signal characteristics.

Deformable models (DM) are physically motivated techniques for delineating region boundaries by

using parametric curves or surfaces that deform under the influence of internal (geometric information)

and external forces (data information) [22]. Several related works can be found in the literature: based on

active contours (also known as snakes) (2D) [23, 24, 25, 26] or deformable surfaces (3D) [27, 28, 29, 19].
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In the past few years, there have been significant efforts to improve the use of DM, either in the

development of the external forces or on the use of à priori knowledge in the internal forces.

The external forces are tunned with pre-processing tools. They can be used to smooth the image,

clear artifacts and highlight the transition between the blood-pool and the myocardium. To perform this

last task an edge-detector such as Canny’s [30] can be used in the simplest approach. As it was previously

stated, low-level pixel-classification methods can also be used, along with morphological operators.

In what concerns to the internal forces, several researchers cast the DM fitting process in a probabilistic

framework and include prior knowledge of object shape by incorporating prior probability distributions

on the shape variables to be estimated [27, 28, 31, 32, 33, 34]. For instance, MRF modeling itself is

not a segmentation method but a statistical model that can be used within segmentation methods [35].

Two-component model analysis are also used [36], as well as the Bayesian framework [37], although they

are not referred in [18].

All these combined approaches significantly decrease the amount of user interaction that is needed

for estimating the LV volume. Moreover, automating the initialization procedure of such methods would

also eliminate inter- and intra-observer variability from the analysis, increasing its reproducibility.

There are several levels for human intervention in the semi-automatic algorithms. One can just be

selecting a bounding box (BB) or identify a region, such as in [20, 38] to locate the LV or the blood-pool

in the image. A manual initialization of the snake can be requested due to the initialization difficulties in

active contours. The snake can be initialized either by selecting a central point for a circumference [27]

or manually inserting the initial snake points [37].

Although the previous approaches may prove to be robust for semi-automated LV functional analysis,

to achieve a completely automated LV segmentation method that requires little or no user interaction,

one must also have a robust method for automated LV cavity location in the image volume. The related

works that intend to solve the LV location problem rely on cardiac SA cine-MR specific characteristics.

They usually follow two approaches to locate the LV: (i) take into account the signal change over time

due to muscle contraction [39] or (ii) use the Hough Transform (HT) based on the prior knowledge about

the circular shape of the transversal cross sections of the LV [40]. Other approaches use multiple views

to automatically identify the LV, such as the one proposed in [16].

In these cases, the observer might have to adjust intuitive parameters from thresholding or from

morphological operators [39].

1.4 Motivation

To summarise, the LV function analysis is currently performed manually in the clinical routine in a

labor, time-consuming, operator biased task. Since the nineties, the computer vision knowledge has been

introduced in medical image analysis as it can be confirmed in the review works from Pham et al. [18]

and from McInerney et al. [19]. Since then, several developments have been made and new theories have

been incorporated to improve the models.

However, in most of the proposed algorithms only a part of the stated difficulties are addressed.
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Normally, the alignment problem is hardly addressed and few give robust solutions concerning the signal

variation over the slice and over the different image planes. Attending to these considerations, no fully

automatic initialization is achieved using a single view of the LV.

According to this lack, a new approach must be used, combining most of the proposed models and

methodologies and attending to all the SA cine-MR difficulties in order to achieve an improved, robust

and fully automated LV segmentation.

1.5 Goals and original contributions

In this thesis, the first steps toward a fully automatic LV segmentation algorithm based on a single view

are presented:

1. Automatic crop: selects a sub-volume containing the LV in all images and in all temporal frames

from the acquired data. The algorithm here proposed incorporates two basic knowledges: (i) the

LV shape is circular and (ii) there is a high temporal variability of the image intensity in the

myocardium boundaries. Another important assumption is adopted and validated: although the

heart location may vary from exam to exam, the LV will never be found at the edges of the FOV

and it is always close to the center of the image. A paper on this issue was already submitted (see

chapter 7).

2. Alignment-by-reconstruction: novel technique to solve the misalignment due to respiratory

motion, inspired on the work from Sanches et. al [1] in ultrasound. First, the images are blurred

and a translation vector is estimated using cross-correlation between consecutive slices. Secondly,

a volume reconstruction is performed, where the information in a given slice is difused over its

neighbors. Therefore, in the third step, the translation vector from the cross-correlation between

the slices from the reconstructed volume and the original stack considers the energy from the

neighbor slices.

3. Segmentation: The LV is segmented using active contours in an energy minimization formulation

with GVF as external field. The automatic initialization algorithm here implemented is original,

and it is based on the property of intersecting chords.

Tests using synthetic and real data have proven the robustness of theses algorithms and its utility in

the clinical practice. Due to time limitations, it was not possible to quantify the accuracy from some

steps of the algorithm. However, the results were visually inspected by an expert.

1.6 Overview

This thesis is organized in 7 chapters, where the Introduction is the first one and the Conclusion and

future work is the last one. In chapter 2 there is the problem formulation along with the work-flow of

the solution. From chapter 3 to 5 the three steps shortly described above are explored. In chapter 6 the

Results are presented and discussed.
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Chapter 2

Materials and method

2.1 Problem formulation and algorithm structure

The segmentation of the LV from cine-MR images is not a trivial issue. The signal variation across the

slice and over the volume and the misalignment are some problems that must be addressed before starting

the segmentation. The figure bellow presents the work flow of the proposed solution.

Figure 2.1: Algorithm setup

The solution here presented can be described as hybrid bottom-up and top-down. The bottom-up

processing steps are used to bring the information to a level higher than pixel level, such as filtering and

edging. These techniques are used in the first two steps, along with higher level processing techniques

(HT and cross-correlation, for instance). Then top-down processing steps are also used, in the third step,

with shape based representation to fit the data in the segmentation algorithm.

The sequence order of the algorithms is determined by efficiency. The cropping task must be performed

firstly to decrease the computational burden of the alignment and segmentation tasks. The joint image

registration and volume reconstruction is performed secondly in order to be able to use the initialization

of the snake in one slice on the consecutive ones.

The algorithm was implemented in Matlab R2007b and the cross-correlation, reconstruction, GVF

and snake initialization algorithms were implemented in c frame and compiled using mex. In typical

conditions it spent about 2 minutes for the all processing and loading the final cropped volume, normally
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less then 1 minute to compute the alignment (up to 3 minutes when the number of slices increases) and

less then 10 seconds to estimate the snake initialization. Once the tunning of the segmentation parameters

is correct, the segmentation algorithm spent about 20 seconds.

2.2 MRI data

The presented algorithm was tested on 17 cardiac patients identified with the letters from A to Q (five

females and twelve males, mean age 48 years old, ranging from 19 to 86) from Sociedade Portuguesa de

Ressonância Magnética (SPRM) where the LV function was studied. Prof. Ana G. Almeida was the

physitian in charge, who also validated the obtained results.

The images were acquired on a 3T Philips scanner, using a Philips SENSE cardiac coil six-elements

and saved in DICOM (Digital Imaging and Communications in Medicine). The cine-MR study was

gated to the ECG and acquired with steady state free precession image sequence. A series of 8 up

to 14 SA slices encompassing all the LV length were acquired over 20 up to 30 time frames over the

cardiac cycle. The slice thickness is of 7 mm with a 3 mm gap between them. The spacial resolution

varies between 0.71pixel/mm to 1.44pixel/mm. The field of view (FOV) varies between 256 × 256 to

672 × 672. The repetition time (TR), the echo time (TE) and the flip angle (FA) TR/TE/FA varies

4.0 − 4.7/2.0 − 2.6/15◦ − 60◦. Most of the images were acquired the following set of values: spacial

resolution of 1.38pixel/mm, FOV of 560 × 560 and TR/TE/FA of 4.1/2.0/45◦. For more details see

section 7, Table 7.1.

Notation

Over the report, the notations used to access the 3-D+T data-set is listed in the table bellow:

Table 2.1: 3-D+T notation
Notation Description

(i, j) Pixel coordinates in the image, where 1 < i, j < M, N
[M, N ] Image size

(i, j, s, t) Voxel coordinates, where 1 < i, j, s, t < M, N, S, T
s Slice index, where s < S being S the total number of slices
t Time frame index, where t < T being T the total number of time frames

[M, N, S, T ] Data-set dimensions

Let the position in a 2-D image be defined as (i, j) were 1 < i, j < M, N , with [M, N ] being the size

of the image; the slice index is defined as s, where s < S being S the total number of slices in the data

set; and the time frame index is defined as t, where t < T being T the total number of time frames in

the data set.

8



Chapter 3

Automatic Crop

As previously stated, LV function is assessed by using SA cine-MR images that represent large amounts

of data: 10 up to 17 volume images over 15 up to 30 frames in the cardiac cycle.

The state of the art algorithms for LV segmentation are semi-automatic allowing to reduce significantly

the human intervention. A fully automatic approach requires time consuming signal pre-processing tasks

to compensate, in one hand, for coil sensitivity that induces intensity fluctuations across the images and,

in the other hand, for misalignments due small movements during the breath-hold acquisition protocol.

Therefore, a reduction of the matrix dimension is needed to reduce the computational burden associated

with the pre-processing. alignment and segmentation algorithms. Additionally, the total amount of

available data is usually large, i.e., the SA cine-MR images typically have 560 × 560 pixels covering a

FOV containing the heart and much more. Therefore, the development of an automatic crop function

suits for a first step in the LV segmentation.

3.1 State of the art

To calculate the region of interest (ROI) it is necessary to locate the LV. One of the most simple and

successful methods is described in [39]. It is based in the high temporal variability of the image intensity

in the myocardium boundaries. The main drawback of this algorithm is to have two tunable parameters

on which it depends.

Other approach proposed uses a size invariant circular HT to locate the LV and estimate a ROI [40].

They use Otsu’s method followed by a morphological operator to segment a connected region where the

point calculated by the HT will fall. This method does not take into account the signal change along the

slice which makes the thresholding method less robust.

The algorithm here proposed incorporates both strategies: (i) the knowledge that the LV shape is

circular and (ii) there is a high temporal variability of the image intensity in the myocardium boundaries.

Another important assumption is adopted and validated: although the heart location may vary between

exams, the LV will never be found at the edges of the FOV and it is always close to the center of the

image. This is based on the well-known anatomic location of the heart. Under these assumptions, a fully
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automatic crop algorithm is present to calculate a ROI containing the LV. This ROI is then extended to

the entire stack of images over all the cardiac cycle frames, resulting in a 3-D+T cropped volume.

The algorithm was first implemented by estimating the center of a fixed-size predefined width ROI

based on the circular HT. A refinement step was also implemented, where the center coordinates and

width of the previous ROI are refined in and adaptive way.

3.2 Algorithm description

Let x(i, j, s, t) be the (i, j)th voxel in the sth slice at the tth time frame, where 1 < i, j, s, t < M, N, S, T .

A standard deviation (STD) map is computed according to Eq.3.1, using all temporal frames from the

middle slice of the SA images stack (see Fig.3.3(b)). As [39] suggested, high STD is found between

the myocardium and the blood-pool. Additionally, this map will introduce extra ringing around the LV

borders, i.e., more circular shapes. Therefore, the à priori knowledge of the circular shape is used to

locate the LV in the STD map using the HT.

STD(i, j) = σt(i, j) =

√√√√ 1
T

∑
t

(
x

(
i, j,

S

2
, t

)
− µt

(
i, j,

S

2

))2

, (3.1)

where µt

(
i, j, S

2

)
is the mean of the signal over the time, estimated in the position

(
i, j, S

2

)
.

Before calculating the STD map, the images are filtered by a Gaussian mask to reduce the noise.

This reduction is important to guarantee that the STD map observed is mainly generated by temporal

variations and not by spatial noise.

The Canny edge-detector [30] is used over the STD map to get an edge-map to be used in the circular

HT algorithm (see Fig.3.3(c)).

The HT originally implemented by Hough [41] was used to detect simple shapes like straight lines

described in a parametric form. In the circular HT here used [42], the circumference is defined by its

center (a, b) and its radius r. Therefore, a 3D Hough parametric space is used. If the circles in an image

are of known radius r, then the search can be reduced to 2D. The objective is to find the (a, b) coordinates

of the centers. The true center point will be common to all parameter circles, and can be found with a

Hough accumulation array (Fig.3.1). The circular HT algorithm here implemented1 is computed for a

fixed radius and the output is an accumulator Acc with the same dimensions of the input image [M, N ].

The value at Accr(i, j) represents the number of circles with radius r centered at the edge pixels that

intersect the (i, j)th pixel.

Based on the knowledge that the LV centroid is the center of multiple circles (the ring generated

in the STD map and of the epicardial and endocardial border) and that the LV has variable size, the

HT is computed for a set of different radius values. The maximum radius of the LV (at the end of the

diastole) can range from 18mm to 28mm [43] in normal hearts. Using this interval as reference, the HT

was calculated for radius ranging from 15mm to 40mm . The maximum radius was increased to 40mm

1“Circle detection via standard Hough Transform” from Amin Sarafraz, downloaded from Matlab Central
http://www.mathworks.com/matlabcentral/fileexchange/
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Figure 3.1: Circular Hough transform: Each point in geometric space (left) generates a circle in parameter
space (right). The circles in parameter space intersect at the center of the original circumference in the
geometric space

in order to include the epicardial border of the LV, and the minimum was decreased to 15mm because

the middle slice of the stack might not correspond to the largest section of the LV. With steps of 2mm

of interval, the circular HT is processed for all the radius from 15mm to 40mm and the accumulators are

added at each step (Eq.3.2). The AccTotal incorporates the whole information about circles with every

radius in the range, amplifying its common center location. Adding the accumulators will ensure that

the maximum will be closer to the centroid of the LV.

AccTotal(i, j) =
∑

r

Accr(i, j) (3.2)

Based on the assumption that the LV is always close to the center of the image, the circles detected

close to it will be favored. The AccTotal is then multiplied by a mask that has unitary value in a circular

region around the center of the image and with decreasing values up to the borders, following Eq.3.3 and

showed in Fig.3.2.

(a) 3D view
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(b) top view

Figure 3.2: Accumulator mask used to reduce the importance of the detected circles outside the central
circular region.

h(x) =

⎧⎪⎨
⎪⎩

1 if ‖x − c‖ ≤ R(
1

‖x−c‖ − 1
‖c‖
)
· R if ‖x − c‖ > R

. (3.3)
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where c ∈ R2 represents the center of the image, x ∈ R2 the position of a mask element and R = 50mm,

related with human anatomy. This value is fixed and was selected based on experimental tests and on

the results from [16]. This reference radius determines the maximum possible distance from which the

LV centroid is apart from the center of the image and the circular region where the AccTotal has unitary

weight. Outside this region the AccTotal is weighted by smaller values, reducing the importance of the

detected circles in this area. The mask is zero at the corners of the image. The new ROI is squared and

centered at the coordinates of the maximum of the AccTotal. The side dimensions of this BB were set

to (2 + ε)rmax = 120 mm, where ε = 1 is a safety coefficient and rmax = 40 mm.

Figure 3.3: Automatic crop results from patient Q. (a) original image (middle slice 2nd time-frame) (b)
STD map (c) Canny edge-map (d) Filtered accumulator map, zoomed into the area where the accumulator
has higher intensity (e) Resulting BB highlighted in the original image.

Adaptive LV windowing

In the first step of the algorithm, a fixed size window is generated, only depending on the pixel resolution.

All the tested data-set had successful results, i.e., the myocardium was always within the window (see

Fig.3.3 as an example). However, it is not able to consistently locate the exact center of the LV, and for

that reason, the estimated ROI is not the smallest possible.

The goal of this refinement step is to improve the center and radius estimation and adjust the window.

The HT is again used for a set for radius, however the accumulatores will not be added up: the most voted

center will be selected for each radius. Additionally, a growing BB will be used, in order to eliminate the

influence of bigger structures in the smaller boxes, highlighting the optimal radius peak. The box size

increases from 2rmin = 30mm to 3rmax = 120mm, with 10mm gap between iterations. Let D(k) be the
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width of the box at kth step of the growing BB and x ∈ R2 a position in the accumulator matrix. The

new parameters to generate an adaptive window are estimated by Eq.3.4. The range of radius used in the

first step is also used here. The new squared BB is centered at cadaptive and with width (2 + ε)radaptive,

where ε = 1 is a safety coefficient.

(r, c)new
adaptive = arg max

r,x
Accr,D(k)(x) (3.4)

(a) Patient E (b) Patient G

Figure 3.4: Graphics from the biggest BB, radius vs accumulator.

In Fig.3.4 it is possible to observe the resulting graphics representing the accumulator weight for each

radius for the biggest BB in two different patients. There were no significant differences over the set

of BB tested, therefore only the results from the biggest one are presented. The graphics clearly have

an offset that increases with the radius. That is expected since the perimeter increases with the radius,

therefore the weight in the accumulator increases as well. This effect was compensated by dividing the

accumulator value with the radius to eliminate the influence of the size (not shown). It would be expected

to have a peak at the optimum radius. However, that is not the rule, and most of the times the peak is

in the higher radius, due to the offset and the implemented compensation was not able to overcome this

difficulty in a consistent way.

Observing the results, the peak criterion itself was not always good: 4 out of the 17 studied cases

had bad fitting (Fig.3.5), i.e., the BB was to tight, cutting out the epicardium, and not robust to the

misalignment. But these unsuccessful cases were actually the most successful ones, because the selected

radius was the closest to the endocardium, and an increase in the constant factor would be enough to

have a good fit. However, in most cases the estimated radius is higher due to the biased accumulator

resulting in BB bigger then the ones from the first step. The observed results were not successful and

will not be used in the further steps.
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Figure 3.5: Automatic crop results with adaptive LV windowing. (a) Patient E (b) Patient K (c) Patient
I.
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Chapter 4

Alignment-by-reconstruction

Although many advances have been made in cardiac MRI, the heart motion during image acquisition

remains a source of artifacts. The motion of the heart is generated by the cardiac cycle beating and

normal respiration, admitting that the patient holds still during the entire exam.

In order to compensate for the heart beat, the acquisition is gated to the ECG. Dual cardiac-respiratory

gating is more complex because the respiratory motion is generally less reproducible than the cardiac

cycle. The existing gating methods tend to acquire during short periods of the respiratory cycle, typically

at end-expiration, when the motion of the heart is smaller. Therefore, it is still no efficient and out of the

clinical routine. For this reason, the standard acquisition protocol in LV function studies is performed in

breath-hold conditions.

However, several studies showed that there is residual heart motion during breath-hold acquisitions

[15, 10, 14]. During suspended respiration, there is a displacement of the diaphragm and the heart does

not return to the same position on consecutive heart beats [14]. Additionally, the initial position of the

diaphragm might change over all the requested apnea periods [14, 15]. This can lead to blurring effects

and misalignment of the LV along the stack.

4.1 State of the art

Most of the LV registration and alignment algorithms found in the literature refer to the registration

of images from different imaging modalities [44] or to build statistical models [34, 31, 45]. Alignment

algorithms that solve the misalignment between consecutive planes (further referred as intra-plane align-

ment) were not found as an independent research topic in the literature, although some full automatic

LV segmentation algorithms referred this problem [36, 16, 20].

In these algorithms, two different approaches were used: (i) locate the LV centroid at all the LV slices

and align then according to that centerline [46] or (ii) combining multiple views, for instance, short-axis

and long-axis views [36, 16]. The use of the first technique is not efficient since it cannot benefit from

the initialization in one slice to initialize the segmentation in the adjacent slices.

The alignment of the cardiac planes is a non-trivial registration task. The problem is to align a set of
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misaligned slices instead of registering different views of the same object (see Fig.4.1). The use of mutual

information is not the most adequate method to solve this problem, because the solution with minimal

energy leads to overlapping contours, while the solution relies in concentric contours. The presence of

structures that not change between planes is important to the convergence of the algorithm to the desired

solution (in the synthetic example in Fig.4.1(a), the small rings play that role).

(a) Misaligned synthetics (b) Aligned synthetics

(c) Misaligned real image (d) Aligned real image

Figure 4.1: Misalignment in cardiac images: example with synthetics and real images

Here, a joint image registration and volume reconstruction is proposed, inspired on the previous work

from Sanches et al. [1] in ultrasound. However, its goal was the reconstruction of the volume using an

alignment step, while here the reconstruction is used the achieve an optimal alignment.

4.2 Algorithm description

Let Yk
t be the edge map of the volume data set of the tth time frame, at the kth iteration step of the

algorithm and Y(i, j, s) be the (i, j)th voxel in the sth slice, where 1 < i, j, s < M, N, S. The cropped

data set is the input of the algorithm. The processing flow of the proposed method is described in Fig.4.2.
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The pre-processing tasks will be described at the end of the chapter.

Figure 4.2: Alignment-by-reconstruction algorithm work-flow

In the first step of the algorithm, the Canny edge detector [30] is applied with a wide range in the

thresholds parameter, 0.01 → 0.1, to get a binary edge-volume Yt and guaranty that the endocardium

is fully represented in the edge-map, without broken edges (Fig.4.3(a)). This binarization reduces the

computational weight of the tasks that follow. Then, Yt is filtered with a broad Gaussian mask (#10

and σ = 5), to diffuse the contour information.

(a) Weak edges, Canny default threshold (b) Spurious edges, Canny 0.01 - 0.1

Figure 4.3: Weak edges in cine-MR images using Canny edge-detector. The dark lines represent the edges
over the original image.

In the third step, the first alignment task is performed. For the sake of simplicity, lets re-define the

voxel notation x(s) = Y(i, j, s). The translation vector T k
1 (s) of the voxels x(s) from slice s is estimated by

calculating the cross-correlation between consecutive planes of the volume (see “Intra-planes alignment”

in Fig.4.4) and its average subtracted according to Eq.4.1: ,

xk+1(s) = xk(s) + T k
1 (s) − 1

S

S∑
s

T k
1 (s). (4.1)

This first set of planes aligned Y0
IntraPlanesAlignedT1

is used to reconstructed the volume F0. This step
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requires intense computation over the volume data by using cross-correlation. For this reason, cropping

is essential.

Figure 4.4: Iteration step from the algorithm

The reconstruction is the fourth step and it is an iterative process where the following energy function

is minimized:

E =
M,N,S∑

i,j,s

(Fi,j,s − Yi,j,s)
2 + α

M,N,S,Nb∑
i,j,s,δ

(Fi,j,s − Fi,j,s,δ)
2 , (4.2)

where Nb is the number of neighbors of each voxel and F is the unknown volume computed from the

original data Y and influenced by its volume neighbors δ with and weighting factor α. To compute the

minimizer of E, F, Eq.4.2 must be derived and equal to zero:

∂E
∂Fi,j,s

= (Fi,j,s − Yi,j,s) + αNb

(
Fi,j,s − F̄i,j,s

)
= 0, (4.3a)

where F̄i,j,s =
1

Nb

Nb∑
δ

Fi,j,s.

To find the solution for this energy minimization, the Newton-Raphson method is used, leading to

the following iterative equation formulation: let Fk
l be the lth iteration step to estimate Fk,

Fk
l+1(i, j, s) = (1 − K)Yk(i, j, s) + KF̄k

l (i, j, s), (4.4)

where K =
αNb

1 + αNb
.

The iterative process associated with Eq.4.4 is initialized with F0 = Y, α = 0.9 and Nb = 6, six-connected.

The stop criterion is:

∥∥Fk
l+1 − Fk

l

∥∥∥∥Fk
l+1

∥∥ < 0.1 (4.5)

This reconstruction step is essential to diffuse the misaligned slices into its neighbors and by this

influencing the next alignment step: the “Inter-planes alignment” in Fig.4.4. The translation vectors are

estimated and its average subtracted according to Eq.4.1 using T2. This iterative process stops when the
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translation vector reaches the equilibrium:

∆k

∆k−1
< 0.1, where ∆k =

∥∥∥∥∥
S∑
s

∣∣T̄ k
2 (s) − T̄ k−1

2 (s)
∣∣
∥∥∥∥∥ (4.6)

Pre-processing

Before entering the registration/reconstruction part of the algorithm, the cropped 3-D+T data-set is

first processed with low-level signal processing tools. First the data-set is normalized according to Eq.4.7.

Given a gray-level image I(x, y), (x, y) ∈ R2, viewed as a function of continuous positions variables:

IN (x, y) =
I(x, y) − min(I)
max(I) − min(I)

(4.7)

Then, the histogram equalizer algorithm from Matlab is used. Without specifying the desired his-

togram, the function creates a flat histogram and choses the gray scale transformation T to minimize

Eq.4.8:

|c1(T (k)) − c0(k)|, (4.8)

where c0 is the cumulative histogram of I and c1 is the cumulative sum of the histogram for all intensities

k. This minimization is subject to the constraints that T must be monotonic and c1(T (a)) cannot

overshoot c0(a) by more than half the distance between the histogram counts at a. The function uses

this transformation to map the gray levels in I to their new values.

The data-set is then filtered with a low-pass Gaussian mask (#5 and σ = 2) to reduce noisy structures.

The power-law transformation (Eq.4.9) is then applied, inspired on [20]:

I′ = κIγ , (4.9)

where κ = 10 (because the image was normalized) and α = 1.3 to enhance contrast.

Additionally, the 2D median filter was also used, in order to eliminate structures such as the PM and

preserve the contours.
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Chapter 5

Segmentation

Although originally developed for application in computer vision and computer graphics, the potential

of DM in medical image analysis (MIA) was quickly realized. Its application in the study of LV function

is now an active field of research. Manual segmentation of the LV is extremely labor intensive, time-

consuming, biased, non-reproducible and experience-dependent task.

Among the first uses of DM in LV segmentation was the application of the active contours, also known

as snakes [22]. Typically users initialized the snake manually near the object of interest. Once the user

is satisfied with the result on an initial image slice, the segmented contour may be used as the initial

boundary approximation for neighbor slices. Active contours have been developing since and are a major

tool in what concerns to MIA [19], and LV segmentation in particular [33].

5.1 Background

Image segmentation, which aims at separate the image into regions, is an important step toward image

analysis and interpretation [47]. Low-level segmentation techniques, such as pixel-based (thresholding),

edge-based or region-based, divide the image into regions that hopefully correspond to objects. Higher-

level techniques, such as DM, include knowledge about the object.

Segmentation using DM

DM are curves or surfaces defined within an image domain that can move under the influence of internal

forces, which are defined within the curve or surface itself, and external forces, which are computed from

the image data [48]. In this work, the 2-D DM curves are used.

DM can be described by parametric or geometric models [48]. Parametric models represent the curve

in its parametric form, allowing direct interaction with the model. Geometric models represent the curve

implicitly as a level set of a higher-dimensional scalar function. Their great advantage is the natural

handling of topological changes.

In what concerns to LV segmentation, it is not expected to handle with topological changes. For this

reason, the problem is going to be formulated in terms of the parametric model.
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Parametric DM and energy minimization formulation

There are two types of formulations for parametric DM: an energy minimization formulation and a

dynamic force formulation. Here, the energy minimization formulation [23, 33] is adopted.

Energy minimization formulation aims to find the parameterized curve that minimizes the weighted

sum of internal energy and potential energy. The parametric active contour is a dynamic curve C(s) =

(x(s),y(s)), s ∈ [0, 1], which moves through the spatial domain of an image in order to minimize the

following energy functional:

E(C) =
∫ 1

0

α(s)
∣∣∣∣∂C
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣∂2C
∂s2

∣∣∣∣
2

ds +
∫ 1

0

P(C)ds. (5.1)

The first integral corresponds to the internal energy, the regularization term. It describes the tension and

the smoothness of the contour. The first-order derivative are elastic forces. They discourage stretching

and make the model behave like an elastic string. The second-order derivative models the bending forces

and makes the model behave like a rigid rod. The weighting parameters α(s) and β(s) are used to control

the model’s tension and rigidity, respectively. They are normally constant.

The second integral corresponds to the potential energy. The potential energy function P is derived

from the image and takes smaller values at object boundaries. Typically, the potential function is based

on the gradient of the image: given a gray-level image I : R2 → R, viewed as a function of continuous

positions variables, a typical potential energy function designed in such a way that intensity transitions

become associated to valleys of the potential is

P(x, y) = −we |∇[Gσ(x, y) ∗ I(x, y)]|2 , (5.2)

where we is a positive weighting factor, Gσ(x, y) is a 2-D Gaussian function with standard deviation σ,

∇ is the gradient operator and ∗ is the 2-D convolution operator.

The problem of finding a curve C(s) that minimizes the energy functional E (Eq.5.1) is known as a

variational problem. The curve that minimizes E must satisfy the following Euler-Lagrange equation:

∂

∂s

(
α

∂C
∂s

)
− ∂2

∂s2

(
β

∂2C
∂s2

)
−∇P(C) = 0, (5.3)

which may be interpreted as the following force balance equation:

Fint(C) + Fpot(C) = 0. (5.4)

To find the object boundary, parametric curves are initialized within the image domain (manually or

automatically), and are forced to move toward the potential energy minima under the influence of both

these forces. To find the solution to Eq.5.3, the active contour is made dynamic by treating C(s) as a

function of time t → C(s, t). The time zero contour, C(s, 0), is given by the initialization contour. Then,
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the snake evolves iteratively according to Eq. 5.5:

∂C
∂t

= Fint(C) + Fpot(C). (5.5)

The main advantages of the snakes are their ability to generate a parametric smooth curve from the

image. However, most of the these models are sensitive to noise due to their purely edge-based nature

and low attraction range of the gradient. Therefore the initialization has to be done close to the true

contour. Additionally, the traditional snake model does not converge properly into boundary concavities.

Increasing σ from P can broaden the attraction range of the potential function making the minimum

potential valleys less step. However, it can also cause shift in the boundary location, resulting in a less

accurate result.

There are several formulations of P to extend the attraction range, in order to decrease the dependence

on a good initialization: the multiscale Gaussian potential force by Terzopoulos, Witkin and Kass [22],

the pressure force proposed by Cohen [49], the distance potential force by Cohen and Cohen [50] and

gradient vector flow (GVF) presented by Xu and Prince [23] that is used in this work.

The GVF is a very attractive external force for active contour models because it addresses both

problems listed above. The GVF is computed as a diffusion of the gradient vectors of a gray-level image

or binary edge map derived from the image.

5.2 Gradient Vector Flow

Let f : R2 → R be the edge map derived from the image I and Fpot(x, y) = v(x, y) = [u(x, y), v(x, y)]

where u, v : R2 → R, be the GVF field that minimizes the energy functional from Eq.5.6:

ε =
∫∫

µ

(∣∣∣∣∂u

∂x

∣∣∣∣
2

+
∣∣∣∣∂u

∂y

∣∣∣∣
2

+
∣∣∣∣∂v

∂x

∣∣∣∣
2

+
∣∣∣∣∂v

∂y

∣∣∣∣
2
)

+ |∇f |2|v −∇f |2dxdy. (5.6)

The edge map f(x, y) has three general properties: (i) the gradient of an edge map ∇f has vectors

pointing toward the edges, (ii) these vectors generally have large magnitudes only in the vicinity of the

edges, and (iii) in homogeneous regions, where I(x, y) is nearly constant, ∇f is nearly zero.

According to f properties, the variational formulation in Eq.5.6 makes the result smooth when the

region is homogeneous. In particular, when |∇f | is small, the energy is dominated by the partial deriva-

tives of the vector field. On the other hand, when |∇f | is large, the second term dominates the integrand

and is minimized by setting v = |∇f |. The parameter µ is a regularization parameter and should be set

according to the amount of noise present in the image.

Euler equations are again used to solve this variational problem and calculate the GVF field:

µ∇2u −
(

u − ∂f

∂x

)(∣∣∣∣∂f

∂x

∣∣∣∣
2

+
∣∣∣∣∂f

∂y

∣∣∣∣
2
)

= 0 (5.7a)

µ∇2v −
(

v − ∂f

∂y

)(∣∣∣∣∂f

∂x

∣∣∣∣
2

+
∣∣∣∣∂f

∂y

∣∣∣∣
2
)

= 0 (5.7b)
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where ∇2 is the Laplacian operator.

LV segmentation introduces new problems where the use of active contours with GVF is not enough.

Turbulent blood-flow and papillary muscles pose additional challenges on snake convergence to the object

boundary. Therefore, it is important to solve this problem in both fronts. To address the first issue, a

novel initialization technique was implemented. Besides statistical models or manual initialization, there

are no other methods described in the literature to initialize the snake to segment the LV. In what concerns

to the second issue, the median filter was used in the pre-processing step in order to eliminate/decrease

the influence of the papillary structures in the blood-pool.

When non of the implemented techniques works properly, the user can always manually change the

snake. Additionally, the user has to manually sellect the slices to estimate the EF, according to the

protocol described in section 1.2. Due to time limitations, no solutions were found for this problem.

5.3 Automatic snake initialization

Snake initialization is a very important step in segmentation, determinant for a good convergence.

LV imaging has special characteristics that make this issue important. In one hand, edge detectors are

not able to fully detect the endocardium border without detecting other spurious structures as well. These

noisy structures present in the blood pool have contrast transitions close to some weak edges (compare

Canny performance for different thresholds in Fig.5.1) and are generated by turbulent blood-flow.

(a) Weak edges, Canny default threshold (b) Spurious edges, Canny 0.01 - 0.1

Figure 5.1: Weak edges in cine-MR images using Canny edge-detector. The dark lines represent the edges
over the original image.

On the other hand, HT does not give a satisfying center/radius estimation to initialize the contour

with a circumference based on those parameters. It is a very sensitive system, and the circumference can

fall out of the borders and compromise the convergence of the contour leading to a mixed epicardium-

endocardium final contour or be stuck in the spurious structures such as PM.

Our approach is robust to all the difficulties in LV segmentation because is based on the gray-scale
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Figure 5.2: Chords

image and not on the edge-map. The only request is that the center of the image must be inside the

blood-pool, which is accomplished in chapter 3. Inspired from [51], the property of intersecting chords

is used. A chord is the segment of a secant line lying inside of the circumference. The perpendicular

bisector of any chord passes through the center of the circumference (see Fig.5.2).

Using two chords, the center can be estimated but with no error associated. Therefore, four chords

will be used to estimate more accurately the best circumference center (see Fig.5.3). The signal profiles

from four direction in the image are collected: horizontal, vertical and two diagonals. It is preferable to

use middle slices instead of the basal ones, where the PM are seldom, and preferably near the diastole

phase [46].

(a) Signal profile directions (b) Signal profile

Figure 5.3: Automatic snake initialization. (orange) signal profile directions collected from the middle
slice: the arrows point the way the signal was collected. The points ‘B’ and ‘E’ define the chord.

5.4 Implementation

The data-set from the alignment-by reconstruction step (the aligned and pre-processed data-set) is the

input for this final step. The setup in Fig.5.4(a) explains the work-flow of this process:

The process starts at the first time frame t = 1 and middle slice s = S/2 (see Fig.5.4(b)). From this

starting point, the ES frame (ESF) and the EDV are estimated. Based on the ECG gating, the first

frame is collected at the QRS complex from the ECG, that represents the start of the systole, therefore,
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(a) Work flow

(b) Expansion of the contours in space and time domain.(red dashed) initialization contour
in middle slice (orange arrow) segmentation in time domain and area measurement to
estimate ESF.

Figure 5.4: Segmentation work flow

the end of the diastole. After the initialization, the segmentation algorithm is used and the contour is

expanded in space and time through its neighbors, as showed in Fig.5.4(b).

Over the time domain, the area is measured and the ESF is the one with minimum area. It is expected

to find the ESF at about 43% of the time course (the systole is shorter then the dyastole [52]), i.e., in

a set of 30 frames, it is expected to find the ESF around the 12 time frame. After estimating the ESF,

the segmentation of the ESV is initialized in the middle slice and t = ESF with the segmented contour

from the time series. Then, the contours are again propagated over the space (Fig.5.4(b)).

After each segmentation step, the results are displayed and can be manually changed. The spurious

slices that do not fulfill the criteria described in the section 1.2 have to be manually excluded.

Initialization algorithm

As previously mentioned, the initialization is based on the intersecting chords property. Four chords

are used: horizontal, vertical and two diagonals. The intensity profile signals, s(x), are plotted and the

discrete derivative, Ds(x), of each is calculated according to Eq.5.8. The point edges B are calculated in

an inverse way of the E points for the sake of comparison (see Fig.5.3 to identify the points). Due to the
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previously referred signal variations over the slice (Fig.5.1(a)), the estimation of B points is done with

the derivative calculated forward and the E points with the derivative calculated backward in order to

make the contrast value comparable.

Ds(x) =

⎧⎪⎨
⎪⎩

s(x+1)−s(x)
s(x) , first edge B

s(x)−s(x+1)
s(x+1) , second edge E

, x ∈ R (5.8)

The local maximums of the derivative indicate for signal variations and are used to locate the endo-

cardium border. The peaks of the derivatives with amplitude higher then 3.5% are selected and collected

into arrays. The transitions higher then 60% are cutted-off by this algorithm. This mechanism is used

to decrease the number of candidates resulting from the contrast between muscle and lung, higher than

the normal transition between muscle and blood.

For each direction, a set of candidate chords are selected, defined by local maximums points B and

E, if the pair of points (B, E) satisfies the following conditions:

• B > E according to the signal acquisition direction;

• 15mm < BE < 56mm;

• The relative positions from each pair BE must satisfy a circumference (according to image axis in

Matlab):

– Bhorizontal
x < (B, E)vertical

x < Ehorizontal
x

– Bvertical
y < (B, E)horizontal

y < Evertical
x

– Bdiagonal1
x < (B, E)vertical

x < Ediagonal1
x

– Bdiagonal2
x < (B, E)vertical

x < Ediagonal2
x

– Bdiagonal1
y < (B, E)horizontal

y < Ediagonal1
y

– Bdiagonal2
y > (B, E)horizontal

y > Ediagonal2
y

– Bdiagonal2
y < Bdiagonal1

y

– Ediagonal1
y < Ediagonal2

y

From each direction there is a set of candidate points (B, E) that fulfill the presented criteria. The

aim is to find the set of four chords (defined by the points (B, E)), one in each direction, where the

intersection of their bisectors has minimum error (see Fig. 5.5(a)). Each candidate pair is combined with

all pairs from the other directions. They are combined four at a time, one pair from each direction. The

four sets of (B, E) points that satisfy these conditions will be ranked according to the distances of the

intersections Ii of the bisectors from each chord to their center (see Fig.5.5 and Eq.5.9). This distance

measures the error of the circle estimated by each set of four chords.

d̄ =
1
N

N∑
i

|Ii − C|, where C =
1
N

N∑
i

Ii. (5.9)
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(a) Intersection of the chords (b) Zoom in in the intersection of the chords

Figure 5.5: Example of imperfect intersection of the chords to locate the center of the circumference.
The full lines represent the chords and the dashed lines represent the bisector of the chords.

This process is repeated using the newly estimated center as the center of the new four signal profiles,

in order to try to extract another set of four extra edge points. Once the set of chords is selected, they

are linearly interpolated (using Matlab function). The resulting contour has sharp edges and is used as

initialization for the segmentation algorithm to extract the LV contour of the middle slice of the EDV

(s = S/2 and t = 1).

Numeric implementation GVF

The GVF model described in section 5.2 must be discretized for computational purposes: C(s, t) →
C(i, n). By approximating the derivatives in Eq.5.5 with finite differences and converting the vector

notation C(i, n) = Cn
i = (xn

i ,yn
i ) = (x(ih, n∆t),y(ih, n∆t)), the Eq.5.5 can be rewrote as Eq.5.11a.

∂Cn
i

∂t
=

Cn
i − Cn−1

i

∆t
. (5.10)

Cn
i − Cn−1

i

∆t
= Fint(Cn−1

i ) + Fpot(Cn−1
i ) (5.11a)

=
1
h2

[
αi+1

(
Cn

i+1 − Cn
i

)− αi

(
Cn

i − Cn
i−1

)]
− 1

h4

[
βi−1

(
Cn

i−2 − 2Cn
i−1 + Cn

i

)
− 2βi

(
Cn

i−1 − 2Cn
i + Cn

i+1

)
+ βi+1

(
Cn

i − 2Cn
i+1 + Cn

i+2

)]
+ Fpot(Cn−1

i ), (5.11b)

where h the step size in space and ∆t the step size in time. The external force Fpot, here the GVF field,

is stored as a discrete vector field. The value of Fpot at any location Ci can be obtained by bilinear
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interpolation. Setting ∆t = 1, Eq. 5.11b can be written in a compact matrix form:

Cn = (γI − A)−1 [
γCn−1 + kFpot(Cn−1

i )
]
, (5.12)

where γ is the dammping coeficient, k is the external force weight, Cn, Cn−1 and Fpot(Cn−1
i ) are m× 2

and A is a m × m pentadiagonal matrix, where m is the number of sample points:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c 0 . . . 0 c b

b a b c . . . 0 0 c

c b a b . . . 0 0 0
...

...
...

...
...

...
...

c 0 0 0 . . . b a b

b c 0 0 . . . c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.13)

where a, b, c depend on the regularization parameters α, β as follows: a = −2α − 6β, b = α + 4β and

c = −β.

The GVF is numerical implemented also using finite differences. Lets first define b(x, y), c1(x, y) and

c2(x, y):

b(x, y) = fx(x, y)2 + fy(x, y)2 (5.14a)

c1(x, y) = b(x, y)fx(x, y) (5.14b)

c2(x, y) = b(x, y)fy(x, y) (5.14c)

To setup the iterative solution, let i, j, n correspond to x, y, t respectively, and let the spacing between

the pixels be ∆x, ∆y and the time step for each iteration ∆t. Therefore, the Eq.5.7 can be re-arranged

considering discretization and treating u and v as functions of time:

un
i,j =

(
1 − bi,j∆t

)
un−1

i,j + r
(
un−1

i+1,j + un−1
i,j+1 + un−1

i−1,j + un−1
i,j−1 − 4un−1

i,j

)
+ c1

i,j∆t (5.15a)

vn
i,j =

(
1 − bi,j∆t

)
vn−1

i,j + r
(
vn−1

i+1,j + vn−1
i,j+1 + vn−1

i−1,j + vn−1
i,j−1 − 4vn−1

i,j

)
+ c2

i,j∆t (5.15b)

where r =
µ∆t

∆x∆y

The GVF field was computed using
√

N (according to [23]). The potential field used was the one

described in Eq.5.2. The Gaussian masked used, and other pre-processing tasks, were already described

in section 4. The set of parameters α, β, γ, k were adjusted to each patient and for the initialization, time

series and space series.

When the snake ends the deformation process, the curve is resampled to a curve with equally spaced

points (2mm). Resampling is essential because the model used does not consider the decrease or increase

of the size of the shape. Additionally, the parameters α and β are adjusted according to the curvature
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evolution, when that information was available (not of the two first slices to segment):

αs = αs−1

(
1 + µ

K(s − 1) − K(s − 2)
K(s − 2)

)
, (5.16)

where K(s) is the curvature (estimated has 1/r where r = P
2π as P being the perimeter of the curve) at

the sth slice. The parameter µ was also adjusted.
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Chapter 6

Results

LV function is assessed by using SA cardiac cine-MR images that represent large amounts of data: 10 up

to 17 volume images over 15 up to 30 frames in the cardiac cycle. This data is inspected manually by an

expert and contours are drawn manually to extract the EF value. It is a time consuming process and its

full automatization is of great interest.

The work here presented describes three automatic first steps toward a full automatization of the

LV segmentation in cine-MR images: crop, registration and initialization of the segmentation. The

segmentation step itself, based on active contours, still requires human intervention for a satisfying result.

The algorithms here proposed were tunned and tested with images acquired from 17 patients identified

with letters from A to Q. The most important results from the three steps are summarized in Table 6.2.

Automatic crop

The success of the cropping algorithm depends on whether the BB is able to fully contain the LV. The

contents of the estimated BB for all the data-sets were visually inspected for every slice over all time

frames. The quantification of the image size reduction is presented in the summary Table 6.2.

All the tested data-sets had successful results, i.e., the LV was always within its borders. Even

considering the misalignment between consecutive planes, the LV endocardial and epicardial borders

were always inside the estimated fixed-size window. In Fig.6.1 it is possible to see an example of the

results from patient Q. In the STD map it is clear the ringing effect resulting from alternating high

and low STD areas due to muscle contraction and in the Canny edge-map it is possible to see circular

structures in the LV region. In the accumulator map it is possible to identify the brighter pixel close to

the LV center (around 140 in the x direction and 120 in the y direction). The last image displays the

estimated ROI.

Here, the reduction only depends on the resolution of the image. In most of the cases, the size of the

cropped images is equal to 30.0% of the original image. The biggest reduction was 25.4% with patient J,

and the worst case was observed in patient Q, with a reduction to 34.0% of the original size (see Table

6.2).
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Figure 6.1: Automatic crop results from patient Q. (a) original image (s = S/2 and t = 2) (b) STD
map (c) Canny edge-map (d) Filtered accumulator map, zoomed into the area where the accumulator
has higher intensity (e) Resulting bounding box highlighted over the original image.

In Fig.6.2(a) and Fig.6.2(b) it is possible to observe the estimated ROI in images with resolutions

different than the usual, where the algorithm performed successfully: 672×672 in patient J and 256×256 in

patient Q. As previously mentioned, the signal intensity is not constant over the volume due to differences

in the sensitivity along the coil and also along the slice due to cardiac flow dynamics [16]. This algorithm

proved to be robust to signal variation over the image, which is usually a difficulty that must be dealt

with. The proposed algorithm is able to cope with this problem because it does not depend directly on

the original image but on the STD map, which decreases its sensitivity to these fluctuations.

Furthermore, cine-MRI are acquired along several breath-holds from the patient, in order to prevent

respiratory motion artifacts. This can lead the misalignment of the LV along the stack [14] if the subject

is not able to hold its breath properly during each volume acquisition time slot. Although the algorithm

only takes the middle slice to calculate the BB, it has proven to be robust to plane misalignment, mainly

because they are usually small and the cropped window is big enough to fit them.

The algorithm is not able to consistently locate the exact center of the LV because usually it is not

a trivial task to define it. This is shown in the results from patient H and I in Fig.6.2(c) and Fig.6.2(d)

respectively. Although the center was not located successfully, the center of the BB is close enough from

the LV centroid and the whole LV is inside the BB. The algorithm locates another circular structure close

to the LV, like the myocardium that encloses the LV and the right ventricle, who’s center is close to the

LV. Despite the whole LV is inside the BB, the LV centroid is slightly away from its center.

These SA images typically have 560×560 pixels covering a FOV containing the heart and much more.

Reduction of its dimension is an important first step to exclude unnecessary information and speed up the

processing tasks. In this work it is presented a fully automated crop function that successfully performed

this task over the data from 17 patients.
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(a) patient J, resolution 672 × 672 (b) patient Q, resolution 256 × 256

(c) patient H (d) patient I

Figure 6.2: Automatic crop results

Alignment-by-reconstruction

The alignment of the planes is needed for an efficient segmentation. Here, a method called alignment-

by-reconstruction is used, where an intermediate reconstruction step is implemented. Experimental tests

were performed with the algorithm here presented: with synthetic and real data.

The synthetic volume has 5 slices. In each slice there is a central circumference and two smaller

circumferences placed periferically. The radius of the central circumference increased from slice 1 → 5 and

the radius of the smaller ones is fixed. Pseudorandom noise (signal between [0, 1]) normally distributed

with amplitude of 10% of the signal, i.e., about −10.8dB, was also included.

To simulate the misalignment that can be found in real data, these planes were misaligned with a

translation vector randomly generated with normally distributed components (Fig.6.3(a)), with 0 mean

and standard deviation σ. The σ represents how much the slice will be misaligned from its original

position.

In order to confirm the importance of the reconstruction, the first synthetic tests missed that step.

The synthetic data was misaligned with translation vector, generated with σ = 3 and α was set to 1.5.

The results can be compared in Fig.6.3(b) and Fig.6.3(c) and in Table 6.1. The performance of the

33



(a) Misaligned synthetic data (σ = 3) (b) Aligned synthetic data w/o recon-
struction

(c) Aligned synthetic data w/ recon-
struction

Figure 6.3: Alignment results from experimental tests with synthetic data

algorithms was accessed by estimating the error of the translation:

	e = 1
S

S∑
s

Toriginal(s) + Testimated(s). (6.1)

Table 6.1: Error of the translation vectors of the experimental results with synthetic data
Toriginal(s) + Testimated(s)

Plane Original w/o Reconstruction w/ Reconstruction
1 (−4, 0) (−2, 0) (0,−1)
2 (−3,−3) (−2,−2) (0,−1)
3 (4,−4) (−2,−3) (0,−2)
4 (0,−1) (2,−5) (0,−2)
5 (−4, 3) (−2,−5) (0,−2)

‖	e‖ 3.2 0.4

Comparing the translation errors, it is clear that the reconstruction step is essential. The importance

of the reconstruction step is based on the information that each plane incorporates about its neighbors

(see Fig.6.4). This allows the result to converge in a concentric solution.

Additionally, Monte Carlo tests were performed. For a number of r repetitions, the algorithm was

tested for a set of σ (see Eq.6.2). The mean error (Eq.6.3) and standard deviation associated with each σ

were estimated. Due to computational limitations, the number of iterations for each σ was not constant:

(σ, r) = {(0, 100), (0.1, 100), (0.2, 100), (0.5, 20), (1, 20), (1.5, 20), (2, 10), (2.5, 10)} (6.2)

∥∥	̄e∥∥
σ

= 1
R

R∑
r

‖	e‖r . (6.3)

The results are presented in the graphics in Fig.6.5 and they are encouraging. For lower deviations, the

error is really low. However, more iterations are needed to be more conclusive about the performance of

the algorithm for higher σ.

In what concerns to the real data, the α parameter was set to 0.9 for all patients. Depending on the

amount of data (number of slices mainly), the algorithm could require more iteration steps to converge.
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(a) Original data, slice n − 1 (b) Original data, slice n (c) Original data, slice n + 1

(d) Filtered data, slice n − 1 (e) Filtered data, slice n (f) Filtered data, slice n + 1

(g) Reconstructed data, slice n − 1 (h) Reconstructed data, slice n (i) Reconstructed data, slice n + 1

Figure 6.4: Results with synthetic data: importance of the reconstruction step

Here, the performance of the algorithm could only be accessed in a qualitative way, by observing the

segmentation results where the deformed contour from slice s = n was used to initialize the neighbor

slices s = n + 1 if s > S/2 or s = n − 1 if s < S/2 (Fig.6.6(d) to Fig.6.6(f)).

The figures in Fig.6.6 intent to show the importance of the alignment step. From Fig.6.6(a) to

Fig.6.6(c) it is possible to observe the contour propagation between consecutive slices without alignment

and from Fig.6.6(d) to Fig.6.6(f) the same propagation but with alignment. Based on these observations,

it is possible to conclude the importance of the alignment step an automated LV segmentation. The

time series were also analyzed and the contour could be propagated without any alignment (Fig.6.6(g) to

Fig.6.6(i)). Therefore, the reported artifact induced by the respiratory motion only misaligns the data in

the space domain, and that artifact is propagated over the time in a consistent way. The transformation

used in the presented images was the one estimated to the slice s = S/2.

In the results observed over the 17 patients, the deformed curve in one slice is in general a good

initialization for its neighbor, in what depends on the alignment problem (Fig.6.6(d) → Fig.6.6(f)). Other

problems were found, such as the curve being hold in PM (Fig.6.6(d)), but will only be addressed in the

next section. The misalignment is only compensated in the space domain and therefore the estimated
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(a) Mean ‖�e‖σ (b) Standard deviation ‖�e‖σ

Figure 6.5: Graphics from Monte Carlo results to test the performance of the alignment-by-reconstruction
algorithm

translation vector is used across all time courses. The work here presented is an important step toward

full automatization of the segmentation of the LV and also represents a novel and innovative approach

to this problem.

Segmentation

The core step to estimate the EF, the segmentation, is very sensitive to the initialization despite the

great efforts done in this area [22, 49, 50, 23]. Therefore, the automatic initialization is an important

step toward full automatization of the LV segmentation.

The contributions of this work toward an automatic LV segmentation end in the initialization algo-

rithm and the expert intervention is still required to tune the segmentation parameters. However, the

algorithm was build in such a way that the minimum setup is required. For instance, the parameters re-

sponsible for the internal forces α and β are adapted according to the curvature evolution of the neighbor

slices previously segmented (see section 5.4).

After proper tunning of the snake parameters, the data from 17 patients was segmented.

Automatic snake initialization

The initialization algorithm was tested over the available patient data. This is the first step where

segmentation takes part. Based on the intersecting chords property, a set of points (8 to 16) is estimated

and linearly interpolated. This curve with sharp edges (see green dots in Fig.6.7), is the initialization

contour for the snake deformation, from the middle slice s = S/2 and time frame t = 1, corresponding

to the ED phase. The initialization is considered good once the myocardium border is segmented with

the contour (see the magenta line in Fig.6.7).

Over all the data, the user intervention was most of the times necessary to manually change the

automatic initialization contour into a good initialization. In this step, human intervention is essential

since the criteria to segment the myocardium are highly experience-dependent specially due to PM.

This algorithm was tested with two values for the maximum length of the chords: 56mm and 65mm.

The first one is the double of the normal maximum radius (see section 3.2) and the second is used to
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(a) Space series not aligned. s = S/2−1
and t = 1

(b) Space series initialization not
aligned. s = S/2 and t = 1

(c) Space series not aligned. s = S/2+1
and t = 1

(d) Space series aligned. s = S/2 − 1
and t = 1

(e) Space series initialization aligned.
s = S/2 and t = 1

(f) Space series aligned. s = S/2+1 and
t = 1

(g) Time series initialization. s = S/2
and t = 1

(h) Time series. s = S/2 and t = 2 (i) Time series. s = S/2 and t = 3

Figure 6.6: Alignment results with real data, Patient A. (magenta) contour after segmentation algorithm,
(yellow) Initialization contour from neighbor plane. It is possible to observe a black frame, caused by
the translation.

include pathological dilated hearts. See summary Table 6.2 at the end of this section, the percentage of

the segmented contour manually generated.

These two diameters were tested because some difficulties came up, for instance in patients K and N,

where the maximum diameter of 56mm was not enough, i.e., there were no sets of chords who fulfilled

all the criteria. For this reason, a higher maximum diameter was tested and it performed better in some

cases, where probably the heart is dilated. However, in average it performed worse and in two cases the

amount of candidate chords caused problems of memory (patients F and O). Therefore, the maximum

normal diameter 56mm is the best option.

The best results were observed in patients A, B and D, where human intervention was very small.

The PM are responsible for most of the required manual changes (Fig.6.8(a)). They are small structures

located in the blood cavity or in the myocardium borders with the same contrast of the myocardium,

therefore, their borders might be better ranked than the points resulting from transitions in the endo-
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(a) patient A, 22.8% changed (b) patient B, 25.7% changed (c) patient D, 24.6% changed

Figure 6.7: Automatic initialization results. (blue star) points from intersecting chords (green cross)
linear interpolation from the beginning points (magenta dashed) contour after segmentation algorithm.

cardium. However, only an expert is qualified to define where the contour should pass, specially when

the PM are in the myocardium border (see Fig.6.7 to Fig.6.8 to see different types of PM).

Another problem that affected the performance of the automatic initialization was the centering

alteration after the alignment task, presented in Fig.6.8(b). This happened with the patient K. In

this patient, there was no set of initialization points that fulfill the requirements, and therefore the

initialization has to be performed completely manually.

(a) Papillary muscles, patient N (b) Bad centering after alignment, patient L

Figure 6.8: Automatic initialization results: difficulties. (magenta) contour after segmentation algorithm,
(yellow) Initialization contour, (red) manual changing a segment of the contour.

For each patient, the segmentation parameters were tunned. The setup parameters are listed in the

summary table presented in the end of this section. Most of the patients could be grouped with similar

parameters. The ideal contour estimated from this step is used to initialize the contours for both time

and space segmentation, as described in the next sections.

ESF estimation

With the correct setup of the segmentation parameters, the ESF was automatically estimated for most

of the patients (9 out of 17). The initialization for the ESV estimation was also estimated in this step,

where 7 out of 17 were correctly automatically segmented. The estimated ESF are listed in Table 6.2

along with the correct ESF. An example is showed in Fig.6.9.

Analyzing the results presented in Table 6.2, in most of the cases where the ESF is miss-estimated,
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the error is normally of 1 time frame (exception for patients N and P).

The segmentation in the time domain is less prone to difficulties since the temporal resolution is

generally high and the transition between frames is smooth. However, the PM might introduce error in

the ESF estimation or in ESF segmentation (see Fig.6.10) and there are difficulties when the cavity at

the ESF is very small. Therefore, the expert supervision is very important.

The segmentation of the time series was also used to prove the hypothesis assumed that the first time

frame corresponded to the ED phase. The area of the frame t = T was smaller that t = 1 for all the

tested patients. Additionally, when the estimated ESF is about half of the time course, it can be an

indication for taquicardia.

Snake deformation

In the last step of the segmentation process, the ED and ES volumes are segmented. For every patient,

the set of segmentation parameters was tunned for both phases (see Table 6.3). For some patients, the

same set was used for both cardiac phases.

Thanks to the alignment step, the contour propagation method worked successfully in most of cases.

However, two main difficulties came up: (i) the PM stopped the evolution of the snake into the my-

ocardium and (ii) the abrupt radius variation of the LV section at the appex did not allowed the use

of the neighbor contours in these cases. Fortunately, in most of the cases these are also the disposable

slices, where there was no LV left or did not fulfill the criteria to be accounted to the EF estimation (see

section 1.2).

In figures Fig.6.11 to Fig.6.12 it is presented the segmentation results from patient G. The set of

planes {8, 9, 10, 11, 12, 13} do not fulfill the requirements to estimate the EF. The contour propagation in

the middle planes is smooth. However, closer to the appical planes the PM increase their influence and

the results have to be manually changed. The LV radius decrease from 3 → 4 is high and therefore the

segmentation is poorer.

In the presented example, the diastolic slices required no changes in 6, 7, minor changes in 4, 5 and

major interventions in 1, 2, 3. The systolic slices required no changes in 3, 6, 7, minor changes in 4 and

major interventions in 1, 2, 5. Once the segmentation parameters can be automatically setup, these results

represent great improvement to the clinical routine, because only minor changes have to be performed

by the expert.

These results were inspected by an expert and the EF was estimated and compared with the software

in the workstation. The main difficulties found in the presented solution concern the user interface,

where zooming and contrast change is no option. Therefore, the manual changes introduced have low

reproducibility. The software result was EF = 63% and the presented algorithm showed values between

62% and 67%.
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Table 6.2: Summary of main results. (T ) when no initialization is automatically suggested. (OOM ) Out
of memory. (1) manual identification of the ESF. (2) manual change of the contour of the ESF

Patient Crop Reduction Change Initialization ESF
56mm 65mm Estimated Correct

A 30.0% 22.8% 21.7% 14 14
B 30.5% 25.7% 50.0% 7 7
C 30.0% 38.7% 100.0% 8(1,2) 9
D 32.4% 24.6% 50.1% 142 14
E 28.1% T 61.0% 12 12
F 30.0% (32.7 + 32.9)% OOM 12(1,2) 13
G 30.0% (33.7 + 30.9)% (29.9 + 14.6)% 122 12
H 30.0% 71.1% 56.8% 10(1,2) 9
I 30.0% (49.4 + 18.9)% (25.0 + 60.0)% 12(1,2) 13
J 25.4% 32.1% (14.4 + 29.7)% 14 14
K 26.3% T T 132 13
L 30.0% 62.8% (39.1 + 25.8)% 13 13
M 30.0% 48.8% 65.1% 10 10
N 30.0% T 61.5% 8(1,2) 13
O 30.2% 64.9% OOM 9 9
P 30.0% 53.6% 87.4% 13(1,2) 15
Q 34.0% 71.1% (8.5 + 57.0)% 12(1,2) 12

Mean ± STD 29.8 ± 1.9 55.5 ± 29.0 68.1 ± 23.6
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Figure 6.9: Segmented time series around the ESF, patient E. (yellow cross) linear interpolation from
the beginning points (magenta dashed) contour after segmentation algorithm (graphic) area estimation
over all time series.
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(a) time frame t = 1 (b) time frame t = 8

(c) time frame t = 12 (d) time frame t = 15

Figure 6.10: ESF estimation, patient P. (magenta) contour after segmentation algorithm, (yellow) Ini-
tialization contour.

42



(a) Diastole, slice 2 (b) Systole, slice 2

(c) Diastole, slice 3 (d) Systole, slice 3

(e) Diastole, slice 4 (f) Systole, slice 4

(g) Diastole, slice 5 (h) Systole, slice 5

Figure 6.11: Segmentation results, slice 2 to 5, patient G. (magenta) contour after segmentation algorithm,
(yellow) Initialization contour.
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(a) Diastole, slice 6 (b) Systole, slice 6

(c) Diastole, slice 7 (d) Systole, slice 7

(e) Diastole, slice 8 (f) Systole, slice 8

Figure 6.12: Segmentation results, slice 6 to 8, patient G. (magenta) contour after segmentation algorithm,
(yellow) Initialization contour.
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Chapter 7

Conclusions

The LV function analysis is currently performed manually in the clinical routine in a labor, time-

consuming, operator biased task. In most of the proposed algorithms only a part of the stated diffi-

culties are addressed. Normally, the alignment problem is hardly addressed and few give robust solutions

concerning the signal variation over the slice and over the different image planes. Attending to these

considerations, no fully automatic initialization is achieved using a single view of the LV.

According to this lack, a new approach must be used, combining most of the proposed models and

methodologies and attending to all the SA cine-MR difficulties in order to achieve an improved, robust

and fully automated LV segmentation.

In this thesis a set of contributions are proposed toward a fully automatic LV segmentation from SA

cine-MR images. Mainly, an algorithm for automatic cropping and another for intra-plane alignment.

Additionally, algorithms for automatic snake initialization and ESF estimation were also implemented.

The huge amount of data usually available in cardiac imaging may be reduced because the useful

information for LV tracking can be found in a small ROI. The automatic crop algorithm aims at discarding

the unnecessary information to reduce the amount of data to be processed. Based on the HT, this

algorithm is able to robustly reduce the image size for all the data-set tested to about 30% of the original

size, reducing the computation burden for the tasks that follow.

The other main contribution is the alignment procedure, that aim at compensating for displacements

caused by heart displacement over the several breath-hold periods required during the acquisition process.

This may lead to inconsistencies on the reconstructed volume from which the LV is segmented.

The proposed alignment algorithm uses a reconstructed volume to perform the alignment. In the

reconstruction step, the energy of a given slice is diffused into its neighbors. With this strategy, a global

alignment involving all images on the stack volume is performed without the need of a reference image.

The so called alignment-by-reconstruction algorithm had encouraging results with the synthetic data,

highlighting the importance of the reconstruction step. With the real data, the observed results were also

important, they allowed an efficient propagation of the deformable contours into the neighbor slice.

Finally, a segmentation algorithm based on snakes and GVF was implemented. The initialization of

the snake is very important to the success of the segmentation, therefore the automatic snake initial-

47



ization algorithm was implemented. Although it showed some limitations due to the papillary muscles,

it represents a refreshing contribution to solve this problem because the expert intervention is generally

smaller.

The ESF was also successfully identified for most of the patients (9 out of 17), however it is quite

sensitive to the correct tunning of the segmentation parameters.

A full volume segmentation is also implemented. The major limitation here is the setup of the seg-

mentation parameters. This difficulty can be overcome with future work, introducing shape information

and reducing the importance of the internal forces. However, the importance of this step is to validate

the previously described algorithms, that represent a great contribution toward a fully automatic LV

segmentation.

Future work

• Explore the adaptive windowing in the automatic crop algorithm.

• Use of fuzzy theory to identify the blood-pool, as suggested in [21].

• Include shape information and use 3-D model to decrease the influence of the internal forces and of

the PM.

• Automatically exclude spurious slices from EF estimation.

• Create a robust user interface with basic image analysis tools such as zooming, change contrast,

etc.

• Increase the data-set and perform tests to compare the time efficiency and the EF value with the

software available in the clinical routine.

48



Appendix

Detailed data information

Table 7.1: Detailed data information. (s) number of slices, (t) number of time frames.
Patient s t s×t FOV Resolution(mm) TR (ms) TE (ms) FA

A 10 30 300 560 × 560 0.73 4.1 2.0 45◦

B 14 20 280 512 × 512 0.78 4.0 2.0 45◦

C 12 30 360 560 × 560 0.73 4.1 2.0 45◦

D 12 30 360 528 × 528 0.71 4.1 2.0 45◦

E 15 30 450 320 × 320 1.34 4.4 2.6 15◦

F 11 30 330 560 × 560 0.73 4.0 2.0 45◦

G 10 30 300 560 × 560 0.73 4.1 2.0 45◦

H 9 30 270 560 × 560 0.73 4.0 2.0 45◦

I 11 30 330 560 × 560 0.73 4.0 2.0 45◦

J 10 30 300 672 × 672 0.71 4.2 2.1 45◦

K 12 30 360 560 × 560 0.73 4.1 2.1 45◦

L 14 30 420 560 × 560 0.73 4.1 2.0 45◦

M 12 30 360 560 × 560 0.73 4.1 2.0 45◦

N 14 30 420 640 × 640 0.72 4.5 2.2 45◦

O 11 15 160 576 × 576 0.69 4.2 2.1 45◦

P 12 30 360 560 × 560 0.73 4.7 2.4 45◦

Q 10 30 300 256 × 256 1.41 4.3 2.5 15◦

Int. J. of Tomography & Statistics, Special Issue on Image Pro-

cessing (accepted)
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ABSTRACT

Left ventricle (LV) contour extraction and tracking is important in diagnosis of cardiac patholo-

gies. This procedure is difficult, is usually performed manually using software assistance,

is time consuming and presents high intra/inter operator variability. Automatization of this

process is of great importance to the clinical practice.

The most state of the art algorithms for LV segmentation, described in the literature,

are semi-automatic allowing to reduce significantly the human intervention. A full auto-

matic approach is still an open problem mainly because it is difficult to compute a good

initial guess for the contour, close enough of the final solution. Additionally, since the total

amount of available data is usually large, and the region of interest (ROI) containing the

LV is smaller than the overall acquired volume, an automatic crop is needed to reduce the

computational burden associated with the pre-processing and segmentation algorithms.

The pre-processing performs compensation in one hand, for coil sensitivity that induces in-

tensity fluctuations across the images and, in the other hand, for misalignments due small

movements during the breath-hold acquisition protocol.

In this paper we propose an algorithm to automatically crop the acquired volume by

defining an adaptive size ROI containing the LV. This cropping is based on the well known

Hough transform for circles, in the prior knowledge about the location of the heart and also

on the high signal variability over time due to muscle contraction at the LV borders.

Tests with real data have shown promising results.

Keywords: left ventricle, automatic crop, Hough transform.

1 Introduction

There are several non-invasive imaging techniques available to assess myocardial function,

such as echocardiography, single photon emission computed tomography (SPECT), positron

emission tomography (PET) and Magnetic Resonance Imaging (MRI).

MRI is one of the preferred diagnostic technique due to its high spatial resolution and soft-

tissue contrast. Furthermore, despite the structural information, such as anatomy and tissue
∗Corresponding author: Isabela Silva (isabela.silva@ist.utl.pt)



characterization, it provides the dynamic analysis such as perfusion, metabolism and function

measurements in one single examination (Wu and Lima, 2003).

MRI is widely used to access cardiac left ventricle (LV) function and diagnose several heart

pathologies. For instance, an important parameter used to evaluate LV function is the ejection

fraction (EF) where the internal LV contour must be tracked during several cardiac cycles.

Usually, the physicians have to manually draw the LV contour from a stack of short-axis cine-

MRI in systolic and diastolic time frames to compute the EF from these volumes. The volumes

are usually composed by 10 up to 16 slices and 15 up to 30 images are acquired per cardiac

cycle, corresponding to different phases of this cycle. Manually processing all this vast amount

of data is time consuming and computer assistance is needed. Full automatic LV tracking and

segmentation process is complex and still an open problem.

The acquired short-axis cine-MRI images present a series of obstacles that make this autom-

atization a non-trivial problem: they are acquired over several breath-holds which can lead to

the misalignment of the LV along the stack (Holland, Goldfarb and Edelman, 1998) and the

signal intensity is not constant over the stack due to different sensitivity along the coil and

over the slice due to cardiac flow dynamics (Pednekar, Muthupillai, Lenge, Kakadiaris and

Flamm, 2006). These effects must be compensated by engaging in time consuming signal

pre-processing. Therefore, a reduction of the original field of view (FOV) is needed to reduce

the computational burden associated with the pre-processing, alignment and segmentation

algorithms.

In this paper a full automatic 3D crop algorithm is proposed to select a sub-volume containing

the LV in all images and in all temporal frames from the whole acquired data.

There are several semi-automatic LV segmentation algorithms described in the literature. In

(Katouzian, Prakash and Konofagou, 2006) and in (Nascimento and Sanches, 2008; Nasci-

mento and Marques, 2008) the operator must select a point in the image within the blood-pool

of the LV.

Most of the proposed algorithms aiming at performing a fully automatic LV segmentation, usu-

ally follow two approaches to locate of the LV: i) they take into account the signal change over

time due to muscle contraction (Cocosco, Netsch, Sénégas, Bystrov, Niessen and Viergever,

2004) or ii) they use the prior knowledge about the circular shape of the transversal cross

sections of the LV (Müller, Neitmann, Merkle, Wohrle, Hombach and Kestler, 2005). Other

approaches use multiple views to automatically identify the LV, such as the one proposed in

(Pednekar et al., 2006).

In this work one important assumption is adopted and validated: although the heart orientation

vary between exams, due to scanning protocols, the LV will never be found at the edges of the

FOV and it is always close to the center of the image. The other assumptions adopted here,

previously referred, are: the LV shape is circular and there is a high temporal variability of the

image intensity in the myocardium boundaries. Under these assumptions, a fully automatic

algorithm will be presented to calculate a ROI containing the LV.

Tests using real data have proven the robustness of the algorithm and its utility in the clinical

practice.

This paper is organized as follows: Section 2 describes the image acquisition protocols and



the crop algorithm; Section 3 presents the results; Section 4 is used for discussion and main

conclusions of this work.

2 Materials and method

2.1 MRI data

The presented algorithm was tested on 17 cardiac patients identified with letters from A to

Q(five females and twelve males, mean age 48, ranging from 19 to 86) from Sociedade Por-

tuguesa de Ressonância Magnética where the LV function was studied. The images were ac-

quired on a 3T Philips scanner, using a Philips Sense cardiac six-channel coil. The cine-MRI

study was gated to the ECG and acquired with steady state free precession image sequence.

A series of 8 up to 14 short-axis slices encompassing all the LV length were acquired over

20 up to 30 time frames over the cardiac cycle. The slice thickness is of 7 mm with a 3 mm

gap between them. The spacial resolution varies between 0.71 mm to 1.44 mm, normally with

a value of 1.38mm, the TR/TE/flip angle varies 4.0 − 4.7/2.0 − 2.6/15◦ − 60◦, normally using

values of 4.1/2.0/45◦ .

2.2 Algorithm description

The design of the proposed algorithm is based on the three assumptions listed in the introduc-

tion: i) the LV is close of the center of the image, ii) the LV is circular shaped and iii) there is

a high temporal variability of the image intensity in the myocardium boundaries due the heart

beating.

The algorithm is performed in two steps: in the first step, the center of a fixed-size predefined

width ROI is estimated based on the Hough transform (HT) (Ballard, 1981); in the second part

the center coordinates and width of the previous ROI is refined in and adaptive way.

This ROI is then extended to the entire stack of images over all the cardiac cycle frames,

resulting in a 4D cropped image volume.

The algorithm was implemented in Matlab R2007b and in typical conditions spent about 2
minutes for the all processing and loading the final cropped volume.

2.2.1 Fixed-size LV windowing

Let x(i, j, p, t) be the (i, j)th voxel in the pth plane at the tth time frame, where 1 < i, j, k, t <

M,N,L, T . A standard deviation (STD) map is computed according to Eq.2.1, using all tem-

poral slices from the middle plane of the short-axis images stack, as displayed in the Results

section in Fig.3 (b). As (Cocosco et al., 2004) suggested, high STD is found between the

myocardium and the blood-pool. Additionally, this map will introduce extra ringing around the

LV borders, i.e., more circular shapes. Therefore, here the a priori knowledge of the circular

shape is used to locate the LV in the STD map using the HT.

STD(i, j) = σt(i, j) =

√√√√ 1
T

∑
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)
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)
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Before calculating the STD map, the images are filtered by a Gaussian mask to reduce the

noise. This reduction is important guarantee that the STD map observed is mainly generated

by temporal variations and not by spatial noise. The Canny edge detector (Canny, 1986) is

then applied to get an edge-map to be used in the circular HT algorithm (see Fig.3(c)).

The used circular HT algorithm is computed for a fixed radius and the output is an accumulator

Acc with the same dimensions of the input image [M,N ]. The value at Accr(i, j) represents

the number of circles with radius r centered at the edge pixels that intersect the (i, j)th pixel.

Based on the knowledge that the LV centroid is the center of multiple circles (the ring generated

in the STD map and of the epicardial and endocardial border) and that the LV has variable size,

the HT is computed for a set of different radius values. The maximum radius of the LV (at the

end of the diastole) can range from 18mm to 28mm (Feigenbaum, 2005). Using this interval

as reference, the HT was calculated for radius ranging from 15mm to 40mm . The maximum

radius was increased to 40mm in order to include the epicardial border of the LV, and the

minimum was decreased to 15mm because the middle plane of the stack might not correspond

to the largest section of the LV. With steps of 2 mm of interval, the circular HT is processed

for all the radius from 15mm to 40mm and the accumulators are added at each step (Eq.2.2).

The AccTotal incorporates the whole information about circles with every radius in the range,

amplifying its common center location. Adding the accumulators will ensure that the maximum

will be closer to the centroid of the LV.

AccTotal(i, j) =
∑

r

Accr(i, j) (2.2)

Based on the assumption that the LV is always close to the center of the image, the circles

detected close to it will be favored. The AccTotal is then multiplied by a mask that has unitary

value in a circular region around the center of the image and with decreasing values up to the

borders, following Eq.2.3 and showed in Fig.1.

h(x) =

⎧⎨
⎩1 if ‖x− c‖ ≤ R,(

1
‖x−c‖ − 1

‖c‖
)
· R if ‖x− c‖ > R,

(2.3)

where c ∈ R2 represents the center of the image, x ∈ R2 the position of a mask element

and R = 50mm, related with human anatomy. This value is fixed and was selected based

on experimental tests and on the results from (Pednekar et al., 2006). This reference radius

determines the maximum possible distance from which the LV centroid is apart from the center

of the image and the circular region where the AccTotal has unitary weight. Outside this region

the AccTotal is weighted by smaller values, reducing the importance of the detected circles in

this area. The mask is zero at the corners of the image.

The new ROI is squared and centered at the coordinates of the maximum of the AccTotal. The

side dimensions of this bounding box were set to (2+ε)rmax = 120 mm, where ε = 1 is a safety

coefficient and rmax = 40 mm.
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Figure 1: Accumulator mask that used to reducing the importance of the detected circles

outside the centered circular region. (a) 3D view (b) top view.

2.2.2 Adaptive LV windowing

In the first step of the algorithm a fixed size bounding box is generated, only depending on

the pixel resolution. In the second step, the window size and center will be adapted using the

previously estimated bounding box as a starting point.

Figure 2: Growing bounding box. The orange arrows represent the direction of the increase of

the side of the window.

A growing bounding box centered on the previously estimated window is used (see Fig. 2).

The box size increases from 2rmin = 30 mm to 3rmax = 120 mm, with 10 mm gap between

iterations. Let D(k) be the width of the box at kth step of the growing bounding box and x ∈ R2

a position in the accumulator matrix. The new parameters to generate an adaptive window are

estimated by Eq. 2.4. The range of radius used in the first step is also used here. The new

squared bounding box is centered at cadaptive and with width (2 + ε)radaptive, where ε = 1 is a

safety coefficient.

(r, c)new
adaptive = arg max

r,x
Accr,D(k)(x) (2.4)



In Fig. 7 it is possible to observe an example of the relation between the radius and the

maximum of AccD for a given D size of the growing bounding box.

3 Results

The algorithm was tunned and tested by using the images acquired from 17 patients. The R

value was set to 50mm and the parameters used in Canny edge-detector are automatically

selected by the algorithm. The improvements in reduction of the image size are presented in

Tab. 1. The contents of the estimated bounding box for all the data-sets were visually inspected

for every slice over all time frames for both steps of the algorithm.

Table 1: Size of the cropped region compared to the original image at the end of each step of

the algorithm.
Patient Fixed-Size Adaptive ε = 1

A 30.0% 23.0%

B 30.5% 23.4%

C 30.0% 23.0%

D 32.4% 25.6%

E 28.1% 25.3%

F 30.0% 28.4%

G 30.0% 27.9%

H 30.0% 29.5%

I 30.0% 29.5%

J 25.4% 23.7%

K 26.3% 21.5%

L 30.0% 29.5%

M 30.0% 28.9%

N 30.0% 23.0%

O 30.2% 29.7%

P 30.0% 27.3%

Q 34.0% 32.8%

All the tested data-set had successful results, i.e., the LV was always within its borders (see

Fig.3 as example). Although most of the data-sets presented some misalignment between

consecutive planes (see. Fig. 4), the LV endocardial and epicardial borders were always

inside the estimated fixed-size window.

The size of the cropped images is equal to 30.0% of the original image in most of the cases,

25.4% in the best case and 34.0% in the worst case (see Tab.1). In this step, the reduction only

depends on the resolution of the image.

In Fig.3 it is possible to see an example of the results from patient Q. In the STD map it is clear

the ringing effect resulting from alternating high and low STD areas due to muscle contraction

and in the Canny edge-map it is possible to see circular structures in the LV region. In the



Figure 3: Results from patient Q. (a) original image (middle slice 2nd time-frame); (b) STD

map; (c) Canny edge-map; (d) Filtered accumulator map, zoomed into the area where the

accumulator has higher intensity; (e) Resulting bounding box highlighted in the original image.

accumulator map it is possible to identify the brighter pixel close to the LV center (around 140
in the x direction and 120 in the y direction). In the last image it is possible to observe the

fixed-size window generated in the first step of the algorithm.
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Figure 4: Misalignment between consecutive slices in the same time frame for patient A -

Overlay between original bounded 4th plane and bounded Canny edge-map from original 5 th

plane

There were only two patients where the algorithm did not performed as expected. Despite the

whole LV is inside the bounding box, the LV centroid is slightly away from its center (see Fig.

3).

Significantly improvements were also observed with the adaptive LV windowing, where in most

the data-sets (13/17) the initial bounding box was reduced and centered closer to the centroid
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Figure 5: Not centered results. (a) Patient H (b) Patient I.

of the LV (see Fig.6). The window size was first set to 3radaptive where ε was set to 1.

Figure 6: Windowing results from patient J (a) Adaptive LV windowing; (b) Non-adaptive LV

windowing.

In the 4 unsuccessful data-sets (some examples shown in Fig. 7) the bounding box was not

enough to enclose the entire LV borders. An increase of the constant factor to 3.5 eliminates

this effect, but the resulting bounding box is normally slightly larger (1% to 2%) than the one

from the first step of the algorithm.

In Fig. 7 it can be observed that the unsuccessful results, such as Fig. 7 (b) correspond to a

sharper peak in a smaller radius in Fig. 7 (b), while the successful ones correspond to a peak

for higher radius, as in Fig. 7 (a).



Figure 7: Thigh results from adaptive LV windowing (a) Patient E; (b) Patient K (c) Patient I.

(a) (b)

Figure 8: Graphics from biggest bounding box, radius vs accumulator. (a) Patient J (b) Patient

K.

4 Discussion

LV function is assessed by using short-axis cardiac cine-MRI that represent large amounts of

data: 10 up to 17 volume images over 15 up to 30 frames in the cardiac cycle. This data is

inspected manually by the expert and contours are drew manually to extract the EF value. It is

a time consuming process and its full automatization is of great interest.

One of the most successful method described in (Cocosco et al., 2004) is based in the high

temporal variability of the image intensity in the myocardium boundaries where they are able

to compute a region of interest (ROI) by using 79 cine cardiac structural MRI clinical scans

without leaving out any part of the myocardium. The main drawback of this algorithm is to have

two tunable parameters on which it depends. However, the authors were able to find some

proportionality with the voxel size which makes this tunning automatic for typical adult heart

dimensions.

Other approach proposed in (Müller et al., 2005) uses a size invariant circular HT (Ballard,

1981) to calculate the ROI and locate a point in the LV endocardium in a previously segmented



image. The method performed successfully for all the 31 MRI recordings. They use Otsu’s

method followed by a morphological operator to segment a connected region where the point

calculated by the HT will fall. This method does not take into account the signal change along

the slice which makes the thresholding method less robust.

The short-axis images typically have 512× 512 pixels covering a FOV containing the heart and

much more. Reduction of matrix dimension is an important first step to exclude unrelevant

information and speed up the processing tasks.

This paper presented a fully automated crop function that successfully performed this task over

the data from 17 patients.

As previously mentioned, the signal intensity is not constant over the volume due to differences

in the sensitivity along the coil and also along the slice due to cardiac flow dynamics (Pednekar

et al., 2006). This algorithm proved to be robust to signal variation over the image, which is

usually a difficulty that must be dealt with. The proposed algorithm is able to cope with this

problem because it does not depend directly on the original image but on the STD map, which

decreases its sensitivity to these fluctuations and provides edge maps that contain all ringing

information required for the success of the circular HT, which is robust to fragmented contours.

Furthermore, cine-MRI are acquired along several breath-holds from the patient, in order to

prevent respiratory motion artifacts. This can lead the misalignment of the LV along the stack

(Holland et al., 1998) if the subject is not able to hold its breath properly during each volume

acquisition time slot. Although the algorithm only takes the middle slice to calculate the bound-

ing box, it has proven to be robust to plane misalignment, mainly because they are usually

small and the cropped window is big enough to fit them.

It is not, however, able to consistently locate the exact center of the LV because usually it is not

a trivial task to define it. This is shown in the results from patient H and I in Fig. 3. Although the

center was not located successfully, the center of the bounding box is close enough from the LV

centroid. This algorithm located another circular structure close to the LV, like the myocardium

that encloses the LV and the right ventricle, who’s center is close to the LV.

The results obtained in the first step of the algorithm can be improved in the second step,

where a window-size refinement is performed.

With a ε = 1 it was possible to see that in a few cases the LV was not completely enclosed by

the bounding box. However, in these cases a clear peak could be observed in the graphics as

the ones presented in Fig. 7 (b), in opposition to most of the successful cases where the peak

was located at higher radius. This peak represents a clear increase of the accumulator, iden-

tifying circular shape for a given radius, in contrast to the biased increase in the accumulator

value with the increase of the radius. A proper filtering of this graphic could improve the radius

selection and, therefore, a refined bounding box.

Further reduction might be possible once the images are aligned and the centroid of the LV is

properly identified.



5 Conclusions

LV contour extraction and tracking is important in diagnosis of cardiac pathologies. In the

clinical routine, this procedure is performed manually using software assistance, a time con-

suming process and presents high intra/inter operator variability. Its automatization is of great

importance to the clinical practice.

The large amount of data of these cine-MRI exams requests a dimension reduction into a ROI

that encloses entirely the LV over the stack and over all the time frames acquired in order to

reduce the computational burden associated with the pre-processing and segmentation algo-

rithm.

In this paper it was proposed an algorithm to automatically crop based on the well known

Hough transform for circles, in the prior knowledge about the location of the heart and also on

the high signal variability over time due to muscle contraction at the LV borders.

This algorithm was tested over 17 data-sets of cine-MRI from patients with cardiac pathologies

where the LV function was accessed. The first step of the algorithm provided a reduction to

a squared ROI with width equal to 30% of the original images. Promissing results were also

achieved in the second step of the algorith, where it was possible to increase the reduction but

still with a few limitations.

The performance of this algorithm was compared with state of the art algorithms ((Müller

et al., 2005) and (Cocosco et al., 2004)) but there where no quantitative data available about

the reduction accomplished. However, this crop algorithm seems to be more robust to the

difficulties presented by these exams.

Reduction of dimension if of great importance for the tasks that follow in the segmentation of

the LV: alignment and segmentation. Here is presented an automated crop procedure, which

opens the door to a fully automated segmentation of the LV.
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